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Abstract 14 

In this work the synergistic use of Sentinel-1 and 2 combined with the System for 15 
Automated Geoscientific Analyses (SAGA) Wetness Index in the content of land 16 
use/cover (LULC) mapping with emphasis in wetlands is evaluated. A further objective 17 
has been to a new Object-based Image Analysis (OBIA) approach for mapping wetland 18 
areas using Sentinel-1 and 2 data, where the latter is also tested against two popular 19 
machine learning algorithms (Support Vector Machines - SVMs and Random Forests - 20 
RFs). The highly vulnerable iSimangaliso Wetland Park was used as the study site.  21 
Results showed that two-part image segmentation could efficiently create object 22 
features across the study area. For both classification algorithms, an increase in overall 23 
accuracy was observed when the full synergistic combination of available datasets. A 24 
statistically significant difference in classification accuracy at all levels between SVMs 25 
and RFs was also reported, with the latter being up to 2.4% higher. SAGA wetness index 26 
showed promising ability to distinguish wetland environments, and in combination 27 
with Sentinel-1 and 2 synergies can successfully produce a land use and land cover 28 
classification in a location where both wetland and non-wetland classes exist.  29 

 30 
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1. Introduction 35 

Wetland systems are precious natural environments of a thriving flora and fauna biota, 36 
multifaceted hydrological network and critical biogeochemical cycles. They are highly effective at 37 
preventing flooding (Loveline, 2015), protect coastlines from breaching tidal waters (Gedan et al., 38 
2010), act as carbon sinks whilst being large suppliers of oxygen (Kayranli et al., 2009), provide 39 
fertile farming lands (Rippon, 2009) and have intrinsic qualities which can help the human mind 40 
(Gesler, 2005). Despite their importance, many wetlands around the globe are under threat due to 41 
natural and anthropogenic climate change, as well as, changes in land use brought about by 42 
increasing populations and urban expansion. Over the last century, it has been estimated that 43 
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50% of the world’s wetlands have disappeared, with an increased rate of 3.7 times that during the 44 
20th and 21st centuries (Davidson, 2014). Therefore, it is becoming increasingly important to 45 
study and monitor wetlands due to their sensitivity to external and internal changes, as these can 46 
initiate the detrimental process of wetland degradation, thus, depleting the biodiversity and 47 
affecting the livelihood of many people around the globe that rely on them. 48 

Remote sensing and Geographical Information Systems (GIS) technologies provide a valuable tool 49 
when monitoring the Earth’s surface. Satellite imagery can capture specific moments in time that 50 
can be analyzed and processed to offer an extensive range of products to be used in a vast array of 51 
applications. Remote sensing also provides the ability to monitor large regions of land which may 52 
be inaccessible for in situ strategies (Gauci et al., 2018; Aune-Lundberg, Linda et al., 2014). Land 53 
use and land cover (LULC) mapping is one such application, allowing for short or long-term 54 
change detection and monitoring in vulnerable habitats (Xu et al., 2017). Is also allows for 55 
effective evaluation of any management practices that are introduced, which is in great need in 56 
protected conservation areas (Bassa et al., 2016). This ability to study changes in the environment 57 
with earth observation data, presents decision makers with critical visual and statistical 58 
information that can be used to mitigate or adapt before a threshold is crossed, after which the 59 
chances of landscape regeneration may become too high. 60 

Vast quantities of data are being produced by satellites with numerous sensors launched just in 61 
the last decade. The introduction of the Sentinel satellite systems by the European Space Agency 62 
(ESA) is contributing to this whilst carrying on the long-term continuity missions of past and 63 
present satellites, offering relatively high spatial, temporal and spectral resolution imagery and 64 
doing so with a variety of sensor types (optical, radar and thermal) (Berger et al., 2012). The key 65 
purpose of the Sentinel Mission is to support policy making for the Global Monitoring for 66 
Environmental Security (GMES) program, while providing new opportunities for the scientific 67 
community (Aschbacher and Milagro-Pérez, 2012). The Sentinel satellites can play a pivotal role 68 
in future land surface monitoring programs, especially if the synergistic collaboration between 69 
them is explored, therefore this has to be a key area to develop (Malenovský et al., 2012). 70 

The application of classification algorithms in remote sensing is often based on per-pixel 71 
classifiers (Wang, 2012; Xu et al., 2017; Murray-Rust et al., 2014). Those techniques are based on 72 
assigning individual image pixels with a user-defined class based on the spectral characteristics of 73 
the individual pixels, either identified computationally, with minimum user input (unsupervised), 74 
or through user-defined training pixels (supervised). Although pixel-based classifications have 75 
been successfully used in wetland classifications, many researchers believe that object-based 76 
image analysis (OBIA) can provide more accurate classification results. Dronova (2015), in a 77 
review of 73 studies reported that OBIA improves wetland classifications by 31% compared to 78 
pixel-based methods. Mui et al. (2015) underlined that although OBIA is a promising concept, 79 
further research is needed to test it in a range of environments, with a variety of sensors. There 80 
have been many remote sensing studies that have implemented OBIA for mapping land cover. 81 
These include glacier delineation and debris cover (Ardelean et al., 2011; Rastner et al., 2014; 82 
Robson et al., 2015), urban infrastructure (d’Oleire-Oltmanns et al., 2011), agriculture (Forster et 83 
al., 2010; Taşdemir et al., 2012), and forestry mapping (Dorren et al., 2003; Guo et al., 2012; 84 
Lindguist and D’Annunzio, 2016), to name but a few. The application of OBIA in wetland mapping 85 
has not been to the same extent as the disciplines mentioned above in the literature, but is has 86 
seen a growth in the last decade with new advances coming through (Harken and Sugumaran, 87 
2005; Mas et al., 2014). 88 
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Machine learning algorithms have become an integral part of remote sensing studies in recent 89 
years due to their durability and capability in performing LULC classifications (Rogan et al., 2008; 90 
Xu et al., 2017; Gauci et al., 2018). Amongst them, the most popular algorithms are Random 91 
Forests (RFs) (Breiman, 2001) and Support Vector Machines (SVMs) (Cortes and Vapnik, 1995). 92 
Several studies have demonstrated so far that those algorithms consistently outperform many 93 
other frequently used classifiers (Shang and Chisholm, 2014), making them suitable for many 94 
scenarios over a range of disciplines. These machine learning algorithms are powerful techniques 95 
with a great deal of flexibility, thus, allowing them to be implemented on a variety of sensor types 96 
and combinations. The use of such classifiers offers promising proficiency in avoiding challenges 97 
associated with heterogeneous environments and limited training sample ability, which is often a 98 
problem in wetlands, where high resolution imagery and in situ measurements may be expensive 99 
or difficult to collect. There have been several successful applications of both SVMs (Petropoulos 100 
et al., 2012; Petropoulos et al., 2013; Scott et al., 2014; Sonobe et al., 2014; Szantoi et al., 2013; 101 
Zhang and Xie, 2013) and RFs (Furtado et al., 2016; Maxwell et al., 2016; Mellor et al., 2013; 102 
Sesnie et al., 2010) in remote sensing. Niculescu et al. (2017) conducted a study with RFs, and a 103 
synergistic classification using Sentinel-1 and 2 for a coastal wetland in Romania. This study used 104 
a pixel based approach and found a synergistic technique provided the highest accuracy. Dronova 105 
(2015) called for more studies to be focused on the application of OBIA and machine learning 106 
algorithms, with comparisons needed between different algorithms. To our knowledge, the use of 107 
these advanced image processing algorithms with OBIA, combined with data from sophisticated 108 
satellites launched recently such as Sentinel-1 and 2, has not yet been adequately investigated.  109 

