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Highlights 

• We develop an integrated water-energy-GHG emissions model 

• Water-related energy use and/or production are included for each water demand 

• Water allocation is modeled using a mixed simulation/optimization algorithm 

• 13% of electricity and 5% of GHG emissions are related with water use in California 

• Several scenarios show the tradeoffs between water, energy, and GHG emissions 

Abstract 

Integrating processes of water and energy interdependence in water systems can improve 

the understanding of the tradeoffs between water and energy in management and policy. This 

study presents a development of an integrated water resources management model that includes 

water-related energy use and GHG emissions. We apply the model to a simplified representation 

of California’s water system. Accounting for water demands from cities, agriculture, 

environment and the energy sector, and combining a surface water management model with a 
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simple groundwater model, the model optimizes water use across sectors during shortages from 

an economic perspective, calculating the associated energy use and electricity generation for 

each water demand. The results of California’s water system show that urban end-uses account 

for most GHG emissions of the entire water cycle, but large water conveyance produces 

significant peaks over the summer season.  Different policy scenarios show the significant 

tradeoffs between water, energy, and GHG emissions. 

Keywords 

Water-Energy Nexus; GHG Emissions; Integrated Water Management; Hydroeconomic 

Modeling. 

Software and/or data availability section 

The inputs and outputs are managed via an Excel spreadsheet and the model is programed 

using Visual Basic for Applications (VBA) and embedded in the spreadsheet. This software can 

be provided upon request. 

All datasets have been obtained from public available sources or from the literature. All the 

sources and references are included in Section 3.2 Data. 

 

1. Introduction 

A world with more population—rising urban water use, and greater water demands for food 

and energy production—, a changing climate, and the many water-dependent ecosystems in 

crisis, challenge how we plan and manage water (Roy et al., 2012; Vörösmarty et al., 2000). At 

the same time, the high energy use in supplying, conveying, treating and using water, place water 

systems both as a source of greenhouse gas emissions (Reffold et al., 2008) and as a vulnerable 

stakeholder facing climate change (Pathak et al., 2018; Escriva-Bou et al., 2017). To deal with 

such complex systems, planners and managers need comprehensive and integrated tools to 

understand the tradeoffs that involve their decisions. 

Although water and energy systems are intricately connected (Gleick, 1994), their analyses 

have been traditionally studied as separate resources with different approaches. Only during this 

century, water and energy managers, and researchers have started to look at their interactions. As 

we show below, recent literature on the water and energy interrelationship can be divided into: a) 



 

 3

energy use of water end-uses; b) energy use of water supply, conveyance, treatment and 

distribution, and wastewater collection, treatment and discharge; and c) water-dependent energy 

source extraction and electricity generation. 

End-uses of water include residential, commercial, industrial and agricultural water uses. 

The direct energy associated with these water end-uses (without accounting for the embedded 

energy in upstream actions) is managed directly by customers in heating, electric appliances, 

industrial processes, pressurizing, etc. Although most water-related energy use is from these end-

uses of water (Reffold et al. 2008), this is often disregarded in the literature, probably because 

the effects of the water and energy management actions are driven by the final customers. The 

heterogeneity of these end-uses also makes the assessment difficult. Researches on urban water 

uses mostly focus on the residential water-energy relationship (Abdallah and Rosenberg, 2014; 

Escriva-Bou et al. 2015a, 2015b; Fidar et al. 2010; Kenway et al. 2013; Morales et al. 2013), 

leaving a significant gap for commercial, industrial and other urban end-uses. There are fewer 

references on energy use from agricultural water end-uses, most of them focused on energy use 

in pumping and pressurized irrigation technologies (e.g., CEC, 2003; Jackson et al. 2010; 

Rodríguez-Díaz et al., 2011; Daccache et al., 2014). 

The most studied part of the water-energy relationship is the urban water cycle. Energy use 

from various water supply options, treatment and distribution operations, and wastewater 

collection and treatment, varies widely (e.g., CPUC, 2010b; Mo et al. 2014; Mo et al. 2011; Nair 

et al. 2014; Plappally and Lienhard, 2012; Raluy et al. 2004; Spang and Loge, 2015; Stokes and 

Horvath, 2009). Some studies also analyze the importance of the embodied energy in large 

conveyance infrastructure (CPUC, 2010a) or the tradeoffs for various large-scale supply options 

(Munoz et al. 2010). 

As energy demand grows, water use for energy generation facilities becomes more 

important, especially in water stressed regions. In the United States, more than half of the water 

withdrawals are related to thermoelectric power generation (Healy et al. 2015), although most of 

this use is non-consumptive. Water-related use for power generation is highly variable. Some 

recent studies provide water-intensity data—the water use per unit of energy generated—across 

power generation facilities (Macknick et al. 2012; Mielke et al. 2010; Tidwell et al. 2012). 

Concurrent high temperatures and drought conditions will likely increase energy demands for 
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residential use and water demands for energy generation, which worsens the situation with 

reduced water availability (Scanlon et al. 2013). Some studies asses the water use of energy 

generation using a life-cycle approach—accounting for all the stages of the product’s life—

highlighting the high water intensity of biofuel generation (de Fraiture et al. 2008; Elena and 

Esther, 2010).  

Finally, many recent articles examine water-energy relationships at regional, national, or 

supra-national scales. They use available data to summarize water-related energy consumption 

and/or water use of energy generation (CEC, 2005; Hardy et al. 2012; Siddiqi and Anadon, 2011; 

Tidwell et al. 2014; USDOE, 2006). 

Most studies reviewed use a static assessment of water and water-related energy 

interrelation, averaging historical series or estimating the values at a time. Although the results 

have policy and management applications, they offer less insights for managing dynamic water 

resource systems. The dynamic approach is a key character of planning and managing models, to 

ease the decision-making process of a complex water resource system by simplifying the many 

variables, processes, parameters and uncertainties. Examples include AQUATOOL (Andreu et 

al. 1996), WEAP (Yates et al. 2005), CALVIN (Draper et al. 2003), MODSIM (Labadie, 2005) 

and MULINO (Giupponi et al. 2004). Although some of these models implicitly include energy-

related issues—like hydropower demands or energy costs—none of the models in the literature 

explicitly account for energy use and GHG emissions of water uses. 

This paper develops an economic-based model for water resources system planning and 

management, including water demands, energy use and GHG emissions of water uses, and 

water-dependent electricity generation. By including explicitly the energy variables in the 

development, water allocations vary as a function of the energy and GHG parameters. The model 

is applied to a simplified California intertied water system, obtaining water and water-related 

energy and GHG emissions under historical data and environmental conditions. We then run 

simulations of several scenarios to analyze the tradeoffs between different policies—urban 

conservation, increased environmental flows, and changing irrigation technologies. 
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2. Model Objectives and Approach 

2.1 Objectives 

The main objective of the model is to simulate water allocations across various water uses 

given historic inflows and groundwater sources, accounting for the energy implications of these 

water management decisions. 

