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Abstract: 19 

Influence diagnostics are used to identify data points that have a disproportionate impact on model 20 

parameters, performance and/or predictions, providing valuable information for use in model 21 

calibration. Regression-theory influence diagnostics identify influential data by combining the 22 

leverage and the standardised residuals, and are computationally more efficient than case-deletion 23 

approaches. This study evaluates the performance of a range of regression-theory influence 24 

diagnostics on ten case studies with a variety of model structures and inference scenarios including: 25 

nonlinear model response, heteroscedastic residual errors, data uncertainty and Bayesian priors. A 26 

new technique is developed, generalised Cook’s distance, that is able to accurately identify the same 27 

influential data as standard case deletion approaches (Spearman rank correlation: 0.93-1.00) at a 28 

fraction of the computational cost (<1%). This is because generalised Cook’s distance uses a 29 

generalised leverage formulation which outperforms linear and nonlinear leverage formulations 30 

because it has less restrictive assumptions. Generalised Cook’s distance has the potential to enable 31 

influential data to be efficiently identified on a wide variety of hydrological and environmental 32 

modelling problems. 33 

Keywords: hydrologic model calibration, influence diagnostics, Cook’s distance, generalised leverage 34 
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1. Introduction 36 

Hydrological model calibration is a critical component of model development as parameters generally 37 

cannot be determined directly from measurements but are instead inferred indirectly by calibrating 38 

the hydrological model to observed hydrological responses (e.g. daily streamflow) [Beven, 2011]. 39 

Studies increasingly have called for the use of “influence diagnostics” [e.g., Foglia et al., 2009; Foglia 40 

et al., 2007; Hill et al., 2015; Wright et al., 2015] to understand the extent to which model calibration 41 

outcomes are determined by a small number of data points that may be erroneous or 42 

unrepresentative of overall catchment behaviour. For example, Wright et al. [2015] showed that 43 

removing a single value of daily streamflow from a two-year calibration period could change the 44 

predicted streamflow by more than 25% in a semi-arid catchment. There are a range of influence 45 

diagnostics in the literature that have been used to identify which points are influential; the goal of 46 

this paper is to evaluate a generalised approach to identifying influential points that is both accurate 47 

and computationally efficient.  48 

Influence diagnostics can be categorised into two different classes: “case-deletion” influence 49 

diagnostics and “regression-theory” influence diagnostics (see Figure 1). Case-deletion influence 50 

diagnostics measure the influence by censoring (“deleting”) a data point (“case”) from the set of 51 

calibration points, then re-calibrating the model. Once case-deletion has been performed, several 52 

approaches can be used to measure influence. The first approach is to evaluate Cook’s distance [Cook, 53 

1977], which is a commonly used measure of influence [Cook, 1977] and has been used in a large 54 

variety of regression problems [Fox and Weisberg, 2011]. The second approach is to quantify the 55 

difference between original and re-calibrated model parameters, model performance (such as 56 

objective function displacement) and/or model predictions of interest [Wright et al., 2015]. Two 57 

further approaches to measure influence are DFFITS and DFBETA [see Cook and Weisberg, 1982]. 58 

These are not considered further in this study because DFFITS is conceptually identical to Cook’s 59 

distance (see Cook and Weisberg [1982]), and DFBETA describes the impact of influential data on 60 
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individual model parameter estimates only [Fox and Weisberg, 2011], whereas Cook’s distance has 61 

the flexibility to look at the impact of influential points on parameters (including their interactions) 62 

and predictions. 63 

The case-deletion influence diagnostics are classified as “exact” because they make no assumptions 64 

regarding the type of regression model (linear/nonlinear) or the complexity of the residual error model 65 

(Gaussian, heteroscedastic, autocorrelated etc. - see McInerney et al. [2017]). This makes them 66 

particularly attractive for hydrological applications, where the hydrological models are generally 67 

nonlinear and assumptions related to the behaviour of the residuals, such as Gaussianity and 68 

homoscedasticity, are typically not supported by the data. The drawback with case-deletion based 69 

influence diagnostics is the high computational demand associated with re-estimating the parameters 70 

for every data point in the observed data (e.g. for a decade of daily data case-deletion requires ~3650 71 

model re-calibrations). This renders influence analysis using case-deletion potentially infeasible for 72 

anything but the simplest hydrological models. A secondary issue with the case-deletion class is that 73 

anomalous results may arise when calibrating to complex response surfaces with multiple local optima 74 

[Duan et al., 1992; Kavetski et al., 2006], as each re-calibration may lead to parameter sets in different 75 

local optima. This may cause the case-deletion calibrated parameter sets to be different from each 76 

other, even if the data points have low influence on the actual model calibration. To address this issue 77 

the modeller may choose to increase the robustness of the optimisation; however, these efforts will 78 

compound the computational demands of the case-deletion re-calibrations.  79 

In regression applications Cook’s distance can alternatively be calculated using “regression-theory” 80 

influence diagnostics (see Figure 1). Regression-theory influence diagnostics have a significantly 81 

reduced computational demand as they do not require case-deletion re-calibration and instead rely 82 

on assumptions about the type of regression model (linear/nonlinear) and residual error model 83 

(Gaussian, homoscedastic etc.). The reduced computational demand is achieved by combining the 84 

following two components for each observed data point: (1) the leverage, which describes the rate of 85 
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change of the predicted model output with respect to the corresponding observed output and can be 86 

used to assess the potential importance of individual observations [Wei et al., 1998], and (2) the 87 

standardised residuals, which correspond to the raw residuals divided by the fitted standard deviation. 88 

By combining these two components to calculate Cook’s distance, regression-theory influence 89 

diagnostics do not require additional re-calibrations and are therefore a more efficient alternative to 90 

the computationally demanding case-deletion influence diagnostics. There exist multiple alternative 91 

formulations of leverage, differing in the assumptions made about the fitted model and the 92 

probabilistic model of the residual errors. In circumstances where these assumptions are not violated 93 

regression-theory Cook’s distance is equivalent to case-deletion Cook’s distance.  94 

Linear leverage is arguably the most widely used approach to approximate Cook’s distance in 95 

regression problems [Fox and Weisberg, 2011], and is derived from standard linear regression theory 96 

and therefore inherits the assumptions of a linear model response (with respect to the model 97 

parameters) and Gaussian, homoscedastic and independent residual errors [Cook and Weisberg, 98 

1982].When linear leverage is used in regression-theory Cook’s distance (hereafter referred to as 99 

“linear Cook’s distance”) it also inherits these assumptions. This implies that linear Cook’s distance 100 

may not be suitable for identifying the influential points in a hydrological modelling context as the 101 

hydrological model calibration violates the assumptions of linear regression, as a result of: 1) nonlinear 102 

model response [e.g. see discussion in Kavetski and Kuczera, 2007], and 2) heteroscedastic and non-103 

Gaussian residual errors [e.g. see Schoups and Vrugt, 2010].  104 

To address these limitations and expand the applicability of regression-theory influence diagnostics to 105 

more complex situations, St. Laurent and Cook [1992] proposed nonlinear leverage. Calculating Cook’s 106 

distance by applying nonlinear leverage (hereafter referred to as “nonlinear Cook’s distance”) can take 107 

into account nonlinear model response, and is suitable for nonlinear models with Gaussian residuals. 108 

Wright et al. [2015] applied both linear and nonlinear Cook’s distance in a hydrological modelling 109 

context and found that nonlinear Cook’s distance provided higher performance than linear Cook’s 110 
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distance, in terms of a higher correlation with the influential points identified using case-deletion 111 

influence diagnostics. The limitation of Wright et al. [2015] is that the hydrological models were 112 

calibrated using a standard least squares objective function, which is known to perform poorly in a 113 

hydrological modelling context when the residual errors are non-Gaussian and/or heteroscedastic [see 114 

McInerney et al., 2017].  115 

To overcome the limitations of the assumptions of linear and nonlinear leverage, generalised leverage 116 

was developed by Wei et al. [1998]. Generalised leverage makes no assumptions of linear model 117 

response, and can be applied to a broad range of objective functions, including those with 118 

heteroscedastic and/or non-Gaussian residual error assumptions. It has been used in numerous 119 

regression applications [e.g. Leiva et al., 2014; Lemonte and Bazán, 2015; Osorio, 2016; Rocha and 120 

Simas, 2011]; however, it has not been applied in the context of hydrological or other environmental 121 

modelling applications. Furthermore, generalised leverage is typically used as a standalone diagnostic 122 

and has not previously been applied as an input to calculate Cook’s distance (hereafter referred to as 123 

“generalised Cook’s distance”) to identify influential points. This research gap presents an opportunity 124 

to determine if generalised Cook’s distance can be used as an efficient approach to approximate case-125 

deletion Cook’s distance in a computationally frugal manner.  126 

Given the substantial computational advantages of regression-theory influence diagnostics over case-127 

deletion influence diagnostics, they show significant promise for application in the field of hydrological 128 

and other environmental modelling applications. However, before regression-theory influence 129 

diagnostics can be applied, the validity of the assumptions of the formulations of leverage will first 130 

need to be experimentally tested in the context of hydrological case-studies. An important issue to be 131 

investigated is the hypothesis that generalised leverage can be used to approximate case-deletion 132 

