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Abstract

Most geographical agent-based models simulate agents through custom-made decision-making algorithms.
This makes it difficult to assess which results are general and which are contingent on the algorithm’s details.
We present a set of general algorithms, applicable in any agent-based model for choosing repeatedly from a
set of alternatives. We showcase each in the same fishery agent-based model and rank their performance
under various scenarios. While complicated algorithms tend to perform better, too much sophistication
lowers performance. Further, while some algorithms perform well under all scenarios, others are optimal only
in specific circumstances. It is therefore impossible to produce a single, unequivocal performance ranking
even for simple general algorithms. We advocate then a heuristic zoo approach where multiple algorithms
are implemented in the same model; this allows us to identify its best algorithm and test sensitivity to
misspecifications of the decision-making component.

Highlights

• We describe 13 model-free decision algorithms for geographical agent-based models
• Agents in geographical agent-based models often are multi-armed bandits variants
• Theoretical worst case regret is not a good indicator of agent performance
• Some algorithms perform well in general, some only in special conditions
• Imitation and information sharing may reduce overall performance
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Software availability section

The library containing all the algorithms, discrete-choosers, is open-source under MIT license and available
on this repository. It is coded in pure Java.

The POSEIDON fisheries simulator, including its implementation of the algorithms, is open-source (GPL-3
license) and available on its repository. POSEIDON is implemented in Java through MASON (Luke et al.
2005).
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David and Lucile Packard Foundation, the Gordon and Betty Moore Foundation, the Walton Family Foundation, and Ocean
Conservancy.
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1 Introduction

1.1 Research agenda

There are many agent-based models of fisheries, each deploying its own highly specialized decision algorithm
to simulate its fishers. This creates many contingent results with no hope of general insights; O’Sullivan et al.
(2016) calls this the YAAWN syndrome: “Yet Another Agent-based model, Whatever Never-mind”. We want
instead to find a single, simple adaptation strategy that explains the behaviour of fishers across the world. If
that is not possible, we would like to isolate the smallest number of adaptation strategies, each optimal under
specific environmental conditions. Eventually we would like to extend this strategy-environment mapping to
all geographical exploitation problems.

This research programme involves two phases. First, we need to to list and compare candidate decision
algorithms and measure their performance in theoretical scenarios. Second, we need to bring these hypotheses
to the field and test their presence with real data and interviews. This paper focuses on the first phase of the
programme.

If we ignore the idea of fishers as perfectly rational, perfectly informed profit maximization automata we
need to grapple with the Anna Karenina principle of adaptive behaviour: every adaptive agent is adaptive
in its own way. There are then many possible decision algorithms to compare. We are left then with the
task of building a heuristics zoo: implement all algorithms within the same model to test their strengths and
weaknesses ceteris paribus.

A by-product of this effort is a library of ready-made adaptive algorithms that other agent-based models can
use. Our hope is that they will elucidate similar broad patterns as the ones we identify here in fisheries.

1.2 General-purpose algorithms

We present a set of decision-making algorithms usable in any geographical agent-based model. These
algorithms maximize the utility of agents making repeated, discrete, geographical choices. These algorithms
require little model knowledge as they proceed by trial and error.

The algorithms, listed in table 1, are particularly useful in simulating exploitation of natural resources in a
coupled human-environment model. Agents, be they grazers, foragers, fishers or loggers need to continuously
decide where to exploit next. They do not know which areas are more bountiful and need to explore constantly
to improve their profits.

We use the agent-based fishing model POSEIDON to showcase each algorithm. Fishing is a good test bench
as it involves multiple competing agents, a large space to explore, a common-pool resource and unknown
biological dynamics. We tried however to present each algorithm independently of its fishery implementation
to foster their reuse (Bell et al. 2015; Groeneveld et al. 2017).

We use the multi-armed bandit problem as a framing device. Most of the algorithms presented are not bandit
algorithms per se but they can be understood as extensions that deal with bandit algorithms weaknesses.

Table 1: Table containing all the algorithms described in the paper,
including a brief description of their memory size, how much imi-
tation they use, whether or not they use any statistical algorithm
and in which section they are introduced

Algorithm Name
Algorithm
Type Memory Imitation

Statistical
Algorithm Paper Section

ε-greedy Bandit
Algorithm

Coarse Matrix None None 2.1.1

SOFTMAX Bandit
Algorithm

Coarse Matrix None None 2.1.2

2
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Algorithm Name
Algorithm
Type Memory Imitation

Statistical
Algorithm Paper Section

UCB 1 Bandit
Algorithm

Coarse Matrix None None 2.1.3

Gravitational
Search

Imitative
Algorithm

Only current
position

Extreme None 2.2.1

Particle Swarm
Optimization

Imitative
Algorithm

Only current
position

High None 2.2.2

Explore-Exploit-
Imitate

Imitative
Algorithm

Current and
previous position

Medium None 2.2.3

Social Annealing Imitative
Algorithm

Current and
previous position

Low None 2.2.4

Nearest Neighbour Heatmap
Algorithm

All previous
positions

Medium Nearest
Neighbour

2.3.1

Kernel Regression Heatmap
Algorithm

Last 100 positions Medium RBF or EPA
regression

2.3.2

Kernel
Transduction

Heatmap
Algorithm

All previous
positions

Medium RBF or EPA
regression

2.3.3

Kalman Filter Heatmap
Algorithm

All previous
positions

Medium Gaussian
Kalman

2.3.4

GWR Heatmap
Algorithm

All previous
positions

Medium LOESS
through
Kalman

2.3.5

Ad-hoc Heatmap
Algorithm

All previous
positions

Medium Bayes Rule 2.3.6

1.3 The bandit problem as geographical exploitation

In the multi-armed bandit problem (Bubeck and Cesa-Bianchi 2012; Kuleshov and Precup 2014; Vermorel
and Mohri 2005) a player faces K slot machines. Each slot machine dispenses a random reward drawn from a
distribution unknown to the player. The objective is to make the most amount of money. The multi-armed
bandit problem encapsulates the trade-off between exploration and exploitation: the player would like to play
only the best slot machine but needs to find it first.

We can often model decisions in a geographical agent-based model as a multi-armed bandit problem. For
example in the case of fisheries we can consider each fishing spot as a “slot machine”, the fisher having to
balance exploring new fishing spots versus exploiting known ones.

Bandit algorithms are heuristics designed to deal with multi-armed bandit problems. The advantage of bandit
algorithms is being model-free: they make no assumption on how rewards are generated. These decision
algorithms adapt to incentives, work with little knowledge of the world, are easy to code and perform well
even when the reward structure changes over time. We cover them in detail in section 2.1.

Computer science examines bandit algorithms’ regret: the difference between the algorithm’s rewards and
those achieved with perfect knowledge. Computer science often focuses on the growth of worst-case regret
with respect to time. When regret grows slowly it means that the algorithm eventually plays optimally
after some exploration. Regret grows logarithmically in the best algorithms. Regret grows linearly when the
algorithm never settles into optimal performance.

