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Abstract

Interest in seasonal forecasting is growing fast in many environmental and

socio-economic sectors due to the huge potential of these predictions to assist

in decision making processes. The practical application of seasonal forecasts,

however, is still hampered to some extent by the lack of tools for an effective

communication of uncertainty to non-expert end users. visualizeR is aimed

to fill this gap, implementing a set of advanced visualization tools for the com-

munication of probabilistic forecasts together with different aspects of forecast

quality, by means of perceptual multivariate graphical displays (geographical

maps, time series and other graphs). These are illustrated in this work using

the example of the strong El Niño 2015/16 event forecast. The package is part

of the climate4R bundle providing transparent access to the ECOMS-UDG cli-

mate data service. This allows a flexible application of visualizeR to a wide

variety of specific seasonal forecasting problems and datasets.
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de la Computación. Universidad de Cantabria. Avda. de los Castros, s/n. 39005. Santander.
Spain

Email address: mariadolores.frias@unican.es (M.D. Fŕıas)
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1. Introduction

Seasonal forecasts (see e.g. Doblas-Reyes et al., 2013) provide, a few months

in advance, information on how weather is likely to evolve. Seasonal forecasting

is a problem of probabilistic nature, due to the non-linear and chaotic character

of the climate system, which renders the state of the atmosphere at this time5

scale very uncertain, and only predictable statistically and conditioned to the

state of slower-response components such as the ocean. Ensemble forecasting

(Leutbecher and Palmer, 2008) is used to sample this inherent uncertainty by

slightly perturbing the initial conditions, as given by the available observations.

These forecasts are operationally produced using global climate models, which10

simulate the state of the ocean and atmosphere (at a coarse resolution of 50-

100km) for the coming months (e.g. next season), starting from this ensemble

of initial conditions. The resulting ensemble of simulated weather realizations

(ensemble members) allows estimating the likelihood of different events/indices

related to the seasonal average weather (e.g. being wetter than usual). There-15

fore, seasonal predictions are intrinsically probabilistic (e.g. “there is an 80%

chance that the next season will be wetter than usual in central Spain”), in

contrast with deterministic weather forecasts (e.g. “tomorrow it will rain 15

mm in Madrid”).

Despite the growing interest of climate services in seasonal forecasts and the20

potential value of these predictions for many sectors (hydrology, agriculture,

health, etc.), there are still a number of problems which limit the practical ap-

plication of this type of predictions. Obviously, a seasonal forecast in itself has

no value without an indication about how much the predictions can be trusted,

being thus essential to provide measures of the quality of the seasonal products.25

Forecast quality is multi-faceted with performance measures providing comple-

mentary information on different aspects of forecast quality (association, accu-

racy, reliability, etc.). It should be noted that the concept of “best” or “good”

forecast is subjective and can vary between users with different requirements

from the predictions (Murphy, 1993). An evidence-based approach for assessing30
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forecast quality is to evaluate the performance using a paired data sample of past

forecasts and observations, a process known as forecast verification (Jolliffe and

Stephenson, 2003). Forecast verification provides users with information about

possible skill (quality) in future forecasts. Forecasters can also provide users

with probabilistic forecasts to help explicitly quantify uncertainties more dy-35

namically. However, such probabilities are non-trivial to define from numerical

model outputs (see e.g. Siegert et al., 2016; Primo et al., 2009), and can easily

be misunderstood by decision-makers (Lorenz et al., 2015). For these reasons,

the probabilistic communication of uncertainty in seasonal forecast products has

been highlighted as a major challenge in the practical application of seasonal40

predictions in different economic sectors (see e.g. Mason, 2008; Lemos et al.,

2012; Raftery, 2016).

A proper validation of these probabilistic forecasts requires the use of a set of

complementary verification measures (Murphy, 1993) and the availability of ret-

rospective seasonal forecasts, known as hindcast, covering a long period (ideally,45

over 30 years). The hindcast is used to build trust (or not) in the probabilis-

tic forecast system issuing an actionable future forecast. A strong signal in a

future forecast (i.e. very high or low probability of occurrence for an event)

is useless or even dangerously misleading, if the forecast system has no skill in

predicting such events, something revealed by analysing the historical hindcast50

performance. For this reason it is recommended to blend forecast information

with the verification results of the forecast system, as an indication of its past

performance. Due to the different alternative forecast systems and skill scores,

and the various intermediate data processing steps involved (spatio-temporal

aggregations, regriding/interpolation, bias correction . . . ) the validation pro-55

cess is application-dependent and prone to error, so tailored solutions rooted on

the latest research are required in order to obtain comprehensive and actionable

information of model performance for particular end user applications.

Users have to deal with different types of uncertainty in seasonal forecasts.

