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Abstract

The potential spread of pollutants stored in environmental hotspots such as

wastewater treatment plants, waste handling facilities, contaminated sites, etc.,

is among the adverse consequences of floods. This aspect has been rarely ex-

amined with a risk-based approach, although required by the European legisla-

tion. In this study, a method for estimating flood risk caused by environmental

hotspots is developed. Risk includes flood hazard, hotspots exposure, and the

expected severity of the environmental impacts, obtained as the combination

of vulnerability of the surrounding environment and pollution potential of the

hotspots. The assessment is performed at catchment scale on a geographical

basis, using open data, available from databases of public bodies and envi-

ronmental agencies. Risk maps obtained by the application of the developed

method are produced for the Arno river catchment in Tuscany (central Italy).

The area hosts approximately 1750 environmental pollution hotspots among

which 5-10% have been classified at high risk.
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1. Introduction

Floodplains provide crucial ecosystem services (Schindler et al., 2014), par-

ticularly drinking water supply, and often suffer of local anthropic pressures

as well as wider driving forces such as climate change (European Environment

Agency (EEA), 2016). Most of the cities and their industrial and technological

networks have developed near rivers, which offer favorable conditions for devel-

opment, such as the availability of fertile lands and fresh water, but the cost for

such favorable location is an increased exposure to floods (World Meteorological

Organization, 2008). Floods may affect critical infrastructures, which can be

responsible of soil, surface and groundwater pollution. Among them are wastew-

ater treatment plants (WWTPs), landfills and waste handling facilities (WFs).

WFs are susceptible of erosion and leaching behavior, thus are potential emitters

of hazardous substances if flooded (Neuhold and Nachtnebel, 2011). Moreover,

WWTPs and WFs are technological systems which can be subject to multiple

failures of control systems, instruments and electric power-fed machines in case

of flood (Krausmann and Baranzini, 2012; Xavier and de Sousa Junior, 2016).

This, especially for WWTPs, may lead to treatment restrictions which cause the

discharge of effluent with high organic load, or release of chemicals used in the

plant. Other important sources of pollution are contaminated sites (CSs), par-

ticularly sensitive to inundations because the permanence of floodwater can be

responsible of the spread of undesired chemical compounds in the environment.

WWTPs and WFs differ from industrial pollution sources since their primary

role is to protect the environment and their functioning is strictly regulated

and monitored by public environmental protection authorities. CSs are as well

under public control since environment authorities watch over reclamation pro-

cedures in the best interest of the community. The achievement of a sustainable

flood risk management (EU Parliament, 2007b) ensuring a good ecological sta-

tus of water bodies (European Community, 2000) is promoted by EC legislation

and requires an adequate and comprehensive knowledge of pressures and natu-

ral hazards. Although not easily monetizable, environmental benefits of flood
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mitigation strategies should be accounted for, since environmental quality is nec-

essary for human health/wellbeing (Zeleňáková and Zvijáková, 2016). WWTPs,

WFs and CS are here defined as environment pollution hotspots (EPHs). More-

over, the Sendai Framework for Disaster Risk Reduction 2015-2030 (SFDRR)

promotes the increased awareness toward risk and resilience of the environment

as a key priority.

Flood risk is usually defined as the combination of the probability of oc-

currence of events and the potential consequences on people, environment and

anthropic structures. According to this definition, risk can be modelled by three

components: hazard, exposure and vulnerability. Evaluating possible adverse

consequences on the environment of flood-exposed EPHs requires the identifica-

tion on one hand of the vulnerability of the environment (e.g. land use, surface

water quality, aquifer status and use) and of the characteristics of the source

of pollution (e.g. eutrophication potential, toxicity etc.) on the other hand. A

widely used method for assessing aquifer vulnerability is the DRASTIC model

(US EPA, 1987) which allows the evaluation of groundwater susceptibility to

pollution through the combination of spatial parameters (e.g. hydraulic con-

ductivity, terrain slope) in GIS environment. The DRASTIC model is usually

adopted for contamination risk due to pesticides in agricultural land (Babiker

et al., 2005; Bartzas et al., 2015; Neshat et al., 2014) and anthropic pressures

(Wang et al., 2012).