The aim of this study is to develop a synergistic approach between Sentinel-1 and 2 in the context 110 
of wetland mapping. In particular, it aims at analyzing a number of secondarily derived products 111 
from the sensors mentioned above, along with the topographically derived SAGA Wetness Index 112 
(SWI), to evaluate their ability to map a complex area containing wetland and non-wetland LULC 113 
classes. A further objective has been to a new Object-based Image Analysis (OBIA) approach for 114 
mapping wetland areas using Sentinel-1 and 2 data, where the latter is also tested against two 115 
popular machine learning algorithms (SVMs and RFs).  116 

 117 

2. Materials and Methods 118 

2.1. Study site 119 

The study site under consideration is the iSimangaliso Wetland Park, also known as the Greater 120 
St. Lucia Wetland Park, located on the east coast of South Africa in the northern stretch of 121 
KwaZulu-Natal Province. It lies between the longitudes 32o21’E, 32o34’E, and latitudes 24o34’S, 122 
28o24’S, covering a land surface area of 3280 km2, making it the largest estuarine system in South 123 
Africa and one of the largest in the world (Figure 1). The east coast consists of a succession of 124 
raised sand dunes and indignant woodland; that help protect the wetland from tidal surges and 125 
strong winds. The climate is considered to be sub-tropical with mean annual temperatures 126 
greater than 21oC. The park’s rainfall varies both temporally and spatially, due to a combination of 127 
elevation change (~170 m from the western hills to the coastal wetland), climate zone and sea-128 
land dynamics. Annual precipitation can range from 1200 and 1300 mm (Bassa et al., 2016), 129 
however below normal precipitation has been recorded in 2015 (Coppola, 2015) and early 2016, 130 
due to drought. The wetland is fed by five contributing catchments and rivers. 131 

The park hosts a variety of wetland vegetation types, making it a highly diverse, heterogeneous 132 
environment to study. Much of the vegetation colonized the area in its recent history due to falling 133 



4 | P a g e  
 

lake levels, with depths rarely exceeding 1.5 m (Whitfield and Taylor, 2009). The wetland 134 
vegetation consists of salt marsh species that thrive in brackish systems, such as the salt marsh 135 
rush (Juncus kraussii) and tasselweed (Ruppia martima); saline reed swamps, often found at 136 
estuarine edges with species such as reed grass (Phragmites mauritianus) (Macnae, 1963); sedge 137 
swamps, containing Eleocharis limosa; floodplain grasses, predominantly Antelope Grass 138 
(Echinochloa pyramidalis); furthermore, the most dominant wetland vegetation type in the park 139 
are from river fed freshwater swamps that host a variety of species (Adam et al., 2009). Since the 140 
closure of the St. Lucia mouth to the Indian Ocean in 2002, the once thriving mangrove 141 
communities (Macnae, 1963), have fallen dramatically, due to the drop in salinity levels. Adam et 142 
al. (2013) explain how this has made way for reed species, whose numbers have risen. The two 143 
most notable freshwater swamps in the park are the Mkhuze Swamp located north of the 144 
Northern Lake and the Mfolozi Swamp located to the far south of the estuarine system adjacent to 145 
the Mfolozi River floodplain. Both swamps are under pressure from illegal farming practices that 146 
are encroaching on them.  147 

 148 

Figure 1. Study site map of the iSimangaliso Wetland Park, South Africa. False color image clearly 149 
defines key features of the landscape. 150 

2.2. Data sets 151 

Single Look Complex (SLC) Sentinel-1 (C-band at 5.405 GHz) imagery was acquired from the 152 
European Space Agency Sentinel Data Hub, for the 30th June 2016 in Interferometric Wide Swath 153 
Mode (IW). This produces a 250 km swath at approximately 5x20 m resolution. The imagery was 154 
captured on ascending path in dual-polarization mode at VV+VH, as this was the only option 155 
available for the region. The study area was contained in the IW Beam 2 giving an incidence angle 156 
of 36.47o-41.85o and 34.77o-40.15o for the minimum and maximum orbit altitudes, respectively. 157 

The Sentinel-2 optical imagery was also acquired from the European Space Agency Sentinel Data 158 
Hub for the 30th June 2016 with the multispectral imager (MSI) instrument at 7:49 am. This was 159 
the only day where imagery from both Sentinel-1 and 2 matched, offering a prime opportunity for 160 
a synergistic study. Cloud cover was at 0%, allowing for all features to be classified without the 161 
need for cloud masking. The instrument offers 13 spectral bands ranging from 443 nm to 2190 162 
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nm. The highest resolutions are captured in the three visible and one NIR band (10 m), followed 163 
by six red edge/SWIR bands (20 m) and three coarse atmospheric correction bands (60 m). For 164 
this study, only the spectral information acquired in the four 10 m and one 20 m SWIR (1610 nm) 165 
bands was utilized. 166 

The final dataset which was acquired was the Shuttle Radar Topography Mission’s (SRTM) 1 arc-167 
second Digital Elevation Model. This was downloaded from USGS Earth Explorer and offers a void 168 
filled elevation model with a resolution of 30 meters, created with interferometry using C-band 169 
radar. A summary of the datasets used in this study can be found in Table 1. 170 