On the one hand the intrinsic uncertainty given by the probabilistic character60

of the forecast (which may render it non informative in some cases). On the
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other hand, the credibility of the forecast system, which can be estimated using

forecast verification. This article introduces the R package visualizeR, which

aims at the visual communication of probabilistic forecasts together with dif-

ferent aspects of forecast quality (in particular accuracy and reliability) with65

different levels of complexity, thus targeting a wide range of users with vary-

ing expertises. A number of existing R packages provide different verification

measures for probabilistic forecasts, some of them also implementing standard

graphical verification tools, such as reliability plots, ROC curves or rank his-

tograms. Among them, it is worth mentioning verification (NCAR - Research70

Applications Laboratory, 2015), SpecsVerification (Siegert et al., 2017) or

easyVerification (MeteoSwiss, 2017), which implement several state-of-the-

art methods. In addition, ternvis (Jupp et al., 2012) is an R package that

includes a function for visualising ternary probabilistic forecasts in a map. This

package defines a continuous colour palette in barycentric coordinates for the75

map. Even though this idea has a very clear scientific purpose, it may complicate

the understanding of the verification to non-expert users. Furthermore, most

of these packages mainly include verification or calibration functions mostly fo-

cused on users with expert knowledge. However, there is a lack of applications

focused on the visual communication of probabilistic verification that can be80

easily interpreted by users and decision-makers from different sectors that are

not necessarily experts on forecast verification.

In order to fill this gap, the visualizeR package builds on the user feedback

from different environmental sectors and the experience gained during the EU

FP7 project EUPORIAS (Buontempo and Hewitt, 2017, http://euporias.eu),85

aimed at the provision of actionable climate information, and maximise the use-

fulness of seasonal-to-decadal climate information through close collaboration

with end users. visualizeR goes beyond the currently existing verification

tools, combining multiple verification measures in multivariate graphical dis-

plays achieving flexible verification diagrams able to effectively communicate90

the skill of probabilistic forecast predictions. It includes spatial maps, time se-

ries representations and single-site displays, addressing different aspects of the
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forecast quality. Most of the visualizations available in the package conveniently

blend the forecast quality based on the past performance of the forecasting sys-

tem with the current operational forecast. These characteristics make a differ-95

ence with respect to other existing probabilistic verification software packages.

visualizeR has been developed in R (R Core Team, 2017), a popular com-

puting environment and language among users of climate information. Fur-

thermore, R is Open Source, and benefits from the excellent capabilities of

other popular packages for data visualization and geospatial analysis, such as100

lattice (Sarkar, 2008), fields (Nychka et al., 2015), vioplot (Adler, 2005)

and sp (Pebesma and Bivand, 2005; Bivand et al., 2013), from which it imports

functionalities. The code is distributed to the community through a public

GitHub Repository (see Supplementary Material for installation details), thus

facilitating code sharing and collaborative development in order to optimally105

adapt the package to the user’s needs.

In the following sections, we describe the use and functionalities of the pack-

age using as illustrative example the NCEP Climate Forecast System version 2

(CFSv2; Saha et al., 2014), and its prediction for the recent El Niño 2016 event

(Trenberth, 1997). All data required for this example are available from the110

package, but they can also be independently retrieved from the ECOMS-User

Data Gateway (Cofiño et al., 2017), a climate service with an R interface –the

climate4R bundle– within which visualizeR is seamlessly integrated (see Sec.

2). Several examples to access different climate datasets using R are further il-

lustrated, enabling a flexible application of visualizeR to a wide variety of115

specific seasonal forecasting problems.

2. visualizeR as part of the climate4R bundle

The integration of seasonal predictions in different impact sectors (agricul-

ture, energy, hydrology, health . . . ) requires data from different sources, includ-

ing observations, reanalysis and seasonal predictions/hindcasts from state-of-120

the-art forecasting systems. The ECOMS User Data Gateway (ECOMS-UDG,
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http://www.meteo.unican.es/ecoms-udg; Cofiño et al., 2017) was developed

in the frame of the ECOMS (European Climate Observations, Modelling and

Services) initiative (the EUPORIAS Project is part of it, see Buontempo and

Hewitt, 2017) in order to circumvent all the problems associated with data har-125

monization, data access policies and complex file/data structures inherent to

seasonal forecast data products. The climate4R bundle is an open source, R-

based interface for data access and transformation composed by a number of

R packages implementing harmonized (one single vocabulary) data access to

the ECOMS-UDG (loadeR and loadeR.ECOMS packages, Cofiño et al., 2017)),130

data collocation including regridding, temporal aggregation, subsetting, etc.

(transformeR package, Bedia and Iturbide, 2016), bias adjustment and down-

scaling (downscaleR package, Bedia et al., 2017b), as well as blended visual-

ization of probabilistic forecasts and quality measures, the latter implemented

in visualizeR. There is full interoperability between the different packages of135

the climate4R bundle, allowing any user to apply the visualizeR capabilities

to any particular problem considering different variables, geographical regions,

lead time predictions, seasons, time periods, reference observations, forecast

systems, reference grids, etc., with flexibility and ease of use. This provides a

unique comprehensive framework for end-to-end applications of seasonal pre-140

dictions, hence favouring the reproducibility of the ECOMS scientific outcomes,

extensible to the whole scientific community.

A brief example on how to load the data from the ECOMS-UDG using the

package loadeR.ECOMS from the climate4R bundle is provided in Section 5. Its

usage and features are further described by Cofiño et al. (2017) and Bedia et al.145

(2017a), and their respective companion documents with worked examples. All

the climate4R packages are available through the SantanderMetGroup public

GitHub Repository. In particular, the package transformeR is required to

reproduce the examples shown next. Version 1.0.1 of this package is considered

here.150
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3. An application example: El Niño 2015-16

We consider the global seasonal forecast of surface air temperature issued

by CFSv2 for the boreal winter 2015/16. This is a case of strong El Niño con-

ditions (Ramsayer, 2016), which lead to increased predictability, as we shall see

in the following visualizations of forecast skill. It is worth noticing the prac-155

tical interest of the selected case study, since a wide range of natural hazards

such as typhoons, floods, landslides or droughts, are directly related to El Niño.