By adapting existing models and analyzing their outputs we could be able to obtain how 

water outputs translate into energy use and GHG emissions. But specifically we want to assess 

how considering energy and GHG emission costs can affect water allocation modeling. 

Questions such as how increasing GHG costs affect water allocations, or how significant is the 

negative feedback of a region that relies in unsustainable groundwater use when accounting for 

energy and GHG emission costs, cannot be assessed only by analyzing water model outputs. 

Because of that we decided to build a new model that can explicitly include the energy variables 

in the allocation rules. 

Some of the potential applications of the model are: 

 Assess historical energy use and GHG emissions from water use and their variability. 

 Identify promising energy and GHG emission reductions from water conservation or 

management activities. 

 Evaluate water and energy tradeoffs from various water supply strategies or different 

water demand scenarios. 

 Investigate sensitivity of the energy sector to water availability and the suitability of high 

water-dependent energy generating facilities for the system. 

 Estimate the economic value of GHG emissions abatement in the water sector. 

2.2 Overall Description 

The model has two main sub-models: a surface water management model—spatially 

represented as a flow network—and a groundwater model—spatially represented as a grid of 

interconnected cells.  

Given reservoir storage, monthly inflows in reservoirs, precipitation over the basin, and 

demands, the surface model simulates water allocations month by month from the reservoirs to 

the demands through surface diversions using a mixed simulation-optimization algorithm. First, 
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following a simulation process, water is allocated using a seniority-based approach up to their 

predefined amounts that represent water rights, contracts or entitlements. When the available 

water meets the demands the allocation process stops. If there is not enough water the model 

tries to pump extra groundwater, limited to a given maximum pumping capacity. If still there is 

not enough water, an economic model allocates the water to minimize scarcity costs—or forgone 

benefits for deliveries below the maximum demand—within each demand. The optimization 

algorithm includes also energy and GHG emissions costs, highlighting the role of energy in 

allocation decisions. 

When final allocations—of surface and groundwater sources—are decided, water from non-

consumptive use is returned to the surface network and the aquifer to be used later. Energy use 

from end-uses of water and water supply infrastructure, and water-dependent energy generation 

from power plants is calculated from final water allocations. Figure 1 shows the processes, 

including main inputs, decision variables, and model outputs, and Figure 2 shows in more detail 

the model inputs and outputs. 

 

Figure 1: Overview of the processes, variables, and outputs included in the model. Boxes represent input variables, 
diamonds decision variables, and rounded boxes outputs from the model. 
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For each month, the model solves a seniority-based simulation algorithm for the releases 

from reservoirs and an optimization module that minimizes costs (including energy and GHG 

emission costs) across water users in each node. The model, programmed using Visual Basic for 

Applications (VBA), is embedded in a Microsoft Excel spreadsheet that includes the input data 

and also displays the results. 

 

Figure 2: Inputs and outputs of the model, highlighting some of the most important feedbacks of information. 
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2.3 Methods 

2.3.1 Water supply from surface inflow and groundwater 

The model represents inflows in two alternative ways. The first is as external surface 

inflows [Volume ꞏ (Time Step)-1] to nodes in the surface network. The second is as spatially 

varying precipitation [Volume ꞏ (Area)-1 ꞏ (Time Step)-1] in a cell or cells of the model. The 

surface inflow can be used at current time step in any demand node, whereas the precipitation 

becomes runoff in rivers and infiltration into the groundwater storage that will be available in the 

next time step. Precipitation also affects agricultural demands as explained in more detail below. 

The model assumes that 10% of the precipitation goes to the saturated zone of the aquifer in 

the next time step, 10% goes to streamflow, and the remaining 80% is consumptive use from 

native vegetation, crops, soil or other land use classes, as a simplification of the Central Valley 

water data budget from DWR (2014). 

2.3.2 Demands 

Four main types of demands as input are explained below: urban, agricultural, energy and 

environmental demands. 

2.3.2.1 Urban demands 

Urban water demand includes various end-uses by including shares of total consumption: 

residential single-family, residential multi-family, institutional, commercial, industrial, and 

landscape irrigation. Each end-use is further divided into outdoor and indoor uses by a 

parameter. Indoor water use is equally distributed over one year. Monthly outdoor water use 

varies with precipitation and evapotranspiration. We assume that indoor wastewater returns to a 

wastewater treatment plant and then back to the surface water network. Outdoor non-

consumptive water use returns to the aquifer. From indoor water end-uses and energy-intensity 

values (CEC, 2005; Escriva-Bou et al., 2015a), we obtain water-related energy use for each 

water end-use, and further examine if the energy for heating comes from natural gas or electricity 

with an input parameter. 

The energy use of the water utility is quantified by using energy-intensity parameters for 

water supply, water treatment, water distribution, and wastewater collection and treatment, 

obtained from CPUC (2010b). Water supply sources include surface water, groundwater, 
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recycled water, brackish desalination, seawater desalination or water transfer. Each source has a 

maximum supply capacity, a unit cost, a value for its energy intensity, and a priority. Energy 

intensity of groundwater depends on the groundwater depth obtained from the groundwater 

model. Water treatment and distribution have different energy intensities depending on the 

quality of the water source (good, fair or bad) and the geographical characteristics of the city 

(flat, moderate or hilly). Wastewater collection has an ad-hoc value for its energy intensity 

whereas wastewater treatment energy intensity depends on treatments levels (primary, secondary 

and/or tertiary). 

From total energy use (end-uses plus urban infrastructure) and fuels used in each stage of 

the urban water cycle, we estimate GHG emissions by using emission factors. The social cost of 

CO2 is obtained using price per ton of emission. 

Economic values are also included to obtain scarcity costs of unmet demands. These 

parameters are the water price and the different price elasticities for each customer category, 

accounting also for different elasticities for indoor and outdoor uses. 

2.3.2.2 Agricultural demands 

Agricultural water demands are estimated as a function of the acreage and water 

requirements by crop in the region. The model considers different irrigation technologies that 

determine irrigation efficiencies and surface and/or groundwater returns. The model obtains 

monthly demands from annual demands and monthly evapotranspiration. The monthly demands 

are also modified if there is precipitation over the region (the monthly precipitation is subtracted 

to the agricultural monthly demand). After the final allocations are decided and the demand turns 

into water use, return flows are calculated. 

Water-related energy consumption depends on the supply source: surface—with an 

embedded energy—or groundwater—calculated depending on the groundwater depth. The model 

also accounts for energy needs of different irrigation technologies. GHG emissions are estimated 

from energy use similarly as for urban uses. 