Table 1. Summary of the remotely sensed datasets used for this study. 171 

Sensor 
Name 

Sensor 
type 

Acquisition 
Date 

Band 
Information 

Resolution 
(m) 

Sentinel-2 Optical 30/06/20
16 

Blue (490nm) 10 

Green (560nm) 10 

Red (665nm) 10 

NIR (842nm) 10 

SWIR (1610nm) 20 

Sentinel-1 
C-Band 

Radar 
30/06/20

16 
VV + VH 5x20 

SRTM C-Band 
Radar 

2000 DEM 30 

 172 

2.3. Pre-processing and secondary derivatives 173 

All radar imagery acquired was pre-processed using the Sentinel Application Platform (SNAP) 174 
which offers a range of tools and features suitable for Sentinel-1 imagery processing and analysis. 175 
Due to the large swath width, the image was first subset to the study site extent, helping increase 176 
processing time. The remaining sub-swaths were then merged using TOPSAR de-bursting and the 177 
precise orbit file was fused to offer the highest geometric precision. Polarimetric speckle filtering 178 
was performed using the Refined Lee Filter (Lee, 1981) with a window size of 7x7, as suggested 179 
by Shitole et al. (2015).  180 

The next step taken was to perform radiometric calibration to convert the pixel’s digital number 181 
(DN) into sigma0 (σ0) backscatter values which directly relate to actual scene backscatter. This 182 
was achieved using the following equation: 183 

𝜎0 = |𝐷𝑁𝑖|2

𝐴𝑖
2               (1) 184 

This step was performed on VV and VH, where Ai is an absolute calibration constant found in the 185 
products Look Up Table (LUT). A complex output file was also created for further analysis. 186 

For the purpose of this study the full capabilities of the Sentinel-1 dual-polarized imagery was 187 
tested in order to get a good understanding of its effectiveness in LULC mapping. Therefore, the 188 
Cloude and Pottier (1997) H-Alpha (H-α) decomposition was included, allowing for entropy and 189 
alpha derivatives to be extracted from the data. To calculate a dual- polarized H-α decomposition, 190 
a 2x2 coherency matrix (Tdual) was created using the complex data for every image pixel. This is 191 
an adaptation from the 3x3 coherency matrix that is commonly applied to quad-polarized data 192 
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(Xie et al., 2015), and was first proposed by Cloude (2007). It was calculated and implemented in 193 
SNAP using the following equation: 194 

𝑇𝑑𝑢𝑎𝑙 = �𝛵11 𝛵12
𝛵12 𝛵22

� = 𝑈 �𝜆1 𝜆2
�𝑈𝐻 = 𝜆1𝑢1𝑢1𝐻 + 𝜆2𝑢2𝑢2𝐻          (2) 195 

thus, a single complex covariance matrix (Tdual) can be expanded into a weighted sum of two 196 
simpler matrices, allowing for the pseudo-probabilities (Pi) to be defined using the sorted 197 
eigenvalues (λ). Given the eigenvectors and probabilities, entropy (H) and alpha (α) values can be 198 
derived per pixel, as shown in the following equations: 199 

𝐻 = ∑ −𝑃𝑖 log2 𝑃𝑖2
𝑖=1      and      𝑎 = ∑ 𝑃𝑖 cos−1(|𝑢1𝑖|)2

𝑖=1              (3) 200 

where, 201 

𝑃𝑖 = 𝜆𝑖 ∑ 𝜆𝑗 ,   𝑖 = 1,22
𝑗=1⁄     (4) 202 

The σ0 and H-α outputs were terrain corrected using SNAP’s ‘Range Doppler Terrain Correction’ 203 
algorithm with a SRTM 1 Arc-Second DEM. Terrain correction helps improve the geometric 204 
representation of the real-world surface. This is needed because during image capture, 205 
topographical variations and off-nadir distortion unsettles the image (Wang et al., 2013). A 206 
bilinear interpolation resampling method was used for the correction. Once all pre-processing 207 
was completed in SNAP the images were exported as GeoTIFF files, projected to WGS-84 UTM 208 
Zone 36S and resampled to 10 m resolution to match that of the optical imagery. Figure 2 shows 209 
the processing steps taken in STEP in chronological order. 210 

Atmospheric correction of the optical imagery was conducted in QGIS using the Semi-Automatic 211 
Classification Plugin, which applies a dark object subtraction algorithm, converting the top of 212 
atmosphere values into surface reflectance values. The two Sentinel-2 scenes were joined in 213 
ArcMap 10.3 using the ‘Mosaic to New Raster’ tool, then georeferenced and projected to WGS-84 214 
UTM Zone 36S. Bands 2 (Blue), 3 (Green), 4 (Red), 8 (NIR) and 11 (SWIR) were isolated for this 215 
study, and SWIR was resampled to 10 m spatial resolution, matching that of the other four bands. 216 
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 217 

Figure 2. Flow diagram of the SAR pre-processing stages that was implemented in SNAP. The 218 
flow splits due to the creation of two SAR derivatives (H-α and σ0). 219 

 220 

The commonly used Normalized Difference Vegetation Index (NDVI) was used to help 221 
discriminate vegetation types, for both non-wetlands and wetlands. NDVI also helps distinguish 222 
between vegetation and non-vegetation classes within the image. Another common index used in 223 
remote sensing studies is the Normalized Difference Water Index (NDWI) (McFeeters, 1996). This 224 
index looks at the difference between the green and near infrared bands, as they are strongly 225 
absorbed by water bodies making delineation easier. However, NDWI is sensitive to built-up land, 226 
resulting in over-estimation (Du et al., 2016). Here, the advantage of the SWIR band is taken by 227 
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implementing the Modified Normalized Difference Index (MNDWI), proposed by Xu (2006), who 228 
noted the much stronger absorption of SWIR by open water.  229 