Cook’s distance as it has not previously been combined with standardised residuals to measure the 133 

proposed generalised Cook’s distance. This study will assess the performance of the different 134 

approaches within the class of regression-theory influence diagnostics (i.e. linear Cook’s distance, 135 
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nonlinear Cook’s distance, and generalised Cook’s distance) to reproduce case-deletion Cook’s 136 

distance. The specific objectives of this study are to evaluate the ability of regression-theory influence 137 

diagnostics to identify influential points under the following modelling scenarios:   138 

1. Linear and nonlinear regression models with either homoscedastic or heteroscedastic residual 139 

error; 140 

2. A daily hydrological model including nonlinear model response and storage with 141 

heteroscedastic residual error; and 142 

3. A stage-discharge rating curve model with Bayesian objective functions that include 143 

heteroscedastic residual error, data uncertainty and prior information. 144 

For all three objectives, the regression-theory Cook’s distance obtained using the linear, nonlinear and 145 

generalised leverage formulations will be compared to the case-deletion Cook’s distance, in order to 146 

evaluate the extent to which the specific leverage formulation affects the performance of regression-147 

theory influence diagnostics. The remainder of this paper is structured as follows. In Section 2 we 148 

describe the methodology, in Section 3 we introduce the three case studies selected to address the 149 

study objectives, and in Section 4 we apply the influence diagnostics to these case studies. In Section 150 

5 we discuss the advantages and disadvantages of case-deletion and regression-theory influence 151 

diagnostics, the suitability of applying generalised Cook’s distance to a broader class of hydrological 152 

and environmental models, and the future need to understand the key drivers of influential data. 153 

2. Methodology 154 

Influence diagnostics identify data points that exert a disproportionate impact on calibrated 155 

parameters, performance and/or predictions. In this study we consider the following classes of Cook’s 156 

distance influence diagnostics: 157 
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1. Case-deletion based Cook’s distance, which  measures the influence of a single point by 158 

comparing model parameters, performance and/or predictions from calibration with and 159 

without that data point; and 160 

2. Regression-theory influence diagnostics, which measure influence by combining the 161 

standardised residual and the leverage of each data point. We analyse and compare three 162 

approaches to determining the leverage, which produce three estimates of Cook’s distance: 163 

i. Linear Cook’s distance, which uses linear leverage, 164 

ii. Nonlinear Cook’s distance, which uses nonlinear leverage, and 165 

iii. Generalised Cook’s distance, which uses generalised leverage. 166 

In this section we first introduce the general modelling framework, and then define the influence 167 

diagnostics, leverage, and the objective functions used in this study.  We finish by describing the 168 

metrics that we will use to evaluate the performance of the regression-theory influence diagnostics. 169 

2.1. General model framework  170 

We define the general model response as:  171 

  ;f y α X ε   (1) 172 

where  1 2, ,..., ny y yy  is a vector of n  observed responses,  .f  is the model structure, 173 

 1 2, ,..., m
  α is a vector of m  model parameters, X  is an n k  matrix of k observed inputs 174 

(e.g., precipitation, potential evapotranspiration (PET)), and ε  is a vector of n  residual errors. 175 

Residuals are further assumed to be realisations from a given probability distribution, with parameters 176 

 1 2, ,..., m
  β   (e.g. a centred Gaussian distribution with unknown standard deviation). Thus,  177 

the entire set of m  parameters to be calibrated are  θ α β which includes both the model 178 

parameters α  and the residual error model parameters β .   179 
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2.1.1. Objective functions  180 

In order to apply leverage to a broad class of objective functions used in hydrological modelling we 181 

consider the general form of the objective function, as suggested by Wei et al. [1998]: 182 

   
1

( ; ) , ;
n

i i i

i

f y


 θ y X α X β,   (2) 183 

where  .i  is a function that describes the contribution of the thi  data point to the objective 184 

function,  if α X  is the thi  model prediction, ( ; , ) θ y X  and  f α X  are assumed to be twice 185 

differentiable with respect to θ  and y . We will denote θ  as the model parameters that maximise   186 

in equation (2), and y  as the predicted response associated with θ , i.e.  ˆ ;fy α X .  187 

The generalised form in equation (2) can be adapted to a number of well-known objective functions 188 

in hydrological modelling as outlined in Section 2.4.   189 

2.1.2. Standardised residuals 190 

The standardised residuals, ν , which are required to estimate the regression-theory influence 191 

diagnostics introduced in Section 2.2.2, are obtained by dividing the raw residuals ε y - y  by their 192 

calibrated standard deviations, σ : 193 

 ν
ε

σ
  (3) 194 

The vector σ  is determined based on the assumed residual error model and the resultant objective 195 

function (see Section 2.4 for further details).   196 

2.2. Influence diagnostics 197 
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This section provides a detailed description of the different influence diagnostics used in this study 198 

(see Figure 1 for an overview). Firstly, we present the case-deletion “class” of influence diagnostics 199 

and outline the approach used to calculate case-deletion Cook’s distance. Secondly, we present the 200 

regression-theory “class” of influence diagnostics and outline the approaches used to calculate 201 

regression-theory Cook’s distance using three formulations of leverage (i.e. linear, nonlinear and 202 

generalised leverage) to produce linear, nonlinear and generalised Cook’s distance.  203 

2.2.1. Case-deletion influence diagnostics 204 

Case-deletion influence diagnostics describe the influence of masking a data point in model calibration 205 

and assessing the change to the model predictions, parameters and/or objective function value. 206 

Cook’s distance can be measured exactly using case-deletion [see Cook and Weisberg, 1982];  note 207 

that in the statistical literature this case-deletion Cook’s distance is sometimes referred to as 208 

“generalised Cook’s distance” [e.g. Das, 2008]. Case-deletion based Cook’s distance measures 209 

influence by comparing model predictions y  based on using all of the calibration data and model 210 

predictions 
( )i

y  with the thi point masked from the calibration data. For a given data point, case-211 

deletion based Cook’s distance is calculated by: 212 

 
 

2
( )

2
1

ˆ ˆ

ˆ

i
n

j j

i

j j

y y
CD

m 









   (4) 213 

where j  is the calibrated standard deviation for the thj data point, estimated from using all 214 

calibration data (i.e. y ).  215 

2.2.2. Regression-theory influence diagnostics  216 

Regression-theory influence diagnostics avoid the computational burden of case-deletion re-217 

calibration by making assumptions about the type of response model (linear/nonlinear) and residual 218 
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error model (Gaussian, homoscedastic etc.). Regression-theory Cook’s distance is calculated by 219 

combining the standardised residual of the thi point ( νi ) with the leverage of thi observation on the 220 

thi prediction ( iiL ) to give [Cook and Weisberg, 1982; Fox and Weisberg, 2011]: 221 

 

2

2)(1

i ii
i

ii

L
CD

m L





  (5) 222 

The approach used to determine the three different forms of Cook’s distance (i.e. linear, nonlinear 223 

and generalised Cook’s distance; Figure 1) is based on the corresponding forms of leverage (i.e. linear, 224 

nonlinear, and generalised leverage). In the next section, we provide a general definition of leverage 225 

followed by the three specific formations of leverage that are used to calculate regression-theory 226 

Cook’s distance.  227 

2.3. Leverage 228 

Leverage generally can be defined as the rate of the change of the thi  predicted value, 
i

y , with 229 

respect to another 
thj  observed value, jy  [Cook and Weisberg, 1982; Hoaglin and Welsch, 1978; St. 230 

Laurent and Cook, 1992; Wei et al., 1998]: 231 

 ˆ /ij i jL y y     (6) 232 

or in matrix notation: 233 

 
T





y
L

y
  (7) 234 

where L  is an n n  matrix. The diagonal elements iiL  most directly reflect the impact of iy  on the 235 

model fit [Cook and Weisberg, 1982; Hoaglin and Welsch, 1978; St. Laurent and Cook, 1992], and are 236 

used for calculating regression-theory Cook’s distance (Section 2.2.2). 237 
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2.3.1. Linear leverage  238 

Linear leverage inherits the assumptions of standard linear regression theory; i.e. that the model 239 

response (with respect to the parameters) is linear and that residual errors are Gaussian, 240 

homoscedastic and independent. Under the assumptions of linear regression the general form of 241 

leverage in equation (7) can be expressed as L [Fox and Weisberg, 2011]: 242 

  



1

T T
L X X X X   (8) 243 

As linear leverage depends solely on the observed input X , it can be calculated without model 244 

calibration using linear algebra. In a linear regression model with standard least squares (SLS) residual 245 

errors, regression-theory Cook’s distance is equivalent to case-deletion Cook’s distance [see Cook, 246 