Heavy metal and chemical soil contamination has been already reported af-

ter major floods (Albering et al., 1999; Euripidou and Murray, 2004; Bird et al.,

2005; Bravo et al., 2009; Cunningham, 2005; Krausmann et al., 2011; Cozzani

et al., 2010; Lynch et al., 2017). Flooding of landfills represents a recognized

environmental risk (Laner et al., 2009; Wang et al., 2012) and flood risk asso-

ciated with waste disposal has been evaluated in Austria (Neuhold and Nacht-

nebel, 2011) also using a micro-scale approach for selected case studies (Neuhold,

2013). Parsimonious modelling approaches have also been adopted to simulate

substance transport in polder systems for environmental flood risk assessment

(Lindenschmidt et al., 2008). However, a macro-scale environmental flood risk
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assessment comprehensive of various types of EPHs is rarely found in literature

(Zeleňáková et al., 2016). Nevertheless, the impacts of natural hazards on tech-

nological systems is increasingly recognized as a possibly important external risk

source for polluting facilities (Krausmann and Baranzini, 2012). Flood risk as-

sessment methods depend on (i) the scale (e.g. micro-, meso-, macro-scale), (ii)

data availability and (iii) scope of the analysis. Macro-scale flood risk assessment

(Ward et al., 2013) is carried out at national/regional level possibly including

large catchments; examples of meso-scale are district/municipality areas, while

micro-scale refers to sub-municipal areas (Apel et al., 2009). The smaller the

scale, the higher the need of data accuracy and resolution. Especially for re-

gional studies it is common to have EPHs information only with some indicative

data such as plant capacity, but without specific details on hazardous substances

(Girgin and Krausmann, 2013). The availability of open data is a crucial aspect

for environmental studies and open GIS platforms are becoming increasingly

available in EC countries as a consequence of the Directive 2007/2/EC (EU

Parliament, 2007a), whose aim is establishing an Infrastructure for Spatial In-

formation in the European Community. Open spatial data sharing and reuse in

fact, is seen as the way to foster participation of citizens in political, social and

environmental issues and increase transparency of government.

The aim of this work is the identification of potential anthropic sources of

pollution at risk of flooding, possibly inducing contamination of soil, surface

water and groundwater. The flood risk assessment is carried out at catchment

scale, by adopting open data available from public authorities. WWTPs, WFs

and CSs are the target environment pollution hotspots, characterized by several

parameters used as proxy of their pollution potential. Flood probability is

merged with pollution potential of the source and environmental susceptibility.

The latter is evaluated through a GIS based approach inspired by DRASTIC

model. A vulnerability index is defined and combined with EPHs flood hazard to

derive flood risk maps capable of three main features:(i) identifying the EPHs at

higher risk of flooding in the catchment to be further analyzed at micro-scale,

(ii) providing new insights of potential adverse consequences of flood on the
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environment to support risk management strategies and (iii) prioritizing local

retrofitting interventions. Results are shown for the Arno river catchment in

Italy (9116 km2 of area) where 267 WWTPs, 529 WFs and 947 CSs are present.

2. Materials and methods

2.1. Risk assessment method

A widely accepted definition of risk is expressed by the product of hazard

(H), vulnerability (V) and exposure (E) (De León and Carlos, 2006; Kron, 2005):

R = HVE (1)

where hazard (H) is related to the probability that the event occurs (e.g., event

magnitude associated to a specified return period), vulnerability (V) is the pre-

disposition for a given receptor to be adversely affected, exposure (E) refers to

the presence (location) of properties or people, area of habitats, and so on in

places that could be adversely affected by physical events (Lavell et al., 2012).

The product of vulnerability (V) and exposure (E) is the damage. For the

evaluation of environmental flood risk, vulnerability is here considered as the

combination of harmful potential of pollution source and environmental vulner-

ability (Figure 1). In fact, flooded EPHs located in the vicinity of naturally

protected areas or close to aquifers used for domestic water supply cause higher

impacts than those located in industrial areas.