However regret is not necessarily a good indicator of performance in an agent-based model. To myopic agents,
eventually finding the best slot machine is often less important than quickly finding a “good” one (that is,
we are usually more interested in satisficing performance as in Simon and Feldman 1959). As an extreme
example, an agent able to isolate the top 2 slot machines out of millions is intuitively very efficient but its
regret scales linearly nonetheless due to its inability to ever choose the best one(Silver 2015).
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A more pertinent observation on regret is that it grows linearly with K, the number of slot machines (Auer,
Cesa-bianchi, and Fischer 2002; Rusmevichientong and Tsitsiklis 2010). Kuleshov and Precup (2014) (p.9)
mentions that tasks with K > 50 “are difficult for all algorithms”. This failure to scale with the number of
options justifies the other algorithms in this paper.

Bandit algorithms scale poorly because as the number of slot machine increases, exploration weakens. We
minimize regret by picking the best slot machine but to find it we need to explore the entire slot machine
space. Since we can only explore one slot machine at a time, knowledge about relative strengths grows slowly
when K is large.

There are two ways to strengthen exploration. First, we can “parallelize” it: exploring multiple slot-machines
each time step. This is possible in agent-based models where multiple players are present and may share
their exploration results. We do this in section 2.2. Second, we can “add structure” by assuming some
interdependency between reward distributions (Caron et al. 2012). This way playing one slot machine
reveals something about other slot machines similar to it. This is a straightforward assumption to make in a
geographical model. We do this in section 2.3. We provide ways to tune the parameters of each algorithm in
the appendix.

1.4 Literature review

The most famous agent-based model with geographical exploitation of resources is surely Sugarscape (Epstein
and Axtell 1996). In it, agents extract sugar from a grid cell to survive, reproduce and trade. It was
a particularly influential example for how to simulate the exploitation of hidden geographical resources.
Sugarscape agents have perfect local vision: they know everything in a radius around them but nothing else.
They exploit by moving greedily towards the neighbouring cell with the most sugar.

Perfect local vision and greedy exploitation is a very common assumption in agent-based models of foragers
(Pepper and Smuts 2000; Nonaka and Holme 2007) and it makes sense if we assume that agents can only
exploit nearby areas and cannot afford any exploration. When simulating common-pool resources, however,
it is usually the case that the entirety of the common is available for exploitation but that the precise
distribution of its resources is unknown. Under these conditions purposeful exploration becomes necessary.

Bandit algorithms are often used when studying exploration in agent-based models although they are not
cited as such. For example the fixed exploration-exploitation ratios in Kunz (2011) model are precisely the
ε-greedy algorithm we describe in section 2.1.1. SOFTMAX, which we describe in section 2.1.2, powers the
foragers in Roberts and Goldstone (2006), and in Satake et al. (2007) forestry managers use SOFTMAX
to decide what to harvest (this paper, however, is more nuanced as it adds long-term considerations to the
utility function).

Marcoul and Weninger (2008) is the first and only fisheries paper to model fishers as solving a multi-armed
bandit problem. The model however is equation-based and since it focuses on optimal behaviour alone it is
afflicted by the curse of dimensionality: the model has only one fisher choosing between three cells over a two
periods lifetime.

Schlag (1998) developed first the idea of using imitation to improve bandit algorithms, which we explore in
section 2.2. This influential paper led to empirical results like the algorithm tournament in Rendell et al.
(2010). In this tournament, algorithms could use any combination of imitation and exploration to maximize
unknown fitness functions and imitation-only algorithms did better overall. Boero et al. (2010) start their
empirically grounded agents as ε-greedy bandits but then provide them “hints” about better options, and
study how these hints lead to decision changes. The main issue with this literature is that it focuses only on
the positive side of imitation: copying people making better choices is often faster than discovering those
choices on one’s own. However imitation has also a social cost when it comes to common-pool resources as it
leads to congestion (many agents competing over resources at a single location) and faster depletion.

The social costs of imitation are better represented in fisheries models. Cabral et al. (2010) show how a large
population of imitators fail to exploit properly a geographical resource compared to a smaller population of
fishers acting randomly. Little and McDonald (2007) show how social networks and imitation can reduce
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overall efficiency when there is little environmental noise. Imitation often leads to worse outcomes in our
paper as well.

Little and McDonald (2007) are also a precursor (together with Dorn 2001) in the use of Kalman filters (see
Faragher 2012 for an introduction) within agent-based models. We don’t know of any other agent-based
simulation using these methods. They are common enough in the data analysis that informs and tests models
but the agents themselves are never implemented using these regressions. We believe it is simply due to the
iterative versions of these estimators not being as well known as their batch counterparts (which are too
unwieldy to be used in models directly). Agents using Kalman filters are so far exclusively the domain of
“learning” agents in equation-based economic models (Evans and Honkapohja 2001). One notable application,
albeit not agent-based model related, in the fisheries literature is Boettiger, Mangel, and Munch (2015) where
a non-parametric estimator is used by a policy-maker to forecast biological dynamics. This estimator however
creates dimensionality problems of its own and is unusable in an agent-based model.

Wu et al. (2017) is a recent application of statistical algorithms in human experiments of geographical
exploitation. Much like this paper, the authors compare simple heuristics against more complicated statistical
algorithms like the ones we present in section 2.3. We differ in practicalities: the gaussian process methods
used in Wu et al. (2017) are not recursive and are too inefficient to use within agent-based models. Hutniczak
and Münch (2018) is another example of non-recursive statistical methods to simulate information gathered
through fishing (in this case, within a random utility model analysis).

The idea of implementing multiple decision making algorithms to test them is old. The Axelrod (1980)
tournament crowned TIT-FOR-TAT as the victor amongst 14 competitors. Similarly, Fowler and Laver
(2008) organized a competition for simulated political parties in which 29 algorithms participated. Sometimes
comparisons are between radically different decision algorithms, such as between adaptive and non-adaptive
farmers in Lansing and Kremer (1993). Other times they are between different parametrizations of the same
general model, as for example between different aspiration levels in Gotts and Polhill (2009). The key of
these comparisons for agent-based models is less on finding the “best” algorithm and more about the overall
systemic effect that emerges from changes in individual heuristics (as in Polhill, Gotts, and Law 2001).

1.5 POSEIDON

All the algorithms we describe here have been implemented both as part of the POSEIDON agent-based
model and as a standalone library discrete-choosers. POSEIDON simulates the fishery: its biological
environment, geography, markets, boats and policies. Bailey et al. (2018) describes the model and its rules1.

In all simulations a grid of ocean cells are available for the agents to fish in. Each trip, each agent picks
one cell where to fish. This decision is made independently from all other agents (although some decision
algorithms may have access to some knowledge about the competition). Each agent knows nothing of the
amount of fish available or the underlying biological model.

While POSEIDON can be very complex, the simulations in this paper all occur in a very simplified setting.
There is never any fishing regulation, no entry or exit of other boats and no biological stressors except for
fishing mortality. Each agent, for each hour spent fishing, collects a linear percentage of available biomass:

Hourly Catch = q ∗Available Biomass (1)

Where q is the catchability coefficient. All simulation parameters are described in the appendix.
1An ODD+D description of the model is available at [http://carrknight.github.io/poseidon/odd.html].
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2 Algorithms

2.1 Classic bandit algorithms

In this section we introduce three classic bandit algorithms: ε-greedy, the upper-confidence bound (UCB1)
and SOFTMAX. They each stand out for a reason: ε-greedy is the easiest to understand, UCB1 is proven to
have optimal regret, while the SOFTMAX algorithm takes decisions as a random utility choice model.