Water price and water price elasticity are included separately for perennial and annual 

crops, to calculate scarcity costs for unmet agricultural demands. 
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2.3.2.3 Energy demands 

The water demand of energy generation facilities is obtained by using withdrawal factors—

and their consumptive fractions—for electricity generating technologies as a function of the type 

of generator and its installed capacity using data from Macknick et al. (2012) and Mielke et al. 

(2010). Energy generated is calculated from the percentage of working hours per year from CEC 

(2015). Monthly shares of total annual energy production, monthly freshwater demand and 

returns are calculated for each facility as input. Hydropower generation is obtained directly from 

reservoir releases and the power capacity installed in each facility and its efficiency, and the 

height (more details about the calculation in the Nodes section below). 

Similar to urban and agricultural demands, energy demands also have different availability 

and prices for each source, and water price elasticity is included to quantify costs of potential 

shortages (Figure 3). 

2.3.2.4 Environmental demands 

We assume that environmental demand is not necessarily consumptive and it does not use 

energy. It is only a flow needed at a point or in a stream of the surface network. As inputs, the 

model needs an annual total demand, monthly shares of this annual demand, and also water price 

and elasticity for curtailments during shortages. 

2.3.3 Surface water management model 

The surface water model is represented as a flow network, including 1) nodes with storage 

(reservoirs) or without storage capacity (junction nodes, diversion nodes) and 2) links (natural 

streams or artificial channels). The demands are linked to nodes. The network must have an 

explicit connectivity derived from actual conditions, and a solution algorithm or how to release 

and allocate water from reservoirs to uses.  

2.3.3.1 Nodes 

Every node requires conservation of mass. Water entering from the upstream link must be 

used at the node, stored, or returned to a downstream link or aquifer. 

Surface reservoirs are represented by nodes with storage. As inputs, reservoir nodes have 

maximum capacity, maximum monthly capacity of outlets, and initial storage. A storage-area-

elevation curve can be provided, or calculated otherwise. To calculate monthly evaporation and 



 

 11

infiltration as a function of current storage, the model also needs average monthly evaporation 

and seepage rates per area (both in [Volume ꞏ Area-1 ꞏ (Time Step)-1]). 

If the reservoir has hydropower, the model also needs the water height (obtained from the 

model using the storage-area-elevation curve), the turbines efficiency, and maximum capacity of 

the powerhouse to calculate the generated power, as: 

𝑷 ൌ 𝝁 ∙ 𝝆 ∙ 𝒒 ∙ 𝒈 ∙ 𝒉  (Eq. 1) 

Where P is available power (W), μ is turbine efficiency, ρ is water density (1000 kg/m3), q 

is flow (m3/s), g is gravity acceleration (m2/s) and h is available water head (m). In fixed height 

facilities, the available power is calculated using the minimum from the fixed head and current 

head values. To obtain energy generation from available power we use the average monthly flow 

and monthly working hours obtained from this type of facilities in California. 

2.3.3.2 Links 

Assuming a unidirectional network, every link only connects one node upstream and one 

downstream (in the flow direction). Although a node can have multiple entering and leaving 

links, only one link will be the preferred downstream outflow link representing the natural 

stream that receives return flows. The network connectivity is represented by an n x n 

connectivity matrix, where n is the number of nodes. The row of the matrix represents upstream 

nodes and the column represents downstream nodes. This matrix could be a weighted matrix 

simulating the distance or losses between nodes. For simplicity, only 1 or 0 entries represent 

connectivity between nodes. 

Natural streams are represented as links where water flows downstream. Natural streams 

have a maximum monthly capacity and seepage rate. The model assumes that rivers can either 

lose water to the aquifer with a positive infiltration rate, or keep all water with no infiltration. 

Artificial channels are links where water can either flow downstream or upstream. If it flows 

upstream, the link will have energy use for pumping. 

2.3.3.3 Water allocation algorithm 

Monthly allocations are obtained using a mixed simulation/optimization algorithm. First, a 

priority-based simulation algorithm determines monthly releases from reservoirs to each demand 

simulating a seniority-based allocation. When total allocation from surface and groundwater 
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sources cannot meet the demands within a node, an optimization module minimizes total scarcity 

costs allocating water to the highest values, trying to capture a regional reallocation of water. 

Return flows are obtained from non-consumptive use shares of allocations. The allocations are 

constrained by reservoir storages, monthly inflows, evaporation and infiltration from reservoirs, 

returned outflows from demand nodes, and available connectivity from upstream reservoirs. The 

main steps of the algorithm are described below (and shown graphically in Figure 4). 

Step 1: At the beginning of each period, reservoir storages are updated with new inflows. 

Step 2: Releases from reservoirs are determined following a seniority-based (priorities) 

schema: 

 Each node can have different types of demand (urban, agricultural, energy 

generation, and environmental). Each demand has a surface “water right” (the 

maximum use from reservoirs) and an extra amount that can be met from 

groundwater (given their pumping capacity, which can be increased by 10% when 

surface demands are not met with reservoir releases). 

 Each surface demand has a priority order, following a prior-appropriation 

(seniority) based schema. Each node can only get water from its upstream reservoirs 

or from groundwater. 

 Following the priority order, allocations from reservoirs to demands are decided 

using a simple simulation approach. When there is not enough water to meet all 

demands, the nodes with lower priorites will face the shortages. 

 If all surface demands in a node are met, then groundwater demands are also 

satisfied, and surface and aquifer return flows are calculated and released. 

 If all surface demands of a node are not completely met, the demand tries to pump 

extra groundwater (up to an extra 50% of its normal groundwater capacity). 

Step 3: When all demands in a node cannot be met even with extra groundwater pumping, 

an optimization model allocates water across different water users (or demands) in a node: 

 The optimization module minimizes total scarcity costs (according to water prices 

and elasticities) plus energy and greenhouse emission costs for all demands at that 

node. Generally urban outdoor demands are more elastic than indoor demands, annual 
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agricultural crops are more elastic than perennial crops, and energy use is less elastic 

than anyone else (Figure 3). The minimization problem, which follows a point 

expansion method (see Griffin, 2016), is: 

Minimize  𝑻𝒐𝒕𝒂𝒍 𝑺𝒄𝒂𝒓𝒄𝒊𝒕𝒚 𝑪𝒐𝒔𝒕 ൌ ∑ 𝑺𝑪𝒊𝒊 ൌ ∑ ൤
ሺ𝑸𝟎𝒊ି𝑸𝒔𝒊ሻ𝟐∙𝑷𝟎𝒊

𝟐∙|𝜺𝒊|∙𝑸𝟎𝒊
൅ 𝑬𝒄𝒐𝒔𝒕𝒔𝒊 ൅ 𝑮𝑯𝑮𝒄𝒐𝒔𝒕𝒔𝒊൨𝒊  (Eq. 2) 

Subject to: 

෍൫Q଴౟
െ Qୱ౟

൯ ൌ
୧

Total Shortage 

Q଴౟
൒ Qୱ౟

 

Where i is sectorial demand included in the node, 𝑺𝑪𝒊 is scarcity cost for demand i, 𝑸𝟎𝒊
 and 

𝑸𝒔𝒊
 are target demand and the actual demand supplied for demand i, 𝑷𝟎𝒊

 is price of the water 

for demand i, 𝜺𝒊 is water price elasticity, Ecosts are the energy costs, and GHGcosts the 

emission costs for demand i. 

