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Keywords:

Hydroeconomic modeling
Network flow optimization
Multi-reservoir operations

This short communication describes a new open-source implementation of the CALVIN model (CALifornia Value
Integrated Network), a large-scale network flow optimization model of California's water supply system. The
model is cross-platform, uses common data formats, and connects to several freely available linear programming
solvers. Given inputs including hydrology, urban/agricultural demand curves, and variable operating costs, the
model minimizes the systemwide cost of water scarcity and operations including surface and groundwater re-
servoirs, wastewater reuse, desalination, environmental flow requirements, and hydropower. Key outputs in-
clude water shortage costs and marginal economic values of water and infrastructure capacity. We benchmark
the scalability of different solvers up to roughly 5 million decision variables, using shared-memory paralleli-
zation on a high performance computing cluster. Runtimes are reduced by two orders of magnitude relative to
the original model when no initial solution is provided, in addition to the benefits such as accessibility and
transparency that come with an open-source platform. While this model is specific to California, the data and
model structure are separated, so a similar framework could be used in any system where water allocation has

been formulated as a network flow problem.

1. Background
1.1. Hydroeconomic modeling

Hydroeconomic models combine water resources systems en-
gineering and economics, where water allocations are driven by eco-
nomic value, and conversely, economic costs and benefits are impacted
by hydrology (Cai, 2008; Harou et al., 2009; Booker et al., 2012).
Optimization models incorporating economic objectives have been used
extensively to evaluate water resources planning and management de-
cisions over the past decades (Labadie, 2004). Draper et al. (2003) first
introduced CALVIN (CALifornia Value Integrated Network), a hydro-
economic model describing California's water supply infrastructure in-
cluding surface and groundwater reservoirs, urban and agricultural
demands, environmental flow requirements, hydropower production,
wastewater reuse and desalination facilities, plus urban and agri-
cultural water conservation. The model has since been used in

numerous studies, with topics ranging from climate adaptation to
groundwater overdraft. Subsequent authors have updated the structure
and parameters of the model to reflect changes in water demands and
environmental requirements. The economic optimization framework is
unique among statewide California models and provides results such as
willingness-to-pay for additional water delivery and marginal value of
increased conveyance and storage capacities. Other large-scale water
resources studies in California have included contributions to ground-
water modeling (Dogrul et al., 2016), agricultural economics (Howitt
et al., 2012; Winter et al., 2017), and multi-objective analysis (Quinn
et al., 2004; Yang et al., 2015).

The vast improvements in computing power since CALVIN's incep-
tion and its ability to explore potential scenarios in California water
supply provide an opportunity to move the network structure and data
to a new optimization platform. This short communication describes
the outcome of this effort, following some general design goals:
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Software availability

Name of Software CALVIN (Python version)

Description An open-source hydroeconomic model that opti-
mizes water allocation to agricultural and urban users
in California, originally developed by Draper et al.
(2003). Built on top of the Pyomo library (Hart et al.,
2012). Storage and demand nodes are connected in a
network structure; the dataset is hosted here: (https://
github.com/ucd-cws/calvin-network-data)

Developers M. Dogan, M. Fefer, J. Herman, Q. Hart, J. Merz

Funding Source Development was partially supported by the
California Energy Commission 4th Climate Change
Assessment, Award EM4CD3-04A, and by NSF
CyberSEES, Award 1539593. High-performance com-
puting resources provided by the UC Davis College of
Engineering

Source Language Python 2.7, 3.4

Supported Systems Unix, Linux, Windows, Mac

License MIT License

Availability https://github.com/ucd-cws/calvin

® Cross-platform: Model should run on Windows/OSX/Linux

® Open data formats: Input and output data should use only non-pro-
prietary formats such as CSV and JSON

® Freely available: Programming language and solvers should be free
and open-source. Several solvers described in this work are cost-free
only for academic use, but they are not strictly required.

® Separation of model and data: The HOBBES project (https://hobbes.
ucdavis.edu) stores the network dataset independent from any
particular model, allowing this work to use multiple state-of-the-art
solvers or models.

In the process of meeting these goals, a few specific features are
added, as described in Section 2.

