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Abstract 35 

 36 

City Catchment Analysis Tool – CityCAT- is a novel software system for rapid assessment of combined 37 

pluvial and fluvial flood risk using a unique combination of: efficient software architecture throughout 38 

and especially in the numerical part; use of standard, readily available data sets; efficient algorithms for 39 

grid generation; and robust and accurate solutions of the flow equations.  It is based on advanced 40 

software architecture and accurate solutions for complex free-surface flow over the terrain 41 

distinguishing between permeable and impermeable surfaces and taking into account effects of man-42 

made features such as buildings as obstacles to flow. The software is firstly rigorously validated with 43 

demanding test cases based on analytical solutions and laboratory studies. Then the unique capability 44 

for assessment of the effectiveness of specific flood alleviation interventions across large urban 45 

domains, such as roof storage on buildings or introduction of permeable surfaces, is demonstrated.  46 

  47 
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Preliminary Information 48 

Keywords 49 

Urban flood model, Object-oriented numerics, shock-capturing, finite-volume, green urban 50 

infrastructure 51 

 52 

Highlights 53 

• An object-oriented 2D hydrodynamic model is presented for use in urban flood analysis and 54 

design. 55 

• The model retains accuracy in representing complex flows while allowing rapid modelling of 56 

large city domains at 1m resolution. 57 

• Buildings and green urban infrastructure are flexibly and accurately represented.  58 

 59 

 60 

Software availability section 61 

Name of software: CityCAT 62 

Developer: Newcastle University  63 

Contact: vassilis.glenis@ncl.ac.uk 64 

Year first available: 2010 65 

Hardware required: 32bit or 64bit CPU 66 

Software required: Windows or Linux operating system 67 

Programming language: Delphi 68 

Programme size:   ~5mb,  Memory: depends on application 69 

Availability: Contact author and web download will be available from: http://research.ncl.ac.uk/citycat   70 

(pending publication) 71 

Cost: Free (to researchers and for demo version)  72 

  73 

mailto:vassilis.glenis@ncl.ac.uk
http://research.ncl.ac.uk/citycat
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1 Background 74 

 75 

Assessment of pluvial flood risk in urban environments is complicated because it is sensitive to the 76 

space-time characteristics of rainfall, topography, performance of urban drainage systems and local 77 

runoff and surface flow processes influenced by buildings and other man-made features. There are three 78 

modelling approaches used in current engineering practice for assessment of pluvial flood risk: the 79 

topographic index analysis, the 2D overland flow routing and the so called dual drainage modelling, 80 

see Hankin et al. (2008). 81 

 82 

The topographic index analysis, also called raster screening approach, uses Digital Elevation Models 83 

(DEMs) with no rainfall input. Hence, it is not really a flow modelling tool but an assessment tool based 84 

on topography only. It combines areas defined as flat, areas close to drainage pathways and areas 85 

identified as local depressions into areas of high risk. Tools for this analysis are readily available in GIS 86 

systems and their ease of use makes the method attractive. However, there is little evidence of validation 87 

that areas identified as high risk correlate to areas that have been flooded in the past (Pitt, 2008). 88 

 89 

The 2D overland flow routing method usually applies uniform rainfall over the whole domain and 90 

models overland flow using some form of the depth averaged shallow water equations which are solved 91 

by one of the standard numerical methods. Depending on the level of approximation (e.g. fully 92 

hydrodynamic, diffusive or kinematic wave) and the numerical method (e.g. finite differences, finite 93 

elements, finite volumes with shock-capturing schemes) there is a number of different sub-types of 94 

models in this category. If no adjustments are made for lost volume of water due to infiltration and 95 

inflow into the drainage network, the models of this type usually overestimate the run-off volumes. The 96 

magnitude of this overestimation becomes less significant as the severity (or return period) of the event 97 

being modelled becomes greater. Due to the complexity of urban situations, it has been reported that 98 

models based on “shock-capturing” schemes are best suited to the task where raster based models, 99 

which do not take into account the inertial forces, are not able to simulate the same flood extent as the 100 

other models (Hunter et al., 2008; Mignot et al., 2006). There are several different approaches to capture 101 

complex flow paths taking into account the effect of buildings as obstacles to flow (Schubert et al., 102 

2008; Syme, 2008). The first approach uses additional surface roughness and it is the most widely used 103 

approach, however, it has difficulties with modelling of predominantly flat areas while parameterisation 104 

and calibration of larger urban areas can be extremely difficult and time consuming, see Alcrudo (2004). 105 

The second approach amends the standard free surface equations with the equations of flow through 106 

porous media (Sanders et al., 2008; Soares-Frazao et al., 2008) and is able to produce realistic flow 107 

patterns without the need of extensive calibration. The third approach manipulates the DEMs so that 108 

buildings are represented by upward “extrusion” of the DEM surface. This approach can be time 109 
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consuming for large areas and extrusion of the buildings’ height introduces inclined walls with very 110 

steep slopes which can lead to numerical instabilities (Alcrudo, 2004).  A compromise variation of this 111 

approach limits the height of the buildings to typically 0.3 m, which avoids instabilities but introduces 112 

major ambiguity as flow over the buildings is allowed. A fourth approach, often called the “building 113 

hole model”, takes buildings into account explicitly by treating their outer walls as solid boundaries 114 

with flows through these boundaries set to zero (Costanzo and Macchione, 2006; Schubert et al., 2008). 115 

This approach is accurate in describing the flow patterns but if the cell sizes are large compared to the 116 

gaps between the buildings it can erroneously predict blockages which do not exist in reality, see Neal 117 

et al. (2009). 118 

 119 

Dual drainage models integrate sewer drainage network models with overland flow routing models with 120 

diverse levels of coupling and complexity. They all consist of a one-dimensional hydraulic drainage 121 

network and a representation of the surface flow either as a one-dimensional network based on the road 122 

network or a two-dimensional domain derived from the DEM (Mark et al., 2004). The connection 123 

between the two components is usually only partially coupled, meaning the drainage network model 124 

can pass the volume of flooding to the surface model but there is no flow from the surface to the drainage 125 

network. In a fully coupled system, the volume of flooding is passed from the drainage network model 126 

to the surface and vice versa (Allitt et al., 2009; Bertsch et al., 2017; Liu et al., 2015; Noh et al., 2018).  127 

Teng et al. (2017) presented recently a review of methods and advances in flood modelling. See also 128 

the review paper by Bach et al. (2014). 129 

 130 

 131 

2 Introduction  132 

 133 

In this paper, a new software for modelling, analysis and visualisation of surface water flooding, City 134 

Catchment Analysis Tool – CityCAT, is presented and validated. It includes a 2D overland flow routing 135 

model that enables rapid assessment of combined pluvial and fluvial urban flood risk and effects of 136 

different flood alleviation measures.  137 

 138 

The architecture of CityCAT is based on the object-oriented approach. This offers great flexibility in 139 

development and allows rapid extension of functionality (Kutija and Murray, 2007). Also, the efficiency 140 

of the computational algorithms is improved considerably by removing the conditional statements (“If-141 

then-else” type statements) during run time. This is achieved by making all the decisions during the 142 

initial set up which is a main feature of the object-oriented design. 143 

 144 
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CityCAT uses standard datasets: the Digital Elevation Model (DEM) for the topography and the UK 145 

Ordnance Survey MasterMap™ data to delineate the urban features such as buildings, roads and 146 

permeable surfaces. For other countries, GIS datasets at varying levels of detail may be available to be 147 

used to delineate the urban features. Simulations are usually driven by rainfall events over the whole or 148 

part of the domain and/or time dependent boundary conditions of flow and/or water depth time series 149 

at the boundaries of the domain. The computational grid is generated automatically using the DEM and 150 

the OS-MasterMap™ data or GIS datasets. The buildings layer from OS-MasterMap™ or GIS datasets 151 

is used to exclude the buildings footprint from the grid. This improves the ability of the model to capture 152 

realistically the flow paths in urban areas and reduces the simulation time due to the reduction in the 153 

number of computational cells. The removed cells are used to generate the model’s buildings layer 154 

which is used in the roof drainage algorithms. Also, during the grid generation the layers from OS-155 

MasterMap™ or GIS datasets which describe the permeable areas are used to locate the permeable cells 156 

and assign appropriate properties to them. Additionally, polygons can be used when the grid is generated 157 

to delineate areas to assign different friction coefficients, soil properties, spatially distributed rainfall 158 

and initial conditions for reservoirs, lakes and ponds 159 

 160 

The simulation of the free surface flow is based on the full 2D shallow water equations (Tan, 1992) and 161 

the solution is obtained using high-resolution finite volume methods with shock-capturing schemes 162 

(Toro, 2013) which are able to accurately capture propagation of flood waves as well as wetting and 163 

drying of the domain. The Green-Ampt method is used to estimate the infiltration over the pervious 164 

areas as a function of the soil hydraulic conductivity, porosity and suction head (Kutílek and Nielsen, 165 

1994; Warrick, 2003). The solution of the Green-Ampt equation for infiltration is obtained using an 166 

iterative method. Also, a roof storage algorithm simulating retention of rainwater on the roofs can be 167 

applied to the buildings layer of the grid.  168 

 169 

The model provides two types of graphical outputs: time series of water depths and flow velocities at 170 

selected locations for the whole duration of the simulation and snapshot maps of water depths and 171 

velocities at different times during the simulations. These maps can be combined into animations of the 172 

simulations. 173 

 174 

 175 

 176 

 177 

 178 

 179 

 180 
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3 Software architecture 181 

 182 

3.1   Object-oriented approach  183 

 184 

The model is written in Delphi (Embarcadero) and, uniquely amongst hydrodynamic models for flood 185 

risk assessment, is completely object-oriented. Both the Graphical User Interface (GUI) and the 186 

numerical engine of the model are designed and implemented following the object-oriented approach. 187 

This enables the connection and direct interaction between corresponding objects of the GUI and the 188 

numerical engine e.g. cells, cell lines and interfaces. As a result, the properties of each numerical cell 189 

can be accessed and if required easily edited from the GUI during the setup of the model. Also, during 190 

the simulation values of the properties of the numerical cells can be displayed and continuously updated 191 

in the GUI enabling real-time graphing of water depths and velocities.  192 

 193 

The main features and the advantages of the object-oriented design of the numerical algorithm for the 194 

solution of the 2D flow equations are illustrated here by means of an example showing the structure of 195 

some of the main objects involved, their main properties and inter-connectivity while the complete 196 

details of the numerical algorithms are given in the following section.  197 

 198 

Fig. 1.  Interconnection of computational objects 199 

 200 

In the structure presented in Fig. 1 four different object types are used: TCell, TCellSide, TLine and  201 