The solution of this optimization is water supplied for each demand 𝑸𝒔𝒊
 and return flows. 

Step 4: The releases from each reservoir are the summed releases for each demand at 

downstream nodes plus spills from reservoir when it achieves the maximum capacity. Reservoir 

storage for next time step is calculated accounting for evaporation and infiltration, using the 

average area of the initial and final storage from the elevation-area curve at each time step. 

Groundwater elevation is also updated given final pumping and groundwater recharge from 

return flows and precipitation. 
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Figure 3: Illustrative water prices and elasticity of water demand, and scarcity cost of water shortage for each water end-
uses. 

 

 

Figure 4: Allocation algorithm used in each time step (monthly in the application shown below). Boxes represent input 
variables, diamonds decision variables, and rounded boxes outputs from the model. Blue energy icons show energy 
generation, green energy icons energy use, and black energy icons explicit energy consideration in the optimization 

algorithm. 
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2.3.4 Groundwater model 

Two options are available to model groundwater: a bucket model and a two-dimensional 

model. The former form tries to address aquifers that work in isolation from other aquifer 

interactions, while the latter tries to account for aquifers that can have lateral flows into/from 

other aquifers or regions. 

The bucket model is a simple groundwater reservoir model that has inputs from the 

percolation of precipitation and recharge from irrigation, and outflows from pumping. At each 

time step the groundwater depth is calculated as: 

ℎ௧ାଵ ൌ ℎ௧ ൅
ሺூ೟ିை೟ሻ

ௌ ∙ ஺
 (Eq. 3) 

Where h is potentiometric head [L]; 𝐼௧ is inflow and 𝑂௧ is outflow [L3]; 𝑆 is storage 

coefficient or porosity [dimensionless]; 𝐴 is area of the cell or bucket [L2]; and t is time step 

A more complex two-dimensional one-layer finite-difference groundwater model simulates 

non-steady flow for each time step based on a simplification of the MODFLOW model 

(Harbaugh, 2005). The groundwater flow equation is: 

డ

డ௫
ቀ𝐾௫௫ ∙

డ௛

డ௫
ቁ ൅

డ

డ௬
ቀ𝐾௬௬ ∙

డ௛

డ௬
ቁ െ 𝑄 ൌ 𝑆௦ ∙

డ௛

డ௧
 (Eq. 4) 

where 𝐾௫௫ and 𝐾௬௬ are the hydraulic conductivities along x and y coordinates [L/T], h is 

potentiometric head [L], 𝑄 is flux per unit of volume that represents sources and/or sinks [1/T], 

𝑆௦ is specific storage [1/L] and t is time step. 

Each cell in the bucket model needs only the storage coefficient as a parameter, whereas the 

two-dimensional model needs horizontal conductivities in each direction and specific storage. 

Both models need initial groundwater elevation and the sources and/or sinks for each cell and 

time step. The sources are the precipitation percentage that enters into the aquifer as natural 

recharge and the return flows from agricultural and urban outdoor uses, and sinks are volumes 

pumped to meet demands. 

2.3.5 Surface and groundwater model integration 

Depending on supply source availability, demands can be supplied from surface water 

and/or groundwater or other available sources. Return flows from non-consumptive use are back 
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to surface water or to aquifer. Reservoirs are connected with aquifers via vertical infiltration rate. 

Given that pumping is a main drive of energy use and greenhouse gas emissions, the integration 

of surface and groundwater increases the capability of this model to analyze how demands are 

met, and takes into account the dynamics of aquifer overdraft. 

3. Case study: California intertied water system 

3.1 Assembling the model 

We applied the developed framework to California’s water system, using a simplification 

that represents the major features of the system. Figure 5 presents a highly simplified schema of 

California’s water resource system for the groundwater and surface water models and 

corresponding demand and source regions. The grid cells are 100 x 100 km2 (62.14 x 62.14 

miles2), and the green cells have water demands. Each green cell has a population, agricultural 

acreage and water-dependent energy demand related with a node in the surface water model. 

Most water use data is at the county level, so we approximate the cell dimensions with the 

proportion of the California counties included, especially the essential green cells in the model. 

Table A in the appendix shows how the counties have been assigned to each cell, and how the 

green cells have an approximated area of 10,000 km2. 

Blue links in the surface network represent natural streams or rivers, whereas red lines 

represent the major water infrastructures in the California intertied system. C1 is the Friant-Kern 

Canal; C2-C4 are the California aqueduct; C5 is the San Diego Aqueduct; C6-C8 are the 

Colorado River Aqueduct, and C9 is the Los Angeles Aqueduct. SR1 to SR9 are nine major 

reservoirs aggregating main surface storage capacities statewide. Specifically, SR1 to SR9 

represent Lake Berryesa, Trinity Lake with Whiskeytown, Shasta, Oroville with Folsom, New 

Don Pedro with New Melones reservoirs, New Exchequer with Millerton Lake, Pine Flat with 

Lake Isabella, Haiwe reservoir in the Los Angeles Aqueduct, and Lake Havasu in the Colorado 

River. Each reservoir receives the aggregated monthly inflow from the more detailed Calvin 

model (Draper et al., 2003). 
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Figure 5: Panel A presents a representation of California water system (from Hanak et al, 2011). Panel B and C present the modeled representation, including 
respectively the grid cells of the regions, and the corresponding surface water network. [NC: North Coast; NS: Northern Sierra; SV: Sacramento Valley; ES: Eastern 

Sierra; BAY: Bay Area; D: Delta; CC: Central Coast; SJV: San Joaquin Valley; TL: Tulare; TH: Tehachapi; SEA: (Pacific) Sea; SC: Southern California; SS: 
Southern Sierra; DS: Desert] 
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For groundwater we used a mix of the two model options: a bucket model is used for each 

cell in southern California and the desert regions, and a two-dimensional model is used for the 

Central Valley (cells SV1, SV2, Bay, D1, D2, SJ1, SJ2, T1 and T2). This tries to represent that 

whereas the Central Valley has a large interconnected aquifer where lateral flows across regions 

(represented by cells) is significant, most aquifers in southern California are disconnected from 

other aquifers, so the interaction is not significant. The rest cells in red are not included in the 

model and have no interaction with the other cells. 