1.2. Network flow optimization

CALVIN is a network flow optimization model seeking to minimize
statewide operating and water scarcity cost, subject to physical and
regulatory constraints. Network flow problems commonly appear in
energy and transportation problems in addition to water; references
such as Bazaraa et al. (1977) provide detailed explanation and solution
methods for network flow programming. The physical system is re-
presented by a set of nodes ./" and links .o7. Links are defined by
(i, j, k) € .o/, where i is the source node, j, j # i is the destination node,
and k is the index of the piecewise linear component for links. Each link
has the following properties: flow Xj; (the decision variable), unit cost
cijk, lower bound I, upper bound uy, and amplitude (loss factor) ay;.

The objective function and constraints are:

mgnz = Z E E Cijke Xijk
ij ok

(@]
subject to:
Xije < u, ¥V (0, j, k) € o @
Xijie = lje, V (i, j, k) € o 3)
Z ZXﬁk - z Z ap Xy =0, Vje A
b vk @

The objective function (Equation (1)) is a summation over all links
i, j, k representing the total cost of flow conveyed in the network. The
constraints (Equations (2)—(4)) enforce the upper and lower bounds on
each link, and the mass balance at each node, respectively. The lower

Environmental Modelling and Software 108 (2018) 8-13

bound constraints include non-negativity: [z > 0 V (i, j, k). The net-
work flow formulation is a suitable model for large-scale water supply
operations, but many other approaches have been proposed to model
multi-reservoir systems (e.g., Labadie, 2004; Matrosov et al., 2011; Li
et al., 2015; Giuliani et al., 2016).

The version of the model published by Draper et al. (2003) and used
in subsequent studies employs the HEC-PRM solver created by the U.S.
Army Corps of Engineers Hydrologic Engineering Center. This solver
uses the out-of-kilter method for network flow optimization, and stores
data in the binary HEC-DSS format. It is available for the Windows
operating system. The CALVIN model requires approximately one week
to solve using this software platform without an approximate initial
solution.

2. Model description
2.1. California network dataset: HOBBES

To implement the model (Equations (1)-(4)), a set of nodes, links,
and their properties must be provided. As part of this work, the data-
base for California's water supply network has been migrated to the
HOBBES platform (https://hobbes.ucdavis.edu). Unlike previous large-
scale water resources optimization models, the HOBBES web-based
framework separates the network data from the model-specific opti-
mization method. This approach is intended to facilitate data standar-
dization and documentation, increase transparency, reduce overhead
development costs, and enhance modeling collaborations between
academic, industry, government agencies, and non-governmental or-
ganizations (Medellin-Azuara et al., 2013). Similar benefits have been
observed across a range of water resources web applications (Swain
et al., 2015).

HOBBES combines a web visualization of the network (https://
hobbes.ucdavis.edu/cwn) with the underlying database and metadata
in JSON format (https://github.com/ucd-cws/calvin-network-data).
The platform also includes automated scripts to export the database to a
CSV format compatible with most solvers. The CALVIN GitHub re-
pository provides links to CSV files that have been exported using this
tool. Each row of the exported CSV file represents one link; the first two
columns contain strings representing the names of the source and
destination nodes i, j. The following columns contain the piecewise
index k, cost ¢, amplitude a, lower bound [, and upper bound u.

The dataset currently covers the period 1922-2003 on a monthly
timestep. Water scarcity costs are represented by piecewise linear
functions for projected urban and agricultural demands in 2050
(Medellin-Azuara et al., 2007; Dogan et al., In Review). The physical
network contains approximately 1000 spatial nodes and 60,000 links,
selected types of which are shown in Fig. 1. The network model con-
tains a copy of each node for each timestep, where links between
timesteps represent storage at surface and groundwater storage nodes.
Therefore, the size of the optimization problem increases linearly with
the length of the model period. A 1-year model run contains approxi-
mately 60,000 decision variables (links), while the full 82-year run
contains over 5 million decision variables, including piecewise linear
water shortage and operating costs. These values also include optional
“debug links” to address potential infeasibilities in the optimization,
which are described in Section 2.3 and account for roughly 40% of the
links in the model.