TSolInterface. The complete solution algorithm is split into methods encapsulated within appropriate 202 

objects. In Fig. 1 pointers are presented by arrows with their origins at the host object and the arrowhead 203 

at the object they point to. They provide connections between objects and access to fields/data needed 204 

for the execution of the methods.  205 

 206 

TLine
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TCellSide
 

TCellSide 
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 TCell 

TCellSide
 

TCellSide 

TCellSide 

TCell 

TCellSide 
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Each cell object TCell has properties (cell id, area, elevation, etc.), fields (water depth, Vx - velocity in 207 

x direction, Vy - velocity in y direction, CellSidesList, etc.) and methods (set initial conditions, rotations, 208 

fluxes, integration, etc.). The CellSidesList is a list of pointers and is used to hold the connections with 209 

the cell side objects TCellSide.  210 

 211 

Each cell side object TCellSide has pointers to its cell 212 

TCell, the cell line TLine, the solution interface 213 

TSolInterface and the neighbouring cell TCell. This 214 

object has only pointers and does not have any methods. 215 

Its purpose is to hold the connections between the 216 

objects. 217 

 218 

The solution interface TSolInterface has pointers to the 219 

left cell line, the left cell, the right cell line and the right 220 

cell. The TSolInterface is the parent object and during 221 

the construction of the solution the appropriate instances 222 

of descendant objects are generated depending on the 223 

type of the Riemann solver and if it is an internal or 224 

external solution interface. Furthermore, for the external 225 

interfaces, there are different types of objects for 226 

different boundary conditions. The TSolInterface object 227 

family tree is presented in Fig. 2. Five Riemann solvers 228 

are implemented in the model: the HLL THLLSolver, the 229 

HLLC solver THLLCSolver, The Roe solver TRoeSolver, 230 

the Osher-Solomon solver TOsherSolver and the 231 

Generalised Osher-Solomon solver TGenOsherSolver which are derived from the parent object 232 

TSolInterface. Further extension of the family tree takes into account if the interface is internal or 233 

external and which boundary condition is specified. The advantage of this approach is that all 234 

descendant objects inherit the pointers structure from the parent object and only the methods for the 235 

calculation of the fluxes are overridden. Other Riemann solvers can be implemented by creating a 236 

descendant object from the TSolInterface object.  237 

 238 

During the setup of the model appropriate instances of TSolInterface object family are created taking 239 

into account the Riemann solver and if it is an internal or an external interface. This eliminates the need 240 

for “if-then-else” statements during the simulations and aids code execution efficiency.  241 

 242 

Fig. 2. TSolInterface object family tree 
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In Algorithm 1, an example of a standard procedural code for the calculation of the fluxes at the 243 

interfaces is shown and it is clear that within a simulation time loop, there is an extensive need to check 244 

which solution needs to be used. In simulations with millions of time steps and millions of cell 245 

interfaces, this presents a heavy computational burden. 246 

 247 

 248 

Algorithm 1. Example of a procedural code for calculation of fluxes at cell interfaces at one time step 249 

for each Solution Interface in SolutionInterfaceList do: 250 

    if solver = HLLC then: 251 

           if internal interface then compute HLLC internal interface 252 

           else if closed external interface then compute HLLC closed interface 253 

           else if open external interface then compute HLLC open interface  254 

           else if water level interface then compute HLLC water level interface 255 

           else if discharge interface then compute HLLC discharge interface 256 

    else if solver = Osher then: 257 

 ………………………………… 258 

 ………………………………… 259 

………………………………… 260 

………………………………… 261 

    else if .............................. then: 262 

              ………………………………… 263 

………………………………… 264 

 ………………………………… 265 

………………………………… 266 

    endif 267 

    ………………………………………… 268 

    ………………………………………… 269 

enddo 270 

 271 

When the object-oriented aproach is used all the decisions are performed at the beginning of the 272 

simulation as it is shown in Algorithm 2. 273 

 274 

Algorithm 2.  Example of an object-oriented code for creation of appropriate objects at cell interfaces. 275 

if solver = HLLC then: 276 

    if internal interface then: 277 

        Create HLLC internal interface 278 

        Add HLLC solution interface to SolutionInterfaceList 279 
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    else: 280 

        if closed external interface then: Create HLLC closed external interface 281 

        else if open external interface then: Create HLLC open external interface 282 

        else if water level external interface then: Create HLLC water level external interface 283 

        else if discharge external interface then: Create HLLC discharge external interface 284 

        endif 285 

        Add HLLC solution interface to SolutionInterfaceList 286 

    endif  287 

else if solver = Osher then: 288 

    ……………………………………. 289 

    ……………………………………. 290 

    ……………………………………. 291 

    ……………………………………. 292 

endif 293 
 294 
After all the solution interface objects are created and added to the list SolutionInterfaceList the fluxes 295 

at every time step are calculated by calling just one method as seen in Algorithm 3. Although only one 296 

method is called, different implementations are triggered in different objects due to the polymorphism 297 

of the object-oriented code. 298 

 299 

Algorithm 3.  Example of an object oriented code for calculation of fluxes at cell interfaces at one time 300 

step. 301 

for each Solution Interface in SolutionInterfaceList do:    302 

compute flux 303 

enddo 304 

 305 

 306 

3.2 Software versions and deployment in the Cloud 307 

 308 

The available versions of the model are: a) 32bit or 64bit for Windows without GUI; b) 32bit or 64bit 309 

for Linux without GUI; and c) a 32bit for Windows with a GUI (see Fig. 3). The versions without the 310 

GUI are multithreaded and take advantage of multiple cores CPUs to reduce the execution time. 311 

 312 
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 313 
Fig. 3.  Screen shot of the GUI of CityCAT 314 

 315 

CityCat has been deployed and used to run parameter sweep jobs in both the Amazon’s Elastic Compute 316 

Cloud (EC2) and Microsoft’s Azure Cloud. 317 

  318 

In Amazon’s EC2 a high throughput model was used to deploy a Condor cluster of Linux virtual 319 

machines. Each job was instantiated by passing a single integer number as part of the command line 320 

arguments to select the configuration files and a script was used to wrap each job: a) decompress the 321 

files needed for each simulation, b) run the main program, and c) compress and upload the results to 322 

the master Condor computer on the Cloud. For details, see Glenis et al. (2013). 323 

 324 

In Microsoft’s Azure Cloud the Azure Batch service was used to run parameter sweep jobs where 325 

CityCat was used to model 571 European cities using a range of different storm events (Guerreiro et 326 

al., 2017). The results can be found at: http://ceg-research.ncl.ac.uk/ramses/ . 327 

 328 

 329 

4 Grid generation algorithms 330 

 331 

The numerical methods used for the solution of overland flow in CityCAT can use regular or irregular 332 

grids but the model only generates regular grids based on the resolution of the DEM. However, irregular 333 

grids generated by other models or grid generators can be read in and used by the model. 334 

 335 

http://ceg-research.ncl.ac.uk/ramses/
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The buildings are taken into account as solid (no flow) boundaries by default and as such their footprint 336 

needs to be removed from the computational domain for the overland flow. Boundaries of buildings 337 

can be selectively opened to represent inflow and outflow of flood water.  As buildings are defined with 338 

irregular polygon outlines they have to be “cut into” the original grid generated on the basis of the DEM. 339 

Exclusion of the covered cells from the original grid can be done according to three different algorithms.  340 

In algorithm A, a cell is excluded from the computational domain if any part of it is covered by a 341 

building. In algorithm B, a cell is excluded from the computational domain only if the whole cell is 342 

covered by a building and in algorithm C, a cell is excluded from the computational domain if the 343 

centroid of the cell lies inside a building. See Fig. 4 for a graphical illustration of the algorithms and 344 

Fig. 5 for a CityCAT computational domain with excluded buildings’ footprint using algorithm A. 345 

 346 

 347 
Fig. 4. Algorithms for exclusion of cells from the computational domain and inclusion into the 348 

buildings layer 349 

 350 

Which of the three algorithms is the best depends on the size of the grid and the size of the gaps between 351 

the buildings.  352 

 353 

Note that this is different to the standard approach used in other models which retain the buildings as 354 

areas of (arbitrarily) higher elevation or allow water to flow through them by assigning them specific 355 

roughness or porosity parameters. 356 

 357 

For built-up areas, our procedure substantially reduces the number of the cells in the computational 358 

domain (see Fig. 5), allowing major reduction of the run time in comparison to the conventional models. 359 

The cells which are removed from the computational domain are not lost from the system. They form 360 

the “buildings” layer which is used in the roof drainage part of the solution algorithm. 361 

 362 
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 363 
 364 

Figure 5. An example of the CityCat computational domain with exclusion of buildings using 365 

algorithm A 366 

 367 

MasterMap data are used to delineate the urban features such as: buildings, roads and permeable 368 

surfaces. A parser based on the Simple API for XML (SAX) which is an event-based sequential 369 

access parser has been developed in order to parse the raw “gml” Mastermap data. The parser is very 370 

efficient and requires much less memory than Document Object Model (DOM)-style parsers. 371 

 372 

 373 
Fig. 6. An example of the buildings and green surfaces polygons extracted from the Master Map 374 
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 375 

In addition to the algorithms for extracting the buildings and green surfaces polygons from the 376 

MasterMap™ layers (Fig. 6), CityCat can also read polygons prepared by other software packages. This 377 

option is mainly used to define areas of different roughness, different soil properties and proposed new 378 

developments, new green areas, etc. 379 

 380 

The object-oriented architecture of the model, and the polygon representation of buildings supports 381 

direct and interactive editing of attributes (elevations, flow permeability and building properties). This 382 

unique feature ensures realistic and efficient simulation of flow around and into buildings, as well as 383 

allowing the use of roof drainage algorithms for each building 384 

 385 

 386 

5 Numerical solutions 387 

 388 

The overland flow component of CityCAT is based on the full shallow water equations (Tan, 1992) and 389 

the solution is obtained using the method of finite volumes with shock-capturing schemes. This method 390 

has been successfully applied in the field of free surface flows, see (Alcrudo and Garcia-Navarro, 1993; 391 

Brufau et al., 2004; Castro Díaz et al., 2013; Fraccarollo and Toro, 1995; Michel-Dansac et al., 2016; 392 

Mingham and Causon, 1998). In CityCAT we have implemented and evaluated a range of different 393 

Riemann solvers: the HLL (Harten et al., 1983), the HLLC (Toro et al., 1994), the Roe (Roe, 1981) 394 

with the Harten-Hyman entropy fix (Harten and Hyman, 1983), the Osher-Solomon (Osher and 395 

Solomon, 1982), and the Generalised Osher-Solomon (Dumbser and Toro, 2011b).  396 

 397 

The Osher-Solomon Riemann solver is one of the most accurate solvers (Erduran et al., 2002) and has 398 

the following properties: it is a complete solver as it contains all the waves; it is differentiable with 399 

respect to its arguments and therefore suitable for implicit schemes; it is entropy satisfying which means 400 

that it does not require an entropy fix at sonic points; and it captures slow moving shocks. The Osher-401 