Therefore, in the light of El Niño predictability documented in previous studies

(see, e.g., Manzanas et al., 2014), some of these adverse impacts could be par-

tially mitigated by taking advantage of suitable (i.e. skilful) seasonal forecasts.160

However, the validation of this type of forecasts is a multi-faceted task which

requires the use of various scores accounting for the different aspects of forecast

quality: accuracy, reliability, etc.

In order to assess the seasonal forecast quality, a hindcast of past forecasts

issued by the same system is required. This covers the period 1983-2010. Both165

in the hindcast and forecast, we consider an ensemble of 24 members (forecast

realizations) and focus on the boreal winter season (December through January)

with one month lead time (i.e. forecasts are initialized in November).

Finally, past observations covering the same period as the hindcast are also

required as reference to assess the forecast quality. That is, to know whether170

the event forecast occurred or not. For this purpose, we use the NCEP/NCAR

Reanalysis (Kalnay et al., 1996).

These three global data sets (forecast, hindcast and observations) are in-

cluded in visualizeR as built-in example data sets, although these and other

data sets can be loaded from the ECOMS-UDG (see Section 5 and Supple-175

mentary Material). These data are formatted as a list including all metadata

required by the plots (time, location information, meteorological variable, units,

etc.). This metadata format is compliant with the climate4R bundle.
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4. Available visualizations in VisualizeR

visualizeR implements different visualizations to address different aspects180

of the forecast system quality. Most of them show a particular seasonal fore-

cast along with the past forecast system quality for such events. The package

includes spatial maps (bubble plot and reliability map) or single-site displays

that represent a single point or the spatial average over a homogeneous region

(tercile plot, tercile bar plot, spread plot and reliability diagram). Historical185

forecast probabilities are only shown in the tercile plot where individual his-

torical hits and misses can be directly assessed, other plots (except reliability

diagram/map) just present probabilities for the predicted season. The reliabil-

ity diagram/map shows probabilities conditioned on the forecasts while in the

others they are conditioned on the observation of the event.190

The choice of these plots and the incremental visualization options are the

result of an initial set of plots selected by seasonal forecasting and visualization

experts within FP7 EUPORIAS and additional dialogue with users of different

climate impacts communities.

The El Niño 2015/16 event forecast is used in the next sec-195

tions to present the different visualizations implemented in visualizeR

through the functions: bubblePlot(), tercilePlot(), tercileBarplot(),

reliabilityCategories() and spreadPlot(). We consider the forecast, hind-

cast and observations described in the previous section along with the above

functions to blend visualization of probabilistic forecasts and quality measures.200

The different visualizations performed in this study are based on the data sets

included in the visualizeR package and are completely reproducible executing

the code included as Supplementary Material.

Some functions in visualizeR (for instance bubblePlot() and

reliabilityCategories()) require all data on the same grid; therefore,205

they were first brought to a common grid. Then the spatial resolution was

lowered to declutter some of the following global plots (e.g. the bubble plots in

Figure 1). Both transformations can be performed by using the transformeR
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package.

4.1. Bubble plot210

Bubble plots are based on visualisations developed by Slingsby et al. (2009).

The bubblePlot() function combines in a geographic map several aspects of

the seasonal forecast system with different levels of complexity using three prop-

erties of the bubbles: colour, size and transparency (Figure 1). This function

has two mandatory arguments: the hindcast and the observational data sets.215

Forecast data set is defined as optional argument. In case the forecast data

set is not provided, the last season of the hindcast is displayed as forecast by

default, unless a particular year of the historical period is indicated in the op-

tional argument year.target. This applies also to other functions, such as

tercilePlot() and tercileBarplot(). Several optional arguments are also220

available for the bubblePlot() function as explained below.

The information most commonly provided at seasonal time scales is the

probability of the next season being above, within and below normal conditions.

Terciles computed from a long hindcast are used as thresholds to identify these

conditions. The simplest display from the bubblePlot() function (Figure 1a)225

just identifies the most likely tercile of the forecast at each grid point using the

colour of the bubbles.

In this example, we analyse temperature, so we use the default colour scale

defined as blue for conditions below the lower tercile (colder than normal),

yellow for normal conditions and red where above the upper tercile (warmer230

than normal). However, the colour scale can be chosen by the user with the

option t.colors. Figure 1a presents the global temperature forecast issued in

November 2015 showing a warmer than usual winter in 2016 in most places of

the world.

We can add information to this plot by adding the probability of the most235

likely tercile using the size of the bubble (Figure 1b). This is achieved with the

optional argument size.as.probability=TRUE, which is the default and could

be omitted. As reference for the bubble sizes (tercile probability), the legend of
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the figure includes three examples, from 50% to 100% (i.e. all ensemble members

forecast the tercile shown). This option highlights the regions with the highest240

forecast probability (signal) for winter 2016 according to CFSv2; in Figure 1b,

mainly regions in the tropics directly sensitive to El Niño influence.