We test these algorithms in POSEIDON where fishers face slot machines (fishing spots) distributed in a 50 by
50 grid map. We test two variants of each algorithm. In the first variant the bandit algorithm has to choose
directly one of 2500 fishing spots. This variant makes no assumption on reward structure: each slot machine’s
payout is assumed independent of all the others. In the second variant we discretize the map coarsely into 9
parent cells; the bandit algorithm picks one parent and the actual fishing occurs at a random child fishing
spot.

Discretization is a rudimentary way to “add structure” to the model. Adding structure (assuming rewards
are not all independently distributed) makes sense in geographical models as we expect rewards of two close
slot machines to be similar. The easiest way to define two slot machines as “close” is that they share parent
cell. The two weaknesses of discretization are that it ignores the difference in rewards between slot machines
belonging to the same parent and that it assumes large discontinuities between slot machines that are on the
border between two parents.

Discretization is a simplification of the dependent bandits literature(Pandey, Chakrabarti, and Agarwal 2007).
In it each slot machine is part of a cluster. Dependent bandits assume that slot machines all have different
reward distributions whose parameters are drawn from a second distribution defined by their cluster. This
means that playing one slot machine gives us some, but not all, information on the reward of other slot
machines in the cluster. A simple, albeit non-optimal, strategy for these kind of problems is to use a recursive
bandit algorithm: one bandit algorithm to choose the cluster, and then a second algorithm to pick among the
children cells. For the POSEIDON implementation however bandit algorithms pick only the parent cell while
the child is chosen at random.

Discretization is commonplace in fisheries as for example the agent-based models in Scott (2016), Soulié and
Thébaud (2006) and Yu et al. (2012). While often geographical in nature, a map can be gridded according to
other contours (Hynes et al. 2016 splits the map according to habitat conditions for example).

2.1.1 ε-greedy algorithm

The ε-greedy algorithm is the simplest bandit algorithm and tends to perform relatively well. Assuming K
options available, algorithm 1 is a pseudocode implementation of the algorithm.

Algorithm 1 ε-greedy implementation
means[1, . . . ,K]← 0 {Keep track of average reward for each arm}
while game is not over do
random ∼ U [0, 1]
if random < ε then {with probability ε, explore}
play arm randomly between 1 and K

else {otherwise exploit}
play arm with highest mean
reward← play(arm)
update means[arm] with reward

end if
end while

More succinctly: each step with ε probability try a slot machine at random (exploration) otherwise pick the
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Figure 1: Animation showing a set of 100 fishers, each using a discretized epsilon-greedy decision algorithm

slot machine with the highest empirical mean (exploitation). In this paper the empirical mean is stored as an
exponential moving average rather than an arithmetic one to weigh new observations more.

Figure 1 shows its implementation in POSEIDON. We split the map into a 3 by 3 parent grid (the grey lines
representing the borders). The bandit algorithm picks the parent cell and then the boat targets a random
child cell. Areas turn red as they are fished, the redder the more targeted they are. Quickly the agents learn
to fish first near port and then move out as that area is consumed. The discretization is visible by the way
agents stick to the parent cell selection. Unrealistic but quite effective.

This algorithm depends on 2 parameters. The exploration rate ε and the exponential moving average weight
α. When discretized, the number of parent areas is also a parameter.

2.1.2 SOFTMAX

The softmax algorithm works stochastically by choosing each slot machine i with probability

pi = eµi∑K
j=1 e

µj
(2)

where µi is the empirical mean reward obtained from previous games with slot machine i. Algorithm 2 shows
a possible pseudo-code implementation.

Figure 2 shows the SOFTMAX algorithm implemented in POSEIDON. Each boat acts independently over
the same 3 by 3 parent grid as in the ε-greedy example. The dynamic generated is similar to the other
bandit algorithms: agents converge to fishing near port although the convergence is slower for the SOFTMAX
algorithm.

This algorithm depends on 1 parameter: the exponential moving average weight α.
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Algorithm 2 SOFTMAX implementation
means[1, . . . ,K]← 0 {Keep track of average reward for each arm}
while game is not over do
for i = 0 to K do
probabilities[i]← emeans[i]

end for
for i = 0 to K do
probabilities[i]← probabilities[i]∑

probabilities
{normalize probabilities vector so that it sums to 1}

end for
pick arm to play at random with probability equal to probabilities[i]
reward← play(arm)
update means[arm] with reward

end while

Figure 2: Animation showing a set of 100 fishers, each using a discretized SOFTMAX decision algorithm

8
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2.1.3 Upper confidence bound

A slightly more complicated algorithm, the UCB1 keeps track not only of empirical means but also of
confidence intervals. Rather than picking the option with the highest mean, it picks the one with the highest
confidence bound.
This allows for the trade-off between exploration and exploitation to be decided by empirical uncertainty rather
than the exogenous ε parameter. Because the size of the confidence interval is an indicator of uncertainty,
UCB1 focuses its exploration on the least known options until sure they are no better than the current best.

To make a concrete example imagine having to choose between two slot-machines, A or B. You think
slot-machine A returns a mean reward of 10± 1 (where the confidence interval depends on your uncertainty
regarding the true mean return). You think slot-machine B returns a mean reward of 5± 10. Even though
slot-machine A seems to have a better mean reward, UCB1 will pick slot machine B because its mean has a
higher upper confidence bound (15 versus 11). Playing slot machine B will reduce its uncertainty, shrinking
its confidence interval until either the mean of B is revalued higher or its upper confidence bound is below
that of slot machine A.

Algorithm 3 shows a simple pseudo-code implementation of UCB1. The algorithm requires reward to be
normalized from 0 to 1 unlike ε-greedy and SOFTMAX.

Algorithm 3 UCB1 implementation
means[1, . . . ,K]← 0 {Keep track of average reward for each arm}
ns[1, . . . ,K]← 0 {Keep track of how many times each arm was played}
t← 0 {Keep track of how many games have been played}
for i = 0 to K do {first play one game for each possible option}
reward← play(arm)
update means[arm] with reward
ns[arm]← ns[arm] + 1
t← t+ 1

end for
while game is not over do
for i = 0 to K do
UB[i]← means[i] +

√
2∗log(t)
ns[x] {compute upper bound for each arm}

end for
pick arm with highest UB
reward← play(arm)
update means[arm] with reward
ns[arm]← ns[arm] + 1
t← t+ 1

end while

In figure 3 we show the UCB1 algorithm implemented in POSEIDON. Again boats face the same 3 by 3
parent grid. The UCB1 algorithm goes through a longer initialization phase as agents often prefer to fish far
from port in order to make sure that option is not as good as fishing near port. Eventually however agents
do converge to fishing very near port.