2.2. Dependencies and installation

The model requires the Python programming language and its
standard scientific libraries (NumPy, SciPy, pandas); we recommend
the Anaconda Distribution (https://www.continuum.io/downloads) to
easily download and maintain these standard packages. Beyond this,
the Pyomo library (Hart et al., 2012) is also required, and is not in-
cluded with the standard packages in the Anaconda distribution. Pyomo
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Fig. 1. Network representation of California's water supply system in the
CALVIN model. Selected node types are shown; other node types include
pumping plants, water treatment plants, and junctions.

provides a high-level interface for problem formulation that can be
linked to different solvers, in the spirit of algebraic modeling languages
such as GAMS and AMPL. Solvers must be installed separately. A simple
method to install Pyomo along with the GLPK solver (Makhorin et al.,
2008) using a command-line package manager is shown in the README
file of this repository. In this short communication we also investigate
the performance of the CBC (Forrest, 2012), Gurobi (2014), and CPLEX
(IBM, 2009) solvers, all of which are free for academic use. GLPK and
CBC are also free for commercial use. Installing these solvers and
connecting to Pyomo must be done outside of the standard package
managers, and we refer the reader to their respective documentation.
The CALVIN model can be obtained by cloning or downloading the
GitHub repository linked in the software availability section (hash
a6a9fe7, May 2018). Links to download the network data in CSV format
are provided in the README.

2.3. Resolving infeasibilities

The default model configurations should solve without issue, fol-
lowing the steps to be described in Section 2.5. However, when para-
meters are changed—for example, hydrologic inputs—the problem may
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become infeasible, which the solvers will quickly recognize. To locate
and fix the constraints causing this problem, the package includes the
option to run in “debug mode”. This is an automated version of a
heuristic approach that has been developed in prior studies (Tanaka
et al., 2006; Medellin-Azuara et al., 2007). Debug mode adds two ad-
ditional nodes, “super-source” and “super-sink”, which are linked to all
other nodes in the network at each timestep. These links can respec-
tively add or remove as much water as needed for the infeasible con-
straints to become feasible, but at a very high cost—values ranging
from $10°-10'° per acre-foot have been used, orders of magnitude
higher than any physically-based cost in the network. So, the solver will
only allow flow on the debug links necessary for feasibility. The mag-
nitude of these flows (typically small) is used to either decrease lower-
bound constraints, increase upper-bound constraints, or otherwise
identify input errors. The numerical tolerance to identify debug flows
can be set by the user; the default tolerance is 10~7 acre-feet per month.
The debug process also reports the total volume of constraint altera-
tions when it is finished. Multiple iterations may be needed to eliminate
all debug flows, after which the debug links are removed and the model
can be solved. This debugging process increases the runtime sub-
stantially, because the model must be solved an additional 5-10 times.
However, it is a straightforward way to obtain a feasible solution for a
large model with a modified set of input parameters.

2.4. Perfect vs. limited foresight

When optimizing over decades-long time periods, the operation of
surface and groundwater storage can be determined with perfect fore-
sight of future dry and wet years. The limitations of this assumption
have long been recognized (e.g., Newlin et al., 2002; Tanaka et al.,
2006). Moving to a new software platform offers the flexibility to in-
vestigate the alternative assumption of limited foresight, where se-
quential annual optimizations apply the end-of-period storage from
each year as the initial condition for the following year. The key
challenge is defining optimization constraints or values for the end-of-
period minimum carryover storage. To analyze the effect of carryover
storage constraints, we vary them as a percentage of available surface
reservoir capacity above dead pool, from 0% to 50% in steps of 5%.
Groundwater storage volumes are constrained to the optimal end-of-
year storage from the full 82-year run with perfect foresight. This as-
sumption introduces more information into the limited foresight model,
but prevents the limited foresight model from overdrafting ground-
water to compensate for periods of low surface water availability.
Further, it is a simplifying assumption that all of the large surface re-
servoirs would be operated for the same carryover targets as a per-
centage of their respective capacities; this may increase costs relative to
individually specified carryover targets. More advanced methods to
assign economic value to carryover storage at individual reservoirs are

Annual cost ($M) vs. carryover volume 5 Annual shortage cost ($M) with 10% carryover storage

1.4 —— EOP=10%

= Mean, Limited Foresight
— — Mean, Perfect Foresight

)

o

0.8

Annual Shortage Cost ($M)

1930
0 10 20 30 40 50
% Carryover above Deadpool

—— Perfect Foresight

(B)

1940 1950 1960 1970 1980 1990 2000

Fig. 2. (A) Average statewide annual cost as a function of the end-of-period storage volume in the 10 largest reservoirs, given in million acre-feet (MAF). (B)
Timeseries of annual shortage cost with an end-of-period constraint of 10% of capacity above dead pool.