The information shown in Figures 1a–b only involves the forecast for a par-

ticular season (winter 2016); the hindcast has only been used to provide ref-

erence terciles. This signal, however, is not useful unless we have information245

about the skill of the seasonal forecast system, which can be evaluated using

the whole hindcast period available along with observations. The optional argu-

ment score=TRUE (this is the default) allows to evaluate the forecast system by

computing the Relative Operating Characteristic skill score (ROCSS). ROCSS

measures forecast discrimination for binary events, in this case associated to250

the occurrence of each tercile. This score is commonly used to evaluate the skill

of probabilistic systems (Jolliffe and Stephenson, 2003). Its value ranges from

1 (perfect forecast system) to -1 (perfectly bad forecast system). A value zero

indicates no skill compared to a random prediction. The value of this score

for the most likely tercile is represented by the transparency of the bubbles255

(Figure 1c). By default, only skilful forecasts (positive ROCSS) are shown, as

indicated in the legend. However, the negative values —the system is worse

than the climatology— can be highlighted bymeans of optional arguments.

As expected, the forecast system is more skilful in the tropics (Manzanas

et al., 2017b). Out of the tropics, the skill might appear only conditionally, un-260

der strong phases of predictability sources such as El Niño (Fŕıas et al., 2010).

Regions such as North America show high probability for a particular event

(warmer than normal in winter 2016), but low past skill. The transparency range

is indicated in the legend and it can be customized using the score.range op-

tional argument. Figure 1d provides an example with score.range=c(0.5,1).265

This option increases contrast on actionable ROCSS values (Rice and Harris,

2005) and whitens out low skill regions, where the system can show statistically

significant skill, but cannot be trusted for decision-making. The high skill over

the tropics is even clearer in this last panel.

11



−80 −60 −40 −20 0 20 40

35
45

55
65

2−meter air temperature, Dec to Feb, 2016
Reference data: NCEP; Hindcast: CFS (24 members); 1983−2010

● ● ●Below Normal Above (Transparency: ROCSS=[0.0,1.0])

Figure 2: As Figure 1c but including the probability forecast for each tercile as sectors of a

3-piece pie chart in a zoom over the North Atlantic region. Transparency shows the skill score

of the probabilistic system for each tercile. Only positive values are plotted

Maps in Figure 1 only present results for the most likely tercile. A pie chart270

variant (Figure 2) can be plotted showing the probability forecast for each tercile

as sectors of a 3-piece pie chart. bubblePlot() also includes this possibility by

means of the piechart=TRUE argument. The skill score as transparency can still

be used (score=TRUE). In order to discern the pie charts, this variant is more

adequate for small regions and/or low resolution gridded data sets. Figure 2275

was produced by zooming into the North Atlantic region. To this end, the input

gridded data was subset using the transformeR package (see Supplementary

Material).

This zoom over the North Atlantic (Figure 2) shows quite limited skill of

the CFSv2 forecast system for surface air temperature over Europe, and some280

skill over the ocean and the Labrador Peninsula, mainly for the upper and

lower tercile. Probabilities for all terciles are shown. With this plot, situations

where most ensemble members forecast either warm or cold conditions (with

few normal cases) can be identified (e.g. north-east of Canada). Previous plots

just show the most likely tercile there (warm), even though the opposite (cold)285

is also very likely according to the forecast.
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4.2. Tercile plot

The tercile plot produced by tercilePlot() is based on a plot initially dis-

played by Dı́ez et al. (2011, their Figure 2). This intuitive plot (Figure 3)

presents historical forecast probabilities (as shades) for the three categories (be-290

low, normal, above) defined from the historical terciles, along with the category

that actually occurred (bullets), according to a reference observational data

set. Therefore, individual historical hits and misses can be directly assessed.

Forecast sharpness (the degree to which probabilistic forecasts are close to de-

terministic –0 or 1– forecasts) is also evident in this representation, as a high295

(sharp) vs. low contrast (no sharpness) shade.

The plot can be constructed for a single location or aggregated (spatial

average forecast) over a region. However, it should be used with caution over

heterogeneous regions. The spatial average is first computed (with a warning)

to obtain a single time series for the whole domain. As an example, the tercile300

plot over El Niño 3.4 region (5S-5N and 170-120W) is shown in Figure 3.
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Reference data: NCEP; Hindcast: CFS (24 members); 1983−2010

Figure 3: Tercile plot for the same data as in Figure 1 but averaging over El Niño 3.4 region (5S-

5N and 170-120W). Shading of each square represents the probability (darker shade=greater

probability) for each category (below, normal, above). Dots show the corresponding observed

category for each year of the hindcast period. ROCSS values obtained from the hindcast period

are indicated on the right side for each category. Significant values with a 95% confidence are

marked with an asterisk. Probabilities for the forecast event (winter 2016) are shown slightly

separated from the hindcast period.

Only hindcast and observed data sets are mandatory. We can also indicate
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the forecast data set as in this example or just select a year within the historical

period using the argument year.target. In the latter case, the target year will

be removed from the hindcast and considered as forecast. Tercile probabilities305

for the forecast are shown on the right of the tercile plot. The observation is not

plotted in this case, given that, in principle, this extra column is intended to

communicate a future forecast. Figure 3 shows a winter 2016 forecast with high

probability (dark shade) of above normal temperature. This strong signal is

useful in combination with the skill of the forecast system that can be evaluated310

through the historical records for this event also shown in the figure. Here most

of the warm (above normal) observed events where predicted by most of the

ensemble members.