This algorithm depends on 3 parameter: the exponential moving average weight α and the maximum and
minimum rewards x̄, x to normalize each observation between 0 and 1.

UCB1 has optimal logarithmic regret bounds(Auer, Cesa-bianchi, and Fischer 2002) compared to ε-greedy’s
linear regret. In all POSEIDON applications however UCB1 will perform worse. This shows that theoretical
regret is not a good indicator of performance in agent-based models. Kuleshov and Precup (2014) also notes
that UCB1 often takes a large number of trials before finding a high-reward slot machine. This long learning
period, coupled with fishing spots whose quality changes over time, ruins the performance of the theoretically
superior UCB1 in POSEIDON.
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Figure 3: Animation showing a set of 100 fishers, each using a discretized UCB1 decision algorithm

2.2 Parallel exploration : imitating agents

Sampling a single slot machine achieves little when there are many to explore. We can improve by sampling
many slot machines at each step. In agent-based models this is possible when agents share information about
their rewards with others.

In fisheries the impossibility using experience alone to learn and the need to share exploration results with
others is well known; as Morton (2005) states (as cited in Holland and Sutinen (2000)):

The ocean is a very large, complex and rapidly changing environment. No individual fishermen
acting alone could hope to acquire the experience necessary to establish the regularity or pre-
dictability required for its successful exploitation. This means that knowledge of the ocean must
be acquired and exchanged by a large number of individuals.

There are however three problems with information sharing. First, while sharing knowledge might increase
fishery-wide efficiency, these agents are competitors and they might be unwilling to help each other. Wilson
himself mentions that “exchange [of] information creates conflicting incentives”.
Second, imitation is easier when agents are homogeneous. When agents differ in skills or equipments
information must be harmonized first. Third, too much imitation works poorly when the system is dynamic
and punishes congestion. Too many boats exploiting the same fishing ground might deplete it.

Once we allow for information sharing it is relatively simple for agents to play large bandit problems. We
present here four algorithms in decreasing order of required information. In our fishery model, algorithms
that share too much perform worse.

10
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2.2.1 Gravitational Search

The Gravitational Search Algorithm (Rashedi, Nezamabadi-pour, and Saryazdi 2009) assumes that agents
move towards one another as if planets pulled by gravitational forces. The profits made by each agent
represent their “planetary mass”. Players earning more will pull the others towards them, while those earning
less will move faster as if encumbered by less inertia. This framework assumes that each player knows the
slot machine used and the profits made by everyone else at all times.

A possible implementation in pseudo-code that an agent would use follows in algorithm 4.

Algorithm 4 Gravitational search implementation
velocity← velocity0
while game is not over do
for player = 0 to N do {turn all other players’ rewards into masses}
mass[player]← profits[player]−min(profits)

max(profits)−min(profits) {peek at everyone’s profits and normalize them}
end for
select the top Z masses
acceleration← 0
for all i such that masses[i] is one of the top Z masses do
acceleration← acceleration +G ∗ masses[here]∗masses[i]

distance(here,i)) {selective gravitational pull}
end for
ε ∼ U [0, 1] {Draw random inertia}
velocity← ε · velocity + accelleration
position = position + velocity
play position

end while

This algorithm performs poorly in POSEIDON. Too much information is shared with too many competitors.
Agents using this algorithm quickly converge to a single spot. This spot starts optimal but quickly deteriorates
as too many agents exploit it. Slowly agents move towards neighbouring spots depleting each in turn. Many
trips are wasted on spots that have just been depleted by competitors. A sample run is shown in figure 4.

The Gravitational Search Algorithm depends on 3 parameters. The parameter Z describing the number of
most profitable competitors to imitate,the initial speed velocity0 and the gravitational constant G.

2.2.2 Particle Swarm Optimisation

Particle Swarm Optimisation(Kennedy and Eberhart 2001) is a widely used “swarm intelligence” algorithm.
While nowadays popular for engineering applications (due to its parallelizable nature) it was originally
developed(Kennedy and Eberhart 1995) to simulate birds finding the “best” part of the cornfield to forage
through imitation.

Like gravitational search, this method involves agents pulling each other. Unlike gravitational search, the
amount of information available to agents is lower: everybody knows the profitability of only two other
random agents. This rudimentary social network limits agents’ imitation and prevents the race to a single
spot the gravitational search algorithm produced. A second element of this algorithm is that each agent is
pulled not just by his connections but also by the best memory it has. This means that an agent is less willing
to follow others if he recently played a good slot machine. Algorithm 5 shows a pseudo-code representation.

This algorithm also performs poorly in POSEIDON. The algorithm is not designed for objective functions
that change over time. Dynamic variants do exist(Blackwell and Branke 2006; Blackwell 2007) but they
are hard to recast as individual decisions in an agent-based model. Following memories also lead to poor
performance in a fishery scenario as it disincentivises exploration.
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Figure 4: Animation showing a set of 100 fishers, each using gravitational search

Algorithm 5 Particle swarm optimization
velocity← 0
while game is not over do
positionf is the position of your most profitable friend
positionm is the position of the slot machine you have observed being most profitable
α̂ ∼ U(0, α)
β̂ ∼ U(0, β)
ε̂ ∼ U(−ε, ε)
velocity← velocity · inertia + α̂ · distance(here,positionf ) + β̂ · distance(here,positionm)
position = position + velocity
play position

end while

12
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Figure 5: Animation showing a set of 100 fishers, each using a particle swarm algorithm

A sample run is shown in figure 5. Notice how the agents do not converge to the same spot as with gravitational
search but rather fish near port and explore little beyond it.

This implementation of Particle Swarm Optimisation depends on 4 parameters. The inertia applied to speed
inertia, the weights α and β applied to friend and memory observations plus the distribution of random
velocity shock described in the pseudo-code as ε.

2.2.3 Explore-Exploit-Imitate

The explore-exploit-imitate algorithm is the default decision making in POSEIDON. It uses the same amount
of information as the particle swarm optimization (a small social network) but abandons the idea of agents
pulling each other. Agents directly copy their competitors’ positions instead. It is effectively a beam
hill-climber(Russell and Norvig 2010, vol. 140, chap. 3) with inertia. When imitating, the behaviour is
similar to the “cartesian” agent in Cabral et al. (2010) and in Allen and McGlade (1986). When exploring,
the algorithm acts like the ε-greedy algorithm described in section 2.1.1.

With probability ε the agent explores a new slot machine. If not exploring the agent plays the slot machine
of her most profitable “friend” (imitation). If the agent is doing better than her friends, she plays the slot
machine she played before (exploitation). Algorithm 6 describes explore-exploit-imitate in pseudocode.

Explore-exploit-imitate performs well in POSEIDON. While it uses information about competitors more
aggressively (by copying them directly), it has a very small memory (keeping track of only the last spot
visited) which is helpful in nudging the fisher towards exploring more.