Exposure (E) analysis is related to the identification of EPHs potentially af-

fected by the flood for assigned recurrence interval scenarios. Objects exposed

to flood are usually assigned value 1, while EPHs not exposed are assigned value

0. The vulnerability (V) is disaggregated into factors, each of which is assigned a

weight; each factor is characterized by attributes with assigned numerical values

representing their relative degrees of importance to vulnerability. Each consid-

ered EPH is characterized by specific attributes, associated to the properties

of the hotspot itself (e.g. type of waste is a factor for WFs, plant capacity is

a factor for WWTPs). Similarly, the environmental vulnerability is classified
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Figure 1: Graphical scheme of the risk assessment methodology

according to susceptibility factors and their attributes (e.g. land use, chemical

status of the water body receptor etc.). Therefore, the vulnerability index (VIi)

for the i-th EPH combines environmental characteristics of the surrounding area

and EPH pollution potential. VIi is defined as follows:

VIi =

N∑
j=1

(WjVj) (2)

where N denotes the total number of parameters, and Vj the numerical value of

the attribute of the j-th parameter, weighted by its associated weight Wj . The

parameters adopted in this study to assess the vulnerability index are shown in

Tables 2 and 3. Environmental and EPH attribute values are assigned based

on expert judgment; thus the involvement of stakeholders and public bodies is

crucial to establish priorities for each case study and local level.

The flood risk assessment returns a classification of EPHs based on a risk

index RIi, calculated as the combination of hazard level (H), exposure (E) and

vulnerability VIi:

RIi = HiVIiEi (3)
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2.2. GIS layer attribute enrichment

The open data used in this study were available in a variety of formats and

stored in different types of databases. The data could be accessed either by

direct download or as georeferenced information from WMS (Web Map Service)

and WFS (Web Feature Service) servers. In other cases, a translation of data

from unstructured formats (such as HTML or text files) was required in order to

retrieve the desired information, often because the original format was intended

for consultation purposes only.

In order to enrich GIS layer attributes with as much information as possible,

we also included the possibility of extracting textual and numerical data from

available PDF documents, when they represented the only available sources

for specific sets of information. Unlike other common unstructured formats

(e.g., text files), PDF files required preliminary processing in order to allow to

extract information from the relevant part of the documents. We used Apache

PDFBox R© to programmatically convert PDF files into text files. The extraction

of the information was thus performed using either a simple string matching or

with regular expressions.

All the above mentioned operations were performed in the MATLAB R© en-

vironment. The final GIS layers were typically exported in Shapefile format,

using shaperead and shapewrite MATLAB functions.

2.3. Sensitivity analysis

The sensitivity of the calculated vulnerability index (VIi) is performed by

removing one parameter at a time (Bartzas et al., 2015), with the following

equation:

Si,j =
|VIi −VIi,j |

VIi
(4)

where Si,j denotes the sensitivity of VIi to the removed parameter j, and VIi,j

is the vulnerability index for the i-th EPH removing the j-th parameter. The

results of the sensitivity analysis are useful to better understand the contribution
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of each parameter to the overall vulnerability score, particularly in presence of

numerous and heterogeneous quantities.

3. Case study

The flood risk assessment analysis of EPHs was carried out in the Arno river

catchment (Figure 2) located in central Italy.

Figure 2: The Arno river catchment with its main stream, tributaries, floodplains, sources

of pollution and protected areas. Reference coordinate system is WGS84.

The catchment area is 9116 km2, the main stream is 241 km long and the

average flow discharge in the downstream gauge of S. Giovanni alla Vena is

90 m3/s. Approximately 2.2 million inhabitants live in the catchment in 166

municipalities. The Arno river and its tributaries have a long history of flood-

ings, with the latest extreme event which affected most of the catchment dating

back to 1966. The estimated flood risk for the sole city of Florence, located

in the Arno mid-stream, is 53 million Euros per year, excluding the cultural
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heritage(Arrighi et al., 2016). Approximately 2106 km2 are subject to inunda-

tions with different statistical recurrence intervals (Autorità di Bacino del Fiume

Arno, 2016). The inventory of WWTPs, WFs and CSs is based on the infor-

mation of the regional agency for environmental protection (ARPAT), which

governs a geographical domain including the Arno river catchment. According

to ARPAT, 267 WWTPs, 529 WFs and 947 CSs are located in the catchment

(Fig. 2). The catchment includes around 115 km2 of wetlands of international

importance recognized by the Ramsar Convention and approximately 257 km2

included in the Natura2000 network of core breeding and resting sites for rare

and threatened species (i.e. protected habitats). (Fig. 2).