3.2 Data 

Annual urban water use by county is from the USGS Water Data (Maupin et al., 2014). 

From the annual data for 1985, 1990, 1995, 2000 and 2005, we build a monthly data series from 

October 1984 to September 2003, correcting for seasonality. Agricultural acreage by county is 

from USDA (2015) and the monthly water necessities are obtained following the method of the 

California Evapotranspiration Data for Irrigation District Water Balances (ITRC, 2015). 

Groundwater maximum capacity for urban and agricultural water uses are also from Maupin et 

al. (2014), using the maximum amount that is actually being pumped. Data of energy facilities is 

from the California Energy Almanac (CEC, 2015), and water consumption per each energy 

facility is generated using water intensity of energy production (water use per MWh generated) 

from Macknick et al. (2012) and Mielke et al. (2010). For environmental flows, we use an 

annual water demand for node 11 (outflow in the Delta) of 9,900 thousand acre-feet based on 

average annual delta outflow (DWR, 2015a). Monthly variability is obtained as the average 

monthly variability of the outflows in the Delta. 

Water-related energy use for residential urban end-uses is from Escriva-Bou et al. (2015a) 

and for the other end-uses is from CEC (2005). Energy intensity used in urban, agricultural and 

energy water supply, treatment, and wastewater collection and treatment is from CPUC (2010b). 

Water-related energy use for different irrigation technologies is from CEC (2003). Energy 

intensity of the California Aqueduct and the Colorado River Aqueduct is from Wilkinson (2007). 

The groundwater model uses precipitation from Livneh et al. (2014), groundwater 

elevations from DWR (2015b), and aquifer storage coefficients, conductivities, and specific 

storage from C2VSim (Brush et al. 2013). Inflows for the surface model are from the CALVIN 

model (Draper et al. 2003).  
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3.3 Scenario simulations 

We ran several scenarios with the model: 

I. Business-As-Usual (BAU): we used the historical 1985-2003 data to run the model. 

This scenario has an increased urban water demand from roughly 6 to 7.5 MAF, and 

a decreased agricultural water demand from 40 to 35 MAF. It also considers an 

implicit increase in more efficient irrigation technologies (from flood irrigation to 

drip or sprinkle) that decreases irrigation water and recharge but increases energy 

use. Water-dependent energy facilities are a minor part of California water uses, 

because the largest thermoelectric energy facilities in California are cooled with 

seawater. 

II. Urban conservation: we simulate a decrease of 20% in total urban use to assess the 

decreased energy consumption and increased agricultural benefits from reducing 

shortages. 

III. Inefficient irrigation technologies: to analyze the effects of the modernized irrigation 

technologies, we compare a scenario with a constant share of irrigation technologies 

as they were in 1985 against a scenario with the development in 2003. 

IV. Increased environmental flows: environmental concerns about the Sacramento-San 

Joaquin Delta health are likely to increase environmental flows. We run a case with 

increased environmental outflows from the Delta by 50% to assess the effects on the 

whole system. 

V. BAU – No energy and GHG costs: a final scenario compares how water allocations 

vary when energy and GHG emissions are not included in the optimization (Eq. 2). 

Note that the optimization module only runs after the seniority base module runs and 

shortages appear. This scenario might provide some insights of what can traditional 

models lack when simulating water allocations without accounting for energy and 

GHG emission costs. 

3.4 Results 

The model produces a wide range of monthly results. The most significant ones are water 

allocations (and shortages) per region, storage in surface reservoir and aquifers, energy 
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generation—including hydropower, which is based in reservoir releases, but also from other type 

of facilities—, water-related energy use, and water-related GHG emissions. 

The system is unable to meet the demands during the 1987-1992 drought and, with less 

importance, during the 2001-03 dry period (Figure 6). The modeled environmental flows, and the 

Tulare basin, San Joaquin Valley, and Delta demands were severely curtailed. Due to the 

economic objective that governs allocations, most unmet demands occur in agriculture. 

 

Figure 6: Annual shortages by type of demand (left column) and region (right column) 

Figure 7 (top) shows that most water-related energy is urban-related (85.4%), especially 

from water end-uses (mostly water heating at homes). However, large infrastructure pumping 

through the California Aqueduct and the Colorado River Aqueduct (11.4%) and agricultural 

water-related energy (3.2%) are substantial water-related energy uses in California, and coincide 

with summer energy peaks. Electricity consumption from the entire modeled water cycle is 

40,899 GWh/year on average, which is roughly 14% of electricity use in California. Variation of 

GHG emissions over time and across different uses exhibits similar trend as the water-related 

energy use in Figure 7 (bottom), as we relate GHG emission directly to energy use. Overall, 



 

 21

according to our model, the water cycle emits about 21.5 million tons of CO2, about 5% of total 

per capita GHG emissions statewide. 

 

Figure 7: Statewide (top) water-related energy use and (bottom) GHG emission during the modeling period 
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Energy use, GHG emission, hydropower generation, groundwater overdraft and water 

supply shortage vary greatly for the different scenarios (Table 1). Compared to the BAU case, 

urban conservation has a huge potential to save energy and CO2 emissions and would also reduce 

groundwater overdraft significantly. Modern irrigation technologies need more energy and have 

higher irrigation efficiency. Without the irrigation technology development, energy use in 

agriculture would have been 17% lower but total water shortages 4% higher. Increased 

environmental flows in the Sacramento-San Joaquin Delta would decrease hydropower 

generation and cause severe water shortages (although most would be environmental shortages). 

It also lowers exports from the Delta through the California Aqueduct.  

Finally, a run without accounting for energy and GHG emission costs in the allocation 

algorithm shows similar total shortages but a total different allocation, where urbans are almost 

never curtailed while agriculture is always worse off. Although these results are totally 

dependent in our underlying assumptions, the scenario shows the value of accounting for energy 

and GHG emissions. The system benefits by curtailing a little urban users (mostly from outdoor 

uses) which have higher energy intensity per unit of water. 

Table 1: Comparison of the results for the different scenario runs. 

  

4. Comparison of the results with other models and actual data 

Although the main objective of this paper is not to match the results of the California 

system, in the following subsections we present some comparison of the model results with 

actual data or results from other models to analyze our model’s ability to represent the system. 