10



M.S. Dogan et al.

presented in Draper (2001); Draper and Lund (2004).

Fig. 2a shows that a minimum carryover storage constraint of about
5 million acre-feet (MAF), or roughly 10% above dead pool, results in
the lowest average annual cost. The average annual shortage cost is
only three times that in the perfect foresight case. Beyond that point,
costs increase because storing too much for future years increases
shortages in the current year. The timeseries in Fig. 2b shows that the
limited foresight optimization is prone to spikes in annual shortage cost
during drought years when they normally occur, whereas the perfect
foresight model more evenly distributes cost over the period. Limited
foresight reflects more realistic management, since accurate forecasts of
drought events are not available years in advance. The annual timestep
moves the model closer to a simulation model, but one in which net-
work flows within each year are optimized assuming perfect foresight.
We additionally expect the marginal value of storage capacity to in-
crease under the limited foresight assumption, reflected in the dual
values on the reservoir capacity constraints.

Limited foresight mode is a new addition to the CALVIN model,
which has been enabled by the move to a new software platform. The
impacts of limited foresight on water allocation and cost remain the
subject of ongoing research. Section 2.5 contains an example of running
connected annual optimizations in a loop.

2.5. Examples

Fig. 3 shows how to run a 1-year optimization for water year 1922
(beginning October 1921). The network data is imported from a CSV
file. The model is first run in debug mode to eliminate infeasibilities.
The results from Pyomo are postprocessed and stored in the directory
example-results. Results include a set of eight CSV files: flow.csv, the
flow on each link (TAF/month); storage.csv, surface and groundwater
storage volumes at the end of each month (TAF); dual_lower.csv, dua-
L_upper.csv, and dual_node.csv, which are respectively the dual values
(shadow prices) on the lower/upper bound of each link, and the dual
values on the mass balance constraint at each node. The final three files
are shortage_volume.csv and shortage_cost.csv, given on selected links,
and evaporation.csv, given at storage nodes. All results files contain 1
row for each month of the model run, and the columns are either link or
node names as appropriate. The CSV output format allows the results to
be analyzed and plotted using any standard software. This 1-year ex-
ample solves with GLPK in approximately 1.5min on a desktop com-
puter, including two iterations of debug mode.

Fig. 4 shows how the limited foresight model can be run with
multiple connected annual optimizations. At the start of each iteration,

# main-example.py
from calvin import *

calvin = CALVIN('linksWY1922.csv')

Environmental Modelling and Software 108 (2018) 8-13

the model is created with initial conditions taken from the previous
period's ending storage. The end-of-period constraint is set to 10% of
available capacity above dead pool, as suggested by the results in Fig. 2.
Each year is first run in debug mode, which may require several
iterations, before solving for a feasible solution without debug mode.
Results from each year are appended to the output CSV files. This ex-
ample will require much more computing time than the 1-year run
shown in Fig. 3; a rough estimate would be to multiply by the number
of years, but this will not be exact due to differences in the number of
debug mode iterations between years.

The examples in Figs. 3 and 4 would not require much modification
to run different experiments. In fact, the most common changes, such as
hydrologic inputs and network connections, would be made in the
network links data file (CSV) and would not require any changes to the
code. Advanced users seeking more information about the internal
functions in the model should refer to the docstrings for each function
on GitHub.

3. Runtime benchmarks

Several state-of-the-art linear programming solvers are available. It
is useful to compare how runtimes increase with the number of decision
variables. For this problem, the number of decision variables can be
controlled by the number of years used in the optimization. Here we
experiment with model runs of 1, 5, 10, 40, and 82 years, and record
the solver runtime required in each case in debug mode, excluding time
for file reading and writing. Only one debug iteration is needed, be-
cause these historical runs do not contain infeasibilities. Four solvers
are tested (CBC, CPLEX, Gurobi, and GLPK), with 10 trials for each
combination of solver and model size, for a total of 200 model runs.
Tests are performed on the UC Davis HPC1 cluster, which contains 60
nodes each with 64 GB of RAM and two 8-core dual-threaded CPUs
running at 2.4 GHz. The CPLEX, Gurobi, and CBC solvers use shared-
memory parallelization on 32 threads, while GLPK runs in serial.