1977]. 247 

2.3.2. Nonlinear leverage 248 

Nonlinear leverage does not assume a linear model response but retains the assumption that residual 249 

errors are Gaussian, homoscedastic and independent. Nonlinear leverage is dependent on the local 250 

sensitivity of the model predictions to small perturbations in model parameters [St. Laurent and Cook, 251 

1992]. Nonlinear leverage is calculated after model calibration, and under the assumptions of 252 

nonlinear regression the general form of leverage in equation (7) can be expressed as ( )L α  [St. 253 

Laurent and Cook, 1992; 1993; Wei et al., 1998; Wright et al., 2015]: 254 

  
1

2

2
1

( ; )( ; ) ( ; ) ( ; ) ( ; )
( )

T T
n

i
i i

i

ff f f f
y y





        
                    


α Xα X α X α X α X

L α
α α α αα

  (9) 255 

where 
( ; )f



α X

α
 is the n m  Jacobian matrix with thi  row 

( ; )if



α X

α
, and 

2

2

( ; )if



α X

α
is the 256 

m m   Hessian matrix associated with the thi  data point. Analytical derivatives are typically not 257 
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available for hydrological models, and therefore we obtain estimates of the derivatives from central-258 

difference numerical approximation [Nocedal and Wright, 2006]. When applied to a linear regression 259 

model with SLS residual errors, the nonlinear leverage simplifies to linear leverage, as shown in Wei 260 

et al. [1998].  261 

2.3.3. Generalised leverage 262 

Generalised leverage makes no assumptions of linear model response, and can be applied to a general 263 

class of regression models and a broad range of objective functions, including those with 264 

heteroscedastic and/or non-Gaussian residual error assumptions. Generalised leverage is calculated 265 

after model calibration and takes into account the curvature of the objective function about the whole 266 

set of calibrated parameters θ . In this case the general form of leverage in equation (7) can be 267 

expressed as ( )L θ  [Wei et al., 1998]: 268 

 

1
2 2

2

( ; ) ( ; ) ( ; )
( )

T

f


     
      

α X θ y X θ y X
L θ

θ θ yθ

, ,
   (10) 269 

where 
( ; )f



α X

θ
 is the n m  Jacobian matrix with thi  row 

( ; )if



α X

θ
 (note that 

( ; )
0if 



α X

β
), 270 

2

2

( ; , ) 



θ y X

θ
 is a m m  Hessian matrix and 

2 ( ; )
T

 

 

θ y,X

θ y
 is a m n  matrix. Generalised leverage can 271 

be applied to any objective function that takes the general form in equation (2). Generalised leverage 272 

simplifies to nonlinear leverage in the case of a nonlinear regression model and SLS residual errors, as 273 

shown in Wei et al. [1998].  274 

2.4. Objective functions used in this study 275 

This section introduces the range of different objective functions that will be used in the case studies 276 

to evaluate the performance of the differing implementations of regression-theory Cook’s distance.   277 
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2.4.1. Standard least squares 278 

Assuming independent and identically distributed (i.i.d.) Gaussian residual errors, the following log 279 

likelihood can be used as an objective function: 280 

   2

1

( ; ) log( ( | 0, ))
n

N i i

i

p y f 


  θ y X α X,    (11) 281 

where 
2( | , )Np x    is the Gaussian probability density at x  assuming constant mean   and 282 

variance 2 . As the standard deviation  is unknown it will be estimated, and therefore we have283 

   . Note that the Nash-Sutcliffe efficiency [Nash and Sutcliffe, 1970]  objective function that is 284 

commonly applied in hydrological calibration corresponds to the assumptions of constant-variance 285 

and Gaussian residual errors of the standard least squares (SLS) objective function. Note that (11) is a 286 

particular case of the general objective function in equation (2). 287 

2.4.2. Weighted least squares 288 

Residual errors in hydrological applications are generally heteroscedastic [see Schoups and Vrugt, 289 

2010; Sorooshian and Dracup, 1980] and to account for this non-constant variance we apply a 290 

weighted least squares (WLS) objective function. Due to this heteroscedasticity in hydrological 291 

residual errors it is common to replace the constant standard deviation   in equation (11) with a 292 

standard deviation σ  that varies in time, so that the non-constant variance acts as a “weight” for each 293 

residual [e.g. McInerney et al., 2017; Thyer et al., 2009]. A common covariate for modelling 294 

heteroscedasticity in streamflow errors is the predicted streamflow itself [e.g. Schoups and Vrugt, 295 

2010; Thyer et al., 2009]. Following Evin et al. [2014] we consider the standard deviation of residuals 296 

to be a linear function of simulated streamflow, such  that:  297 

 
1 2  σ y   (12) 298 

The objective function becomes: 299 
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   2

1

( ; ) log( ( | 0, ))
n

N i i i

i

p y f 


  θ y X α X,    (13) 300 

As the parameters describing the non-constant standard deviation (i.e.  1 2, β ) are unknown 301 

they will need to be estimated. Note that (12) is a particular case of the general objective function in 302 

equation (2). 303 

2.4.3. Weighted least squares with data uncertainty 304 

In circumstances when independent estimates of data errors are available we may wish to distinguish 305 

between heteroscedasticity in hydrological residual errors and uncertainty of observed responses. To 306 

implement the WLS method with discharge uncertainty in the WLS objective function (13) we assume 307 

that the total errors can be decomposed as the sum of two independent error terms: the “structural 308 

errors” that can be described using the WLS standard deviation 
1 2r   σ y  and the “measurement 309 

errors” described using known standard deviations Yσ . The latter standard deviations may be derived 310 

from an uncertainty analysis of measured responses, which can be performed before and 311 

independently from the model calibration. The standard deviation of the total error, combining 312 

structural and measurement errors, is therefore equal to 2 2

r Y σ σ σ . Hence the i  in equation 313 

(13) becomes: 314 

  
2

2

1 2 ,i i y iy        (14) 315 

where ,y i  is the standard deviation of the measurement errors at time step i . 316 

2.4.4. Weighted least squares with priors 317 

In circumstances when prior information about parameter values is available based on previous 318 

studies and/or from analysis of physical characteristics that govern the relation between inputs X  319 



16 
 

and outputs y  we can use an objective function that combines WLS likelihood with priors. Bayes’ 320 

equation yields the posterior probability distribution of the hydrological and residual error model 321 

parameters as follows: 322 

      p p p

priorposterior likelihood

θ X,y y θ,X θ   (15) 323 

where  p θ X,y is the posterior probability of parameter θ  given X  and y ,  p θ  is the joint prior 324 

probability density of hydrological and residual error model parameters, and  p y θ,X   is the 325 

likelihood of y  given θ  and X .  Taking the logarithm of equation (15) we obtain: 326 

         log p log p log p c  θ X,y y θ,X θ   (16) 327 

where c  is a constant. Assuming independence between residuals we can formulate the objective 328 

function as: 329 
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  (17) 330 

Assuming the residual errors are heteroscedastic withσ  given by equation (12) and independent 331 

priors, we obtain the following objective function: 332 

    2

1 1

1
( ; ) log( ( | 0, )) log p( )

pn

N i i i j

i j

p y f
n

 
 

 
    

 
 θ y X α X,   (18) 333 

where the contributions to the objective function from the priors are split evenly across the n  points 334 

in the calibration data. 335 

2.4.5. Weighted least squares with data uncertainty and priors 336 
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In circumstances when both independent estimates of data errors and prior information about 337 

parameter values are available we can use weighted least squares with data uncertainty and priors.  338 

Similar to Section 2.4.3, data uncertainty can readily be included in the weighted least squares with 339 

priors objective function (18) by simply using 2 2

r Y σ σ σ , where 1 2r   σ y , and Yσ  are 340 

known values representing the measurement uncertainty in observed responses. 341 

2.5. Performance metrics 342 

As case-deletion Cook’s distance provides a measure of influence with no assumptions regarding the 343 

type of model (linear/nonlinear) or the complexity of the residual error model (Gaussian, 344 

heteroscedastic, etc.) we use it as a baseline to compare the three formulations of regression-theory 345 

influence diagnostics: linear Cook’s distance, nonlinear Cook’s distance and generalised Cook’s 346 

distance. We use two metrics to assess the performance of regression-theory influence diagnostics 347 

with respect to case-deletion based Cook’s distance. These metrics are evaluated on 1) the whole set 348 

of influential data points, to show the general ability of regression-theory influence diagnostics to 349 

approximate case-deletion Cook’s distance; and 2) a subset comprising the 10 most influential data 350 

points identified by case-deletion Cook’s distance, to highlight the performance with respect to the 351 

points that are most influential to calibration. The metrics are: 352 

1. Spearman correlation (Sp. and Sp.10), which provides a measure of the performance of the 353 

regression-theory influence diagnostics to correctly rank the most influential data points. 354 