A sample run of this algorithm in POSEIDON is shown in figure 6. The figure also shows the biomass left at
each location to prove that the agents start by consuming fish near port and then progressively move further
out in an efficient “fishing front”.
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Algorithm 6 Explore-Exploit-Imitate
while game is not over do
if random < ε then {with probability ε, explore}
δ̂ ∼ U [−δ, δ]
position← position + δ̂ {explore by shocking your position by δ}

else
profitsf are the profits made by your most profitable friend
profitsme are the profits just made by this agent
if profitsf > profitsme then
copy friend location

else
stay at current location

end if
end if

end while

Figure 6: Animation showing a set of 100 fishers, each using explore-exploit-imitate. Latter frames show the
biomass remaining in each cell (the lighter the color the more depleted the cell is)
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Explore-exploit-imitate depends on 2 parameters. The exploration rate ε and the exploration range δ.

2.2.4 Social annealing

This algorithm uses the least amount of information. Agents know only the average fishery-wide reward
earned the previous step. Whenever an agent is doing worse than average, she explores. Otherwise she
exploits her current slot machine. Functionally this is an implementation of the reservation utility introduced
by Caplin, Dean, and Martin (2011) to simulate satisficing agents where the threshold is the average profit
level of the fishery. To the best of our knowledge this algorithm was first implemented in fisheries by Beecham
and Engelhard (2007); a multiple threshold version of it appears in Cenek and Franklin (2017).
Algorithm 7 shows a pseudocode implementation of the social annealing agent.

Algorithm 7 Social Annealing
while game is not over do
profitsa is the current average profits in the fishery
if profitsa > profitsme then {explore if you are making less than average}
δ̂ ∼ U [−δ, δ]
position← position + δ̂ {explore by shocking your position by δ}

else
stay at current location

end if
end while

In POSEIDON social annealing performs well for certain scenarios but is sometimes hampered by the lack
of direct imitation. The reason it works well in most cases, in fact outperforming other algorithms, is that
rarely too many boats fish the same spot. It performs poorly however when the high profitability areas are
rare in which case imitation would have helped the agent discover the right slot machines faster than blind
exploration.

Figure 7 shows a sample POSEIDON run where fishers use social annealing. The aggregate dynamic generated
by the individual fishers is similar to the one generated by explore-exploit-imitate.

Social annealing depends on a single parameter: the exploration range δ.

2.3 Discovering structures: heatmap agents

We defined “structure” in a bandit problem as the interdependency between slot machines’ rewards. In section
2.1 we sometimes assumed a discretized reward structure. In this section we let agents discover structure on
their own. Statistically this is a regression problem and it generates a “heatmap” of expected rewards across
the slot machine space.

The key implementation issue of regressions in agent-based models is that observations and predictions are
interleaved. Agents play one slot machine (observation), draw a new reward heatmap (prediction) and use it
to decide what to play next (observation). This behaviour constrains the kind of algorithms agents can use:
batch regressions (like ordinary least squares or Kriging) are too slow.

We focus on regression methods that are iterative (sometimes called on-line or recursive regressions). We
catalogue the computational cost of each algorithm by their time complexity when observing and when
predicting. In general there is a trade-off between smoothness of the heatmap and the computational cost of
modelling it.

Another reason to keep regression methods iterative is the need for forgetting. Newer data needs to be
weighted more and iterative methods are a natural way of doing so. Forgetting is crucial in POSEIDON as
fishers deplete the areas they tow and need to feature this in their prediction.
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Figure 7: Animation showing a set of 100 fishers, each using social annealing.

The key assumption made by all the following algorithms is that the closer two slot machines are the closer
their rewards. This way observing one slot machine will reveal the quality of all other slot machines “close” to
it. This is the geographical version of the more general “contextual bandit” problem (Li et al. 2010; Agarwal
et al. 2014).

In practice, geographical problems often involve close options that are related to one another. This is
the “first law of geography” (Tobler 1970). Fisheries discrete choice models similarly observe a “spatial
autocorrelation ripple effect” where displaced effort distributes itself along neighbouring cells (Wilen et al.
2002; Hynes et al. 2016). Intuitively this assumed autocorrelation can be misleading when fish aggregate in
small, fast-moving shoals yet we will show in section 3.4 that this assumption will perform adequately even
under such circumstances.

While distance in POSEIDON is geographical, we can extend its application to other domains by focusing on
a factored representation of the slot machine space. For each slot machine we extract F features: numerical
values associated with the slot machine. We then assume that the distance between slot machines is the sum
of the distance of their features. Given slot machine a and b and their features f1(·), f2(·), . . . , fF (·) their
distance is:

d(a, b) =
F∑
i

d(fi(a), fi(b)) (3)

In POSEIDON these features are the coordinates of the fishing spot, but they could include habitat,
temperature, etc.

Features are powerful but they are an inherent weakness of the approach. Unlike discretization and imitation,
features are model-specific. These algorithms are only as good as the features we choose. Unlike the previous
algorithms, then, heatmap agents are not model free.

Heatmaps are decision support tools, not decision algorithms per se. There needs to be a control rule that
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Figure 8: On the right the location and value of three observations. On the left the heatmap generated by a
nearest neighbour regression using two features, the x and y of each cell, and bandwidths hx = hy = 1

given the heatmap chooses which slot machine to play next. In the Bayesian literature this is defined as
“acquisition function” (Snoek, Larochelle, and Adams 2012). In POSEIDON the agents always fish at the
peak of the heatmap (with an error of ±2 cells). A better acquisition function would balance exploitation
with exploration away from the peaks. We do not explore this further here although it is a key component.

Imitation is also straightforward with these algorithms. An agent can input the competitors’ trips as an
additional observation for their own geographical regression. A more nuanced approach to this subject is
possible: agents could discount competitors’ observations depending on its quality (the competitor might
be lying, or one might be unsure about where their competitor went fishing). Here however we ignore this
complication and assume each agent keeps track of two of its competitors and monitor their trips perfectly.

2.3.1 Nearest Neighbour

Nearest neighbour regressions build the simplest heatmaps. The regression predicts at any cell the closest
past observation. It is easy to implement and fast at prediction but it generates discontinuous maps.

After choosing which feature to use for the distance metrics we must also choose their relative importance.
This is done by choosing a bandwidth hi for each feature fi such that the final distance function between slot
machines a and b is:

d(a, b) =
∑
i

|fi(a)− fi(b)|
hi

(4)

Figure 8 shows an example nearest neighbour regression.

Nearest neighbour regressions can be implemented quickly by using k-d trees (this implementation is quite
common as for example in Pedregosa et al. 2011). The average time complexity for both search and insertion
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Figure 9: The difference in heatmaps generated depending on whether we use the closest neighbour the
average of the closest two. The features used are two, the x and y of each cell, and their bandwidths are
hx = hy = 1

is O(logN) where N is the number of observations. So implemented the nearest-neighbour’s performance
degrades as memory grows much less than other non-parametric methods.

We can smooth heatmaps by using multiple neighbours for each prediction and taking their average as shown
in figure 9. There are two drawbacks to this. First, there is a loss in performance as tree searches become
more expensive. Second, if data is sparse the neighbours will be far apart but weighed equally.