Solomon Riemann solver is a very robust solver, however, very rarely has been applied to complex 402 

systems of equations due to its complexity as it requires the evaluation of a path-integral in phase-space, 403 

see Toro (2013) for details for the Euler equations. The idea proposed by Dumbser and Toro (2011b) 404 

to evaluate the path integral numerically using Gaussian quadrature simplifies the Osher-Solomon 405 

Riemann solver and makes it an attractive solver for complex systems of hyperbolic conservation laws 406 

(Dumbser and Toro, 2011a). In this solver only the eigenstructure of the hyperbolic system needs to be 407 

known in order to evaluate the viscosity matrix of the numerical flux. In case the eigenstructure is not 408 

known then it can be approximated numerically or an alternative Osher-Solomon Riemann solver 409 

proposed by Castro et al. (2016) can be used where the eigenstructure of the system is not needed and 410 
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the viscosity matrix of the numerical flux is approximated using functional evaluations of the Jacobian 411 

based on Chebyshev polynomials or rational functions.  412 

 413 

Here we present in detail the shallow water equations and details of the Generarised Osher-Solomon 414 

solver. A second-order Total Variation Diminish (TVD) scheme (Harten, 1983) based on the Weighted 415 

Average Flux (Toro, 1989) and the Generarised Osher-Solomon solver is also presented. 416 

 417 

 418 

5.1 Formulation of the Swallow Water Equations 419 

 420 

The shallow water equations can be written as follows:  421 

𝜕𝜕𝑡𝑡𝐐𝐐 + 𝜕𝜕𝑥𝑥𝐅𝐅(𝐐𝐐) + 𝜕𝜕𝑦𝑦𝐆𝐆(𝐐𝐐) = 𝐒𝐒(𝐐𝐐),            𝐐𝐐 = 𝐐𝐐(𝐱𝐱, 𝑡𝑡) ∈ 𝒟𝒟, 𝐱𝐱 = (𝑥𝑥,𝑦𝑦) ∈ Ω ⊂ ℝ2,   𝑡𝑡 > 0              (1.1) 422 

Where 𝒟𝒟 is an open convex subset of ℝ𝑝𝑝; 𝑝𝑝 is the number of conservation laws; 𝐐𝐐 is the conserved 423 

quantities vector; 𝐅𝐅,𝐆𝐆: 𝒟𝒟 → ℝ𝑝𝑝 are the flux vectors; and 𝐒𝐒: 𝒟𝒟 → ℝ𝑝𝑝 is the source terms vector. With 424 

initial conditions: 𝐐𝐐(𝐱𝐱, 0) =  𝐐𝐐0(𝐱𝐱), 𝐱𝐱 ∈ Ω; and boundary conditions: 𝐐𝐐(𝐱𝐱, 𝑡𝑡) =  𝐐𝐐𝐵𝐵𝐵𝐵(𝐱𝐱, 𝑡𝑡), 𝐱𝐱 ∈ 𝜕𝜕Ω,425 

t > 0. 426 

 427 

The vectors are given as follows: 428 

𝐐𝐐 ≡ [𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3]𝑇𝑇 = �ℎ, ℎ𝑣𝑣𝑥𝑥 ,ℎ𝑣𝑣𝑦𝑦�
𝑇𝑇

; 𝐅𝐅(𝐐𝐐) ≡ [𝑓𝑓1, 𝑓𝑓2, 𝑓𝑓3]𝑇𝑇 = �ℎ𝑣𝑣𝑥𝑥 ,ℎ𝑣𝑣𝑥𝑥2 + 𝑔𝑔ℎ2/2, ℎ𝑣𝑣𝑥𝑥𝑣𝑣𝑦𝑦�
𝑇𝑇

 429 

𝐆𝐆(𝐐𝐐) ≡ [𝑔𝑔1,𝑔𝑔2,𝑔𝑔3]𝑇𝑇 = �ℎ𝑣𝑣𝑦𝑦 , ℎ𝑣𝑣𝑥𝑥𝑣𝑣𝑦𝑦, ℎ𝑣𝑣𝑦𝑦2 + 𝑔𝑔ℎ2/2�𝑇𝑇;  430 

𝐒𝐒(𝐐𝐐) = 𝑹𝑹 − 𝑳𝑳 + 𝑺𝑺𝒐𝒐 − 𝑺𝑺𝒇𝒇  431 

 432 

Where 𝑣𝑣𝑥𝑥 and 𝑣𝑣𝑦𝑦 represent the depth-averaged velocity components in the 𝑥𝑥 and 𝑦𝑦 directions 433 

respectively; ℎ is the water depth; 𝑔𝑔 is the gravity acceleration; 𝑹𝑹 = [𝑅𝑅, 0,0]𝑇𝑇 is the rainfall intensity; 434 

𝑳𝑳 = [𝐿𝐿, 0,0]𝑇𝑇 is the infiltration rate; 𝑺𝑺𝒐𝒐 = �0,𝑔𝑔ℎ𝜕𝜕𝑥𝑥𝑧𝑧𝑏𝑏 ,𝑔𝑔ℎ𝜕𝜕𝑦𝑦𝑧𝑧𝑏𝑏�
𝑇𝑇

is the bed slope source term and 𝑧𝑧𝑏𝑏 435 

denotes the bed elevation; 𝑺𝑺𝒇𝒇 = �0,𝑔𝑔ℎ𝑆𝑆𝑆𝑆𝑥𝑥 ,𝑔𝑔ℎ𝑆𝑆𝑆𝑆𝑦𝑦�
𝑇𝑇

is the friction term with:  436 

𝑆𝑆𝑆𝑆𝑥𝑥 = 𝑛𝑛2𝑣𝑣𝑥𝑥(𝑣𝑣𝑥𝑥2 + 𝑣𝑣𝑦𝑦2)1/2ℎ−4/3, 𝑆𝑆𝑆𝑆𝑦𝑦 = 𝑛𝑛2𝑣𝑣𝑦𝑦(𝑣𝑣𝑥𝑥2 + 𝑣𝑣𝑦𝑦2)1/2ℎ−4/3 and 𝑛𝑛 denotes the Manning’s 437 

roughness coefficient.  438 

 439 

Integration of (1.1) over a control volume and application of the Gauss’s theorem gives: 440 

� 𝜕𝜕𝑡𝑡𝐐𝐐dV +
𝑉𝑉

� 𝐇𝐇 ∙ 𝐧𝐧 ds =  � 𝐒𝐒dV
𝑉𝑉𝜕𝜕𝜕𝜕

 441 
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Where 𝐇𝐇 = (𝐅𝐅,𝐆𝐆) is the flux tensor; 𝑉𝑉 is the control volume over which the integration is performed; 442 

𝜕𝜕𝜕𝜕 is the boundary of the control volume 𝑉𝑉; and 𝐧𝐧 ≡ �𝑛𝑛𝑥𝑥 ,𝑛𝑛𝑦𝑦� ≡ (cos 𝜃𝜃 , sin𝜃𝜃) is the outward normal 443 

vector to 𝜕𝜕𝜕𝜕 and 𝜃𝜃 is the angle with the x-axis measured anticlockwise. 444 

 445 

The domain is divided into cells (𝑉𝑉𝑖𝑖)𝑖𝑖∈ℤ and the total normal flux though the edges of each cell using 446 

the rotational invariance property can be written as: 447 

  448 

� 𝐇𝐇 ∙ 𝐧𝐧 ds = � � 𝐇𝐇 ∙ 𝐧𝐧𝑘𝑘  ds

𝑚𝑚𝑘𝑘+1

𝑚𝑚𝑘𝑘

𝑁𝑁𝑁𝑁

𝑘𝑘=1

=  � � 𝑻𝑻𝑘𝑘−1𝐅𝐅(𝐓𝐓𝑘𝑘𝐐𝐐) ds

𝑚𝑚𝑘𝑘+1

𝑚𝑚𝑘𝑘

𝑁𝑁𝑁𝑁

𝑘𝑘=1𝜕𝜕𝑉𝑉𝑖𝑖

 (1.2) 449 

 450 

Where 𝐓𝐓𝑘𝑘 ≡ 𝐓𝐓(𝜃𝜃𝑘𝑘) is the rotation matrix; 𝐓𝐓𝑘𝑘−1 ≡ 𝐓𝐓−1(𝜃𝜃𝑘𝑘) is the inverse rotation matrix; 𝑁𝑁𝑁𝑁 is the 451 

number of edges of the 𝑉𝑉𝑖𝑖 cell; and 𝑚𝑚𝑘𝑘 denotes the cell vertices. The vector of the transformed 452 

conservative variables and the normal fluxes at the edges of each cell in the local rotated (𝑥𝑥�, 𝑦𝑦�) Cartesian 453 

frame can be written as: 𝐐𝐐�𝑘𝑘 ≡ 𝐓𝐓𝑘𝑘𝐐𝐐 = [ℎ, ℎ𝑢𝑢, ℎ𝑣𝑣]𝑇𝑇 and 𝐅𝐅�𝑘𝑘 ≡ 𝐅𝐅(𝐓𝐓𝑘𝑘𝐐𝐐) ≡ 𝐅𝐅�𝐐𝐐�𝑘𝑘� =  [ℎ𝑢𝑢, ℎ𝑢𝑢2 +454 

𝑔𝑔ℎ2/2, ℎ𝑢𝑢𝑢𝑢]𝑇𝑇 455 

 456 

Where 𝑢𝑢 = 𝑣𝑣𝑥𝑥 cos 𝜃𝜃 +  𝑣𝑣𝑦𝑦 sin𝜃𝜃  , 𝑣𝑣 = −𝑣𝑣𝑥𝑥 sin𝜃𝜃 +  𝑣𝑣𝑦𝑦 cos 𝜃𝜃   457 

𝐓𝐓(𝜃𝜃𝑘𝑘) = �
1 0 0
0 cos𝜃𝜃 sin𝜃𝜃
0 − sin𝜃𝜃 cos𝜃𝜃

�  ,𝐓𝐓−1(𝜃𝜃𝑘𝑘) = �
1 0 0
0 cos 𝜃𝜃 −sin𝜃𝜃
0 sin𝜃𝜃 cos𝜃𝜃

�   458 

 459 

The integral (1.2) can be approximated as: 460 

� � 𝑻𝑻𝑘𝑘−1𝐅𝐅(𝐓𝐓𝑘𝑘𝐐𝐐) ds

𝑚𝑚𝑘𝑘+1

𝑚𝑚𝑘𝑘

𝑁𝑁𝑁𝑁

𝑘𝑘=1

≈ �𝐿𝐿𝑘𝑘

𝑁𝑁𝑁𝑁

𝑘𝑘=1

𝑻𝑻𝑘𝑘−1𝐅𝐅�𝑘𝑘 461 

Where 𝐿𝐿𝑘𝑘 denotes the length of the 𝑘𝑘𝑡𝑡ℎ edge of the cell. The numerical flux through the cell edges can 462 

be obtained by solving the Riemann problem for the rotated conservative equations: 463 