The Shuttle Radar Topography Mission (SRTM) tiles were joined in ArcMap 10.3 using the ‘Mosaic 230 
to New Raster’ tool before being bi-linearly resampled to 10 m resolution. An important aspect 231 
was the introduction of a wetness index to the classification, to try to help distinguish LULC 232 
classes in wetlands and neighboring non-wetlands. The freely available SAGA Wetness Index 233 
(SWI) was chosen over the more commonly used Topographic Wetness Index (TWI). This index, 234 
although similar, uses a modified catchment area calculation, aimed to model flow as a more 235 
realistic process, instead of thin, unrealistic flow paths. TWI uses a single-direction based flow 236 
algorithm (D8), whereas SWI utilizes a multi-directional flow algorithm (MD8). The SAGA 237 
Wetness Index should allow for a more accurate wetland delineation in the classification stages 238 
(Andersson, 2009). 239 

Finally, image stacking was a key step in the processing chain, because it makes the classification 240 
stage more computationally efficient (Arenas and Pradenas, 2016). Stacking of the images was 241 
conducted in ArcMap 10.3 using the ‘Composite Bands’ tool with the VV σ0, Entropy, Alpha, Blue, 242 
Green, Red, NIR, NDVI, MNDWI and SWI bands. The VH σ0 backscatter image was discarded after 243 
stretching and visual inspection due to low image contrast around water bodies, mudflats and 244 
agricultural areas. After the stacked image had been produced, the image was clipped to the study 245 
site extent. The clipping was done at this stage to ensure that all bands were of equal dimensions. 246 

 247 

2.4. Image classification and accuracy assessment 248 

Image segmentation and classification were implemented in eCognition 9.0. This technique has 249 
been used in many wetland OBIA studies with promising results (Dronova, 2015; Dronova et al., 250 
2011; Frohn et al., 2011; Jung et al., 2015). A two-stage image segmentation was carefully chosen, 251 
followed by object sample selection and classification, using SVMs and RFs for three combinations 252 
of data, consisting of Op, OpR and OpRS. More specifically, for image segmentation, only the Blue, 253 
Green, Red, NIR and NDVI optical bands were used, because none of them was subject to 254 
resampling, as they were all captured at 10 m spatial resolution. Thus, edge features were well 255 
preserved compared to the bands. The radar imagery did not offer enough detail for 256 
segmentation, due to their resolution, image noise and lower feature distinguishability. The image 257 
was stretched using a standard deviation of 2.5 prior to segmentation. Band weighting was kept 258 
at 1, with the exception of the NIR and NDVI bands that were assigned double. This forces the 259 
segmentation to be influenced more by these bands, as it was found that better delineation of 260 
agricultural fields and sparse vegetation could be achieved, possibly due to greater band contrast. 261 
The multi-resolution segmentation algorithm was implemented on the stacked image to group 262 
pixels based on the homogeneity. Additionally, a secondary stage of segmentation was included, 263 
due to the high heterogeneous wetland study site, as suggested by Grenier et al. (2008). The 264 
spectral difference algorithm was used in conjunction with the multiresolution segmentation to 265 
merge objects further based on a user-defined threshold. Parameter weightings were chosen 266 
through trial and error with a scene subset that represented a satisfactory heterogeneous sample. 267 
It was found that a low shape to high color ratio produced the best results, with the total number 268 
of objects being 6740.  269 

In eCognition, the user can state what features are to be created when the segmentation is 270 
initiated. For this study, the mean value of all the composite image bands constrained by the 271 
object was calculated (spectral features), as well as the objects shape index, roundness and 272 
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rectangular fit (geometric features). In situ ground truth data was not available, so a WorldView-1 273 
panchromatic satellite image was acquired for the 29th June 2016 (1-day difference to Sentinel-1 274 
and 2). This provided 0.46 m resolution imagery in with good feature distinguishability to help 275 
with training and validation. A downside was that the imagery did not cover the full extent of the 276 
study site. Therefore, full-color Google Earth imagery was also used with a 2-month acquisition 277 
difference to compliment the WorldView-1 data. Out of the total 6740 objects, 10% (674) were 278 
chosen for training to classify the LULC classes. Fifteen classes were chosen, based on previous 279 
studies for this region and the standard South African classification scheme proposed by 280 
Thompson (1996). Table 2 shows the classes and descriptions used, which includes both wetland 281 
and non-wetland classes. Each class was therefore trained with 45 samples that were carefully 282 
chosen using the WorldView-1 and Google Earth images. It was ensured that, where possible, 283 
sample objects were taken from across the entire scene to stop bias in the SWI band. 284 

 285 

Table 2. LULC classification scheme with the class code used for graphs and a brief class 286 
description. 287 

LULC Classes Class Code Class Description 
Agriculture (High Productivity) 1 Non-wetland class where healthy, high yield arable 

farming is present. 
Agriculture (Low Productivity) 2 Non-wetland class with low yields or emergent crops often 

present after the field is ploughed. 
Agricultural Wetland (High 
Productivity) 

3 Irrigated, healthy and high yield farming practices that 
occur on organic soils on the wetland (sugar cane). 

Agricultural Wetland (Low Productivity) 4 Irrigated, low yield or emergent crops that occur on organic 
soils on the wetland (sugar cane). 

Aquatic Macrophyte 5 Aquatic plants that is either emergent, submerging or 
floating in water. 

Dry Mudflat 6 Exposed lake, river or estuarine bed that has been allowed 
to dry out. 

Grassland 7 Non-wetland class where long or short grass species 
dominate with sparse trees and bushes if any. 

High Vegetated Wetland 8 Highly vegetated area consisting of larger vegetation 
species (e.g. swamps and mangroves). 

Low Vegetated Wetland 9 Sparsely vegetated area with short grasses and small 
wetland plant species. 

Open Water 10 Exposed fresh or saline surface water. 
Sand/Soil 11 Bare land or beaches/dunes, with very low or no vegetation 

cover. 
Thicket/Dense Bush 12 Non-wetland class with a thick or dense packing of shrubs, 

bushes and small trees with pockets of grassland. 
Urban 13 Areas dominated by artificial surfaces and features, such 

as, roads, houses or small holdings. 
Wet Mudflat 14 Recently exposed lake, river or estuarine bed that has not 

had time to dry out fully and crack. 
Woodland 15 Non-wetland class with a large presence of indigenous 

trees ranging from medium to large sizes. 