Level change % change Level change % change Level change % change Level change % change

Total water shortages (taf/year) 1,224 1,218 ‐0.5% 1,275 4% 2,910 138% 1,227 0.2%

Agricultural water shortages (taf/year) 772 774 0.3% 823 7% 1,312 70% 846 10%

Urban water shortages (taf/year) 75 59 ‐22% 77 3% 117 56% 3 ‐96%

Environmental water shortages (taf/year) 378 384 2% 376 ‐1% 1,482 292% 377 ‐0.3%

Total groundwater overdraft (taf/year) 3,841 3,358 ‐13% 3,796 ‐1% 3,751 ‐2% 3,873 1%

Hydropower generation (GWh/year) 8,622 8,692 1% 8,605 ‐0.2% 7,438 ‐14% 8,624 0.0%

Urban end‐uses energy use (GWh/year) 77,868 62,302 ‐20% 77,854 0.0% 77,574 ‐0.4% 78,411 1%

Urban infrastructure energy use (GWh/year) 5,117 4,094 ‐20% 5,115 0.0% 5,085 ‐1% 5,172 1%

Agricultural energy use (GWh/year) 3,122 3,112 ‐0.3% 2,599 ‐17% 3,068 ‐2% 3,117 ‐0.2%

Large‐conveyance energy use (GWh/year) 11,101 10,460 ‐6% 11,107 0.1% 10,862 ‐2% 11,096 0.0%

Total energy use (GWh/year) 97,208 79,968 ‐18% 96,677 ‐0.5% 96,590 ‐1% 97,797 0.6%

Total electricity use (GWh/year) 40,899 34,842 ‐18% 40,471 ‐0.5% 40,427 ‐1% 41,232 0.6%

Total natural gas use (GWh/year) 55,932 44,749 ‐18% 55,925 ‐0.5% 55,791 ‐1% 56,188 0.6%
Total diesel use (GWh/year) 378 378 0% 280 ‐25.7% 371 ‐2% 377 ‐0.3%

GHG emissions (million tons CO 2 /year) 21.5 17.8 ‐17% 21.4 ‐0.5% 21.4 ‐0.5% 21.7 1%

 Variable
Urban conservation

Inefficient irrigation 

technologiesBAU
Environmental flows

BAU                        

No energy & GHG costs
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4.1 Water shortages 

The state, nor any other entity, releases actual data of water shortages at the state level. 

Other models, like CALVIN (Draper et al., 2003), do rely on shortages to obtain the economic 

costs and optimal allocation of water. Unfortunately we did not find any study that presents 

annual water shortages. At the aggregated level, Harou et al. (2010), using CALVIN, found an 

average scarcity of 1.6 maf/year for the period 1922-1993, which is 30% higher to our estimate 

of 1.2 maf/year. 

As a proxy for shortages we can use the water deliveries from the Delta through the Central 

Valley Project and State Water Project. More than 25 million people and about 3 million acres of 

irrigated lands rely on these exports (Mount et al., 2016), and the deliveries vary year to year 

depending on the water conditions, storage, and environmental regulations. As Figure 8 shows, 

Delta deliveries vary from 3 maf to over 6 maf, causing actual supply shortages south of the 

Delta that have to be replaced with stored water or extra groundwater pumping. The figure also 

shows that our representation of the exports obtained from the model follows similar patterns to 

what actually happened. Our maximum estimate is larger, and this might be caused because we 

did not limit the capacity of the infrastructure. 

 

Figure 8: Actual data and model results for the Delta exports. 
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Howitt et al. (2015) analyzed the economic consequences of the 2015 drought for California 

agriculture. This study can help in assessing the reliability of our results, given that the 2012-16 

drought was similar to the 1987-92. Howitt et al. (2015) found that the surface water shortage in 

2015 was 8.7 maf, but most of this (up to 6 maf) was substituted by groundwater, so the final 

shortage was of 2.7 maf. Note that they only accounted for agricultural shortages, without 

including environmental or urban shortages. Looking at the regional effects, the Tulare Basin 

was hit hardest. 

Our results also find that the shortages are always tougher in the Tulare Basin, followed by 

the San Joaquin and the Delta regions. The largest shortage that we find is 6 maf (for 1990), but 

1.8 maf of that is environmental flow shortages in the Delta and almost 300 taf of urban 

shortages, so the final agricultural shortage is 3.9 maf. That might mean that our model is 

overestimating a little shortages by not using enough groundwater substitution. 

4.2 Groundwater 

Changes in groundwater elevation from 1985 to 2003 show that the southern part of the 

Central Valley and the Southern Coast regions are overdrafting their aquifers. Because of higher 

precipitation and more surface water availability, groundwater elevation increases in Sacramento 

Valley and the eastern Delta. The Tulare Basin is the region with more overdraft and depletes the 

aquifer even in wet years. The total groundwater overdraft for the regions considered would be 

73 MAF after the 19 years modeling period and on average over 3.8 MAF/year. 

To assess our results we obtain the groundwater budget at the subregional level from the 

California Central Valley Groundwater-Surface Water Simulation Model - C2VSim (Brush et 

al., 2013). The comparison of the results (Figure 9) shows that our model represents the general 

trend, but is unable to capture the annual variability. It looks that our model is not replenishing 

enough the aquifers during wet years in the southern part of the Valley (especially in the Tulare 

basin), and also is accumulating water in the Sacramento Valley. This might be caused because 

we are not modeling the river-aquifer connection: on one hand we do not have recharge from 

rivers and streams (what can be causing an overestimation of overdraft and the no response 

during wet years), and on the other hand the aquifer is not discharging in the river (what causes 

the accumulation in the Sacramento Valley. 
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It’s worth to mention that the annual overdraft for the Central Valley according to C2VSim 

is 1.8 maf/year—with over 1.2 maf/year in the Tulare basin—whereas we are obtaining 2.5 

maf/year for the whole Central Valley and 1.7 maf/year in the Tulare Basin. 

Other models, like CVHM (Faunt et al., 2016) estimate a higher rate of overdraft than 

C2VSim for the Central Valley. 

 

 

Figure 9: Cummulative aquifer overdraft in the Central Valley at the regional level from C2VSim (top) and from 
our model (bottom) 
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4.3 Energy use of the water cycle 

In 2005 the California Energy Commission published the first comprehensive assessment of 

the energy use of the California water system. They estimated that 48,012 GWh every year—

19.2% of total electricity use in California—were used in water-related activities. Also 4,284 

million therms of natural gas (32% of statewide use). These estimates have been reassessed later 

(CPUC, 2010a). In CPUC (2010a) the total water sector electricity use (excluding end-uses of 

water) amounts 18,282 GWh, or 7.7% of statewide electricity use. 

Excluding end-uses we obtain 19,340 GWh per year: 5,117 GWh in cities, 3,122 GWh in 

farms, and 11,101 GWh from large conveyance infrastructure (accounting for the State Water 

Project and the Colorado River Aqueduct). 

When accounting for end-uses, our total estimate for electricity is 40,899 GWh/year, which 

is 15% lower than the 48,012 GWh estimated by the California Energy Commission for 2001. 

Two sources of uncertainty may explain these differences: an underestimation of demands and 

infrastructure in our model, and different methods to estimate energy intensity especially of the 

end-uses of water. 