Figure 10 provides an example of how the nearest neighbour regression both drives the agent fishing decisions
and updates itself in POSEIDON.
On the left a POSEIDON simulation with 100 fishers is running. The behaviour is the classic fishing front
where agents first fish near the port and then progressively move further away as biomass is depleted. One
of the agent is highlighted in blue, her heatmap is shown on the right. This heatmap is generated by a
nearest neighbour regression trying to predict the profitability of each cell. Blue means high profits, red
means negative profits and white means little or no profits.
The heatmap starts at a default negative value (hence the red initial state) forcing the agent to act at random.
As the fisher completes trips the heatmap quickly turns blue in the area near port as fishing there is more
profitable. The agent responds to this information by fishing around the blue area. The area close to port
turns whiter as fish there is consumed eventually turning red as it depletes entirely.

The nearest neighbour regression used here has 4 features: x, y, time of observation (in hours) and the
Manhattan distance from port. The “angular” contours in figure 10 are caused by using Manhattan distance
rather than Euclidean.

This algorithm has a vector of bandwidth parameters h =
[
h1 h2 . . . hF

]
where F is the number of

features (4, in this application). Also the algorithm depends on the neighbours parameter describing how
many observations to weigh together when making a prediction.
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Figure 10: Animation tracking one fisher using nearest neighbor regression; in each frame on the left we show
the movement of the fisher and on the right we show its predicted profitability for each cell of the map

2.3.2 Kernel Regression

Kernel regression (Nadaraya 1964; Watson 1964) draws heatmaps by averaging all observations in memory,
weighing closest memories more.

Given a series of past slot machines played x1, x2, . . . , xn and the rewards observed y1, y2, . . . , yn we predict
the rewards at slot machine x∗ as:

y∗ =
∑
iK(xi, x∗)yi∑
iK(xi, x∗) (5)

The kernel function K(·, ·) is a metric of similarity: the higher the kernel the higher the weight.

Here too we find useful to first split each observation x into a series of features: f1, f2, . . . , fz, compute the
kernel for each feature separately and then multiply them together, so that the kernel between slot machines
a and b is:

K(a, b) =
F∏
k=1

K(fk(a), fk(b)) (6)

While there are many kernel functions, the choice of functional form is usually not important (Shalizi 2013,
44). Here, we implemented both the Gaussian(RBF) kernel:

K(a, b) = e− |a−b|
2

2σ2 (7)

and the Epanechnikov(EPA) kernel:

K(a, b) = 3
4

(
1− |a− b|

2

h

)
(8)

The Gaussian kernel is more popular but the Epanechnikov kernel computes faster. While the functional
form may not matter, the bandwidths (σ2 or h) do as they encode a feature’s relative importance. Kernel
regressions produce smoother heatmaps than nearest neighbour, as figure 11 shows.

Unlike the nearest-neighbour regression, kernel regression scales poorly. While inserting new data is instanta-
neous, O(1), prediction requires us to loop through all known observations to compute the weighted average.
Prediction complexity is approximately O(NF ) where F is the number of features and N is the number
of observations. This means that kernel regression performance degrades rapidly and we can only use it in
agent-based models by restricting memories. Agents in our model keep track of only their latest N = 100
observations (rolling window forgetting).
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Figure 11: On the right the location and value of three observations. On the left the heatmap generated by a
RBF kernel regression using two features, the x and y of each cell, and using bandwidths σ2

x = σ2
y = 20

In figure 12 we show the kernel regression in action using an Epanechnikov kernel. On the left a POSEIDON
simulation with 100 fishers is running. One of the agent is highlighted in blue, her heatmap is shown on the
right. Blue means high profits, red means negative profits and white means little or no profits. Grey means
no prediction. The method refuses to predict for areas far away from all observations (where the kernel is 0)
and as such some of the heatmap cells remain grey. Again as high profit areas near port are discovered and
exploited they turn paler until the agents move to other locations.

This kernel regression uses 4 features: the cell’s x and y grid coordinates, the distance from port and the
square root of time. It uses the Epanechnikov kernel.

This algorithm depends, like the nearest neighbour, on a vector of bandwidths h =
[
h1 h2 . . . hF

]
where

F is the number of features but also a parameter N describing the size of the memory.

2.3.3 Kernel transduction

In POSEIDON, agents predict more often then they observe. They make one observation per trip but they
need to predict the profits of many candidate coordinates to choose where to go next. If the cells’ features do
not change over time, we can implement a recursive version of the kernel regression (Krzyzak 1992).

For every slot machine x we want to keep track of, we initialize two variables g0 = m0 = 0. Then at each new
observed reward yn at slot machine xn we update the two variables as follows:

gn = gn−1 +K(x, xn)

mn = mn−1 + (yn −mn−1)K(x, xn)
gn

(9)
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Figure 12: Animation tracking one fisher using kernel regression; in each frame on the left we show the
movement of the fisher and on the right we show its predicted profitability for each cell of the map

Figure 13: Animation tracking one fisher using kernel transduction; in each frame on the left we show the
movement of the fisher and on the right we show its predicted profitability for each cell of the map

Our prediction for slot machine x is the value mn. To give more weight to more recent observations we add a
forgetting factor 0 < λ < 1 as follows:

gn = λgn−1 +K(x, xn) (10)

This formulation is faster at predicting but slower at observing than the standard kernel regression. Recursive
kernel’s prediction is O(1), but observations take O(KF ) operations where K is the number of cells we need
to keep track of and F is the number of features. Depending on the use case this formulation could make
models faster or slower.

Not having to keep track of observations may make this predictor run faster but it makes tuning (see appendix)
harder. It has however the advantage of forgetting smoothly compared to the standard kernel regression.

In figure 13 we show the kernel transduction in action using the Gaussian kernel. On the left a POSEIDON
simulation with 100 fishers is running. One of the agent is highlighted in blue, her heatmap is shown on
the right. Blue means high profits, red means negative profits and white means little or no profits. Unlike
the kernel regression here by construction we make a prediction for each cell even if no close observation is
present. Again as high profit areas near port are discovered and exploited they turn paler until the agents
move to other locations.
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This algorithm uses 3 features: the cell’s x and y grid coordinates, the distance from port. Kernel transduction
depends on a bandwidth vector h of size F (3 in this application) as well as the forgetting factor λ.

2.3.4 Kalman filter

The Kalman filter infers and tracks the state of a hidden Markov chain model given a series of observations
(Minka 1999). The strength of Kalman filters is their flexibility as model knowledge can be included in the
transition and emission matrices of the Markov chain.

However a more intuitive explanation of one-dimensional Kalman filters is to cast them as Gaussian Bayesian
estimators (Faragher 2012). Assume that for each slot machine we have a Gaussian prior about its reward x,
that is x ∼ N(x̂, σ2

x); further assume that each observed reward z is also Gaussian distributed ∼ N(z, σ2
z).

Bayes rule updates our belief every time a new observation z comes in. Because the posterior is just the
product of two Gaussians (and a normalization), the posterior is itself Gaussian. The Kalman filter is the
mathematical tool that performs this belief updating over time.