 288 

Before the classification was applied to the whole dataset, the optimum parameters of the SVMs 289 
were established. The RBF kernel was used due to its robustness and promising capabilities over 290 
linear and polynomial kernels (Kavzoglu and Colkesen, 2009; Paneque-Gálvez et al., 2013), which 291 
consists of the C and γ parameters. The optimum values were found by performing an overall 292 
accuracy assessment of the objects contained within the subset used for the segmentation 293 
parameters. For our dataset, we found a C value of 2000 and γ value of 0.06 worked best. 294 
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Similarly, the same parameter selection approach was taken for RFs. An optimum value of 900 295 
was found for the number of trees, and a value of 14 for the number of variables to be tested at 296 
each node. After parameter selection, the entire scene was classified with the three combinations 297 
of datasets. That is, optical only (Op), optical and radar only (OpR) and optical, radar and SWI 298 
(OpRS). All bands were normalized prior to running the classification. Each classification image 299 
was then exported in shapefile format with class names and object information, ready to be 300 
validated, analyzed and made into a map using ArcMap 10.3. 301 

An accuracy assessment was carried out on all six classification images using an error matrix to 302 
help evaluate the classifier algorithms and product synergies. The technique has been used in 303 
countless studies and has the benefit of revealing commission and omission errors in the data 304 
(Congalton, 1991). Each classifier was evaluated using producer accuracies, user accuracies, 305 
overall accuracy and the Kappa coefficient; with an overall sample size of 1650 pixels, equating to 306 
~110 samples per class. Producer’s accuracy (1- error of omission) is a measurement of the 307 
percentage of correctly classified pixels or objects per class. User’s accuracy measures the 308 
percentage of correctly mapped pixels or objects per class. Kappa is used as an indicator of 309 
agreement between the classified image and ground truth data, showing whether the values of an 310 
error matrix are statistically better than random (Foody, 2004; Murayama, 2012), and is given by 311 
the following equation: 312 

𝐾𝑎𝑝𝑝𝑎 = 𝑛∑ 𝑛𝑖𝑖−∑ 𝑛𝑅𝑖𝑛𝐶𝑖
𝑞
𝑖=1

𝑞
𝑖=1
𝑛2−∑ 𝑛𝑅𝑖𝑛𝐶𝑖

𝑞
𝑖=1

∙ 100       (5) 313 

where, q is the number of classes, nii are the diagonal elements of the confusion matrix, n is the 314 
total number of sampled objects, nCi represents the marginal sum of the columns, and nRi is the 315 
marginal sum of the rows. Landis and Koch (1977) suggested guideline values be followed when 316 
evaluating classifiers using Kappa for categorical data; where values greater than 0.81 are 317 
considered as almost perfect agreement, 0.61 to 0.80 indicate substantial agreement, 0.41 to 0.60 318 
suggest moderate agreement, 0.21 to 0.40 indicates poor agreement and values below 0.20 have 319 
no agreement whatsoever. The accuracy assessment was conducted in ArcMap 10.3 using a 320 
combination of WorldView-1 and Goggle Earth images. 321 

The Kappa values can be compared using a Z-Test to study any significance between them. 322 
However, the test assumes that the samples are independent for each classifier. When a 323 
dependent sample set is available, the McNemars’s test can be used to compare two or more 324 
samples (de Leeuw et al., 2006). The test is non-parametric based on a binary 2x2 contingency 325 
matrix, closely related to the chi-squared statistic which can be adapted to compare multiple 326 
classifiers. The sample set is labelled with f12 and f21 which are the number of correct samples for 327 
classifier 1 that was incorrect in classifier 2, and the number of correct samples for classifier 2 328 
that were incorrect in classifier 1, respectively. X2 can be calculated using the following equation: 329 

𝑋2 =  (𝑓12−𝑓21)2

𝑓12+𝑓21
      (6) 330 

A confidence level of 95% was used, which gives a critical value of 3.84, meaning that a null 331 
hypothesis can be rejected if the X2 value exceeds 3.84. Figure 3 presents a full overview of this 332 
paper’s methodological workflow. 333 
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 334 

Figure 3. Overview of the methodological structure of this study. Red represents radar 335 
processing, Green is optical and Blue is the SAGA Wetness Index. 336 

3. Results 337 

Prior to classification, the 45 sampled objects for each class were assessed using boxplots 338 
showing the upper and lower quartiles, median, mean and max/min values. The classes were 339 
plotted against every object and showed that not all features offered good delineation between all 340 
LULC and wetland and non-wetland classes. Figures 4 and 5 show the mean values for the optical 341 
features from Sentinel-2. The majority of classes for blue, green and red show very small 342 
interquartile ranges suggesting that the objects were of a suitable size and that there was little 343 
object-pixel heterogeneity. The mean blue and green show lower variability than the red band 344 
between classes, however, all showed high variability in the ‘Sand/Soil’ class. The mean NIR band 345 
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shows larger inter-class variance, except for ‘Wet Mudflat’ which shows the lowest mean value 346 
(0.08) with low variance. ‘Open Water’, ‘Low Vegetated Wetland’, ‘Dry Mudflat’ and ‘Agricultural 347 
Wetland (Low Productivity)’ can all be moderately distinguished with NIR, however, ‘Woodland’, 348 
‘Thicket/Dense Bush’, and ‘High Vegetated Wetland’ all show very similar variance with similar 349 
mean values. The two optical derivatives (NDVI and MNDWI) offer valuable vegetation/non-350 
vegetation and water/non-water distinguishability respectively. NDVI shows low but similar 351 
values for both mudflat classes, ‘Open Water’ and ‘Sand/Soil’. It also offers clear separation 352 
between highly and lowly productive agriculture for both wet and non-wetland classes. MNDWI 353 
also separates both mudflat classes, ‘Open Water’ and ‘Sand/Soil’, but with clear differentiation 354 
between them, unlike NDVI. Finally, MNDWI does not offer the same separability as NDVI for 355 
vegetation classes. 356 

 357 
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 358 

Figure 4. Box and whisker plots of the four 10 m Sentinel-2 bands showing mean, median, 359 
quartiles, maximum and minimum for each class (n=45). 360 
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 361 

 362 

Figure 5. Box and whisker plots for the two optically derived indices (NDVI and MNDWI), 363 
showing mean, median, quartiles, maximum and minimum for each class (n=45). 364 