𝜕𝜕𝑡𝑡𝐐𝐐� + 𝜕𝜕𝑥𝑥�𝐅𝐅�𝐐𝐐�� = 0  (1.3) 464 

with initial data: 465 

𝐐𝐐�𝑘𝑘(𝑥𝑥�, 0) = �
𝐐𝐐�𝑘𝑘,𝐿𝐿   𝑖𝑖𝑖𝑖 𝑥𝑥� ≤ 0 
𝐐𝐐�𝑘𝑘,𝑅𝑅   𝑖𝑖𝑖𝑖 𝑥𝑥� > 0

 466 

Where 𝐿𝐿 and 𝑅𝑅 denote the cells on the left and right hand sides of the interface. 467 

 468 

A fully discretised first-order finite-volume conservative scheme can be obtained by: 469 

𝐐𝐐𝑖𝑖𝑛𝑛+1 = 𝐐𝐐𝑖𝑖𝑛𝑛 −
Δ𝑡𝑡
𝐴𝐴𝑖𝑖
∑ 𝐿𝐿𝑘𝑘𝑁𝑁𝑁𝑁
𝑘𝑘=1 𝑻𝑻𝑘𝑘−1𝐅𝐅�𝑘𝑘�𝐐𝐐�𝑘𝑘,𝐿𝐿 ,𝐐𝐐�𝑘𝑘,𝑅𝑅� + Δ𝑡𝑡𝐑𝐑𝑖𝑖 − Δ𝑡𝑡𝐋𝐋𝑖𝑖  + Δ𝑡𝑡

𝐴𝐴𝑖𝑖
∑ 𝐿𝐿𝑘𝑘𝑁𝑁𝑁𝑁
𝑘𝑘=1 𝐒𝐒�𝒐𝒐,𝑘𝑘 −  Δ𝑡𝑡𝑺𝑺𝒇𝒇𝑖𝑖  470 

 (1.4) 471 
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Where 𝐴𝐴𝑖𝑖 is the area of the cell 𝑉𝑉𝑖𝑖; Δ𝑡𝑡 is the time step and 𝑡𝑡𝑛𝑛+1 = 𝑡𝑡𝑛𝑛 + Δ𝑡𝑡; 𝑁𝑁𝑁𝑁 is the number of edges 472 

of each cell; 𝐐𝐐𝑖𝑖𝑛𝑛 is the averaged integral of the solution at time 𝑡𝑡𝑛𝑛; 𝐅𝐅�𝑘𝑘�𝐐𝐐�𝑘𝑘,𝐿𝐿 ,𝐐𝐐�𝑘𝑘,𝑅𝑅� is the numerical flux 473 

through the cell edge and for simplicity we denote 𝐟𝐟𝑘𝑘 ≔  𝐅𝐅�𝑘𝑘�𝐐𝐐�𝑘𝑘,𝐿𝐿 ,𝐐𝐐�𝑘𝑘,𝑅𝑅�; 𝐑𝐑𝑖𝑖 is the rainfall Intensity; 𝐋𝐋𝑖𝑖 474 

is the infiltration rate; 𝐒𝐒�𝒐𝒐,𝑘𝑘 is the bed slope source term at each cell interface; and 𝑺𝑺𝒇𝒇𝑖𝑖  is the friction 475 

source term.  476 

 477 

Full  details on how each term is computed are presented in the following sections. 478 

 479 

 480 

5.2 Generalised Osher-Solomon Riemann solver  481 

 482 

The system of equations (1.1) is hyperbolic and strictly hyperbolic when ℎ > 0 . Every linear 483 

combination of the Jacobian matrices 𝐀𝐀(𝐐𝐐) = 𝜕𝜕𝐅𝐅(𝐐𝐐)/𝜕𝜕𝐐𝐐 and 𝐁𝐁(𝐐𝐐) = 𝜕𝜕𝐆𝐆(𝐐𝐐)/𝜕𝜕𝐐𝐐 has real eigenvalues 484 

and linearly independent eigenvectors and can be diagonalized. The Jacobian matrix 𝐀𝐀(𝐐𝐐) can be 485 

expressed as: 𝐀𝐀(𝐐𝐐) = 𝐊𝐊(𝐐𝐐) Λ(𝐐𝐐) 𝐊𝐊 −1(𝐐𝐐). 486 

 487 

Where 𝐊𝐊(𝐐𝐐) is the right eigenvectors matrix; 𝐊𝐊(𝐐𝐐) −1 is its inverse; and Λ(𝐐𝐐) is the diagonal matrix 488 

with the eigenvalues 𝜆𝜆𝑖𝑖. 489 

 490 

𝐀𝐀(𝐐𝐐) = �
0 1 0

−𝑢𝑢2 + 𝑐𝑐2 2𝑢𝑢 0
−𝑢𝑢𝑢𝑢 𝑣𝑣 𝑢𝑢

� , 𝐊𝐊(𝐐𝐐) = �
1 0 1

𝑢𝑢 − 𝑐𝑐 0 𝑢𝑢 + 𝑐𝑐
𝑣𝑣 1 𝑣𝑣

� , 𝐊𝐊 −1(𝐐𝐐) = 1
2𝑐𝑐
�
𝑢𝑢 + 𝑐𝑐 −1 0
−2𝑣𝑣𝑣𝑣 0 2𝑐𝑐
−𝑢𝑢 + 𝑐𝑐 1 0

� 491 

Λ(𝐐𝐐) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑢𝑢 − 𝑐𝑐,𝑢𝑢,𝑢𝑢 + 𝑐𝑐) 492 

 493 

Where 𝑐𝑐 = �𝑔𝑔ℎ is the celerity. 494 

 495 

We introduce the notation: 496 

𝜆𝜆𝑖𝑖+ = max (𝜆𝜆𝑖𝑖 , 0) ;  𝜆𝜆𝑖𝑖− = min (𝜆𝜆𝑖𝑖 , 0) ;  |𝜆𝜆𝑖𝑖| = 𝜆𝜆𝑖𝑖+ − 𝜆𝜆𝑖𝑖− ;  for 𝑖𝑖 = 1,2,3  497 

Λ+(𝐐𝐐) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜆𝜆1+, 𝜆𝜆2+, 𝜆𝜆3+) ;  Λ−(𝐐𝐐) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜆𝜆1−, 𝜆𝜆2−, 𝜆𝜆3−) ;  498 

|Λ(𝐐𝐐)| = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(|𝜆𝜆1|, |𝜆𝜆2|, |𝜆𝜆3|) = Λ+(𝐐𝐐) − Λ−(𝐐𝐐) 499 

|𝐀𝐀(𝐐𝐐)| = 𝐊𝐊(𝐐𝐐)|Λ(𝐐𝐐)|𝐊𝐊 −1(𝐐𝐐) 500 

 501 

The Osher-Solomon flux is given by: 502 

𝐟𝐟𝑘𝑘 =
1
2
�𝐅𝐅�𝐐𝐐�𝑘𝑘,𝐿𝐿� + 𝐅𝐅(𝐐𝐐�𝑘𝑘,𝑅𝑅)� −

1
2
� |𝐀𝐀(𝐐𝐐)|𝑑𝑑𝐐𝐐

𝐐𝐐�𝑘𝑘,𝑅𝑅

𝐐𝐐�𝑘𝑘,𝐿𝐿

 503 
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In the original Osher-Solomon solver (Osher and Solomon, 1982) the integral is evaluated by using 504 

tractable paths which follow the integral curves of the eigenvectors to connect the left and right states: 505 

𝐐𝐐�𝑘𝑘,𝐿𝐿and 𝐐𝐐�𝑘𝑘,𝑅𝑅. 506 

 507 

In the Generalised Osher-Solomon solver the left and the right states are connected via a path in the 508 

phase-space: 509 

Φ(𝜉𝜉) = 𝐐𝐐�𝑘𝑘,𝐿𝐿 + 𝜉𝜉(𝐐𝐐�𝑘𝑘,𝑅𝑅 − 𝐐𝐐�𝑘𝑘,𝐿𝐿),  𝜉𝜉 ∈ [0,1] 510 

 511 

Where Φ(𝜉𝜉) is a Lipschitz continuous function with Φ(0) = 𝐐𝐐�𝑘𝑘,𝐿𝐿 and Φ(1) = 𝐐𝐐�𝑘𝑘,𝑅𝑅 512 

The flux can be written as: 513 

𝐟𝐟𝑘𝑘 =
1
2
�𝐅𝐅�𝐐𝐐�𝑘𝑘,𝐿𝐿� + 𝐅𝐅(𝐐𝐐�𝑘𝑘,𝑅𝑅)� −

1
2
��𝐀𝐀�Φ(𝜉𝜉)�� 𝜕𝜕𝜉𝜉Φ 𝑑𝑑𝑑𝑑
1

0

514 

=
1
2
�𝐅𝐅�𝐐𝐐�𝑘𝑘,𝐿𝐿� + 𝐅𝐅(𝐐𝐐�𝑘𝑘,𝑅𝑅)� −

1
2
���𝐀𝐀�Φ(𝜉𝜉)�� 𝑑𝑑𝑑𝑑

1

0

� (𝐐𝐐�𝑘𝑘,𝑅𝑅 − 𝐐𝐐�𝑘𝑘,𝐿𝐿) 515 

Where ∫ �𝐀𝐀�Φ(𝜉𝜉)�� 𝑑𝑑𝑑𝑑1
0  is the viscosity matrix of the numerical flux and represents the numerical 516 

diffusion.  517 

 518 

Transformation of the integral to [−1,1] gives:  519 

𝐟𝐟𝑘𝑘 = 1
2
�𝐅𝐅�𝐐𝐐�𝑘𝑘,𝐿𝐿� + 𝐅𝐅(𝐐𝐐�𝑘𝑘,𝑅𝑅)� − 1

4
�∫ �𝐀𝐀�Φ(0.5 ∙ 𝜉𝜉 + 0.5)�� 𝑑𝑑𝑑𝑑1
−1 � �𝐐𝐐�𝑘𝑘,𝑅𝑅 − 𝐐𝐐�𝑘𝑘,𝐿𝐿�   (1.5) 520 

  521 

The integral in (1.5) is approximated using a three-point Gaussian quadrature and the Generalised 522 