Tercile plots provide a direct, intuitive assessment of forecast quality, along

with the forecast. It also includes a summary score (ROCSS) of forecast quality315

for each category. Significant values with a 95% confidence are marked with

an asterisk. Therefore, tercile plots complement the spatial information repre-

sented in the bubble plot by presenting the performance of a seasonal forecast

system along a time period. This visualization might help in building the end

user understanding of skill scores, given that they are presented along with the320

actual past forecasts and occurrences of the event. Low ROCSS values, even if

statistically significant, could be useless for many applications. However, this

representation provides an actual feeling of the accuracy of the forecast sys-

tem. As a result, tercile plots have been already used in several recent works

(Manzanas et al., 2014; Ogutu et al., 2016; Bedia et al., 2017a; Manzanas et al.,325

2017a).

4.3. Tercile bar plot

Tercile bar plot (Figure 4) is a simple bar plot of the forecast probabili-

ties for each of the three categories defined from the historical terciles. This

type of visualization is obtained from the tercileBarplot() function. Cli-330

matological probability (i.e. 1/3) is represented by the grey horizontal line as

reference. The accuracy of the forecast system for each category is also in-
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dicated by the ROCSS value. Significant values with a 95% confidence are

marked with an asterisk. The score is colour coded to indicate whether there

is No Skill (Red), Some Skill (Grey), or Good Skill (Blue); so as provide a335

salient warning to users where scores are negative. User can choose the thresh-

old to distinguish between the last two categories with the optional argument

score.threshold. This plot is based on the on-line seasonal temperature and

precipitation outlooks issued by MeteoSwiss (http://www.meteoswiss.admin.

ch/home/climate/future/seasonal-outlook.html).340

Figure 4 is an illustrative example representing tercile bar plots for two

selected winter events (2016 and 2002) over El Niño 3.4 region. Note that

the spatial mean is internally computed by the function and indicated with a

warning. However, this plot can also be obtained for a single location. As

observed in Figure 3, tercile probabilities for these two events are different:345

most members of the forecast for 2016 predict a warmer winter than normal,

whereas in 2002 probability is almost the same for the above and within normal

conditions. These probabilities are shown as bars in Figure 4, along with the

ROCSS of the forecast system for each category. ROCSS values are slightly

different in the figures since 2002 is excluded of the hindcast period in Figure 4b.350

In any case, the skill of the forecast system over this region is very high as already

shown in previous sections.

4.4. Reliability diagrams and categories

Reliability diagrams plot the observed frequencies of a particular event (e.g.

the warm tercile) as a function of its forecast probability, appropriately binned355

(see Doblas-Reyes et al., 2008, for details). Since they show probabilities con-

ditioned on the forecasts (i.e., given that the event was predicted, what was

the observed outcome?), reliability diagrams are a good partner to the ROCSS,

which is conditioned on the observations (i.e., given that the event occurred,

what was the corresponding forecast?).360

In visualizeR, the function reliabilityCategories() produces this type

of plot. In this visualization it is intended to evaluate the skill of the forecast

15
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Figure 4: Tercile bar plot over El Niño 3.4 domain. Bars represent the predicted likelihood of

each tercile for the forecast event (winter 2016 in a and winter 2002 in b) relative to climatology

represented by a grey horizontal line (e.g. 33.3 percent). ROCSS values obtained from the

hindcast period are indicated numerically at the bottom of each bar. Significant values with

a 95% confidence are marked with an asterisk. This score is colour coded to indicate whether

there is No Skill (Red), Some Skill (Grey), or Good Skill (Blue)
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system and not that of a particular forecast in contrast to other visualization

functions of the package. For instance, Figure 5 shows the reliability diagrams

obtained for cold, normal and warm conditions in El Niño 3.4 region using365

the same hindcast and observations as in previous sections. Note that instead

of considering the spatial averages and in order to increase the sample, both

observations and predictions for all grid boxes within the region of interest are

pooled into a unique time-series from which reliability diagrams are computed.

Whereas the diagonal —indicated by a dashed grey line— would mark the370

perfect reliability, points falling in the so-called skill region (shaded in grey) still

contribute positively to the forecast skill. The reliability line (solid black line)

that best fits the points in the diagram is obtained by means of least squares,

and it is weighted by the number of forecasts in each bin (represented by the

size of the points). A confidence interval for the slope of this line (coloured375

region in each panel) is computed by means of bootstrapping. Many aspects of

these diagrams can be customized via optional arguments (see Supplementary

Material).

Based on the relative position of the reliability line and the uncertainty range

around it, Weisheimer and Palmer (2014) proposed a user-oriented scale with380

five reliability categories: perfect (green), still very useful (blue), marginally

useful (yellow), not useful (orange) and dangerously useless (red). Moreover,

within the marginally useful (yellow) category, Manzanas et al. (2017b) dif-

ferentiated those cases in which the reliability line lies within the skill region,

assigning to this new category (marginally useful +) the dark yellow colour.385

Note that the colours corresponding to these six categories are provided in the

diagrams produced by reliabilityCategories(), along with the label that

identifies the reliability category.