3.1. Geographic data

Several open data sources and formats have been collected and merged to

characterize flood hazard levels, environmental vulnerability and pollution po-

tential of EPHs. On one hand there are GIS data (i.e. point vectors, polygon

vectors and raster datasets), on the other hand there are textual information

from which key factors are extracted to enrich the attribute tables of EPHs

shapefiles.

Hazard classification is gathered from the official open data catalog of the

Arno River Catchment Authority (Autorità di Bacino del Fiume Arno, 2017),

which classifies hazard levels into three probability scenarios arranged according

to the European Directive 2007/60/EC requirements:

• P1 (low hazard, return period > 200 years),

• P2 (moderate hazard, return period between 30 and 200 years) and

• P3 (high hazard, return period ≤ 30 years).

The other sources of information are the databases of ARPAT (ARPAT,

2017) and Tuscany Region (Regione Toscana, 2017). Table 1 shows the list of

the open data, with their sources and formats. Examples of GIS layers and

data used in the study are shown in Figure 3 for the downstream part of the
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catchment. In Figure 3, panel a represents the saturated hydraulic conductivity

retrieved from the regional pedology map; panel b depicts the first level of

Corine Land Cover; panel c shows the sampling points for the assessment of

surface water ecological and chemical status and the monitored wells; panel d

shows the terrain slope. The area with missing data is a military zone.

Figure 3: Examples of GIS layers and data used in this study

3.2. Hotspot properties and environmental vulnerability

The vulnerability of the environment accounts for the geographic data in

Table 2. The environmental vulnerability is evaluated within a buffer of 5
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Table 1: Data, format and sources.

Data Description Format Source

DTM Digital terrain model 10x10 m raster .geotiff Tuscany Region

Slope Terrain slope raster .geotiff Calculated

Ksat Hydraulic conductivity vector .shp Tuscany Region

Chemical status surface water body vector .shp Arno River Catchment

Authority

Land use First level of CORINE LC 2013 vector .shp Tuscany Region

Ecological status surface water body vector .shp Arno River Catchment

Authority

Flood hazard Flood prone areas for several

recurrence scenarios

vector .shp Arno River Catchment

Authority

Groundwater use fresh water destination vector .shp Arno River Catchment

Authority

Ramsar protected wetlands vector .shp Tuscany Region

Natura2000 protected habitats vector .shp Tuscany Region

WWTPs wastewater treatment plants vector .shp ARPAT

WWTPs characteristics population equivalent text .pdf Tuscany Region

WFs landfills and waste facilities vector .shp ARPAT

WFs characteristics handled mass/year, waste class text .pdf Tuscany Region

CSs contaminated sites and source vector .shp ARPAT

CSs characteristics contaminated area text .pdf ARPAT
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km from each considered EPH, except for the slope which is calculated as the

average slope of the EPH area, where available. Terrain slope is calculated in

QGIS environment using the GRASS tool r.slope. Terrain slope is assumed as

the indicator of the potential degree of infiltration/stagnation of contaminated

water. In fact, it is expected that surface runoff in high slope is much higher

than infiltration in soil.

Hydraulic conductivity (measured in saturated conditions at 0.3 m under the

ground surface) represents the actual velocity of water retained by the soil and

transported towards deeper layers. Since well drained soils (e.g. sandy soils)

allow water to move fast, they are potential vectors of groundwater contamina-

tion.

Another parameter affecting vulnerability is the land use. For instance,

contamination of agricultural land, whose purpose is the production of food,

has higher impacts than contamination on industrial areas. Chemical and eco-

logical statuses measure the quality of surface water in terms of presence of

hazardous chemical substances and presence of fauna indicators respectively, in

conformity with 60/2000/EC Directive. Water bodies with good chemical and

ecological conditions have good self-recovery capabilities due to their natural

undisturbed equilibrium (Rosgen, 2013). Chemical and ecological statuses are

available for discrete points, thus the closest downstream condition with respect

to the considered EPHs is used. The use of groundwater is assumed as a proxy

giving crucial importance to domestic and drinking use. Natura2000 sites and

Ramsar wetlands are natural habitats of recognized importance at international

level; thus they are included in the vulnerability assessment for their special

environmental quality.