To add a final point to validate our model it is worth to mention a new study on the effects 

of water conservation on the energy cycle. In April 2015, the Governor of California mandated a 

25% reduction in urban water use relative to 2013 levels. Spang et al. (2018) obtained that this 

policy resulted in 1,830 GWh of electricity savings (note that they only account for water 

infrastructure energy use, and exclude end-uses of water). For our water conservation scenario (a 

20% reduction in urban use) we obtain a reduction of 17,239 GWh of savings when accounting 

for end-uses of water. But if we only look at the urban supply reduction, including the reduction 

in energy used in water conveyed to Southern California for urban uses, the reduction on 

electricity use is 1,663 GWh, which is really close to what Spang et al. (2018) obtained. 

4.4 Hydropower 

Hydropower from reservoir releases presents a similar behavior of California’s actual 

hydropower data obtained from CEC (2015). The model includes only 12 hydropower facilities 

in California that account for roughly 20% of statewide installed capacity. According to the 

model results, the total hydropower generated is 18.4% of the actual total generation. 
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Figure 10 shows the modeled hydropower, the statewide hydropower factored by the share 

of hydropower capacity included in the model, and then the total statewide hydropower. The 

results show that during 1990 and 1991 the reservoirs in the model were so empty that 

hydropower is almost negligible, whereas in the wet period of 1995-2000 the hydropower 

modeled is much higher than the statewide hydropower for the share of capacity included in the 

model. 

These results make sense if we account that the reservoirs that we included in the model are 

those in the rim of the Central Valley which are built mainly for water supply purposes. There 

are many small reservoirs in higher elevations that are built only for electricity generation and 

even in dry years they produce hydroelectricity by using the scarce passing flows with high 

heads. It is because of that that the reservoirs that we modeled have higher variability than the 

statewide actual hydropower production. 

 

Figure 10: Comparison of modeled hydropower and total hydropower generated in California from CEC (2015) 
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5. Discussion 

We presented an initial development of a water system modeling framework that tries to 

show the tradeoffs between water, energy and GHG emissions. Most of the inputs are based on 

literature research—e.g. agricultural water necessities, water-related energy intensity for all 

water uses and processes, water-intensity of energy generation, water prices and elasticities—and 

the outcomes are sensitivity to them. The outcomes from our simplified model have general 

implications for decision-making.  

The surface and groundwater sub-models need enhancements to present more accurate 

results. The surface model algorithm could be improved to simulate and optimize the best 

options for the system beyond releases from reservoirs. The groundwater approach would benefit 

from a better representation of the river-aquifer interaction and a spatially distributed hydrologic 

model that could be employed by using different tanks for each model cell for different fluxes 

(evapotranspiration from crops and native vegetation, infiltration, percolation as vertical fluxes 

and direct runoff, interflow, base flow and groundwater outflow as horizontal fluxes) and 

storages (root, non-saturated and aquifer storages) following the methodology of the Sacramento 

Soil Moisture Accounting (SAC-SMA) model (Sorooshian et al., 1993) or the TETIS model 

(Frances et al., 2002). An integration of the modeling framework with the Soil and Water 

Assessment Tool (Arnold et al., 1994) could also be possible to face these challenges. 

The results of the scenario with no energy and GHG emissions costs shows how allocations 

across sectors change when energy costs and GHG emission abatement benefits are included. 

And note that our optimization only works when shortages appear. Therefore, another potential 

development is to develop an optimization model to analyze the optimal management options 

that could be taken under different scenarios. The optimization model mentioned above includes 

economic characteristics in every sub-module, where a hydro-economic optimization for the 

whole system is desirable. With this development, our model could provide the most 

economically efficient management options from the different strategies, especially those related 

with energy savings and GHG emission abatement, to inform policy and decision makers. 

Our model also shows which water end-uses are curtailed in a shortage. Most models do not 

differentiate end-uses within one type of water demand. When a shortage appears, all end-uses 

are curtailed proportionately in those models. This is not the real performance of a water system. 
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When water is insufficient for a given demand group (e.g. agriculture, urban), low-valued end 

water uses are curtailed first, i.e. outdoor uses in an urban demand or low-valued crops in an 

agricultural demand. This has many implications on the downstream uses. For example, if urban 

outdoor uses are curtailed first, urban water-related energy, which come mostly with indoor uses, 

will not be affected until indoor water uses decrease. To account for this behavior, we separate 

indoor and outdoor uses for all the end-uses in a city, and separate annual and perennial crops in 

agricultural demands. 

6. Conclusions 

In this research, a modeling framework has been developed to deal with large-scale water 

management accounting for water-related energy use and GHG emissions, and water-dependent 

energy facilities. We obtain that water allocations and shortages change when considering energy 

and GHG emission costs. Urban water users, much more energy intensive, get curtailed much 

more with respect to a scenario with no consideration of energy and GHG emission costs. 

The model has been applied to the California water system for the 1985-2003 period. 

Throughout this time period, the California water system could not meet all water demands with 

frequent shortages. The results from our model show that California’s statewide water-related 

energy use is nearly 100,000 GWh/year, with 85.4% used in cities, 3.2% in agricultural and 

11.4% in large-conveyance infrastructures (California aqueduct and Colorado River Aqueduct). 

Most water-related energy is for heating water in gas-fired water heaters. The electricity use, 

40.899 GWh/year, represents 14% of total electricity consumption in California. The carbon 

footprint of the entire water cycle during the modeling period is 21.5 million tons of CO2/year, 

roughly 5% of California’s total GHG emissions. These results are lower than other previous 

estimates because we might be underestimating some of demands and infrastructure in our 

model, and because of the different methods used to estimate energy intensity especially of the 

end-uses of water. 

The simulations results explicitly show tradeoffs between water and energy in many 

management options. Improvements in irrigation efficiency save water but have increased energy 

use in agriculture by 17% in California between 1985 and 2003, so energy-stressed regions 

might avoid such policies or consider the development of renewable energies associated with 

them. Increased environmental flows leave less surface water for cities and farms, so they would 
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increase groundwater pumping if allowed by water regulations or transfer energy-intensive water 

with more energy use. Urban water conservation reduces shortages and aquifer overdraft due to 

less water pumping. At the same time, it might be a good option to save water-related energy and 

GHG emissions because urban users are the most energy-intensive water users. 

This paper presents a complex water system analysis in a simple excel-based model 

including also the water, energy, and GHG emissions relations. The results have been also 

compared with actual data and other models’ results. The model shows some agreement with 

other previous studies but also presents some limitations. 