 365 

Figure 6 shows the mean object SAR values from the dual-polarized Sentinel-1. The VV σ0 366 
backscatter shows reasonable separation between classes, but some do overlap strongly. 367 
‘Agriculture (High Productivity)’ and ‘Thicket/Dense Bush’ overlap; as well as ‘Agriculture (Low 368 
Productivity)’ and ‘Sand/Soil’; and ‘Agricultural Wetland (Low Productivity)’, ‘Grassland’ and ‘Low 369 
Vegetated Grassland’. The class ‘Wet Mudflat’ has a very large interquartile variance and min/max 370 
range (0.42), that contains all the other classes showing poor delineation. The plots also show 371 
boxplots for the H-α decomposition for entropy and alpha values. The wetland classes of ‘Wet 372 
Mudflat’, ‘Open Water’, ‘Dry Mudflat’ and ‘Agricultural Wetland (Low Productivity)’ all show high 373 
variance but are each distinguishable by their mean value. They fail to distinguish between 374 
‘Grassland’, ‘High Vegetated Wetland’, ‘Thicket/Dense Bush’ and ‘Woodland’, although these classes 375 
do have very low variance. 376 

 377 
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 378 

Figure 6. Box and whisker plots for the Sentinel-1 derived products (VV, entropy and alpha), 379 
showing mean, median, quartiles, maximum and minimum for each class (n=45). 380 

 381 

The SWI separated wetland and non-wetland classes effectively (Figure 7). The mudflat and open 382 
water classes have extremely high SWI values with low interquartile variance and min/max 383 
range. Non-wetland classes overlapped largely with the exception of ‘Woodland' that had the 384 
lowest SWI mean, but the largest min/max range. Of the wetland classes, the agricultural areas 385 
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showed strong overlap, as did the low and high vegetated areas. ‘Aquatic Macrophyte’ could be 386 
distinguished reasonably well from the other classes. The class ‘Sand/Soil’ had the largest 387 
variance merging across wetland and non-wetland classes. This class was not necessarily 388 
confined to either of these as it can be found in both. 389 

 390 

 391 

Figure 7. Box and whisker plot for the SAGA Wetness Index, showing mean, median, quartiles, 392 
maximum and minimum for each class (n=45). 393 

 394 

The use of geometric features was also implemented in this study, showing the largest 395 
interquartile variance and min/max ranges (Figure 8). The shape index offered the best results of 396 
the three features. The four agricultural classes, ‘Open Water’ and ‘Wet Mudflat’ had the lowest 397 
values indicating smoother object edges, whereas ‘Aquatic Macrophyte’, ‘Grassland’, 398 
‘Thicket/Dense Bush’ and ‘Urban’ all showed the largest values, suggesting rugged, broken edges. 399 
The roundness feature was useful in delineating ‘Aquatic Macrophyte’ (high mean) and ‘Open 400 
Water’ (low mean) objects. Rectangular fit showed the least promising results with very large 401 
overlaps in classes. Agricultural classes had high values, as well as, ‘Open Water’ and ‘Wet 402 
Mudflat’. 403 

 404 
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 405 

Figure 8. Box and whisker plots for the geometric features derived from the image segmentation 406 
process, showing mean, median, quartiles, maximum and minimum for each class (n=45). 407 

 408 

3.1. Support Vector Machines 409 

The three classifications for SVMs can be seen in Figure 9, where (A) represents the Op classifier, 410 
(B) the OpR and (C) the OpRS. Through visual inspection (A) and (B) appear similar, but when 411 
compared to (C) it can be seen that ‘Aquatic Macrophyte’ is much more dispersed, and wetland 412 
vegetation appears in patches amongst the grassland to the west of the study site. ‘Urban’ is much 413 
less confined in the Op classifier with stretches appearing around the St. Lucia Lake fringe. The 414 
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southern region shows an area of agricultural wetland in all classifiers. The same is also occurring 415 
to the northern region in the Mkhuze Swamp. 416 

The accuracy assessments for the SVMs Op, OpR and OpRS can be seen in the left half of Table 3. 417 
The highest overall accuracy came from the OpRS classifier at 79.8% (K=0.68), followed by the 418 
OpR (75.8%, K=0.7) and Op (69.3%, K=0.65). For the highest performing classifier, ‘Open Water’ 419 
had the greatest user accuracy (99.1%), closely followed by ‘Dry Mudflat’, ‘Wet Mudflat’ and 420 
‘Aquatic Macrophyte’ (91.8%, 89.1% and 89.1%). The above mentioned also showed the top 421 
producer accuracies at 97.3%, 84.9%, 90.7% and 94.2%, respectively. The lowest user accuracies 422 
were seen in ‘Grassland’, ‘Agriculture (High Productivity)’ and ‘Agriculture (Low Productivity)’ with 423 
62.7%, 63.6% and 67.3%, respectively. The lowest producer accuracies were seen in ‘Agriculture 424 
(High Productivity)’, ‘Sand/Soil’ and ‘Low Vegetated Wetland’ with 66.7%, 71.5% and 73.2%, 425 
respectively. 426 

 427 
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 428 

Figure 9. LULC classification maps produced by SVMs. (A) is optical only, (B) is optical and radar 429 
and (C) is optical, radar and SWI. 430 

 431 

3.2. Random Forests 432 

The three classifications for RFs can be seen in Figure 10, where (A) represents the Op classifier, 433 
(B) the OpR and (C) the OpRS. All three appear visually similar to the SVMs, with variations being 434 
hard to spot. The greatest differences can be seen in (A), where the northwest sparse urban area  435 
is  redundant,  approximately  10  km  east  of  Ngwenya.  (C)  has less ‘Woodland’ but more 436 
‘Grassland’ and ‘Thicket/Dense Bush’. In addition, RFs does not classify ‘Urban’ around the lake 437 
fringe to the same extent as SVMs.  438 
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The accuracy assessments for the RFs Op, OpR and OpRS can be seen in the right half of Table 3. 439 
The highest overall accuracy came from the OpRS classifier at 83.3% (K=0.72), followed by the 440 
OpR (78.2%, K=0.7) and Op (70.3%, K=0.71). For the highest performing classifier, ‘Open Water’ 441 
had the greatest user accuracy (99.1%) closely followed by ‘Dry Mudflat’, ‘Wet Mudflat’ and 442 
‘Aquatic Macrophyte’ (92.7%, 92.7% and 91.8%). The above mentioned also showed the top 443 
producer accuracies at 97.3%, 87.9%, 91.1% and 94.4%, respectively. These are the same classes 444 
as SVMs but with slightly higher values. The lowest user accuracies were seen in ‘Agriculture (Low 445 
Productivity)’, ‘Agriculture (High Productivity)’ and ‘Grassland’ with 63.9%, 70.9% and 72.7%, 446 
respectively. The lowest producer accuracies were seen in ‘Agriculture (High Productivity)’, ‘High 447 
Vegetated Wetland’ and ‘Woodland’ with 71.6%, 72.4% and 77.0%, respectively. 448 