The pollution potential of EPHs is estimated with several parameters de-

pending on the kind of pollution source i.e. WWTPs, WFs and CSs. Table 3

shows the parameters used to characterize the hotspots and the values assigned

in Eq. 2. WWTPs are characterized by their area and their population/person

equivalent. WFs attributes are the type of facility (e.g. landfill, composting

etc), the type of waste according to the European Waste Catalogue (EWC)
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Table 2: Vulnerability of the environment

Parameter Attribute Value

Land use (Corine Land Cover - Level 1)

(Weight = 1)

Artificial surfaces 1

Forest and semi-natural areas 2

Agricultural areas 3

Water bodies 4

Wetlands 4

Surface water - Biological status

(2000/60/EC - WFD - Annex V) (Weight =

1)

High 1

Good 2

Moderate 3

Poor 4

Bad 5

Unspecified 5

Surface water - Chemical status (2000/60/EC

- WFD - Annex V) (Weight = 1)

Good 1

Fail 5

Terrain slope from DTM (Weight = 1)

< 1 (very low) 5

1-2 (low) 4

2-4 (moderate-low) 3

4-10 (moderate-high) 2

> 10 (high) 1

Saturated hydraulic conductivity Ksat (µm/s)

at soil depth of 0-30 cm (Weight = 1)

< 0.01 (very low) 1

0.01-0.1 (low) 2

0.1-1 (moderate-low) 3

1-10 (moderate-high) 4

> 10 (high) 5

Nature protection areas (Ramsar and Natura

2000 EU Project) (Weight = 2)

Within 1 km distance (ac-

cording to European Directive

92/43/CEE and 2009/47/CE)

5

None 0

Groundwater use (within 5 km distance)

(Weight = 1)

Industrial 1

Agriculture/Livestock 3

Domestic/Public supply 5

Unknown 5
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and the overall waste mass handled yearly. CSs are characterized by their

recognized regional/national relevance, the origin of contamination and their

area. Higher pollution potential is assigned to higher plant capacity (WWTPs),

hazardous and toxic wastes (WFs) and expected presence of hazardous con-

taminants (CSs). The value of each attribute is assigned according to expert

judgment. Values and weights are defined for site-specific requirements and/or

according to public stakeholders’ interests.

4. Results and discussion

Figure 4: Flood risk classification of Wastewater treatment plants

Figure 4 shows the flood risk map for the WWTPs. The 9% of them are

classified as being at high risk, with the highest spatial concentration in the

Florence metropolitan area (top center part of the map), which includes the

provinces of Prato and Pistoia. In this area (i) the plants treat civil and in-

dustrial wastewaters with a consequent high pollution potential due to the high
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Table 3: Parameters used to characterize the hotspots and values assigned

Hotspot Parameter Attribute Value

Waste water treatment

plants (WWTPs)

Area (m2) (Weight = 1)

0-5000 1

5000-10000 2

10000-50000 3

> 50000 5

Population equivalent

(PE) (Weight = 2)

< 1000 1

1000-10000 2

10000-100000 3

> 100000 5

Waste handling

facilities (WFs)

Type (Weight = 1)

Vehicle dismantling 5

Refuse-derived fuel (RDF) 4

Composting 2

Landfill 5

Incineration plant 4

Waste recovery 3

Waste storage and selection 5

Waste treatment 4

Electronic waste treatment 5

Waste characterization

(EWC) (Weight = 2)

High (1,4-9,11-14,16,20) 5

Medium (2,10,17,18,19) 4

Low (3,15) 3

Mass handled per year

(ton/year) (Weight = 1)

< 500 1

500-5000 2

5000-50000 3

50000-200000 4

> 200000 5

Contaminated

sites (CSs)

National / regional

interest (Weight = 1)

Yes 5

No 1

Type (Weight = 1)

Former filling station / deposit 4

Former landfill / WF 4

Industrial activities 5

Mining 5

Quarry 3

Other 2

Area (m2) (Weight = 2)

< 1000 1

1000-10000 2

10000-100000 3

100000-500000 4

> 500000 5
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served population, and (ii) surface water quality is already poor or moderate and

most of the ground water is intended for human consumption. 26% of WWTPs

exhibit moderate risk in the central and downstream part of the catchment,

where several small and diffuse plants are preferred to few high capacity plant

due to the lower population density. Low risk WWTPs are mostly located in

low flood hazard zones or in mountain areas where riverine floods are infrequent.