In POSEIDON we instantiate a 1D Kalman filter for each cell of the map. This requires us to specify an
initial uncertainty σ2

x. When updating the belief at slot machine a given an observation at slot machine b we
define the measurement noise as

σ2
z = α+ e

d(a,b)2
2β (11)

where the distance function d(a, b) is the Manhattan distance. The larger σ2
z the less the observation affects

the prior. We also add a daily drift ε to the prior such that a lack of observations increases our uncertainty
over time, simulating forgetting:

σ2
x = σ2

x + ε (12)

Figure 14 simulates a Kalman generated heatmap.

Figure 15 shows the 1D Kalman filter in action. On the left a POSEIDON simulation with 100 fishers is
running. One of the agent is highlighted in blue, her heatmap is shown on the right. Blue means high profits,
red means negative profits and white means little or no profits. Initially all cells are initialized with a random
prediction between -100 and 100 and an initial uncertainty σ2

x = 1002. As observations come in the posteriors
start to correlate geographically. The “diamond” shaped contours are due to our choice of using Manhattan
distance.

Unlike the kernel regression here by construction we make a prediction for each cell even if no close observation
is present. Again as high profit areas near port are discovered and exploited they turn paler until the agents
move to other locations.

The major advantage of Kalman filters is their flexibility to add model knowledge and dimensions. This
flexibility however comes with a large number of parameters to tune. The computational efficiency is similar to
the kernel transduction as you need to update all filters at each new observation but prediction is immediate.
Adding dimensions is expensive however as Kalman filters require a matrix inversion so that their time
complexity at observation is approximately O(KF 3) where F is th number of features.

Another advantage of Kalman filters is that they generate not just point predictions but entire confidence
intervals (as long as our Gaussian assumptions hold) which allows for risk seeking and avoidance behaviour
to be implemented easily. We can do this by having agents targeting not the highest predicted reward x but
the highest confidence bound x+ cσ where c is positive for risk seeking and negative for risk avoidance. This
way we use the optimism principle behind the UCB1 algorithm, described in section 2.1.3, but informed by
Kalman posteriors.

Kalman filters, unlike kernel and nearest-neighbour regressions, do not depend on a vector of bandwidths. As
implemented here each Kalman filter depends on 6 parameters. The drift variable ε, the initial uncertainty
σ2
x, the evidence uncertainty σ2

z , the evidence distance penalty β and the distribution needed to generate the
initial guessed states x before any evidence is produced. We also need to define the risk parameter c.
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Figure 14: On the left the 3 observations that the Kalman filter transforms into the heatmap on the right.
The parameters are σx = 50, α = .1 and β = 10

Figure 15: Animation tracking one fisher using kalman regression; in each frame on the left we show the
movement of the fisher and on the right we show its predicted profitability for each cell of the map
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2.3.5 Geographically weighted regression

Geographically weighted regression(Brunsdon, Fotheringham, and Charlton 1998) is a common method to
draw inference over non-stationary spatial data. Its main advantage for our purposes is that it can be easily
turned into a recursive estimator whose performance is compatible with the needs of agent-based models.

Geographically weighted regressions are a spatial application of the locally weighted linear regression estimator
(Hastie, Tibshirani, and Friedman 2009; Cleveland 1979). We fit a weighted linear regression in each cell
where the weight of each observation is the kernel distance between the cell we are predicting in and the
where the observation occurred.

More precisely, describing each observation and each cell by a series of features f1, f2, . . . , fF , we predict the
value of cell a as:

ya = β0,a +
F∑
i=1

βa,ifi(a) (13)

where the vector of coefficients for this cell is obtained by weighted least squares

βa = (XTWaX)−1XTWay (14)

where the weight vector is the vector of Gaussian kernel distances between cell a and the location xi where
observation i took place:

Wa =


e
d(a,x1)2

2h

e
d(a,x2)2

2h

...
e
d(a,xN )2

2h

 (15)

and the distance function d(·, ·) is the Manhattan distance between cells.

Linear regressions are commonly computed in batch (that is, having all the observations in the design matrix
X we compute the final β). The recursive least squares filter (in essence a simplified Kalman filter) is a way
to compute regressions one observation at the time (Rogers 1996). We implement one filter for each cell of the
map to compute independently its β vector. Our implementation includes a forgetting factor 0 < λ <= 1 to
weigh new observations more. Figure 16 shows how the geographical weighted regression generates heatmaps.

Figure 17 shows the geographical weighted regression in action. On the left a POSEIDON simulation with
100 fishers is running. One of the agent is highlighted in blue, her heatmap is shown on the right. Blue means
high profits, red means negative profits and white means little or no profits. Initially all cells are initialized
with a random prediction between -100 and 100 and an initial uncertainty σ2

x = 1002. This regression is
intercept only and has forgetting factor λ = .96 and a distance bandwidth h = 35.

The main advantage of geographically weighted regressions is that we do not need to define the importance
of each feature a priori as in the nearest neighbour or kernel regression, since the β vector is discovered
automatically. Moreover this method also produces a full confidence interval for each point prediction. Like
with the Kalman filter, prediction is O(1) but observing new data is expensive O(KF 3).

This implementation of geographically weighted regression depends on 4 parameters. The initial uncertainty
σ2
x, the distance bandwidth h, the forgetting factor λ and the random distribution that initializes the

predictions at each cell.

2.3.6 Ad hoc methods

It is often the case that social simulations incorporate interviews and ideas from the people we are trying to
simulate. Often from these interviews we can infer how experts predict and extrapolate. Keeping in mind the
risk of over-fitting, these methods tend to be domain specific but computationally efficient. They could be
used in place of the more open-ended statistical methods suggested above. These methods are ad-hoc and do
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Geographically Weighted Regression

Figure 16: On the left the 3 observations we input in the geographical weighted regression. On the right the
heatmap generated by an intercept-only geographical weighted regression, distance bandwidth h = 5 and no
forgetting (λ = 1)

Figure 17: Animation tracking one fisher using geographically weighted regression; in each frame on the left
we show the movement of the fisher and on the right we show its predicted profitability for each cell of the
map
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Figure 18: A predicted heatmap generated by the Ad-Hoc classifier

not belong to this paper but in some cases they can be generalized and used broadly. Here we present one
example.

Simplify the problem from trying to predict the precise reward of each slot machine to guessing whether a
slot machine is “good” or “bad” according to some pre-defined threshold. Statistically we are moving from
regression to classification which opens entire new vistas of available algorithms. Here however we will use a
simpler ad-hoc classifier.

Assume that “good” slot machine returns a random reward ∼ N(µg, σ2) while a “bad” slot machine returns
∼ N(µb, σ2) where µg > µb. For a slot machine a the agent maintains a subjective probability pa that a is
a good. Whenever the agent plays a again and receives the reward r and updates the probability through
Bayes:

Pr(good|r) = Pr(r|good)Pr(good)
Pr(r|good)Pr(good) + Pr(r|bad)Pr(bad) (16)

Where Pr(good) is p and Pr(r|good) is the normal CDF evaluated at r.

If we assume that good slot machines neighbour other good machines (and vice-versa) we can update our
belief about a cell b given reward r at machine a by using the same formula but increasing the σ2 of Pr(r|good)
by multiplying it by e

d(a,b)2
2h where h is a given parameter. The farther b is from a the larger the σ2 and the

less an observation changes our belief of b. We add forgetting by letting p drift by δ towards 0.5 each passing
day.