Osher-Solomon flux is given by: 523 

𝐟𝐟𝑘𝑘𝑜𝑜𝑜𝑜ℎ =
1
2
�𝐅𝐅�𝐐𝐐�𝑘𝑘,𝐿𝐿� + 𝐅𝐅(𝐐𝐐�𝑘𝑘,𝑅𝑅)� −

1
4
��𝑤𝑤𝑗𝑗 �𝐀𝐀 �Φ�0.5 ∙ 𝜉𝜉𝑗𝑗 + 0.5��� 

3

𝑗𝑗=1

� �𝐐𝐐�𝑘𝑘,𝑅𝑅 − 𝐐𝐐�𝑘𝑘,𝐿𝐿�524 

=
1
2
�𝐅𝐅�𝐐𝐐�𝑘𝑘,𝐿𝐿� + 𝐅𝐅(𝐐𝐐�𝑘𝑘,𝑅𝑅)� −

1
4
��𝑤𝑤𝑗𝑗�𝐀𝐀𝑗𝑗� 

3

𝑗𝑗=1

� �𝐐𝐐�𝑘𝑘,𝑅𝑅 − 𝐐𝐐�𝑘𝑘,𝐿𝐿� 525 

           (1.6) 526 

Where �𝐀𝐀𝑗𝑗� ∶= �𝐀𝐀 �Φ�0.5 ∙ 𝜉𝜉𝑗𝑗 + 0.5��� ; 𝑤𝑤𝑗𝑗 are the weights ; and 𝜉𝜉𝑗𝑗 are the points of evaluation. 527 

𝑤𝑤1 = 𝑤𝑤3 = 5
9
 , 𝑤𝑤2 = 8

9
 , 𝜉𝜉1 = −�3

5
 , 𝜉𝜉2 = 0 , 𝜉𝜉3 = �3

5
 528 

 529 

The steps required for the calculation of the flux are given below: 530 

1. Let 𝑝𝑝𝑗𝑗 = 0.5 ∗ 𝜉𝜉𝑗𝑗 + 0.5 , for 𝑗𝑗 = 1,2,3 531 
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Calculate Φ(𝑝𝑝𝑗𝑗) , for 𝑗𝑗 = 1,2,3 and define three new states: 532 

𝐐𝐐𝑗𝑗 ≡ Φ�𝑝𝑝𝑗𝑗� = �ℎ𝑗𝑗 , ℎ𝑗𝑗𝑢𝑢𝑗𝑗 ,ℎ𝑗𝑗𝑣𝑣𝑗𝑗�
𝑇𝑇

 for 𝑗𝑗 = 1,2,3 533 

2. For each of the states  𝑗𝑗 = 1,2,3 calculate: 𝑐𝑐𝑗𝑗 , �𝜆𝜆𝑗𝑗,1�, |𝜆𝜆𝑗𝑗,2|, |𝜆𝜆𝑗𝑗,3| 534 

3. For each of the states  𝑗𝑗 = 1,2,3 calculate the absolute matrix: 535 

 536 

�𝐀𝐀𝑗𝑗� ≡ �𝐀𝐀 �Φ�𝑝𝑝𝑗𝑗��� = 𝐊𝐊�𝐐𝐐𝑗𝑗��Λ�𝐐𝐐𝑗𝑗��𝐊𝐊 −1(𝐐𝐐𝑗𝑗)537 

=
1

2𝑐𝑐𝑗𝑗
�

�𝜆𝜆𝑗𝑗,1��𝑢𝑢𝑗𝑗 + 𝑐𝑐𝑗𝑗� + |𝜆𝜆𝑗𝑗,3|�−𝑢𝑢𝑗𝑗 + 𝑐𝑐𝑗𝑗� −�𝜆𝜆𝑗𝑗,1� + �𝜆𝜆𝑗𝑗,3� 0
�𝜆𝜆𝑗𝑗,1��𝑢𝑢𝑗𝑗2 − 𝑐𝑐𝑗𝑗2� + |𝜆𝜆𝑗𝑗,3|�𝑐𝑐𝑗𝑗2 − 𝑢𝑢𝑗𝑗2� −�𝜆𝜆𝑗𝑗,1��𝑢𝑢𝑗𝑗 − 𝑐𝑐𝑗𝑗� + �𝜆𝜆𝑗𝑗,3��𝑢𝑢𝑗𝑗 + 𝑐𝑐𝑗𝑗� 0

�𝜆𝜆𝑗𝑗,1�𝑣𝑣𝑗𝑗�𝑢𝑢𝑗𝑗 + 𝑐𝑐𝑗𝑗� − �𝜆𝜆𝑗𝑗,2�2𝑣𝑣𝑗𝑗𝑐𝑐𝑗𝑗 + �𝜆𝜆𝑗𝑗,3�𝑣𝑣𝑗𝑗�−𝑢𝑢𝑗𝑗 + 𝑐𝑐𝑗𝑗� 𝑣𝑣𝑗𝑗(�𝜆𝜆𝑗𝑗,3� − �𝜆𝜆𝑗𝑗,1�) 2𝑐𝑐�𝜆𝜆𝑗𝑗,2�
� 538 

 539 

4. Use equation (1.6) to calculate the flux at the cell interface 540 

 541 

 542 

5.3 Second-order TVD WAF numerical flux 543 

 544 

The TVD WAF numerical flux is an extension of the first order Godunov upwind scheme. The TVD 545 

WAF is second order accurate in time and space in the smooth regions and it was first presented for the 546 

solution of the Euler equations (Toro, 1989). Application of the TVD WAF numerical flux to the 547 

shallow water equations can be found in (Ata et al., 2013; Fernández-Nieto and Narbona-Reina, 2008; 548 

Guan et al., 2013; Kim et al., 2009; Loukili and Soulaimani, 2007; Toro, 1992).  All these applications 549 

of the WAF are based on the HLLC Riemann solver. Here we present a TVD WAF numerical flux 550 

which is based on the Generalised Ohser-Solmon Riemann solver.  551 

 552 

The additional steps for the computation of the TVD WAF flux are: a) approximation of the speed of 553 

the waves; b) computation of the Courant number for each wave; c) computation of the flux limiter 554 

function; and d) computation of the weights of the WAF flux, see (Toro, 2013). 555 

 556 

For the approximation of the wave speeds for the non-linear waves 𝑆𝑆𝐿𝐿, 𝑆𝑆𝑅𝑅 and for the linear contact 557 

wave 𝑆𝑆∗ we use an adaptive approximate-state Riemann solver similar to the one presented by Loukili 558 

and Soulaimani (2007). An initial approximation of the water depth in the star region (wedge between 559 

the two non-linear waves) is obtained using a two-rarefaction approximate-state Riemann solver. If the 560 

approximated water depth in the star region is less or equal to the water depth in the left and right cell 561 

ℎ𝐿𝐿 ,ℎ𝑅𝑅 then the two-rarefaction approximate-state Riemann solver is used for the estimation of the speed 562 

of each wave. Otherwise the two-shock approximate-state Riemann solver is used for the estimation of 563 

the speed of each wave. Details about approximate-state Riemann solvers can be found in (Toro, 2013). 564 
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Also, special treatment is required in the presence of a wet-dry front. Algorithm 4 below provides details 565 

for the calculation of the speed of the waves. 566 

 567 

Algorithm 4. Calculation of wave speeds. 568 

if ℎ𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑅𝑅 > 0 then: 569 

First approximation using a two-rarefaction approximate-state Riemann solver 570 

ℎ0 ≔
1
𝑔𝑔
�0.5 ∙ (𝑐𝑐𝐿𝐿 + 𝑐𝑐𝑅𝑅) + 0.25 ∙ (𝑢𝑢𝐿𝐿 − 𝑢𝑢𝑅𝑅)�2 571 

 if ℎ0 ≤ 𝑀𝑀𝑀𝑀𝑀𝑀(ℎ𝐿𝐿 ,ℎ𝑅𝑅) then: 572 

use two-rarefaction approximate-state Riemann solver   573 

ℎ∗ = ℎ0 574 

𝑢𝑢∗ = 0.5 ∙ (𝑢𝑢𝐿𝐿 + 𝑢𝑢𝑅𝑅) + 𝑐𝑐𝐿𝐿 − 𝑐𝑐𝑅𝑅 575 

 else if ℎ0 > 𝑀𝑀𝑀𝑀𝑀𝑀(ℎ𝐿𝐿 ,ℎ𝑅𝑅) then: 576 

  use two-shock approximate-state Riemann solver 577 

𝑝𝑝𝐿𝐿 = �
𝑔𝑔(ℎ0 + ℎ𝐿𝐿)

2ℎ0ℎ𝐿𝐿
 , 𝑝𝑝𝑅𝑅 = �

𝑔𝑔(ℎ0 + ℎ𝑅𝑅)
2ℎ0ℎ𝑅𝑅

  578 

ℎ∗ =
𝑝𝑝𝐿𝐿ℎ𝐿𝐿 + 𝑝𝑝𝑅𝑅ℎ𝑅𝑅 + 𝑢𝑢𝐿𝐿 − 𝑢𝑢𝑅𝑅

𝑝𝑝𝐿𝐿 + 𝑝𝑝𝑅𝑅
 579 

𝑢𝑢∗ = 0.5 ∙ (𝑢𝑢𝐿𝐿 + 𝑢𝑢𝑅𝑅) + 0.5 ∙ �𝑝𝑝𝑅𝑅(ℎ∗ − ℎ𝑅𝑅) − 𝑝𝑝𝐿𝐿(ℎ∗ − ℎ𝐿𝐿)� 580 

 endif 581 

𝛼𝛼𝐿𝐿 = �
�0.5 ∙ (ℎ∗ + ℎ𝐿𝐿)ℎ∗

ℎ𝐿𝐿
  𝑖𝑖𝑖𝑖 ℎ∗ > ℎ𝐿𝐿

1                                   𝑖𝑖𝑖𝑖 ℎ∗ ≤ ℎ𝐿𝐿
 , 𝛼𝛼𝑅𝑅 = �

�0.5 ∙ (ℎ∗ + ℎ𝑅𝑅)ℎ∗
ℎ𝑅𝑅

  𝑖𝑖𝑖𝑖 ℎ∗ > ℎ𝑅𝑅

1                                   𝑖𝑖𝑖𝑖 ℎ∗ ≤ ℎ𝑅𝑅
  582 

 583 

𝑆𝑆𝐿𝐿 = 𝑢𝑢𝐿𝐿 − 𝛼𝛼𝐿𝐿𝑐𝑐𝐿𝐿   584 

𝑆𝑆𝑅𝑅 = 𝑢𝑢𝑅𝑅 + 𝛼𝛼𝑅𝑅𝑐𝑐𝑅𝑅 585 

 𝑆𝑆∗ =  𝑢𝑢∗  586 

else if ℎ𝐿𝐿 = 0 𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑅𝑅 > 0 then: 587 