2. Coefficient of determination (r2 and r2
10), which provides a measure of the proportion of the 355 

variance in the case-deletion based variable that is accounted for by the regression-theory 356 

variable.   357 

The selected performance metrics allow for a thorough comparison of the regression-theory influence 358 

diagnostics as approximations of the case-deletion Cook’s distance.  359 

3. Case studies 360 
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The research objectives of this paper are to evaluate the ability of regression-theory influence 361 

diagnostics to identify influential points under the following modelling scenarios:  362 

1. Linear and nonlinear regression models with either homoscedastic or heteroscedastic residual 363 

error; 364 

2. A daily hydrological model including nonlinear model response and storage with 365 

heteroscedastic residual error; and 366 

3. A stage-discharge rating curve model with Bayesian objective functions that include 367 

heteroscedastic residual error, data uncertainty and prior information. 368 

In order to address these objectives we apply case-deletion and regression-theory influence 369 

diagnostics to ten different case studies, organised in three distinct case study sets (Table 1). To 370 

address the first research objective the first case study set consists of four synthetic regression 371 

models, A1-4, are selected to test the performance with linear/nonlinear regression models and 372 

homoscedastic/heteroscedastic residual error models. The second research objective is addressed by 373 

case study set 2, which tests the performance with daily hydrological models, B1-2, with nonlinear 374 

hydrological response, model storage, and heteroscedastic residual errors. Finally, the third objective 375 

is addressed by case study set 3, which tests the performance with four different rating curve models, 376 

C1-4, with and without data uncertainty and with and without prior knowledge specified using a 377 

Bayesian inference approach.  378 

In all cases the objective functions are optimised using the Shuffled Complex Evolution (SCE) search 379 

algorithm [Duan et al., 1992; Duan et al., 1994] followed by a Nelder-Mead gradient search from the 380 

SCE optimised parameter set to machine precision to ensure convergence to the optima.  381 

3.1. Case study set 1: Synthetic regression models with linear/nonlinear 382 

response and homoscedastic/heteroscedastic residual errors 383 



19 
 

The first case study set uses synthetic regression models that range in complexity from a simple linear 384 

model response with homoscedastic residual errors to a nonlinear power model response with 385 

heteroscedastic residual errors. The regression models with synthetic data (A1-4; Table 1) are selected 386 

to highlight the role of model structure and residual error model on the influence results: A1 has a 387 

linear model response with a standard least squares (SLS) residual error model; A2 also has a linear 388 

model response but with a weighted least squares (WLS) residual error model; and both A3 and A4 389 

have a nonlinear model response with SLS and WLS residual error, respectively. 390 

3.2. Case study set 2: Daily hydrological model with synthetic and observed 391 

streamflow and heteroscedastic residual errors  392 

The next case study set tests the performance of the regression-theory influence diagnostics in a 393 

typical hydrological modelling calibration context. We apply a daily hydrological model that includes 394 

nonlinear model response and storage (meaning that inputs at a given time-step can affect outputs 395 

many time-steps into the future) and heteroscedastic residual errors. The daily lumped hydrological 396 

model GR4J [Perrin et al., 2003] was selected based upon its popularity [e.g. Andréassian et al., 2014; 397 

Evin et al., 2014; Le Moine et al., 2007; Lebecherel et al., 2016; Wright et al., 2015] and parsimonious 398 

model structure. This allows for computational efficiency in the case-deletion model runs required to 399 

calculate case-deletion Cook’s distance. The GR4J hydrological model has model parameters400 

 1 2 3 4, , ,   α , where 1  is the maximum capacity of the production store, 2  is the 401 

groundwater exchange coefficient, 3  is the maximum capacity of the routing store, and 4  is the 402 

time base of unit hydrograph.  403 

We apply the GR4J hydrological model to the French Broad River catchment in North Carolina, USA. 404 

The French Broad River has a catchment area of 2448 km2, annual precipitation of 1413 mm and 405 

annual streamflow of 800 mm, leading to a runoff coefficient of 0.57.  406 
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We explore two alternative modelling scenarios B1-2 (Table 1) that correspond to synthetic streamflow 407 

data and real observed streamflow data, respectively. We use three years of calibration data, from 408 

1974 to 1976. The first model B1 uses the observed rainfall and PET from the French Broad River but 409 

has synthetic streamflow data. This synthetic streamflow data is obtained by first using real 410 

streamflow data to fit the GR4J parameters, then using the fitted parameters to generate a predicted 411 

streamflow time series, and finally adding residual errors to the predicted time series based on the 412 

WLS error model. The second hydrological model B2 also uses observed rainfall and PET from the 413 

French Broad River catchment, but is calibrated to the real observed streamflow data. Note that while 414 

there are two inputs for GR4J (i.e. rainfall and PET), here we consider only the importance of rainfall 415 

data (i.e. don’t include PET in X ) when calculating leverage, because typically hydrological model 416 

response are more sensitive to errors in rainfall, rather than errors in PET [Oudin et al., 2006] .    417 

3.3. Case study set 3: Rating curve model incorporating heteroscedastic residual 418 

errors, data uncertainty and parameter priors 419 

The final case study set uses a rating curve model, with increasing complexity in the objective function 420 

that investigates the impact of data uncertainty and incorporating parameter priors using a Bayesian 421 

approach. We apply a piecewise stage-discharge rating curve model to the Ardèche River at Sauze, 422 

France. The Ardèche River has a catchment area of 2240 km2 with a mean annual discharge of 63 m3/s. 423 

We use the reduced subset of 38 stage-discharge gaugings applied in Le Coz et al. [2014]. The flow at 424 

the hydrometric station is controlled by a rectangular sill at low flows, and a rectangular channel at 425 

high flows, leading to a two-part rating curve model with the following stage-discharge relationship:   426 
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Here X  is stage and  1 1 1 2 2, , , , ,a b c k a cα are the rating curve model parameters similar to  Le Coz 428 

et al. [2014]. As the rating curve is continuous at the knot ( k ), the parameter 2b  is computed from 429 
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the other calibrated parameter values by solving the continuity condition 1 2

1 1 2 2( ) ( )c ca k b a k b  430 

, yielding      2
1

1/

2 1 2 1/ ( )
c

cb k a a k b   . Petersen-Øverleir [2004] suggest a heteroscedastic 431 

residual error model to take into account the heteroscedasticity of most rating curve errors, and so 432 

we use the WLS objective function described in Section 2.4.2. We apply the following four calibration 433 

schemes across  C1-4: 1) baseline rating curve calibration with WLS in C1; 2) rating curve calibration 434 

with  discharge uncertainty in C2; 3) rating curve with priors in C3; and 4) rating curve calibration with 435 

discharge uncertainty and priors in C4. 436 

We follow Le Coz et al. [2014] who provide gauging uncertainties for the discharge data at Sauze and 437 

also a framework for Bayesian inference. In C3 and C4 we use the priors from  Le Coz et al. [2014] for 438 

the model parameters that are summarised in Table 2. Perusal of Table 2 shows that the prior standard 439 

deviation is smallest for the exponent parameters ( 1c  and 2c in equation (19)), compared with the 440 

scaling parameters, 1a and 2a , and the offset parameters, 1b  and 2b .  Hence the priors are more 441 

informative for these exponent values because they only depend on the type of hydraulic control 442 

(here, rectangular sill and rectangular channel). In the case of the residual error model parameters β  443 

there is no prior knowledge and so an uninformative uniform distribution is applied.  444 

4. Assessing the ability of regression-theory Cook’s distance to reproduce case-445 

deletion Cook’s distance 446 

We apply case-deletion and regression-theory influence diagnostics with linear, nonlinear and 447 

generalised Cook’s distance to the three case studies in Sections 4.1-4.3. In Section 4.4 we summarise 448 

the performance of the regression-theory influence diagnostics across the case studies, and we finish 449 

in Section 4.5 with an analysis of the computation times of both the regression-theory and case-450 

deletion based influence diagnostics. 451 
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4.1. Case study set 1: Synthetic regression models with linear/nonlinear 452 

response and homoscedastic/heteroscedastic residual errors  453 

In this section we evaluate the performance of regression-theory Cook’s distance based on the three 454 

formulations of generalised leverage, using synthetic regression case studies with varying degrees of 455 

nonlinear model response and heteroscedastic residual errors (A1-4; Table 1). The synthetically 456 

generated “observed” data and fitted models are presented in Figure 2 (row 1) for the four cases. The 457 

models are correctly specified, and fit the data well in all cases. This is evidenced by the standardised 458 

residuals being independent and normally distributed, with zero mean and unit standard deviation 459 

(Figure 2, row 2). 460 

Similarities and differences between the three leverage formulations are shown in Figure 2 (row 3). 461 

Linear leverage is smooth and parabolic in all four cases (A1-4), with a minima at the mean of X (~100). 462 