The assessment carried out at the catchment scale does not allow to assess

whether several small plants are more impacting than few big ones. This would

instead require a meso- or micro-scale approach with quantitative hydrological

and hydrogeological models capable of describing the transport of pollutants.

Figure 5: Flood risk classification of waste facilities

Figure 5 shows the flood risk map for the waste facilities. 10% of them

are classified at high flood risk and again the Florence metropolitan area (top

center part of the map) hosts most of these waste facilities. Most of the high

risk WFs are waste storage/selection facilities and waste recovery plants. The
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wide presence of hazardous materials in these sites is again a consequence of

the high concentration of industrial activities, and urban settlements. In the

mid and lower stream where other sectoral industrial activities take place (also

linked to the harbor of Livorno) WFs at high risk are also present. Flood risk

is low for 57% of WFs since an important design parameter for these kinds of

facilities is the remoteness from flood prone areas with medium-high hazard.

Figure 6: Flood risk classification of contaminated sites

Figure 6 depicts the risk classification for the contaminated sites. 4.5% of

them are at high risk, the sites are quite homogeneously distributed along the

main stream, with a slight higher density in the Florence metropolitan area.

Most of high flood risk CSs have industrial origin, e.g. they are contaminated

by production residues and waste. Moreover, hydrocarbon storage tanks are

also present. Four of the high-risk CSs are recognized of regional interest since

their origin is related to hydrocarbon refinery in high flood hazard zone in the

province of Livorno (center left area in the map of Figure 6, close to the river
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mouth). 358 CSs (38%) are classified at medium flood risk and most of them

are originated by fuel and hydrocarbon deposits and industrial activities. They

are again mostly located around the Florence metropolitan area. The results

of flood risk assessment clearly indicate that the majority of EPHs at high

and medium flood risk are located in the Florence metropolitan area where

industrial activities and pre-existing environmental poor conditions of water

bodies coexist with high concentration of population, which is water demanding.

The risk evaluation is intended to be at the macro-scale (e.g. coincident with

the Arno catchment), thus the effective pollution potential of flooded EPHs is

not quantified. Such an analysis would require detailed data for each EPHs

category, which unfortunately are not available as open data, and detailed 2D

hydrodynamic models to estimate water depth and flow velocity for each flood

scenario. However the catchment scale estimation clearly identifies a high spatial

correlation between EPHs at risk, industrial activities and population density

and suggests that the environmental flood risk in the Florence metropolitan

area should be evaluated thoroughly with higher resolution approaches.

4.1. Sensitivity analysis

The reliability of the risk estimation is dependent upon the characteristics of

the datasets used (e.g., amount of information, quality of data, accuracy of geo-

graphical features, etc.) and the subjectivity introduced by the policy/decision

makers who are responsible for the attribution of the relative importance of

each factor considered. We carried out a sensitivity analysis to evaluate the

uncertainty of the results obtained, in order to identify the relative influence of

each single input parameter on the overall result. We calculated the sensitivity

of the vulnerability index for each EPH using Equation 4. The calculation is

carried out by removing one parameter at a time, thus evaluating its individual

contribution to the overall vulnerability score. The analysis is applied to each

category of environmental hotspots (WWTPs, WFs and CSs) separately. In

the analysis, all the weights (Wj) were assumed equal to 1. Table 4 presents a

summary sensitivity statistics of vulnerability indexes, expressed in percentage.
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Table 4: Summary of sensitivity (%) statistics of vulnerability indexes (VI)