The formulation is applicable to other water and energy systems. As a system of systems 

concurrently operated, numerous scenarios to provide management options are available by 

changing characteristic parameters. The development of this research contributes to decision-

making in water-energy systems to better inform management, technical and policy discussions.  
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Cell Area (Sq. Km)

NC1 11934.94

NS1 8129.84

NS2 15463.52

NS3 10146.99

NC2 27064.97

SV1 8710.17

SV2 9370.69

ES1 15704.09

B1 10590.95

D1 9826.55

D2 8904.48

ES2 13715.15

CC1 13217.78

SJV1 10074.82

SJV2 9854.91

ES3 14820.33

CC2 11785.72

TL1 9562.53

TL2 10961.82

ES4 26853.45

CC3 7083.86

TH1 8271.89

TH2 12636.95

ES5 39157.83

SC1 11223.98

SS1 22319.17

DS1 18586.23

SC2 9361.60

SS2 7611.04

DS2 10520.35

Appendix 

Table A1: Proportion of each county included in each cell (left) and total area of each cell 

accounting for the area of each county included (right) 

   

County
Area       

(Sq. miles)

Area       

(Sq. km)
Cell 1 Cell 2 Cell 3 Cell 4

Share in 

Cell 1

Share in 

Cell 2

Share in 

Cell 3

Share in 

Cell 4

Alameda 739.02 1914.05 B1 ─ ─ ─ 100% ─ ─ ─

Alpine 738.33 1912.27 ES2 ─ ─ ─ 100% ─ ─ ─

Amador 594.58 1539.96 ES2 D2 ─ ─ 50% 50% ─ ─

Butte 1636.46 4238.42 SV2 ─ ─ ─ 100% ─ ─ ─

Calaveras 1020.01 2641.82 D2 ─ ─ ─ 100% ─ ─ ─

Colusa 1150.73 2980.38 SV1 ─ ─ ─ 100% ─ ─ ─

Contra Costa 715.94 1854.28 B1 ─ ─ ─ 100% ─ ─ ─

Del Norte 1006.37 2606.49 NC1 ─ ─ ─ 100% ─ ─ ─

El Dorado 1707.88 4423.39 D2 ES2 ─ ─ 50% 50% ─ ─

Fresno 5957.99 15431.13 TL1 TL2 CC2 ES4 25% 25% 10% 40%

Glenn 1313.95 3403.12 NC2 D2 ─ ─ 75% 25% ─ ─

Humboldt 3567.99 9241.06 NC1 NC2 ─ ─ 50% 50% ─ ─

Imperial 4176.60 10817.35 DS2 SS2 ─ ─ 80% 20% ─ ─

Inyo 10180.88 26368.38 ES4 ES5 ─ ─ 50% 50% ─ ─

Kern 8131.92 21061.59 TL1 TL2 TH1 TH2 10% 10% 20% 60%

Kings 1389.42 3598.58 TL1 ─ ─ ─ 100% ─ ─ ─

Lake 1256.46 3254.22 NC2 ─ ─ ─ 100% ─ ─ ─

Lassen 4541.18 11761.61 ES1 ES2 ─ ─ 25% 75% ─ ─

Los Angeles 4057.88 10509.87 SC1 TH1 ─ ─ 75% 25% ─ ─

Madera 2137.07 5534.99 SJV2 ES3 ─ ─ 75% 25% ─ ─

Marin 520.31 1347.60 B1 ─ ─ ─ 100% ─ ─ ─

Mariposa 1448.82 3752.43 SJV2 ES3 ─ ─ 75% 25% ─ ─

Mendocino 3506.34 9081.39 NC2 ─ ─ ─ 100% ─ ─ ─

Merced 1934.97 5011.55 SJV1 SJV2 ─ ─ 75% 25% ─ ─

Modoc 3917.77 10146.99 NS3 ─ ─ ─ 100% ─ ─ ─

Mono 3048.98 7896.83 ES3 ─ ─ ─ 100% ─ ─ ─

Monterey 3280.60 8496.72 CC1 CC2 ─ ─ 80% 20% ─ ─

Napa 748.36 1938.24 B1 NC2 ─ ─ 50% 50% ─ ─

Nevada 957.77 2480.61 SV2 ES1 ─ ─ 25% 75% ─ ─

Orange 790.57 2047.57 SC2 ─ ─ ─ 100% ─ ─ ─

Placer 1407.01 3644.14 SV2 ES1 ─ ─ 50% 50% ─ ─

Plumas 2553.04 6612.35 ES1 ─ ─ ─ 100% ─ ─ ─

Riverside 7206.48 18664.71 DS1 SS1 SC2 DS2 30% 50% 10% 10%

Sacramento 964.64 2498.41 D1 D2 ─ ─ 80% 20% ─ ─

San Benito 1388.71 3596.75 CC1 ─ ─ ─ 100% ─ ─ ─

San Bernardino 20056.94 51947.27 ES5 DS1 SS1 50% 25% 25% ─

San Diego 4206.63 10895.13 SC2 SS2 ─ ─ 50% 50% ─ ─

San Francisco 46.87 121.39 B1 ─ ─ ─ 100% ─ ─ ─

San Joaquin 1391.32 3603.50 D1 ─ ─ ─ 100% ─ ─ ─

San Luis Obispo 3298.57 8543.26 CC2 ─ ─ ─ 100% ─ ─ ─

San Mateo 448.41 1161.38 B1 ─ ─ ─ 100% ─ ─ ─

Santa Barbara 2735.09 7083.86 CC3 ─ ─ ─ 100% ─ ─ ─

Santa Clara 1290.10 3341.35 B1 CC1 ─ ─ 50% 50% ─ ─

Santa Cruz 445.17 1152.99 CC1 ─ ─ ─ 100% ─ ─ ─

Shasta 3775.40 9778.25 SJV1 NS2 ─ ─ 25% 75% ─ ─

Sierra 953.21 2468.80 ES1 ─ ─ ─ 100% ─ ─ ─

Siskiyou 6277.89 16259.67 NS1 NS2 ─ ─ 50% 50% ─ ─

Solano 821.77 2128.38 D1 B1 ─ ─ 75% 25% ─ ─

Sonoma 1575.85 4081.44 NC1 B1 ─ ─ 75% 25% ─ ─

Stanislaus 1494.83 3871.59 SJV1 ─ ─ ─ 100% ─ ─ ─

Sutter 602.41 1560.24 SV2 D2 ─ ─ 50% 50% ─ ─

Tehama 2949.71 7639.72 SV1 SV2 ─ ─ 75% 25% ─ ─

Trinity 3179.25 8234.23 NC1 NC2 ─ ─ 20% 80% ─ ─

Tulare 4824.22 12494.68 TL2 ES4 ─ ─ 40% 60% ─ ─

Tuolumne 2220.88 5752.06 D2 ES3 ─ ─ 20% 80% ─ ─

Ventura 1843.13 4773.69 SC1 TH1 ─ ─ 70% 30% ─ ─

Yolo 1014.69 2628.04 D1 ─ ─ ─ 100% ─ ─ ─

Yuba 631.84 1636.46 SJV2 ─ ─ ─ 100% ─ ─ ─