 449 
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 450 

Figure 10. LULC classification maps produced by RFs. (A) is optical only, (B) is optical and radar 451 
and (C) is optical, radar and SWI. 452 

 453 

 454 

 455 

 456 
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Table 3. Accuracy assessments for the three classifications. PA(%) is the Producer's accuracy and 457 
UA(%) is the User's accuracy. Class codes 1-15 are identified in Table 2 (n=1650). 458 

 Support Vector Machines Random Forests 

 
Class 
code 

Optical Only Optical and 
Radar Only 

All Optical Only Optical and 
Radar Only 

All 

PA(%) UA(%) PA(%) UA(%) PA(%) UA(%) PA(%) UA(%) PA(%) UA(%) PA(%) UA(%) 

1 57.5 62.7 63.8 67.3 66.7 67.3 58.3 63.6 67.9 69.1 71.6 70.9 

2 65.0 60.9 74.2 62.7 79.5 63.6 66.3 62.7 76.1 63.6 83.3 63.6 

3 63.9 62.7 69.2 67.3 77.7 79.1 66.0 63.6 75.2 71.8 83.2 85.5 

4 64.0 64.5 71.0 69.1 80.0 76.4 65.1 64.5 77.9 73.6 87.2 86.4 

5 85.7 76.4 90.0 81.8 94.2 89.1 87.8 78.2 93.1 85.5 94.4 91.8 

6 77.0 79.1 81.0 89.1 84.9 91.8 78.6 80.0 82.6 90.9 87.9 92.7 

7 66.0 63.6 71.4 63.6 75.0 62.7 67.0 66.4 74.3 68.2 78.4 72.7 

8 61.4 63.6 66.4 66.4 74.1 75.5 60.5 62.7 70.5 71.8 72.4 81.8 

9 64.3 67.3 69.2 73.6 73.2 81.8 66.1 67.3 70.7 74.5 81.8 81.8 

10 94.3 90.9 97.3 99.1 97.3 99.1 95.2 90.0 96.5 100.0 97.3 99.1 

11 59.8 63.6 67.8 72.7 71.5 88.0 62.0 68.2 68.6 75.5 77.8 82.7 

12 64.5 72.7 74.8 72.7 76.0 71.8 65.3 73.6 76.6 77.3 77.9 73.6 

13 79.8 71.8 82.1 79.1 82.6 81.8 80.6 71.8 82.1 79.1 84.1 86.4 

14 75.7 76.4 83.8 84.5 90.7 89.1 77.2 80.0 87.9 85.5 91.1 92.7 

15 66.7 63.6 75.6 87.3 75.8 88.2 68.6 65.5 75.6 87.3 77.0 88.2 

 459 

 460 

3.3. Overall results 461 

The McNemar’s test revealed that statistically in every case the OpRS out-outperformed OpR and Op 462 
and likewise for OpR against Op. The test also showed that in the majority of cases RFs 463 
outperformed SVMs at all levels. The exception being between RFOp versus SVMOp, and RFOpR 464 
against SVMOpR showing no statistical difference between them. Table 4 shows the adapted 465 
contingency matrix used to compare the six classifications. Bold values indicate a statistical 466 
difference between the two classifiers. A summary of the classifiers overall accuracy and Kappa 467 
values can be seen in Table 5. These are shown in rank order. Finally, Figure 11 shows the total 468 
wetland extent for the highest-ranking classification (RFOpRS) which covers 932 km2, equating to 469 
26.9% of the total study site area. 470 

 471 

 472 

 473 

 474 

 475 
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Table 4. The adapted contingency matrix used to compare all classifiers with one another. 476 
Numbers in bold indicate statistically better classifiers (95% confidence interval: 3.84). 477 

  Support Vector Machines Random Forests 

  Optical Only Optical and 
Radar Only 

All Optical Only Optical and 
Radar Only 

All 

Support 
Vector 

Machines 

Optical Only       

Optical and 
Radar Only 

13.23      

All 17.71 12.19     

 

Random 
Forests 

Optical Only 0.94 4.26 16.43    

Optical and 
Radar Only 

17.99 2.05 9.11 11.12   

All 21.36 8.89 10.42 17.45 9.91  

 478 

 479 

 480 

Table 5. Summary table of the overall accuracy for each classifier along with its relevant Kappa 481 
value. They have been ranked in order of accuracy. 482 

Data Combination Classifier Overall Accuracy (%) Kappa Coefficient Rank 
All RFs 83.3 0.72 1 
All SVMs 79.8 0.68 2 
Optical and Radar RFs 78.2 0.70 3 
Optical and Radar SVMs 75.8 0.70 4 
Optical Only RFs 70.3 0.71 5 
Optical Only SVMs 69.3 0.65 6 

 483 

 484 

 485 

 486 
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 487 

Figure 11. True color map with hill shade overlaid with a vector wetland file created by merging 488 
all wetland classes ('Sand/Soil' is not included). 489 

 490 

4. Discussion 491 

With the use of a multi-scale trial and error approach is was found that a heterogeneous wetland 492 
environment could be satisfactorily segmented to produce feature objects that represented the 493 
real world. When using a pixel based approach, images can have the so called ‘salt and pepper 494 
effect’, where real world features appear speckled due to the incorrect classification of pixels. 495 
OBIA moves around this issue, so long as the segmentation process is of a high standard. The trial 496 
and error technique that is so often used, provided a qualitative estimation for parameter 497 
selection with relatively accurate success. It was shown that diverse wetland landscapes are 498 
difficult to segment. A single segmentation level is often not adequate enough (Blaschke et al., 499 
2008; Dronova, 2015), therefore a multi-level approach may be more effective, as was found in 500 
this study using a combination of multiresolution and spectral difference merge in a bottom-up 501 
approach. This has been effective in other LULC classifications (Im et al., 2008; Rampi et al., 2014) 502 
but has not been adequately implemented in wetland studies of this resolution. Other solutions 503 
could be the Estimation of Scale Parameter (ESP) tool (Drǎguţ et al., 2010; Drăguţ et al., 2014) for 504 
use in eCognition, which automatically finds ‘optimum’ parameters for the entire scene using an 505 
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iterative object variance algorithm. This approach may save time for future studies and could 506 
offer fully-automatic image segmentation.  507 