WWTPs WFs CSs

Parameter mean st.dev mean st.dev mean st.dev

Land use 9.0 4.4 4.4 2.3 5.6 2.9

Chemical status 13.3 8.3 11.5 6.4 15.4 5.5

Ecological status 12.0 4.1 9.6 3.4 14.2 2.8

Terrain slope 12.2 6.1 12.4 5.0 12.0 5.4

Hydraulic conductivity 15.0 5.8 7.2 4.4 8.1 4.7

Nature protection areas 1.4 5.0 1.2 4.0 1.6 4.6

Groundwater use 23.0 5.9 17.2 3.8 17.2 4.4

WWTP area 6.5 2.6 - - - -

Population equivalent (PE) 7.6 3.2 - - - -

WF plant type - - 12.5 3.2 - -

Waste type (EWC) - - 17.2 2.9 - -

Waste mass handled - - 6.8 3.5 - -

CS of National / regional interest - - - - 4.0 1.7

CS site type - - - - 13.5 4.2

CS site area - - - - 8.5 3.0

The highest contribution to the calculated vulnerability indexes is given by

the groundwater use parameter, independently from the category of hotspot

considered. This is the result of the conservative assumption that where the

groundwater use is unknown the value assigned to the attribute is high (see Ta-

ble 2). However, this precautionary hypothesis was assumed since the number

of available sampling data in wells is limited and does not reflect the actual

density of wells for private domestic/agricultural use, which are not monitored.

The other most important parameters for WWTPs are the hydraulic conduc-

tivity of the soil, and chemical and ecological statuses; they are all related to

the locations of the treatment plants, which are usually built in proximity of the

river network, due to the need to discharge the treated effluents. On one hand,

riverine areas in the Arno catchment are frequently characterized by clay and

silt layers with low hydraulic conductivity, especially in the lower part of the

basin. On the other hand the chemical and ecological statuses are also signif-

19



icant factors due to proximity to rivers. Concerning WFs, the waste type and

plant type are the most significant factors. The waste type is dominant, since

presence of hazardous materials directly bears a high value of the attribute,

neglecting its actual mass in the site, being this information unavailable. For

CSs, chemical and ecological statuses are still relevant parameters since they

are located around the main stream and tributaries, along with the main infras-

tructures and industrial activities. The site type, which represents the origin

of the contamination, is also crucial. The presence of Nature protection areas

has the lowest contribution to vulnerability scores for all categories of EPHs. It

is logical to expect that all of the considered categories of plant and facilities

are not located inside protected areas. However, the non-zero sensitivity indi-

cates that some exceptions exist and the contribution of this parameter may be

significant only in these few cases.

5. Conclusions

In this work a methodology was developed to evaluate the flood risk related

to potential contaminant release from environmental hotspots at catchment

scale. The method is based on the assessment of flood hazard, vulnerability

and exposure. Each considered hotspot is characterized by specific attributes,

derived from the available open data portals managed by several public bodies

and environment agencies. The vulnerability was calculated by combining the

specific characteristics of each hotspot used as proxies of their pollution poten-

tial with the environmental characteristics of the area surrounding the hotspot.

The parameters used for environmental vulnerability are: land use, chemical

and ecological statuses of surface water bodies, terrain slope, hydraulic con-

ductivity, groundwater use and nature protected areas (Ramsar wetlands and

Natura2000 sites). A risk index was calculated by multiplying the three risk

components.

The method was applied to the Arno river catchment in Tuscany (central

Italy), to evaluate the flood risk due to possible contaminant spread from three
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types of hotspots: i) contaminated sites (947 items), ii) waste handling facilities

(529 items), which included temporary storage sites, treatment and recycling

sites, and landfills, and iii) wastewater treatment plants (267 items), including

liquid waste treatment facilities and urban wastewater treatment plants. The

datasets include georeferenced features, textual data, and information extracted

from HTML pages and PDF files using purposely developed routines.

Risk maps for the three types of EPHs were drawn. The results indicate

that 9% of WWTPs, 10% of WFs and 4.5% of CSs are at high risk of flooding.

The risk maps also identified the highest concentration of high-risk EPHs in

the densely populated metropolitan area of Florence, which also includes the

provinces of Prato and Pistoia.

The sensitivity analysis shows that the groundwater use is the most relevant

environmental parameter. Moreover, the analysis also highlights that some pa-

rameters contribute particularly to vulnerability based on the peculiar position

of EPHs (e.g. chemical and ecological status of water bodies for river-close

WWTPs).

The main limitation of the catchment scale approach is that it does not allow

for the actual quantification of contamination. It only suggests where to focus

further investigations to be conducted with micro-scale approaches where flood

parameters and site characteristics can be evaluated. Moreover, although open

data are becoming increasingly available in Europe, the methodology could be

applied with difficulty where those data are not freely distributed. However,

the developed method can represent a valuable tool to support institutions and

competent authorities to define a priority scale of interventions to reduce the

risks associated to possible release of contaminants from several types of envi-

ronmental hotspots.
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