This highlights that linear leverage only depends on input X (which is identical in all four cases), and 463 

therefore does not vary with the case study. Nonlinear leverage is the same as linear leverage for 464 

linear response models A1 and A2, but differs for nonlinear response models A3 and A4. In those cases, 465 

the nonlinear model response results in higher leverage for larger values of X , with a slight increase 466 

in the midrange of X for A3,  and with leverage varying smoothly as a function of X . Interestingly, 467 

the nonlinear leverage for case A3 is different to the nonlinear leverage for A4. This is due to slightly 468 

different calibrated parameter values α̂  for the nonlinear model in A3 compared with A4; if these 469 

calibrated parameter values were identical, the nonlinear leverage in equation (9)  would be the same, 470 

since it is a function of input data X , model response f(), and optimal model parameters α̂ . This 471 

highlights the sensitivity of nonlinear leverage to influential data points, despite the observations y  472 

not appearing explicitly in equation (9). Finally, generalised leverage is the same as nonlinear leverage 473 

for cases A1 and A3, when residuals are homoscedastic. However, when heteroscasticity in residuals is 474 

introduced into the “observations” and likelihood functions (cases A2 and A4), we see there are two 475 

major differences. The first difference is that generalised leverage becomes larger than nonlinear 476 
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leverage for small values of X . This is because generalised leverage accounts for the higher weights 477 

(i.e. smaller standard deviations) placed on low values of Y  in the WLS likelihood function (which 478 

correspond to small values of X ), while nonlinear leverage applies the same weight to all values of 479 

Y . The second differences is that unlike linear and nonlinear leverage, generalised leverage does not 480 

vary smoothly as a function of X . This is because for a given point i , the generalised leverage in 481 

equation (10) depends on the observation at that point iy , and the observations y  do not vary 482 

smoothly with X .  483 

The magnitude of the case-deletion Cook’s distance is presented in Figure 2 (row 4) as grey bubbles, 484 

and compared to the regression-theory Cook’s distance (which combines the leverage and 485 

standardised residuals, equation (5)) in Figure 2 (row 5) as a function of X . The differences between 486 

case-deletion Cook’s distance and the three regression-theory Cook’s distances are also quantified in 487 

Figure 3. The three regression-theory Cook’s distances are identical for case A1, as a result of identicial 488 

leverages. The errors between the regression-theory Cook’s distance and case-deletion Cook’s 489 

distance are small (green, purple and orange bubbles are all similarly small in Figure 2, column 1, row 490 

5) and the correlations are high (as evidence by r2 values and Spearman correlations of 1.00 when 491 

calculated over all data and the top 10 most influential points in Figure 3, column 1).  492 

When heteroscedastic residual errors are introduced (case A2), generalised Cook’s distance becomes 493 

the most accurate approximation (green bubbles show lower errors then purple bubbles in Figure 2, 494 

column 2, row 5), with linear and nonlinear Cook’s distance being the same (purple bubbles overlay 495 

orange bubbles). For linear and nonlinear Cook’s distance, performance is worst at the extremes of 496 

X , and particularly the lower values of , X as they do not account for residual heteroscedasticity. 497 

The increased accuracy of using generalised Cook’s distances is seen in the top 10% of influential 498 

points (Figure 3, column 2, row 2) where—relative to the other leverage formulations—the Spearman 499 

correlation increases from 0.65 to 0.96, and the r2 increases from 0.28 to 0.98.        500 
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The nonlinear response with homoscedastic residual errors (case A3) results show identical 501 

performance for the nonlinear and generalised Cook’s distances, which are typically more accurate 502 

than linear Cook’s distance (green and purple bubbles have lower errors than orange bubbles in Figure 503 

2, column 3, row 5). Linear Cook’s distance performs particular poorly for high values of X , as 504 

anticipated based on the leverage results. The largest improvement is obtained by using nonlinear and 505 

generalised Cook’s distances is seen in the top 10% of influential points (Figure 3, column 3, row 2) 506 

where the Spearman correlation increases from 0.75 to 1.00, and the r2 increases from 0.50 to 1.00.        507 

Finally, the nonlinear model response with heteroscedastic residual errors (case A4) results show that 508 

the generalised Cook’s distance is the most accurate of the regression-theory Cook’s distances (green 509 

bubbles show the lowest error in Figure 2, column 3, row 5). Both Spearman correlation and r2 values 510 

are close to unity in all cases except for the Spearman correlation value for the largest 10% of 511 

influential points (Sp. = 0.79), due to a difference in a single point - the largest Cook's distance value. 512 

The ranking of the performance linear and nonlinear Cook’s distance for this case appears to depend 513 

on X  and the accuracy metrix used (abs. errors, correlation or spearman rank on all or top 100 data 514 

points). Neither of these leverage approaches, produce the consistent accuracy of generalised Cook’s 515 

distance.  516 

Overall, the results indicate that for the four synthetic regression model case studies considered, 517 

generalised Cook’s distance provides a very close approximation of case-deletion Cook’s distance, and 518 

represents a significant improvement in identifying the influential points compared to the other 519 

regression-theory influence diagnostics linear Cook’s distance and nonlinear Cook’s distance. 520 

4.2. Case study set 2: Daily hydrological model with synthetic and observed 521 

streamflow and heteroscedastic residual errors   522 
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We now evaluate the performance of regression-theory influence diagnostics in a typical hydrological 523 

modelling context where the model has nonlinear response, storage and heteroscedastic errors, with 524 

both synthetic and real observed catchment data (models B1 and B2, respectively; see Table 1). 525 

Observed and predicted streamflow is shown in the first row in Figure 4 for three representative time 526 

periods. For case B1, when synthetic streamflow data is used for “observations”,  the hydrological 527 

model provides a good fit to the observations for both low and high flows. This is as expected since 528 

the same hydrological and error models are used both for generating the “observations” and for 529 

model calibration. When real observed streamflow data is used in case B2, there are more noticeable 530 

differences between observed and simulated streamflow. In particular, simulated peaks consistently 531 

under-estimate observed peaks. This indicates that the hydrological model and/or residual error 532 

model are miss-specified (i.e. there is evidence of “structural” model error). 533 

The standardised residuals (second row in Figure 4) show large differences between the synthetic data 534 

in B1 and the real hydrological data in B2. For B1, standardised residuals are independent and normally 535 

distributed with zero mean and unit standard deviation. In contrast, for B2 the standardised residuals 536 

are auto-correlated, skewed (with much larger positive values than negative values), and have large 537 

extreme values (~4 standard deviations, c.f. ~3 for B1).  Regression-theory Cook’s distance depends on 538 

the magnitude of the standardised residuals (equation (5)), so these differences in standardised 539 

residuals may have a large impact on the influence metric.  540 

The three leverage formulations are shown in the third row of Figure 4. Here leverage is plotted 541 

against time, rather than inputs X  (rainfall), so that the parabolic relationship between X  and linear 542 

leverage is not evident as it was in Figure 2. Linear leverage is high during rainfall events because this 543 

leverage formulation depends only on rainfall; at all other times it is zero, including immediately after 544 

these rainfall events – this is most clearly seen in Figure 4, Case B1, column 2, row 3. In contrast, 545 

nonlinear leverage and generalised leverage remain elevated for a period of time following a rainfall 546 

event. Since generalised leverage accounts for heteroscedasticity in residual errors, it is typically 547 
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smaller than nonlinear leverage during high flow periods, and higher during low flow periods  - this is 548 

most clearly seen in Figure 4, Case B2, column 2, row 3.     549 

The magnitude of the case-deletion Cook’s distance is presented in row 4 of Figure 4 as size of the 550 

grey bubbles. This influence metric is typically larger for case B2  when observed streamflow is used, 551 

compared with when synthetic “observations” are used in B1. This is likely due to the impact of model 552 

mis-specification for case B2, as seen in rows 1 and 2. The accuracy of regression-theory Cook’s 553 

distance compared with case-deletion Cook’s distance is shown in Figure 4 (row 5). Generalised Cook’s 554 

distance is the most accurate (green bubbles show the smallest absolute errors) for both cases B1 and 555 

B2. For case B1, with synthetic observations, linear Cook’s distance  has the highest absolute errors 556 

(orange bubbles), while for case B2, real observations, nonlinear Cook’s distance has the largest 557 

absolute errors.  558 

Figure 5 confirms these findings when it evaluates regression-theory Cook’s distance over the entire 559 

3 years of data (~1100 points). Generalised Cook’s distance provides the best performance of all three 560 

regression-theory influence diagnostics, with the smallest spread about the 1:1 line and very high 561 

performance metrics (ranging from 0.93-1.00 for all metrics). Linear Cook’s distance captures neither 562 

the ranking nor the values of the case-deletion Cook’s distance – as reflected by the lower metrics 563 