Fig. 5 shows solver runtimes with increasing numbers of decision
variables. These results assume perfect foresight; runtime analysis of
the limited foresight model remains a subject of ongoing work. Gurobi
takes the least amount of time to find an optimal solution for all model
sizes. Gurobi requires roughly 30 min to solve the largest model, with
about five million decision variables in debug mode, while GLPK (se-
rial) requires roughly 4.5 days. The speedup is partially a function of
parallelization, but also the use of different techniques within each
solver. The HEC-PRM solver used in the prior version of the model also
runs in serial, and requires roughly 7 days to solve without an initial

# run in debug mode. reduces LB constraints.
calvin.create_pyomo_model(debug_mode=True, debug_cost=2e10)
calvin.solve_pyomo_model(solver="'glpk', nproc=1, debug_mode=True)

# run without debug mode (should be feasible)
calvin.create_pyomo_model(debug_mode=False)
calvin.solve_pyomo_model(solver="glpk', nproc=1, debug_mode=False)

postprocess(calvin.df, calvin.model, resultdir='example-results')
# creates output CSV files in the directory specified

Fig. 3. Example code for a 1-year optimization using water year 1922.
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from calvin import x*

eop = None

for i in range(1922,2004):
print('\nNow running WY %d' % i)

# note 'ic

Environmental Modelling and Software 108 (2018) 8-13

argument to set initial conditions

calvin = CALVIN('calvin/data/annual/linksWY%d.csv' % i, ic=eop)

# EOP constraints: 10% of available storage capacity

calvin.eop_constraint_multiplier(0.1)

calvin.create_pyomo_model(debug_mode=True, debug_cost=2e8)
calvin.solve_pyomo_model(solver='glpk', nproc=1, debug_mode=True, maxiter=15)

calvin.create_pyomo_model(debug_mode=False)

calvin.solve_pyomo_model(solver="'glpk', nproc=1, debug_mode=False)

# this will append to results files. returns EOP storage volumes
eop = postprocess(calvin.df, calvin.model, resultdir='results—annual', annual=True)

Fig. 4. Example code for a limited foresight optimization using connected annual runs.

solution; GLPK shows a comparable order of magnitude.

As indicated by the regression lines in Fig. 5, solver solution times
show a polynomial relationship with the number of decision variables
(linear on a log-log scale). These relationships are all approximately
quadratic, though Gurobi again displays the best result of O(n!-).
Runtimes are consistent between trials, with only one outlier for CPLEX
with the largest model size (a runtime of 1 day in Fig. 5). Because the
solution method is deterministic, this outlier is likely due to a slowdown
in either communication or file reading on the high-performance
computing system rather than the solver itself. Further runtime im-
provements for all four solvers may be obtained by providing an initial
solution based on previous results, a technique which has been used in
previous studies. These results provide an application-focused runtime
benchmark for large-scale network problems.

Solver Runtime (seconds)

10°
GLPK: O(n??°)
. CBC: O(n29%)
1
0 CPLEX: O(n7")
Gurobi: O(n*%)
10%
///
10° -
/// ////
" e
7 //
102 . e
//; /// ;
/// //é
10 Sk
E/:///
10°
104 61670 105 308138 616223 106

Decision Variables

2464733

4. Conclusion

This short communication describes a new open-source im-
plementation of the CALVIN model, a large-scale network flow opti-
mization model of California's water supply system. The model is built
on top of the Pyomo library and connects to multiple linear program-
ming solvers that are freely available for academic use. The increased
flexibility provided by this platform has enabled preliminary in-
vestigations into limited foresight optimization, as well as runtime
benchmarks for different solvers on a high-performance computing
cluster. The model runs on any operating system compatible with
Python, and uses only non-proprietary data formats so that the input
and output data can be easily analyzed. This software contribution is
intended to facilitate future studies by researchers interested in eco-
nomically-driven water resources allocation in California.

Fig. 5. Solver runtimes with linear trend lines
and extrapolation equations on logarithmic

1 week scale. Runtimes do not include time for file
reading and writing. This is wall clock time, not
CPU time, so the single outlier point for CPLEX
1 day can be attributed to I/0 and communication
slowdown on the HPC system rather than to the
solver itself.
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7
e
'
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