Furthermore, reliabilityCategories() can be simultaneously applied on

more than one region. In this case, the argument regions can be used to390

specify a list of regions of interest, which must be given as a SpatialPolygons

object from the sp R package. Reliability diagrams are in this case omitted

and summarized by their corresponding reliability category, identified by its
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colour code. Some predefined regions, such as the ones introduced in the IPCC

5th Assessment Report (see http://www.ipcc-data.org/guidelines/pages/395

ar5_regions.html), are readily available (regions = AR5regions). Figure 6

shows the reliability categories obtained for the 33 AR5 regions for each of the

three categories.

n = 28 years x 33 points

Predicted probability
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n = 1
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0.2 0.4 0.6 0.8

marginally useful
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0.2 0.4 0.6 0.8

perfect
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Figure 5: Reliability diagrams obtained for the below, normal and above categories (from

left to right) for 2-m air temperature over El Niño 3.4 region. As derived from the size and

position (near the diagonal) of the points in the extreme probability bins, the forecast system

exhibits a high capacity to discriminate between cold/non-cold events and warm/non-warm

ones, leading thus to a perfect reliability for the two ‘extreme’ conditions.

Below Normal Above

dangerously useless
not useful
marginally useful
marginally useful +
still useful
perfect

Figure 6: Reliability categories obtained for the below, normal and above categories (from

left to right) for the 33 AR5 regions. Note that reliability is in general better in the tropics

and for cold and warm events (as compared to normal ones).
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5. visualizeR and the ECOMS-User Data Gateway interoperability

The above examples use sample data sets included in visualizeR. However,400

more general data can be retrieved from the ECOMS-UDG climate data service

using the loadeR.ECOMS package (Cofiño et al., 2017). For example, we can

take advantage of daily data loaded from the ECOMS-UDG to illustrate spread

plots, another forecast visualization implemented in visualizeR that, unlike

the previous ones, requires daily data as input.405

Prior to data loading, authentication is required to access the UDG. Note

that all data used in this paper are publicly available, and therefore their access

is granted after UDG registration. The authentication is performed in one step

within R, using the user name and password obtained after registration (see

Supplementary Material for details).410

Different types of climate data sets can be accessed using the workhorse

function loadECOMS(), with intuitive arguments required to unequivocally

specify the data subset requested. For instance, the argument dataset is

used to designate the different data sources considered in previous examples:

the CFSv2 hindcast data (dataset="CFSv2_seasonal"), the operational fore-415

cast predictions (dataset="CFSv2_seasonal_operative") and the reference

data for verification (dataset="NCEP_reanalysis1"). Surface air tempera-

ture is indicated with the argument var (var="tas") being “tas” the har-

monized nomenclature defined by the UDG vocabulary (type the command

loadeR::UDG.vocabulary() for an overview of standard variable names and420

units across all the UDG datasets). The spatial domain to retrieve (e.g. El

Niño 3.4 region) is defined with two arguments lonLim=c(-170,-120) and

latLim=c(-5,5), while the target period of the year (boreal winter) is speci-

fied as season=c(12,1,2). The historical hindcast period considered goes from

1983 to 2010 (years=1983:2010), and the selected forecast year is 2016 (i.e.,425

the predictions for winter 2016, entailing by convention Dec. 2015 and Jan-Feb.

2016, year=2016).

The required hindcast and operational prediction data sets correspond to
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the initializations of November (this is, one-month ahead seasonal predictions).

Thus, the argument leadMonth=1 is also required (this is the default value).430

The function loadECOMS uses this simple definition of lead time of the predic-

tion, so non-expert users do not need to worry about how the different ensemble

members have been generated and their possibly different starting dates. Fi-

nally, the number of ensemble members to be loaded can also be defined by the

user. Here, we have considered the first 24 ensemble members.435

The advantages of the R interface lie not only in its user-friendly arguments

to specify complex data requests, but also in the possibility of performing flexi-

ble on-the-fly temporal aggregations (from daily to monthly) best suited to the

particular needs of each user. For example, the original CFSv2 model data are

archived at 6-hourly time resolution. Through the arguments time="DD" (to440

convert the data from 6-h to daily) and aggr.d="mean" (to indicate the aggre-

gation function applied), the user is able to obtain daily mean values directly.

This saves the user later work of aggregation, and also prevents potential errors

at this stage (temporal aggregations are an error-prone operation due to differ-

ent calendars, season definitions etc.), and at the same time significantly reduces445

the memory space occupied by the loaded object if the user is not interested in

the highest temporal frequency available, but in time-aggregated data.

Even though a small region has been selected for this example (El Niño

3.4 domain), the complete data loading may take up to a few hours, depend-

ing on network traffic, data server load and other factors. In turn, the user450

benefits from already pre-processed and homogenised data for the target re-

gion/season/period of interest, while resorting to the original data source (e.g.,

the NOAA’s NOMADS servers in the case of CFSv2 predictions) is a far more

time-consuming task, usually out of the technical capacity for many users of

seasonal predictions.455

5.1. Spread plots

We consider the daily hindcast and forecast data loaded from the ECOMS-

UDG climate data service to introduce spread plots, which require daily data for
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their construction. The function spreadPlot() produces a plot that represents

the spread of monthly mean forecasts (boreal winter 2016 in this case) in box460

plots (Figure 7a). The background shading represents the climatology for the

hindcast period. The shaded areas show the central tercile (dark shade) and the

maximum and minimum (light shade). To avoid an excessive visual influence

of daily peaks on its interpretation, the daily data is internally smoothed by

means of a (centred) moving average of 31 days. Therefore, at the location of465

the box plots, the background shows the monthly mean forecast (the terciles

and extremes being computed over members and years). The box plots can be

replaced by violin plots (violin=TRUE), to unveil multi-modalities in the data

as in Figure 7b for boreal winter 2002.