(e.g. r2 values ranging from 0.01 to 0.23), with the sole exception of the Sp. having relatively high 564 

values (values of 0.93 and 0.90 for models B1 and B2). Nonlinear Cook’s distance performs a little better 565 

than linear Cooks Distance for some metrics (e.g. Sp.10 improves from -0.30 to 0.95) for case B1 (with 566 

synthetic observations); however, for case B2 (with real observations) the performance is still relatively 567 

poor (e.g. Sp.10 is 0.19 and r2 is 0.05).  568 

These results indicate generalised Cook’s distance is successfully able to capture the impact on 569 

leverage of the nonlinear and storage components of the hydrological model response as well as the 570 

heteroscedastic distribution of the model errors. 571 
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4.3. Case study set 3: Rating curve model with heteorscedastic residual errors, 572 

data uncertainty and parameter priors 573 

The third case study set evalutes regression-theory influence diagnostics when using objective 574 

functions that account for data uncertainty and prior parameter information as part of a Bayesian 575 

inference. The magnitude of the case-deletion Cook’s distance for the four rating curve cases (C1-4) are 576 

shown in Figure 6. Each panel shows observed data (with uncertainties for cases C2 and C4), the fitted 577 

model and the 38 case-deletion fitted models, and the relative magnitude of case-deletion Cook’s 578 

distance for each data point. We provide extrapolated axes in Figure 6 to highlight the impact of 579 

influential data on the model predictions that correspond to historical evidence of the largest floods 580 

for the Ardèche River at Sauze exceeding 6000 m3/s [Naulet et al., 2005]. 581 

In each case, the most influential data are typically extreme (both high and low) stage-discharge 582 

observed data. Accounting for discharge uncertainty in C2 (Figure 6b) slightly reduces the magnitude 583 

of the most influential data, as seen in a slight reduction of Cooks’ distance influence metric, and in a 584 

more practical sense in terms of reducing the variability in the case-deletion rating curves. Accounting 585 

for priors in C3 (Figure 6c) leads to a larger reduction in the influential data, while the combined effect 586 

of accounting for discharge uncertainty and priors in C4 (Figure 6d) results in an even larger reduction 587 

in the influential data, as seen by a significant reduction in case-deletion Cook’s distance and a tight 588 

spread in the case-deletion rating curves. This demonstrates the value of using data uncertainty and 589 

parameter priors in reducing the impact of influential data.  590 

Comparing the influence diagnostic results in Figure 7, the standardised residuals (second row of 591 

Figure 7) for the four rating curve models in cases C1-4  are quite similar, hence the leverage will largely 592 

control differences in regression-theory Cook’s distance between the four cases.   593 

The third row in Figure 7 shows the different leverage formulations for cases C1-4. For linear leverage, 594 

we see the expected parabolic shape for the leverage values as a function of X  across the four cases 595 
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C1-4. As X  is not uniform the minima is off centre unlike the synthetic regression models case study 596 

sets (see Figure 2). For nonlinear leverage, since we have different objective functions between the 597 

cases, there are different calibrated model parameters, and hence different curves for the nonlinear 598 

leverage. Consistently the highest magnitude leverage is the highest stage-discharge value across the 599 

four cases, but the main difference in leverage occurs in the region of the knot where there is an 600 

increase in leverage as we go from C1 to C2,  but a decrease in leverage for C3 and C4.  601 

For generalised leverage there is an increase in leverage for low magnitude stage-discharge data and 602 

a decrease in leverage for high magnitude data relative to nonlinear leverage. This is because 603 

generalised leverage accounts for the heteroscedastic residual errors, which place higher weight on 604 

low vale of the stage-discharge data. There are also distinctive differences between the four cases C1-605 

4. In C1 we have higher generalised leverage than linear and nonlinear leverage with the exception of 606 

the highest stage-discharge data point where nonlinear leverage is slightly higher. Including discharge 607 

uncertainty (C2, column 2) and including prior information (C3, column 3) both result in a decrease in 608 

generalised leverage across most data points except the smallest stage measurements – with prior 609 

information especially reducing the leverage on the highest stage value. Accounting for both discharge 610 

uncertainty and priors in C4 (column 3) reduces the magnitude of the generalised leverage compared 611 

to C1 for all but the minimum stage measurement.   612 

Figure 8 shows the performance of the three regression-theory influence diagnostics across the four 613 

rating curve models, where we see the following patterns:  614 

1. Linear Cook’s distance generally performs poorly for all data points in terms of absolute 615 

correlation (r2 range is 0.03-0.42, except for case C1) but has good performance in terms of 616 

rank correlation (Sp. range is 0.90-0.94). For the top 10 most influential points the 617 

performance is lower (Sp.10 range is -0.16-0.54, r2 range is 0.01-0.33, except for C1). This 618 

indicates that the diagnostic has identified the ranking of the influential points moderately 619 

well, but does not identify the top 10 influential points. 620 
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2. Nonlinear Cook’s distance has mixed performance with some mid to high range performance 621 

metrics (e.g. r2 and r2
10

 range is 0.88-0.90 for cases C1 and C2) but much lower performance 622 

once the priors are incorporated (e.g. r2 and r2
10

 range is 0.01-0.37 for cases C3 and C3).  623 

3. Generalised Cook’s distance has consistently high Sp. (ranging from 0.97-1.00) and performs 624 

relatively well with respect to the other metrics with lowest performance in the case of C4 625 

(Sp.10. of 0.66, minimum r2 of 0.60, and minimum r10
2 of 0.42). 626 

4.4. Performance summary of regression-theory influence diagnostics 627 

The performance metrics Sp. Sp.10, r2 and r2
10. for all ten cases (A1-4, B1-2, and C1-4) in Sections 4.1 to 4.3 628 

are summarised in Figure 9. The results for linear Cook’s distance (Figure 9, top row, columns 1 and 2) 629 

show it does a reasonable job at ranking the most influential data across all data points (very high Sp. 630 

values) However, in terms of the top-ten influential points there is a significant degradation in 631 

performance (Sp.10, is lower than Sp. for all but the linear SLS model (A1) with some negative Sp.10 for 632 

several cases meaning that the top 10 influential points are completely different to those identified 633 

by case-deletion Cook’s distance. The absolute correlations (Figure 9, top row, columns 3 and 4) show 634 

that with exception of the linear SLS model, linear Cook’s distance struggles to reproduce the 635 

magnitude of the case-deletion Cook’s distance values. 636 

Nonlinear Cook’s distance (Figure 9, middle row of panels) show good performance at ranking the 637 

influential points for all data and the top 10 in synthetic cases, A1-4 and B1. However for the real data 638 

case studies (B2 and C1-4) there is a sharp decrease in the performance of ranking the top 10 influential 639 

points. This is maybe because in the real case studies, the impact of the heteroscedastic residual errors 640 

comes into play, which is not accounted for by nonlinear leverage. 641 

Finally we see that generalised Cook’s distance (Figure 9, bottom row of panels) produces the highest 642 

performance of the regression-theory influence diagnostics across the four performance metrics. For 643 

nine of the ten case studies, all performance metrics are above 0.75. The exception being  the rating 644 
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curve model with data uncertainty and priors (C4), where generalised Cook’s distance, still 645 

outperforms the linear and nonlinear Cook’s distance. 646 

4.5. Computational efficiency of influence diagnostics  647 

An important reason for evaluating regression-theory influence diagnostics is to reduce the 648 

computational burden associated with case-deletion Cook’s distance. A summary of computational 649 

demands of the different formulations is provided in Table 3, and shows that although case-deletion 650 

Cook’s distance may be the most exact approach for influential point identification, it is also the most 651 

computationally intensive, requiring 1n  calibration runs.  In contrast, all three regression theory 652 

Cook’s distance are substantially more efficient, on average requiring <1% of the computational effort  653 

of case-deletion Cook’s distance.  654 

Linear Cooks Distance is the fastest because regardless of the size of the calibration data set ( n ) and 655 

number of model and residual error parameters ( m ), it requires only one model calibration followed 656 

by the application of linear matrix algebra. Nonlinear Cook’s distance has the additional computational 657 

demand of calculating the finite difference approximations for the Jacobian and Hessian matrices in 658 

the leverage formulation (equation (9)). Generalised Cook’s distance has the additional computational 659 

demand of calculating the finite difference approximations for the Jacobian and Hessian matrices in 660 

the leverage formulation (equation (10)). However, surprisingly, due to the number of finite difference 661 

calculations required by each formulation, generalised leverage requires fewer model runs (~140,000 662 

in the example in Table 3) than nonlinear leverage (~270,000 runs in the example in Table 3) despite 663 

making fewer assumptions about the residual errors and therefore being broader in potential 664 

applications. 665 

5. Discussion 666 

5.1. Advantages and disadvantages of case-deletion and regression-theory 667 

influence diagnostics 668 
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The case-deletion and regression-theory influence diagnostics have varying assumptions and 669 

computational demands. Here we discuss the advantages and disadvantages of implementing the two 670 

classes of influence diagnostics in hydrological applications. 671 

Case-deletion Cook’s distance represents the most reliable measure of the influence as it provides a 672 

direct measure of the impact that a particular data point has on a model’s predictions. Furthermore, 673 

hydrological models typically have nonlinear responses, including time-dependences in the 674 

predictions (and residuals) as a result of storage, and the residual errors are typically heteroscedastic 675 

and non-Gaussian. Therefore,  case-deletion Cook’s distance is attractive because it does not make 676 

any assumptions and can handle a wide range of modelling scenarios. However, the computational 677 

demand associated with re-calibrating the parameters for every data point in the observed record 678 

renders case-deletion influence analysis infeasible for anything but the simplest models with small 679 

datasets. For example, for a four parameter hydrological model with a decade of daily data, case-680 

deletion required a run-time of 675 hours (~28 days) - see Table 3. A secondary concern with the 681 

implementation of case-deletion approaches is the repeated optimisation on complex response 682 

surfaces that are prone to multiple local optima [Duan et al., 1992; Kavetski et al., 2006].  683 