The error matrices and McNemar’s test show that when a synergistic use of Sentinel-1 and 2 is 508 
implemented higher accuracies can be achieved than with optical only. This can then be improved 509 
further with SWI. No statistical difference in accuracy could be seen between RFOp versus SVMOp, 510 
and RFOpR against SVMOpR. C-band dual-polarimetric SAR was deemed suitable in this study for 511 
wetland LULC mapping. RFs variable importance showed that these were not preferred over 512 
optical bands, but the boxplots in Figure 6 clearly show their capability. VV σ0 backscatter showed 513 
low inter-class variance but could not distinguish between ‘Agriculture (High Productivity)’ and 514 
‘Thicket/Dense Bush’, as well as other similar vegetation types. This has been attributed to the 515 
wavelength of the SAR dataset which may struggle to penetrate the canopies, seeming to act as a 516 
rough surface scatterer. Li et al. (2012) found the same issue with RADARSAT- 2 data on forested 517 
and highly vegetated areas. An explanation for the large variance observed for ‘Wet Mudflat’ may be 518 
due to the interaction of C-band energy and in an M-shaped pattern of backscatter described by Lee 519 
et al. (2011). This makes it extremely difficult to delineate this class with σ0 backscatter alone. 520 

The H-Alpha decomposition was derived from the SAR imagery and offered another dimension in 521 
feature characteristics. The spread of H and α was very confined and the boxplots showed overlap 522 
across classes. Grassland’, ‘High Vegetated Wetland’, ‘Thicket/Dense Bush’ and ‘Woodland all 523 
overlapped for their interquartile range but could be separated by the mean value. This is why the 524 
mean of each feature was chosen, as it was felt that this offered the best chance of separation 525 
amongst classes. ‘High Vegetated Wetland’ did not show greater α values than ‘Woodland’, which 526 
would be expected for flooded vegetation. This could have been because of the wavelength of the 527 
SAR like before, or possibly due to sensor incidence angle being too high (White et al., 2015) due 528 
to the IW2 swath. Another reason may be because of the climatic conditions at the time of 529 
capture. Drought in iSimangaliso Park means that the SAR is losing dimensionality. 530 

Geometric features are one of the benefits of using OBIA, but overall results were rather 531 
disappointing. The shape index offered the best input based on the RFs variable importance and 532 
boxplot graphs. The agricultural classes all showed the lowest values due to their smooth edges, 533 
proving more useful than rectangular fit, as Jiao et al. (2012) suggested. The heterogeneity of 534 
many classes at this resolution is thought to explain the overall poor delineation of object features. 535 
Finally, the SWI was sufficient in delineating the wetland from non-wetland classes, especially for 536 
the ‘Open Water’ and mudflat classes which is to be expected. These features occur where water is 537 
most likely to drain, so although the mudflats have no water on them at the time, SWI can still 538 
help locate these areas as Lang et al. (2012) described. ‘Woodland’ was also well delineated by 539 
SWI, showing the lowest values of any class. This is thought to be because the woodlands are 540 
found in upland regions, usually on steeper slopes. As the study site is a reasonably low-lying 541 
estuarine system, SWI is able to produce a more representative flow model across flat wetland 542 
environments. The presented results contradict those of Huang et al. (2011), showing that a 30 m 543 
DEM can statistically improve wetland classifications, although it does not offer much in regard to 544 
non-wetland vegetated classes. 545 

The parameter selection for both classifiers (SVMs and RFs) allowed for a fairer comparative 546 
study, instead of using internal, classifier specific evaluation. The technique used here has been 547 
successfully implemented in other LULC investigations (Petropolous et al., 2012; Zhang and Xie, 548 
2013; Sonobe et al., 2014). It was shown that RFs outperformed SVMs in all cases using error 549 
matrices, and this was statistically proven with the McNemar’s test. Differences observed with the 550 
SVMs for the lowest user accuracies when compared to RFs could be explained by the sub-551 
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sampling SVMs do at the hyperplane margins. Another thing to note is that the SVM took 552 
particularly longer to compute than the RF classifier, which on larger, long-term studies, could 553 
poses a problem.   554 

Finally, this study presents a cost-effective technique to monitor the wetland with freely available 555 
data at a good temporal resolution, due to the addition of Sentinel-1B and 2B.  It was shown that a 556 
reasonable accuracy can be achieved using the methods outlined here. eCognition is an expensive 557 
software package but there is no reason why OBIA cannot be implemented in other freely 558 
available programs, such as the Remote Sensing and GIS Software Library (RSGISLib) (Bunting et 559 
al., 2014). However, the RSGISLib does not host the same segmentation algorithms, so further 560 
research would be needed to find a suitable alternative. 561 

 562 

5. Conclusions 563 

This study, to our knowledge, is the first to evaluate the synergistic partnership of Sentinel-1 and 564 
2 in the context of wetland studies using OBIA technique, offering an avenue for further research. 565 
In addition, this study applied a multi-level OBIA for mapping wetland areas using Sentinel-1 and 566 
2 data, and the results from its implementation were compared against two powerful machine 567 
learning techniques. Findings of our study showed that RFs algorithm outperformed SVMs 568 
marginally but consistently throughout. The synergistic approach showed an increase in terms of 569 
the overall accuracies, which was even higher when the SWI was also included. The H-Alpha 570 
decomposition was found to be effective at delineating certain LULC classes, particularly the low 571 
vegetated and agricultural features. However, it is quite probable that the C-band wavelength was 572 
too short to decompose accurate scattering mechanisms of highly vegetated regions where 573 
canopies are dense. Geometric features did not appear to be aiding the classifiers much based on 574 
boxplot interpretation and RFs variable importance, with some exception for the shape index.  575 

Future work is required towards the investigation of the multi-temporal capability of this 576 
approach and what it has to offer for the long-term study of wetlands under threat. In addition, it 577 
would be interesting to conduct synergistic studies between Sentinel-2 and X- or L-band SAR EO 578 
systems, to explore if the issue of dense canopy penetration experienced with the use of Sentinel-579 
1 can be overcome. Finally, further exploration of landscape derivatives from a range of sources 580 
could be tested (e.g. LiDAR) with a range of flow algorithms, which could aid in finding a cost-581 
benefit between resolution and imagery cost. 582 

 583 
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