𝑆𝑆𝐿𝐿 = 𝑢𝑢𝑅𝑅 − 2𝑐𝑐𝑅𝑅 588 

𝑆𝑆𝑅𝑅 = 𝑢𝑢𝑅𝑅 + 𝑐𝑐𝑅𝑅 589 

𝑆𝑆∗ = 𝑢𝑢∗ = 𝑆𝑆𝐿𝐿 590 

else if ℎ𝐿𝐿 > 0 𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑅𝑅 = 0 then: 591 

𝑆𝑆𝐿𝐿 = 𝑢𝑢𝐿𝐿 − 2𝑐𝑐𝐿𝐿 592 

𝑆𝑆𝑅𝑅 = 𝑢𝑢𝐿𝐿 + 2𝑐𝑐𝐿𝐿 593 

𝑆𝑆∗ = 𝑢𝑢∗ = 𝑆𝑆𝑅𝑅 594 

endif 595 

 596 
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The calculation of the courant number (CN) for each wave is given by: 597 

 598 

𝐶𝐶𝐶𝐶𝐿𝐿 =
𝑆𝑆𝐿𝐿∆𝑡𝑡
∆𝑥𝑥

,𝐶𝐶𝐶𝐶𝑅𝑅 =
𝑆𝑆𝑅𝑅∆𝑡𝑡
∆𝑥𝑥

 ,𝐶𝐶𝐶𝐶∗ =
𝑆𝑆∗∆𝑡𝑡
∆𝑥𝑥

 599 

           (1.7) 600 

 601 

Godunov (1959) has shown that second or higher order schemes are not monotone and produce spurious 602 

oscillations at discontinuities. Harten (1983) proposed the Total Variation Diminishing (TVD) schemes 603 

to avoid spurious oscillations. The drawback of the TVD constraint is that the schemes reduce to first 604 

order at extrema. Here we apply the WAF flux limiter function to obtain a TVD WAF flux. For details 605 

about flux limiters, see (Sweby, 1984; Toro, 2013). 606 

The WAF flux limiter function is given by: 607 

 608 

Ψ(𝑟𝑟,𝐶𝐶𝐶𝐶) = 1 − (1 − |𝐶𝐶𝐶𝐶|)𝐵𝐵(𝑟𝑟) 609 

           (1.8) 610 

 611 

And the Flux limiters are given by: 612 

Superbee limiter:  𝒊𝒊𝒊𝒊 𝑟𝑟 > 0  𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕:  𝐵𝐵𝑠𝑠𝑠𝑠(𝑟𝑟) = 𝑀𝑀𝑀𝑀𝑀𝑀[𝑀𝑀𝑀𝑀𝑀𝑀(1,2𝑟𝑟),𝑀𝑀𝑀𝑀𝑀𝑀(2, 𝑟𝑟)]  𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆:  𝐵𝐵𝑠𝑠𝑠𝑠(𝑟𝑟) = 0 613 

van Leer limiter:  𝒊𝒊𝒊𝒊 𝑟𝑟 > 0  𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕:  𝐵𝐵𝑣𝑣𝑣𝑣(𝑟𝑟) = 2𝑟𝑟/(1 + 𝑟𝑟)  𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆:  𝐵𝐵𝑣𝑣𝑣𝑣(𝑟𝑟) = 0  614 

van Albada limiter:  𝒊𝒊𝒊𝒊 𝑟𝑟 > 0 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕:  𝐵𝐵𝑣𝑣𝑣𝑣(𝑟𝑟) = 𝑟𝑟(1 + 𝑟𝑟)/(1 + 𝑟𝑟2)  𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆:  𝐵𝐵𝑣𝑣𝑣𝑣(𝑟𝑟) = 0 615 

Minbee limiter:   𝒊𝒊𝒊𝒊 𝑟𝑟 > 0 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕:  𝐵𝐵𝑚𝑚𝑚𝑚(𝑟𝑟) = 𝑀𝑀𝑀𝑀𝑀𝑀(1, 𝑟𝑟)  𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆:  𝐵𝐵𝑚𝑚𝑚𝑚(𝑟𝑟) = 0 616 

           (1.9) 617 

 618 

Where 𝑟𝑟 is the ratio of upwind change to local change and is given by: 619 

 620 

𝑟𝑟𝐾𝐾 =
∆𝑞𝑞𝐾𝐾

𝑢𝑢𝑢𝑢𝑢𝑢

∆𝑞𝑞𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙
 ,𝐾𝐾 = 𝐿𝐿,𝑅𝑅,∗ 621 

           (1.10) 622 

∆𝑞𝑞𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑞𝑞𝐾𝐾,𝑖𝑖+1 − 𝑞𝑞𝐾𝐾,𝑖𝑖 623 

∆𝑞𝑞𝐾𝐾
𝑢𝑢𝑢𝑢𝑢𝑢 = �

𝑞𝑞𝐾𝐾,𝑖𝑖 − 𝑞𝑞𝐾𝐾,𝑖𝑖−1, 𝑖𝑖𝑖𝑖 𝑆𝑆𝐾𝐾 ≤ 0
𝑞𝑞𝐾𝐾,𝑖𝑖+2 − 𝑞𝑞𝐾𝐾,𝑖𝑖+1, 𝑖𝑖𝑖𝑖 𝑆𝑆𝐾𝐾 > 0 624 

 625 

For the left and the right non-linear waves the 𝑞𝑞𝐾𝐾 is chosen as the water depth and for the contact linear 626 

wave the 𝑞𝑞∗ is chosen as the tangential velocity. 627 

𝒊𝒊𝒊𝒊  𝐾𝐾 = 𝐿𝐿,𝑅𝑅  𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕:  𝑞𝑞𝐾𝐾 = ℎ  𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 𝒊𝒊𝒊𝒊  𝐾𝐾 = ∗  𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕:  𝑞𝑞∗ = 𝑣𝑣  628 

 629 

 630 
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The weights for the TVD WAF flux are given by: 631 

 632 

𝑤𝑤𝐿𝐿 = 0.5 ∙ �1 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐶𝐶𝐶𝐶𝐿𝐿)Ψ(𝑟𝑟𝐿𝐿 ,𝐶𝐶𝐶𝐶𝐿𝐿)� 633 

𝑤𝑤𝐿𝐿𝐿𝐿 = 0.5 ∙ �𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐶𝐶𝐶𝐶𝑅𝑅)Ψ(𝑟𝑟𝑅𝑅 ,𝐶𝐶𝐶𝐶𝑅𝑅) − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐶𝐶𝐶𝐶𝐿𝐿)Ψ(𝑟𝑟𝐿𝐿 ,𝐶𝐶𝐶𝐶𝐿𝐿)� 634 

𝑤𝑤𝑅𝑅 = 0.5 ∙ �1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐶𝐶𝐶𝐶𝑅𝑅)Ψ(𝑟𝑟𝑅𝑅 ,𝐶𝐶𝐶𝐶𝑅𝑅)� 635 

𝑤𝑤𝐿𝐿∗ = 0.5 ∙ �1 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐶𝐶𝐶𝐶∗)Ψ(𝑟𝑟∗,𝐶𝐶𝐶𝐶∗)� 636 

𝑤𝑤𝑅𝑅∗ = 0.5 ∙ �1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐶𝐶𝐶𝐶∗)Ψ(𝑟𝑟∗,𝐶𝐶𝐶𝐶∗)� 637 

           (1.11) 638 

 639 

The three components of the TVD WAF numerical flux 𝐟𝐟𝑘𝑘
𝑤𝑤𝑤𝑤𝑤𝑤 = �𝑓𝑓𝑘𝑘,1

𝑤𝑤𝑤𝑤𝑤𝑤 , 𝑓𝑓𝑘𝑘,2
𝑤𝑤𝑤𝑤𝑤𝑤 , 𝑓𝑓𝑘𝑘,3

𝑤𝑤𝑤𝑤𝑤𝑤�
𝑇𝑇

are given as 640 

follows: 641 

𝑓𝑓𝑘𝑘,1
𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑤𝑤𝐿𝐿𝑓𝑓1�𝑞𝑞1,𝐿𝐿� + 𝑤𝑤𝐿𝐿𝐿𝐿𝑓𝑓𝑘𝑘,1

𝑜𝑜𝑜𝑜ℎ + 𝑤𝑤𝑅𝑅𝑓𝑓1�𝑞𝑞1,𝑅𝑅� 642 

𝑓𝑓𝑘𝑘,2
𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑤𝑤𝐿𝐿𝑓𝑓2�𝑞𝑞2,𝐿𝐿� + 𝑤𝑤𝐿𝐿𝐿𝐿𝑓𝑓𝑘𝑘,2

𝑜𝑜𝑜𝑜ℎ + 𝑤𝑤𝑅𝑅𝑓𝑓2�𝑞𝑞2,𝑅𝑅� 643 

   if 𝑤𝑤𝐿𝐿∗ > 𝑤𝑤𝑅𝑅∗ then: 𝑓𝑓𝑘𝑘,3
𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑤𝑤𝐿𝐿∗𝑓𝑓𝑘𝑘,3

𝑜𝑜𝑜𝑜ℎ + 𝑤𝑤𝑅𝑅∗𝑣𝑣𝑅𝑅𝑓𝑓𝑘𝑘,1
𝑜𝑜𝑜𝑜ℎ 644 

else if 𝑤𝑤𝐿𝐿∗ < 𝑤𝑤𝑅𝑅∗ then: 𝑓𝑓𝑘𝑘,3
𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑤𝑤𝐿𝐿∗𝑣𝑣𝐿𝐿𝑓𝑓𝑘𝑘,1

𝑜𝑜𝑜𝑜ℎ + 𝑤𝑤𝑅𝑅∗𝑓𝑓𝑘𝑘,3
𝑜𝑜𝑜𝑜ℎ 645 

else if 𝑤𝑤𝐿𝐿∗ = 𝑤𝑤𝑅𝑅∗ then: 𝑓𝑓𝑘𝑘,3
𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑓𝑓𝑘𝑘,3

𝑜𝑜𝑜𝑜ℎ 646 

           (1.12) 647 

 648 

The steps required for the calculation of the TVD-WAF Generalised Osher-Solomon flux are given 649 

below: 650 

1. Use equation (1.6) to calculate the first order Generalised Osher-Solomon flux 651 

2. Use Algorithm 1.1 to calculate the wave speeds 652 

3. Use equations (1.7) to calculate the courant number (CN) for each wave 653 

4. Use equation (1.10) to calculate the ratio of upwind change to local change 654 

5. Use equations (1.8) and (1.9) to calculate the WAF flux limiter function 655 

6. Use equation (1.11) to calculate the weights 656 

7. Use equation (1.12) to calculate the TVD-WAF Generalised Osher-Solomon flux 657 

 658 

 659 

5.4 Bed slope source term approximation and well-balanced schemes 660 

 661 

An essential feature of a robust finite volume shock-capturing scheme is to be well-balanced (Greenberg 662 

and Leroux, 1996) or to satisfy the C-property (Bermúdez and Vázquez-Cendón, 1994). The upwind 663 

method (Bermúdez and Vázquez-Cendón, 1994; Garcia-Navarro and Vazquez-Cendon, 2000; 664 
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Vazquez-Cendon, 1999) and the hydrostatic reconstruction method (Audusse et al., 2004; Audusse and 665 