Another drawback to applying the case-deletion Cook’s distance is the loss of additional information 684 

supplied by the leverage. Cook’s distance indicates which points are influential, but it does not tell us 685 

why they are influential. Analysing both the leverage and the standardised residual contribution to 686 

the magnitude of the Cook’s distance therefore provides more detailed information on the nature of 687 

influential data points. Examining the standardised residuals in the case studies we see only slight 688 

variability across the four rating curve models, indicating that in some cases (such as C1-4) the leverage 689 

contribution can be the dominant factor influencing regression-theory influence diagnostics. The 690 

additional insight from examining generalised leverage is clear from a broad range of examples from 691 

the statistical literature [e.g. Leiva et al., 2014; Lemonte and Bazán, 2015; Osorio, 2016; Rocha and 692 

Simas, 2011]. This is evident in the hydrological model cases B1-2 where there is a clear discrepancy 693 
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between the magnitude of the standardised residual and the magnitude of Cook’s distance, indicating 694 

the importance of the leverage in the influence of data points in the time series. In hydrological 695 

examples, points with high leverage can provide direction to the modeller in terms of where to focus 696 

additional data collection efforts. This is because these points will be highly influential in 697 

circumstances when high leverage is combined with high residual error. 698 

Regression-theory influence diagnostics therefore have the following key advantages: (1) they are 699 

more efficient, due to the minimal additional computational requirements compared to a standard 700 

hydrological model calibration (99.6% fewer runs than case-deletion Cook’s distance as indicated in 701 

Table 3), and (2) they provide additional diagnostic information in the form of the leverage and 702 

standardised residuals. The key limitations of regression-theory influence diagnostics are (1) they 703 

cannot evaluate case-deletion impact on predictions, parameters or objective function values (see 704 

Figure 1), and (2) they have assumptions required in the regression model structure and residual errors 705 

to formulate the leverage. In the empirical results of this study, the impact of these assumptions was 706 

illustrated with the low performance of linear and nonlinear Cook’s distance on real data case studies, 707 

which had both model nonlinearity and heteroscedastic residual errors. 708 

The development of generalised Cook’s distance, which uses generalised leverage, to efficiently 709 

identify influential data points demonstrates considerable promise. For the ten case studies with a 710 

broad range of modelling scenarios (i.e. nonlinear model response, heteroscedastic residual error, 711 

data uncertainty and Bayesian inference) we saw generally high performance in terms of its ability to 712 

identify the same influential points as case-deletion Cook’s distance at a fraction of the overall 713 

computational cost. This demonstrates that calculating generalised Cook’s distance using generalised 714 

leverage provides a promising avenue to evaluate influential points in complex hydrological and 715 

environmental modelling scenarios. For future applications of influence diagnostics an attractive 716 

alternative to case-deletion and regression-theory influence diagnostics is to apply a hybrid 717 

framework for influence assessment [Wright et al., 2018] that combines the strengths of the two 718 
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existing classes; namely 1) computational efficiency, and 2) flexibility to quantify influence using 719 

hydrologically relevant metrics.    720 

5.2. Application of generalised Cook’s distance to a broader class of hydrological 721 

and environmental modelling scenarios  722 

An important advantage of generalised Cook’s distance is that the formulation of generalised leverage 723 

on which it is based can be applied to a very broad class of objective functions, as long they can be 724 

written in the general form in equation (2). Examples of suitable objective functions are: (1) those that 725 

account for autocorrelation in the residual error [see Wei et al., 1998], which is common in 726 

hydrological modelling [see Evin et al., 2014], and (2) alternative methods to account for 727 

heteroscedasticity such as logarithmic and Box-Cox transformations, also common in hydrological 728 

modelling [see McInerney et al., 2017]. The additional challenges in applying generalised Cook’s 729 

distance to environmental models outside of the model classes described herein could include: 730 

increased model structure complexity, increased computation time for model simulations, increased 731 

size of the parameter space, and potential challenges in numerically differentiating the objective 732 

function. A number of these challenges are in common with case-deletion approaches (e.g. the 733 

increased computational time), whereas others are unique to regression-based approaches (e.g., 734 

numerical differentiation issues).  735 

Furthermore, an extension to this work would be to examine whether removing influential data in the 736 

model calibration period can improve predictions on an independent model validation time series. 737 

This would further demonstrate the impact of influential data, given the importance of model 738 

validation in hydrology [Biondi et al., 2012] 739 

5.3. Understanding the key drivers of influential data is key to reducing their 740 

impact on model calibration 741 
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Due to complex interactions between the chosen data, model and objective function, it can be difficult 742 

to identify influential data without undertaking an influence analysis post model calibration. Future 743 

work could endeavour to understand the key drivers of influential data by identifying situations where 744 

data are influential due to drivers independent of the choice of response model and objective function 745 

(e.g. rainfall and streamflow from an extreme weather event) and those situations where influential 746 

data are driven by the choice of response model (e.g. the response model poorly describes the 747 

response between y  and X ) and/or choice of objective function (e.g. the assumed residual error 748 

model poorly describes the residual error structure).  Understanding these key drivers of influential 749 

data and determining whether influential data follow a particular pattern (e.g. they tend to be the 750 

largest observed model input and/or output values, or they correspond to a specific input range, etc.) 751 

will enable the modeller to determine if additional targeted data collection (e.g. collection of more 752 

high or low flows) and/or changes to the response model and/or objective function are needed to 753 

reduce the impact of influential data. The computationally efficient regression-theory influence 754 

diagnostics developed in this study will enable future investigation towards this long term goal. 755 

6. Conclusions 756 

Influence diagnostics identify data points that have a disproportionate impact on model parameters, 757 

performance and/or predictions, and are therefore useful tool as part of the model calibration 758 

process. Case-deletion influence diagnostics provide an exact measure of influence; however, they 759 

have a large computational demand due to the requirement for re-calibration of the model 760 

parameters for every data point in the calibration dataset. Regression-theory influence diagnostics 761 

provide an approximation of case-deletion Cook’s distance by combining two regression components 762 

for each observed data point: 1) the leverage which is used to assess the potential importance of 763 

individual observations, and 2) the standardised residuals. These are more computationally efficient 764 

than case-deletion influence diagnostics, but require making assumptions about the response model 765 

and the residual error.  766 
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We evaluate the performance of the regression-theory influence diagnostics for three different 767 

approaches 1) linear Cook’s distance, which uses linear leverage, 2) nonlinear Cook’s distance, which 768 

uses nonlinear leverage, and 3) generalised Cook’s distance, which uses generalised leverage. This 769 

study is the first time that generalised leverage has been combined with the standardised residual to 770 

produce generalised Cook’s distance in this manner. The performance in identifying the most 771 

influential data points was evaluated against case-deletion Cook’s distance on a wide range of 772 

modelling scenarios (ten case studies) that included linear/nonlinear model responses, 773 

homoscedastic/heteroscedastic residual errors, and Bayesian approaches that include data 774 

uncertainty and prior information. The performance evaluation looked at correlations (rank and 775 

absolute) with the entire dataset and the top 10 influential points identified by case-deletion Cook’s 776 

distance. 777 

The key outcome of this study is that generalised Cook’s distance has a high performance in 778 

approximating case-deletion Cook’s distance (measured by the rank and absolute correlations) for the 779 

following modelling scenarios : 780 

1. Nonlinear regression model with heteroscedastic residual error (Sp. 0.97, r2 0.92), 781 

2. Daily hydrological model including nonlinear model response and storage with 782 

heteroscedastic residual error (Sp. 0.93, r2 0.98), 783 

3. Rating curve model calibrated using a Bayesian framework that includes heteroscedastic 784 

residual error, data uncertainty and prior information (Sp. 0.98, r2 0.60). 785 

Importantly, generalised Cook’s distance was able to achieve this high performance at identifying 786 

influential points at a fraction of the computational cost (<1%) of case-deletion Cook’s distance.  787 

As hydrological modelling complexity increases (i.e. more complex model structures [Fenicia et al., 788 