This plot shows additional information, as compared to the previous visual-470

izations, since it shows absolute values of the variable for the ensemble members,

and not probabilities of the terciles. However, it does not show any information

related with the observations. The spread of the forecast ensemble for the win-

ter 2016 forecast is very low (Figure 7a) compared, for instance, to winter 2002

results (Figure 7b) when as mentioned before the probabilities for the upper475

and normal terciles are similar. The temperature forecast for 2016 was extraor-

dinarily high (all members exceeded all previous historical forecasts) and so it

was the El Niño event predicted for that season (Ramsayer, 2016), which in the

end was not record-breaking as forecast.

6. Summary and prospect480

We presented the recently-developed R package visualizeR, aimed at inter-

facing between state-of-the-art probabilistic seasonal forecast systems and end

users of these mid-range climate forecasts. This package provides a powerful tool

for end users to explore the forecasts and get a grasp on their uncertainty. By

design, the visualizations exhibit different levels of complexity and present the485

same forecast from different points of view, to reach a wide end user audience.

This makes a difference with respect to other existing probabilistic verification
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Figure 7: a) Spread plot (see text) for boreal winter 2016 temperature, spatially averaged

over El Niño 3.4 domain, according to the CFSv2 forecast system. b) As a), but showing the

forecast for boreal winter 2002. Here the spread of the forecast is represented by violin plots.
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software, usually aimed for expert climate users.

The visualizations are based on end user feedback from different sectors,

gathered during the EU FP7 project EUPORIAS. In the context of this and490

the companion SPECS project, a full set of climate postprocessing tools have

been developed in the R language (climate4R bundle), already well established

in the climate science community and increasingly adopted by users of climate

information in different sectoral applications. visualizeR is fully integrated

into climate4R, thus providing full interoperability with seasonal forecast data495

access and transformation tools. The visual communication of uncertainty to

end users is nowadays a cornerstone of climate services, boosted by a number of

projects and initiatives which will provide new feedback on end users demands.

visualizeR is a live and open project aiming to implement new visualizations

oriented towards end users understanding and decision-making based on sea-500

sonal probabilistic forecasts.
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Software availability

Name of the software: visualizeR (version 1.0.0).

Year First Available: 2016.

Developers: M.D. Fŕıas, M. Iturbide, R. Manzanas, J. Bedia, J. Fernández, S.515
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Herrera, A.S. Cofiño, J.M. Gutiérrez.

E-mail: mariadolores.frias@unican.es

Website: https://github.com/SantanderMetGroup/visualizeR

Hardware Requirement: General-purpose computer.

Programming Language: R.520

Software Requirement: R version 3.1.0 or later.

Licensing

This software is made freely available under the terms and conditions of the

GNU General Public License Version 3.

Data availability525

Daily data considered in Section 5.1 can be retrieved from the ECOMS-UDG

(see Section 5). The two specific datasets used can also be directly downloaded

from:

http://meteo.unican.es/work/visualizeR/data/tas.cfs.dly.rda

http://meteo.unican.es/work/visualizeR/data/tas.cfs.operative.dly.2016.rda530

All other monthly data used are available in the package.
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Doblas-Reyes, F. J., Garćıa-Serrano, J., Lienert, F., Biescas, A. P., Rodrigues,

L. R. L., 2013. Seasonal climate predictability and forecasting: status and

prospects. Wiley Interdisciplinary Reviews: Climate Change 4, 245–268.565
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Appendix A. Supplementary data

#660

# Supplementary Material

# R code to reproduce the application example for El Nio 2015-16

#

# Installation665

install.packages(’devtools’)

library(devtools)

devtools::install_github(c("SantanderMetGroup/transformeR@v1.0.1",

"SantanderMetGroup/visualizeR"))

library(visualizeR)670

library(transformeR)

# Data load

data(tas.cfs)

data(tas.cfs.operative.2016)675

data(tas.ncep)

# Adjusting data spatial resolution to 5 lat-lon resolution

newgrid <- getGrid(tas.cfs)

attr(newgrid, "resX") <- 5680

attr(newgrid, "resY") <- 5

lower.res <- function(x, newgrid) {

interpGrid(x, new.coordinates = newgrid, method = "bilinear",

bilin.method = "fields")

}685

obs <- lower.res(tas.ncep, newgrid)

hindcast <- lower.res(tas.cfs, newgrid)

forecast <- lower.res(tas.cfs.operative.2016, newgrid)
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690

#

# Bubble plot (Figure 1)

#

subtitle <- sprintf("Reference data: NCEP; Hindcast: CFS (%d members); %d-%d",

length(hindcast$Members),695

getYearsAsINDEX(hindcast)[1],

tail(getYearsAsINDEX(hindcast),1)

)

# Only colour of the bubble is plotted indicating the most likely tercile

bubblePlot(hindcast, obs, forecast = forecast,700

bubble.size = 1.5,

subtitle = subtitle,

size.as.probability = FALSE, score = FALSE

)

# Added size of the bubble indicating the probability of the most705

# likely tercile

bubblePlot(hindcast, obs, forecast = forecast,

bubble.size = 1.5,

subtitle = subtitle,

size.as.probability = TRUE, score = FALSE710

)