Bristeau, 2005) have been used for the construction of well-balanced, non-negative water depth 666 

schemes.  667 

 668 

In the hydrostatic reconstruction the left and the right water depth values at an interface between two 669 

cells are reconstructed as: 670 

 671 

ℎ𝐿𝐿𝐻𝐻𝐻𝐻 = max (0, ℎ𝐿𝐿 + 𝑧𝑧𝑏𝑏,𝐿𝐿 − 𝑧𝑧𝑏𝑏,𝐿𝐿𝐿𝐿) 672 

ℎ𝑅𝑅𝐻𝐻𝐻𝐻 = max (0, ℎ𝑅𝑅 + 𝑧𝑧𝑏𝑏,𝑅𝑅 − 𝑧𝑧𝑏𝑏,𝐿𝐿𝐿𝐿) 673 

 674 

Where 𝑧𝑧𝑏𝑏,𝐿𝐿 and 𝑧𝑧𝑏𝑏,𝑅𝑅 are the bed elevations of the cells on the left and right hand side of the interface; 675 

and 𝑧𝑧𝑏𝑏,𝐿𝐿𝐿𝐿 is the bed elevation at the interface and is given by: 𝑧𝑧𝑏𝑏,𝐿𝐿𝐿𝐿 = max (𝑧𝑧𝑏𝑏,𝐿𝐿 , 𝑧𝑧𝑏𝑏,𝑅𝑅). 676 

 677 

The bed slope is approximated as: 678 

 679 

𝐒𝐒�𝒐𝒐,𝑘𝑘 = �
0

𝑔𝑔/2�(ℎ𝑖𝑖,𝑘𝑘𝐻𝐻𝐻𝐻)2 − (ℎ𝑖𝑖)2�𝐧𝐧𝑘𝑘
� 680 

 681 

 682 

Where  ℎ𝑖𝑖,𝑘𝑘𝐻𝐻𝐻𝐻 is the hydrostatic reconstructed water depth at the  𝑘𝑘𝑡𝑡ℎ interface of the 𝑉𝑉𝑖𝑖 cell; 683 

ℎ𝑖𝑖 is the water depth of the 𝑉𝑉𝑖𝑖 cell; 𝐧𝐧𝑘𝑘  is the outward normal vector to the 𝑘𝑘𝑡𝑡ℎ edge of the cell. 684 

 685 

Details about the upwind method can be found in (Bermúdez and Vázquez-Cendón, 1994; Garcia-686 

Navarro and Vazquez-Cendon, 2000; Vazquez-Cendon, 1999).   687 

 688 

5.5 Infiltration source term 689 

 690 

The evaluation of the infiltration rate 𝐋𝐋𝑖𝑖 is based on the Green-Ampt method and estimates are needed 691 

for the hydraulic conductivity, the wetting front suction head and the porosity, for details see (Chow et 692 

al., 1988; Kutílek and Nielsen, 1994; Warrick, 2003). Some typical values of the infiltration parameters 693 

of the Green-Ampt model for different soils are presentenced in Table 1. For details, see Chow et al. 694 

(1988). The Green-Ampt infiltration equation is solved by the Newton–Raphson’s method. 695 

 696 

 697 

 698 

 699 



24 
 

 700 

Table 1 – Typical values for the Green-Ampt model parameters for different soils (from Chow et al. (1988)) 701 
 702 

Soil Porosity 

𝑛𝑛 

Effective 

porosity 

𝜃𝜃𝜃𝜃 

Soil suction 

head 

𝜓𝜓 (cm) 

Hydraulic 

conductivity 

𝐾𝐾 (cm/h) 

Sandy loam 0.453 0.412 11.01 1.09 

Loam 0.463 0.434 8.89 0.34 

Silt loam 0.501 0.486 16.68 0.65 

 703 

 704 

5.6 Stability condition 705 

 706 

The numerical scheme presented above is explicit and the time step is given by: 707 

 708 

∆𝑡𝑡 = 𝐶𝐶𝐶𝐶𝐶𝐶 ∙ min
𝑖𝑖∈ℤ

�
min(𝑑𝑑𝑑𝑑𝑖𝑖)

�𝑢𝑢𝑥𝑥,𝑖𝑖
2 + 𝑢𝑢𝑦𝑦,𝑖𝑖

2 �1/2 + (𝑔𝑔ℎ𝑖𝑖)1/2
� 709 

 710 

Where 𝑑𝑑𝑑𝑑𝑖𝑖 denotes the distance between the 𝑖𝑖𝑡𝑡ℎ cell and its neighbouring cells; and CFL is the Courant-711 

Friedrichs-Lewy condition and is set to:  𝐶𝐶𝐶𝐶𝐶𝐶 ≤ 0.5. 712 

 713 

 714 

5.7      Roof drainage algorithm 715 

 716 

The cells which are excluded from the overland flow domain are included in the ‘buildings’ layer of the 717 

model. The rain falling onto this layer is redistributed to the cells of the overland flow domain along 718 

the boundaries of the buildings.  If a roof storage is specified then the rain falling onto the buildings 719 

layer is accumulated until the water depth on the roof reaches the specified storage depth. Any further 720 

rainfall is redistributed to the neighbouring cells of the overland flow domain. 721 

 722 

The purpose of the roof storage algorithm is to enable assessment of the effect of potential rainwater 723 

harvesting policies could have on pluvial flooding. The algorithm used for the roof storage is very 724 

simple, however, more sophisticated algorithms for green and blue roofs are currently being developed 725 
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and tested. Additionally, the object-oriented structure facilitates an easy and efficient way to extend the 726 

algorithms and the functionality of the model.   727 

 728 

6 Case studies and validations 729 

 730 

Three case studies have been chosen to firstly validate the model and then illustrate the capabilities of 731 

CityCAT. The first case is a validation using an analytic solution of moving boundary shallow water 732 

flow in a parabolic bowl. The second case is a validation of the model using data from a physical model 733 

study of a dam-break.  The third, by contrast, is a real world case on a much larger domain with complex 734 

urban features and processes.  735 

 736 

6.1 Case 1 – Moving boundary shallow water flow in a parabolic bowl 737 

 738 

The moving boundary shallow water flow in a parabolic bowl with friction (Sampson et al., 2006) is 739 

used to assess the performance of the numerical solutions in tracking wet/dry interfaces. The analytical 740 

solutions for water depth and velocity are given by Thacker (1981) and Sampson et al. (2006). The fluid 741 

motion decays with time due to friction and finally converges to motionless steady state. The 742 

dimensions of the computational domain are: [−5000,5000] × [−5000,5000], which is divided into 743 

200 × 200 cells and the size of each cell is 50m.  The topography of the parabolic bowl is given by: 744 

 𝑧𝑧(𝑥𝑥,𝑦𝑦) =  ℎ0
𝛼𝛼2

(𝑥𝑥2 + 𝑦𝑦2)                 (1.13) 745 

Where: ℎ0 = 10𝑚𝑚 and  𝛼𝛼 = 3000𝑚𝑚 are constants 746 

 747 

The peak amplitude parameter is defined as: 748 

 𝑝𝑝 = �8𝑔𝑔ℎ0
𝛼𝛼2

  749 

If the friction parameter 𝜏𝜏 is smaller than the peak amplitude parameter then the analytical solution for 750 

the water free surface and the velocities 𝑉𝑉𝑥𝑥  𝑎𝑎𝑎𝑎𝑎𝑎 𝑉𝑉𝑦𝑦 are given by: 751 

 752 

𝜁𝜁(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = ℎ0 −
𝐵𝐵2𝑒𝑒−𝑡𝑡𝑡𝑡

2𝑔𝑔
− 𝐵𝐵𝑒𝑒−0.5𝑡𝑡𝑡𝑡

𝑔𝑔
[(0.5𝜏𝜏 sin 𝑠𝑠𝑠𝑠 + 𝑠𝑠 cos 𝑠𝑠𝑠𝑠 )𝑥𝑥 + (0.5𝜏𝜏 cos 𝑠𝑠𝑠𝑠 − 𝑠𝑠 sin 𝑠𝑠𝑠𝑠 )𝑦𝑦 ]         (1.14) 753 

𝑉𝑉𝑥𝑥(𝑡𝑡) = 𝐵𝐵𝑒𝑒−0.5𝑡𝑡𝑡𝑡 sin 𝑠𝑠𝑠𝑠                   (1.15) 754 

𝑉𝑉𝑦𝑦(𝑡𝑡) = −𝐵𝐵𝑒𝑒−0.5𝑡𝑡𝑡𝑡 cos 𝑠𝑠𝑠𝑠                  (1.16) 755 

Where 𝑠𝑠 = 0.5�𝑝𝑝2 − 𝜏𝜏2  and the chosen values for the constants 𝐵𝐵  𝑎𝑎𝑎𝑎𝑎𝑎 𝜏𝜏  are: 𝐵𝐵 = 5 𝑚𝑚𝑠𝑠−1and 𝜏𝜏 =756 

0.002 𝑠𝑠−1. 757 

 758 
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The initial conditions for the water depths (𝑡𝑡 = 0) are computed using equation (1.14) and the initial 759 

conditions for the velocity components are 𝑉𝑉𝑥𝑥(0) = 0 𝑚𝑚𝑠𝑠−1 and 𝑉𝑉𝑦𝑦(0) = −5 𝑚𝑚𝑠𝑠−1. The surface 760 

profiles at three times (𝑡𝑡1 = 672.8𝑠𝑠, 𝑡𝑡2 = 1345.6𝑠𝑠 , 𝑡𝑡3 = 5384.2) along the 𝑥𝑥 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 at 𝑦𝑦 = 25𝑚𝑚 are 761 

presented in Fig. 7. The computed solution is in very close agreement with the analytical solution and 762 

after almost four periods, it converges to a steady state motionless condition. The velocity time series 763 

for both components 𝑉𝑉𝑥𝑥  𝑎𝑎𝑎𝑎𝑎𝑎 𝑉𝑉𝑦𝑦 at (𝑥𝑥,𝑦𝑦) = (1200,25) are presented in Fig. 8 and there is good 764 

agreement between the analytical and the numerical values. 765 

 766 

 767 

 768 

 769 

 770 

 771 

 772 

 773 
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 774 

 775 

Figure 7. Water surface profiles along the x-axis at y=25m 776 

 777 

 778 

 779 

 780 

 781 
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 782 
 783 

Figure 8. Velocity time series for both components 𝑽𝑽𝒙𝒙 𝒂𝒂𝒂𝒂𝒂𝒂 𝑽𝑽𝒚𝒚  at (𝒙𝒙,𝒚𝒚) = (𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏,𝟐𝟐𝟐𝟐) 784 