2011], multi-catchment datasets (e.g. >200 catchments [Coron et al., 2012]), and complex objective 789 

functions [Schoups and Vrugt, 2010], hydrological modellers are increasingly reliant on methods to 790 
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detect and diagnose the impact of modelling decisions on whether a realistic representation of the 791 

catchment response has been achieved [Gupta et al., 2008]. Influential data could be significant 792 

impediment towards this goal, as their presence indicates heightened sensitivity of model outputs to 793 

a small number of data points. The development of generalised Cook’s distance enables influential 794 

points to be identified without the computational demand of undertaking the numerous re-795 

calibrations required by case-deletion Cook’s distance.  796 
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Figure 1 – Range of available influence diagnostics in the literature. Influence diagnostics are broken up into two classes 896 
on the left hand side with the various approaches on the right hand side. The three regression-theory approaches are 897 
colour coded based on the leverage formulation that they use and as they appear in the latter figures with linear Cook’s 898 
distance (orange), nonlinear Cook’s distance (purple), and generalised Cook’s distance (green). 899 
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 902 

Figure 2 – Results for case study set 1: Synthetic regression models. “Observed” data (black), and model predictions (red) 903 
in the top row, followed by standardised residuals in the second row.  Leverage is shown in the third row with linear 904 
leverage, nonlinear leverage and generalised leverage. In the case of A1 the three leverage formulations are exactly equal 905 
and so are superimposed over each other, as is the case in A2 with linear and nonlinear leverage. The fourth row highlights 906 
the distribution of the most influential data in the context of the observed data (black) and model predictions (red)  where 907 
the size of the bubbles is scaled to the value of case-deletion Cook’s distance giving a relative indication of influence. For 908 
actual case-deletion Cook’s distance values refer to Figure 3. The final row shows the absolute error between regression-909 
theory Cook’s distance and case-deletion Cook’s distance where the size of the bubbles is scaled to the value of case-910 
deletion Cook’s distance to highlight the absolute error for the most influential data points. Note that in the final row the 911 
relative errors are superimposed over each other. 912 

 913 

 914 
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 915 

Figure 3 –Comparison of case-deletion Cook’s distance and regression-theory influence diagnostics for case study set 1:  916 
Synthetic regression models. In the first row we compare the performance in logarithmic space and use the Spearman 917 
rank correlation (Sp.) and Pearson correlation (r2) to highlight performance across the whole dataset. In the second row 918 
we compare the performance in real space and use the Sp.10 and r10

2 to compare the subset of the ten most influential 919 
data points. 920 
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 921 

Figure 4 – Results from case study set 2: Daily hydrological modelling case studies B1 and B2, presented in an analogous manner to Figure 2. Observed streamflow (black), and predicted 922 
streamflow (red) are shown in the top row for three different representative 100 day time periods, followed by standardised residuals in the second row.  Leverage is shown in the third 923 
row. The fourth row highlights the distribution of the most influential data, where the size of the bubbles is scaled to the value of case-deletion Cook’s distance. The final row shows the 924 
absolute error between regression-theory Cook’s distance and case-deletion Cook’s distance. Note that in the final row the relative errors are superimposed over each other. 925 
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 926 

 927 

Figure 5 –Comparison of case-deletion and regression-theory influence diagnostics for case study set 2: Daily hydrological 928 
modelling cases B1 and B2, presented in the same manner as Figure 3 929 
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 932 

 933 

Figure 6 – Stage-discharge rating curves for the Ardèche River at Sauze. The four rating-curves presented are a) baseline 934 
rating curve without accounting for discharge uncertainty and priors, b) Rating curve with discharge uncertainty, c) Rating 935 
curve with parameter priors, d) Rating curve with both discharge uncertainty and parameter priors. Corresponding 936 
computed transition levels between section and channel controls is marked with vertical broken lines. The 38 case-937 
deletion rating-curves and computed transition levels are shown in grey. The size of the points correspond to the relative 938 
magnitude of the case-deletion Cook’s distance. 939 
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 941 

 942 

Figure 7 – Results for case study set 3: Rating curve models. The computed transition level (knot) between section and 943 
channel controls is marked with a vertical dashed line. Observed data (black), and model predictions (red) in the top row, 944 
followed by standardised residuals in the second row.  Leverage is shown in the third row. The fourth row highlights the 945 
distribution of the most influential data, where the size of the bubbles is scaled to the value of case-deletion Cook’s 946 
distance. The final row shows the absolute error between regression-theory Cook’s distance and case-deletion Cook’s 947 
distance. Note that in the final row the relative errors are superimposed over each other. 948 
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 956 

Figure 8 Comparison of case-deletion and regression-theory influence diagnostics for case study set 3: Rating curve 957 
models, presented in the same manner as Figure 3. 958 
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 961 

Figure 9 – Performance metrics for regression-theory influence diagnostics across the ten case studies in the three case 962 
study sets.  We apply the Spearman rank correlation and Pearson correlation to: (1) the whole set of data points (Sp. and 963 
r2, respectfully), and (2) the top 10 most influential data points identified by case-deletion Cook’s distance (Sp.10 and r2

10, 964 
respectfully). Linear Cook’s distance is shown in the first row (orange), nonlinear Cook’s distance in the second row 965 
(purple) and finally generalised Cook’s distance in the bottom row (green). 966 
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Table 1 – Details of the case studies. 967 
Case study Response model Residual error model “Observed” output Y  Objective function 

Case study set 1: Synthetic regression models, Input:  ~ U 0,200X  
   

A1: Linear regression,    
homoscedastic residuals 

 1 2 1 2, ,f     X X     2

1N 0, ,         ,10,500 100f X  
2.2.1 

A2: Linear regression, 
heteroscedastic residuals 

 1 2 1 2, ,f     X X     2

1 2N 0, ,   σ σ σ y     ,10,500 0.2,10f X  
2.2.2 

A3: Nonlinear regression, 
homoscedastic residuals 

  3

1 2 3 1 2, , ,f
     X X     2

1N 0, ,         ,500,0.1,2.3 100f X  
2.2.1 

A4: Nonlinear regression, 
heteroscedastic residuals 

  3

1 2 3 1 2, , ,f
     X X     2

1 2N 0, ,   σ σ σ y     ,500,0.1,2.3 0.1,0.5f X  
2.2.2 

Case study set 2: Daily Hydrological models, Input: Observed rainfall measurements, All models have heteroscedastic residuals   

B1: GR4J, synthetic output  
 

 GR4J P,PET,α      2

1 2N 0, ,   σ σ σ y    GR4J P,PET, 2200,1.15,87,0.55α +

 0.1,0.5  

2.2.2 

B2: GR4J, observed output 
 

 GR4J P,PET,α     2

1 2N 0, ,   σ σ σ y  Observed  2.2.2 

Case study set 3: Rating curve models, Input: Observed stage measurements, All models have heteroscedastic residuals  
  

 
C1: Rating curve model,  

 

 

3

6

1 2 4

5 2 4

,
)

,

i i

i

i i

X X
f X

X b X





  

 

  
 

 

α( ,  

   2

1 2N 0, ,   σ σ σ y  

Observed 

2.2.2 

C2: Rating curve model, 
data uncertainty  

   2 2 2

1 2N 0, , ,r Y r     σ σ σ σ σ σ y  
2.2.3 

C3: Rating curve model, 
parameter priors 

   2

1 2N 0, ,   σ σ σ y  2.2.4 

C4: Rating curve model, 
data uncertainty,  
parameter priors 

   2 2 2

1 2N 0, , ,r Y r     σ σ σ σ σ σ y  
2.2.5 
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 969 

 970 

Table 2 – Selected prior mean (standard deviation) for the two-part rating curve model taken from Le Coz [2014]. An uninformative uniform distribution was used for the residual error 971 
model parameters. Control 1 is the rectangular sill at low flows, and Control 2 is to the rectangular channel at high flows. 972 

 Control 1  Control 2 

α  1a  1b  1c  1k  2a  2c  

 50 (100) -0.5 (2) 1.5 (0.025) 1 (1) 100(200) 1.67 (0.025) 

 973 

  974 
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Table 3 – Summary of the computational demand of case-deletion and regression-theory Cook’s distance. The example case study corresponds to the daily hydrological model (i.e. 4m 975 

, 6m  ) with ~10 years of data (i.e. 3650n  ) where a fixed number of model runs is assumed per calibration ( 10000r   model runs). The example runtime is calculated with a 976 
2.90GHz processor. 977 

Approach Leverage General computation demand Model runs 
Example 

computational 
demand 

Example runtime 
(hours) 

Reduction from 
case-deletion 

Case-deletion Cook’s 
distance 

- n+1 model re-calibration  1r n   36,510,000 runs 
675.37 

- 

Linear Cook’s distance  Linear Single calibration r  10,000 runs 0.18 99.97% 
Nonlinear Cook’s 

distance 
Nonlinear 

Single calibration + central difference 
calculations 

   2 4r n m n m m        272,800 runs 5.05 99.25% 

Generalised Cook’s 
distance 

Generalised 
Single calibration + central difference 

calculations 
     2 4 4r n m m m n m       141,544 runs 2.62 99.61% 

 978 