# Added transparency of the bubble indicating the ROC skill score (ROCSS)

bubblePlot(hindcast, obs, forecast = forecast,

bubble.size = 1.5,

subtitle = subtitle,715

size.as.probability = TRUE, score = TRUE

)

# Rescale transparency

bubblePlot(hindcast, obs, forecast = forecast,
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bubble.size = 1.5,720

subtitle = subtitle,

size.as.probability = TRUE, score = TRUE, score.range=c(0.5,1)

)

# Cropping the North Atlantic region

crop.natl <- function(x) subsetGrid(x, lonLim = c(-80, 42), latLim = c(35, 72))725

hindcast.natl <- crop.natl(hindcast)

forecast.natl <- crop.natl(forecast)

obs.natl <- crop.natl(obs)

# Replacing bubbles by sectors of a 3-piece pie chart indicating the probability

# of each tercile. (Figure 2).730

bubblePlot(hindcast.natl, obs.natl, forecast = forecast.natl,

bubble.size = 1.5,

subtitle = subtitle,

piechart = TRUE, score = TRUE

)735

#

# Tercile plot (Figure 3)

#

# Cropping El Nio 3.4 region740

crop.nino <- function(x) subsetGrid(x, lonLim = c(-170, -120), latLim = c(-5, 5))

hindcast.nino <- crop.nino(hindcast)

obs.nino <- crop.nino(obs)

forecast.nino <- crop.nino(forecast)

# Tercile plot745

tercilePlot(hindcast.nino, obs.nino, forecast = forecast.nino, subtitle = subtitle)

#

# Tercile bar plot (Figure 4)

#750
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# Plot for winter 2016 (forecast data)

tercileBarplot(hindcast.nino, obs.nino, forecast = forecast.nino,

score.threshold = 0.6, subtitle = subtitle)

# Plot for winter 2002 (selected from the hindcast)

year.target <- 2002755

subtitle_year.target <- sprintf("Reference data: NCEP; Hindcast: CFS (%d members);

%d-%d (except %d)", length(hindcast$Members),

getYearsAsINDEX(hindcast)[1],

tail(getYearsAsINDEX(hindcast),1), year.target)

tercileBarplot(hindcast.nino, obs.nino, year.target = year.target,760

score.threshold = 0.6, subtitle = subtitle_year.target)

#

# Reliability categories

#765

# Diagram (Figure 5)

rl.nino <- reliabilityCategories(hindcast.nino, obs.nino,

n.events = 3, labels = c("Below", "Normal", "Above"),

n.bins = 5, n.boot = 1000, conf.level = 0.9,

cex0 = 0.5, cex.scale = 20770

)

# Map (Figure 6)

rl.map <- reliabilityCategories(hindcast, obs,

n.events = 3, labels = c("Below", "Normal", "Above"),

n.bins = 5, n.boot = 1000, conf.level = 0.9,775

regions = AR5regions)

#

# UDG data access

# NOTE that data loading from the ECOMS-UDG may take up to a few hours depending on780

# several factors (network traffic, temporal and spatial resolution, etc). Daily data
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# for this section can be also retrieved from:

# http://meteo.unican.es/work/visualizeR/data/tas.cfs.dly.rda

# http://meteo.unican.es/work/visualizeR/data/tas.cfs.operative.dly.2016.rda

#785

# The version of the packages used to reproduce the results of this manuscript

# are instaled.

# Note that updated versions can be available in github.

devtools::install_github(c("SantanderMetGroup/loadeR.java@v1.1-0",790

"SantanderMetGroup/loadeR@v1.1.0",

"SantanderMetGroup/loadeR.ECOMS@v1.3.1"))

library(loadeR.ECOMS)

# UDG Authentification

loginUDG(username = "", password = "") # Note username and password obtained from795

# the UDG registration.

# Load reanalysis

tas.ncep.dly <- loadECOMS(dataset = "NCEP_reanalysis1",

var = "tas",

years = 1983:2010, season = c(12, 1, 2), time = "DD",800

aggr.d = "mean", lonLim = c(-170, -120), latLim = c(-5, 5)

)

# Load hindcast

tas.cfs.dly <- loadECOMS(dataset = "CFSv2_seasonal",

var = "tas",805

years = 1983:2010, season = c(12, 1, 2), time = "DD",

aggr.d = "mean", lonLim = c(-170, -120), latLim = c(-5, 5),

leadMonth = 1, members = 1:24 # note ’leadMonth’

# and ’members’

)810

# Load operational predictions for winter 2016

tas.cfs.operative.dly.2016 <- loadECOMS(dataset = "CFSv2_seasonal_operative",
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var = "tas",

years = 2016, season = c(12, 1, 2),

time = "DD", aggr.d = "mean",815

lonLim = c(-170, -120), latLim = c(-5, 5),

leadMonth = 1, members = 1:24 # note ’leadMonth’

# and ’members’

)

#820

# Spread plots (Figure 7)

#

# Plot for winter 2016 (forecast data)

spreadPlot(tas.cfs.dly, forecast = tas.cfs.operative.dly.2016, boxplot = TRUE)

# Plot for winter 2002 (year selected from the hindcast)825

spreadPlot(tas.cfs.dly, year.target = 2002, violin = TRUE)
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