 785 

 786 

6.2     Case 2 - Shock propagation and flow around obstacles 787 

 788 

This validation case, originates from the physical model developed at the Civil Engineering Laboratory 789 

of the Université Catholique de Louvain (Soares-Frazao and Zech, 2007). Measurements from the 790 

laboratory experiment supplied with the paper are used for validation of the modelling results here.  791 

The study involves a simple topography, a dam with a 1m wide opening, and an idealised representation 792 

of a single building downstream of the dam, see Fig. 9. Upstream from the dam the initial water depth 793 

is 0.4m and downstream is dry. The flow is contained by vertical walls at the boundaries of the domain. 794 

This case has previously been used in a benchmarking study carried out on behalf of the Environment 795 

Agency for England and Wales (Néelz and Pender, 2010; Néelz and Pender, 2013) where it is referred 796 

to as Test 6A. This is the only case in these studies which is based on real data, thus supporting 797 

validation, rather than hypothetical cases where only inter-model comparisons (i.e. benchmarking) can 798 

be achieved. This demanding case is increasingly used for testing new numerical schemes and has been 799 

selected to test the performance of CityCAT in modelling of dam-break flow conditions (i.e. shock-800 

capturing) and reproduction of trans-critical flow patterns around buildings. . This capability is not only 801 

crucial for flood modelling in cities, but is also  increasingly important as statutory obligations now 802 

exist in many countries for dam operators to publish reservoir flood-risk maps. 803 

 804 

The initial conditions and input data of the model are: 805 

       806 

• Initial depth: to the left of the gate 0.4m and to the right of the gate 0.00m 807 
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• All boundaries closed  808 

• Manning coefficient n=0.01 (uniform) 809 

• Model grid resolution 0.05m (144000 cells) 810 

 811 

 812 

 813 

 814 
Fig. 9   - Set-up for Example 2. (From Néelz and Pender (2013)). 815 

 816 
 817 

In Fig. 10, a sequence of 3D plots of water depths obtained by CityCAT is presented. The plots cover 818 

a duration of the first three seconds and they clearly show the expected pattern of dam-break wave 819 

propagation and flow around an obstacle.  820 

 821 
 822 
 823 
 824 
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 825 
 826 
 827 
 828 
 829 
 830 
 831 
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 832 
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 833 
Fig. 10    3D plots showing water depths following the dam break 834 

 835 
 836 
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 851 
 852 

Fig. 11.  Comparison of measured and simulated water depths and velocities at points G2 and G3 853 

 854 

Comparison of the simulated and measured water depths and velocities at points G2 and G3 are 855 

presented in Fig. 11. These two points were selected as they are the most challenging to model (Néelz 856 

and Pender, 2013). The initial supercritical flow and the hydraulic jump at point G2 are captured well 857 

by the model. However, the timing of the hydraulic jump was predicted a little later than measured. 858 

This is probably due to the resolution and the algorithm used to cut out the building from the numerical 859 

grid. The predicted velocities at point G2 in the x and y direction (𝑉𝑉𝑥𝑥 ,𝑉𝑉𝑦𝑦) are in good agreement with 860 

the measured ones. In addition, the model replicates well the water depths and velocities (𝑉𝑉𝑥𝑥 ,𝑉𝑉𝑦𝑦) at point 861 

G3. 862 

 863 

This example shows that CityCAT can accurately simulate dambreak wave propagation and complex 864 

flows around obstacles. This feature is very important in modelling urban environments using the 865 

“building hole” approach.  The results presented above are clearly superior to the results from other 866 

models reported in Néelz and Pender (2013), (Figures 4.25 and 4.26). 867 

 868 

 869 

6.3  Case 3 - Pluvial Flooding in an Urban Environment  870 

 871 

In order to test the performance of the CityCAT in a real urban environment,  a model was set up for 872 

the city centre of Newcastle upon Tyne, UK. The area of the domain is 4km2, the DEM resolution is 873 

1m and the number of cells is 4,000,000. The buildings and the permeable/impermeable surfaces were 874 

extracted from MasterMap, see Fig. 10.  A 30-minute duration rainfall event of 31.1 mm depth 875 
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corresponding to the 100 year event (or 1% Annual Exceedance Probability) with a summer rainfall 876 

profile following the FEH procedure (Hydrology, 1999) was applied as a uniform input over the whole 877 

domain (see Fig. 13). The Manning’s coefficient was set to 0.02 for the impermeable surfaces and 0.035 878 

for the permeable surfaces. 879 

                880 

 881 

  882 
Fig. 12 Mastermap®  data for a part of Newcastle upon Tyne city centre 883 

 884 

 885 

 886 
Fig. 13. Storm profile corresponding to a storm event of 30 minutes duration and 100 year return 887 

period 888 
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A water depth map at the end of the 30-minute simulation is shown in Fig. 14. The dark grey areas 889 

represent the buildings’ footprint and the light grey areas are the dry areas. The use of 1m2 cells enabled 890 

realistic representation of the buildings’ footprint and other features that influence the flow paths. The 891 

use of larger cells would have reduced the number of cells and the size of the model but this may cause 892 

blockages between buildings when they are separated by narrow alleyways. It should be noted that 893 

when larger cells are used then algorithms B or C might be more suitable for the generation of the 894 

numerical grid. 895 

  896 

 897 
Fig. 14.  Water depths over the whole modelled domain of 4km2 at the end of a 30 minutes rainfall 898 

event with 100 years return period - current situation 899 

 900 

 901 

The snapshot of water depths presented in Fig. 14 clearly identifies the flow paths which are very much 902 

influenced by the topography and the buildings.  It is possible to identify dual carriageway roads and 903 
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this shows that CityCAT is capable of modelling the influence of raised kerbs or other flow diverting 904 

measures provided a sufficiently detailed DEM is used. Another feature that can be observed at various 905 

locations in Fig. 14 is that water is trapped behind buildings where local topography directs the runoff 906 

towards a building. This is captured very well using the building hole approach. 907 

 908 

A more detailed water depth map at a particular 909 

area of the domain (Newgate Street and the 910 

surrounding area) is shown in Fig. 14 where it can 911 

be clearly identified how a building placed across 912 

a major natural flow path, creates a flooding 913 

hotspot. The photograph shown in Fig. 15 was 914 

taken at that location during the extreme rainfall 915 

event in Newcastle on 28.06.2012.  916 

 917 

Apart from the current configuration, three 918 

additional hypothetical scenarios have been 919 

modelled: 1) current configuration (Fig. 16); 2) all 920 

the surfaces are impermeable (Fig. 17); 3) all the 921 

surfaces are permeable (Fig. 18); and 4) current configuration with roof storage of 3 cm on all buildings 922 

(Fig. 19). While neither of these three hypothetical cases is realistic, they serve to show the model’s 923 

capabilities and illustrate how such changes would influence the extent of flooding, the water depths 924 

and the velocities in a pluvial event.  925 

 926 

In Fig 16, representing the current situation, it can be observed that at the end of the 30 minutes rainfall 927 

event of 100 years return period, the water depth at one particularly low spot reaches a depth of around 928 

2.0 metres. In the hypothetical scenario where all the surfaces are impermeable the water depths and 929 

the velocities are higher, see Fig. 17. The differences are more significant in the hypothetical scenario 930 

where all the surfaces are permeable, see Fig. 18. The maximum depth is around 1m and the velocities 931 

are considerably smaller. In the last hypothetical scenario where roof storage of 3cm is added to every 932 

building in the domain (Fig. 19) the reduction of water depths is significant and the velocities are also 933 

smaller.  934 

 935 

 936 

Fig. 15 Photograph from the Newgate Street, 
Newcastle during the flood on 28.6.2012 
(courtesy of Newcastle City Council) 
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 937 

Fig. 16. Water depths and velocities in central Newcastle upon Tyne  at the end of the 30 minutes rain 938 

event with 100 years return period - current configuration. 939 

 940 

 941 
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 942 

Fig. 17. Water depths and velocities in central Newcastle upon Tyne  at the end of the 30 minutes rain 943 

event with 100 years return period – hypothetical scenario: all surfaces impermeable. 944 

 945 

 946 
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 947 

Fig. 18. Water depths and velocities in central Newcastle upon Tyne  at the end of the 30 minutes rain 948 

event with 100 years return period – hypothetical scenario: all surfaces permeable. 949 

 950 
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 951 

Fig. 19. Water depths and velocities in central Newcastle upon Tyne  at the end of the 30 minutes rain 952 

event with 100 years return period – hypothetical scenario: current configuration with roof storage of 953 

3cm on all the buildings in the domain. 954 

 955 

This example shows the ability of CityCAT to model pluvial flood events over high resolution urban 956 

domains. Furthermore, it demonstrates the first use of a hydrodynamic model, resolving individual 957 

features and buildings, to assess the effect of specific interventions across a whole city domain.  958 

 959 

 960 

7 Conclusions 961 

 962 

CityCAT is a novel and unique software package in the field of flood modelling as it combines accurate 963 

numerical methods with advanced software architecture providing rapid and flexible set up without 964 

compromising accuracy. Combination of those two main properties results in a versatile package able 965 

to model complex flow situations such as propagation of shocks and flows over initially dry areas as 966 

well as to efficiently simulate flash floods over large urban domains generated using standard data sets, 967 
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additionally allowing alternative scenarios of urban fabric and green urban infrastructure to be 968 

efficiently trialled.  969 

 970 

The examples presented in this paper rigorously validate and illustrate CityCAT’s capabilities.   . 971 

Comparison with analytical solutions for moving-boundary shallow water flow in a parabolic bowl with 972 

friction assesses the performance of the numerical solutions in tracking wet/dry interfaces. Comparison 973 

with results from a laboratory experiment validates its ability to model dam-break situations with 974 

propagation of shocks around obstacles. The final example demonstrates its ability to model pluvial 975 

flood over extended urban areas and assess the influence of potential design interventions on local and 976 

large area urban flood risk.  977 

 978 

The efficiency at overall code and algorithm level also provides significant speed up enabling very large 979 

domains to be simulated at unprecedented resolution. The object oriented approach to numerics offers 980 

great advantages in the development of numerical code as the fully modular approach allows rapid 981 

extension of functionality, through implementation of changes to appropriate computational objects and 982 

avoidance of “if-then-else” statements improves computational efficiency. 983 

 984 

Furthermore, the separation of buildings from the flow domain, and their treatment as computational 985 

objects, allows for the first time the possibility of varying their permeability and storage attributes. This 986 

then leads to a new era of urban drainage design with the exciting prospect of using a fully specified 987 

and accurate hydrodynamic code in “design” mode, where multiple options for flood adaptation features 988 

such as roof storage, surface flow routeing and permeable surfaces can be assessed.  989 

 990 
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