Compared to other algorithms, the ad-hoc classifier produces quite poor heatmaps as shown in figure 18.
However the objective of these algorithms is not to predict well everywhere but to guide where to exploit
next. The overall predictive quality of the heatmap is not as important as the ability to identify peaks which
this classifier does well.

This simple Bayes updating rule is computationally efficient: observation is O(1) and prediction is O(K). This
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implementation of Bayes updating needs 5 parameters. It needs the average rewards expected at good and
bad locations µg,µb and their standard deviation σ. It also needs a drift factor δ and a distance bandwidth h.

3 Simulations

We present here 4 biological scenarios and rank decision algorithms by the profits they make when facing them.
For each scenario and decision algorithm pair, we run 100 simulations, each 5 year long and record the average
fishery profits. We added two control strategies to the evaluations: “random” agents that pick a cell at random
each trip and “fixed” agents which pick a cell at the beginning of the simulation and never switch away from it.

3.1 Baseline scenario

3.1.1 Description

The first scenario we run is the standard POSEIDON baseline scenario. We list this scenario’s parameters in
the appendix. There is one species of fish, it grows logistically and spreads slowly from cell to cell. Biomass
is initially distributed at random. It is a plentiful and easy scenario: almost any fishing spot is profitable. As
such even exploiting entirely at random is a good strategy. You can improve slightly by focusing on fishing
spots nearer to port first and move out as their biomass is depleted.

3.1.2 Results

Figure 19 ranks algorithms by profits made.

Except for the non-discretized version of UCB1 all bandit algorithms outperform the fixed strategy and
most algorithms outperform the random strategy. UCB1 performs poorly because it spends too much time
exploring every possible cell before starting to exploit.

Imitation based algorithms perform worse than bandit algorithms and in fact worse than random choice.
Imitation drives agents toward better areas but congestion accelerates local depletion and lowers profits. The
baseline scenario is plentiful enough that the benefits from imitation are lower than the congestion costs it
generates. Social annealing and explore-exploit-imitate outperform gravitational search and particle swarm.

Heatmap agents perform as well as bandits. All except geographical weighted regressions perform better
than random.

3.2 Fine scenario

3.2.1 Description

In this scenario there are two species of fish. Red fish live on the north side of the map. Blue fish on the
south side. There is a fine for landing blue fish making it unprofitable. Agents need to learn to fish on the
north side of the map only as they do not know the distribution of fish.

3.2.2 Results

The results are summarised in figure 20. In this scenario random and fixed strategies fail.
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Figure 19: Average profits made in the baseline scenario by each algorithm. The black interval line represents
the 2 standard deviations interval of per-scenario performance
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Figure 20: Average profits made in the fine scenario by each algorithm. The black interval line represents the
2 standard deviations interval of per-scenario performance

Heatmap agents outperform bandit and imitation algorithms in this scenario. SOFTMAX and ε-greedy
perform better than UCB1. The UCB1 algorithm spends too much time exploring the south part of the sea
to make sure the profits are negative there.

Imitation algorithms still perform poorly compared to bandits and heatmap agents. Imitation is useful
to quickly avoid blue fish areas but the congestion costs from the baseline scenario are also present here.
Imitation again leads to mediocre performance.

3.3 Gear change scenario

3.3.1 Description

This scenario tests the ability of fishers to re-adjust to policy shocks. Again the fish is either red or blue, with
red fish in the north side of the map and blue fish in the south. Initially we give agents gear that catches
only red fish. They need to learn to tow on the north side of the map. However at the end of the second year
of simulation we change the gear of the fishers so that it only catches blue fish. Agents need to forget past
experience and switch to fish in the south. They are not notified of the change and have to learn by trial and
error.

We run the simulation for 3 years and rank the decision algorithms by the profits made on the last year.

3.3.2 Results

The results are summarised in figure 21.
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Figure 21: Average profits made in the gear change scenario by each algorithm. The black interval line
represents the 2 standard deviations interval of per-scenario performance

Again, heatmap algorithms outperform bandit and imitation algorithms. This scenario tests statistical
algorithms because previously discovered heatmaps become actively misleading after the gear shock (two years
into the simulation). Heatmaps algorithms forget fast enough to outperform the alternatives. Unsurprisingly
the ad hoc method described in section 2.3.6 performs best since it has the least to forget.

By comparison the UCB1 bandit algorithm is the worst performer (even worse than random and fixed). This
is because the UCB1 algorithm needs to forget about every cell independently unless discretized. SOFTMAX
and ε-greedy perform better because by the end of year 2 they have focused on only a few fishing spots and
have only those to forget.

When agents need to switch fishing location due to gear shock, only explore-exploit-imitate does well among
the imitative algorithms. This is because explore-exploit-imitate forces fishers to explore and when someone
randomly falls into the right part of the sea she is quickly imitated by the rest. Gravitational search and
particle swarm perform poorly because the agents are too close together and it takes time for anyone to land
on the correct part of the sea. Social annealing performs better because it also forces agents to explore (since
there is always plenty of agents doing slightly worse than average) but not as good as explore-exploit-imitate
because those that do land on the profitable areas cannot be copied directly.

3.4 Chasing school scenario

3.4.1 Description

In this scenario all of the sea is empty except for a few cells where a fish school of infinite biomass lives.
Fishers need to find this school and tow there. The fish school moves over time however so that fishers need
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Figure 22: Animation showing one school roaming the map in a predictable fashion. The darker the color of
the cell the more biomass will be caught in that area.

to chase it. In this scenario the motion is very simple as the fish school traces a square around the map as
shown in figure 22.

3.4.2 Results

The results are summarised in figure 23.

This is the only scenario where gravitational search performs well and in fact is the best among all the
algorithms. This is because this scenario has no penalty for overcrowding and presents a moving target that
requires information sharing. Explore-exploit-imitate performs less well because imitation happens slowly
and often fishers lose track of the school before they managed to attract the rest of the fleet. Particle swarm
performs poorly because memory weighs people away from chasing. Social annealing also does badly because
it does not allow direct imitation.

With the exception of gravitational search,the heatmap based algorithms again outperform all others. This
performance however suffers from a large standard deviation primarily due to scenario runs where fishers fail
to ever discover where the fish school is.

Bandit algorithms fail this scenario. Chasing fish require either imitation or better geographical inference
that bandit algorithms do not possess. This is a clear scenario where thinking geographically helps even if
agents do not have a full model representation of fish schools and their movement (which could be inputted
in the Kalman filter to improve it further).

31



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

C
haser

−50000 0 50000 100000 150000

UCB1

Random

Fixed

UCB1 Discrete

SOFTMAX Discrete

SOFTMAX

Annealing

E−Greedy

E−Greedy Discrete

Particle Swarm

Explore−Exploit−Imitate

Nearest Neighbour

GWR

RBF Kernel

EPA Kernel

Kalman

Ad−Hoc

Kernel Transduction

Gravitational

 Average Profits per Fisher

A
lg

or
ith

m
 U

se
d Algorithm

Class
bandit
control
heatmap
parallel

Figure 23: Average profits made in the chaser scenario by each algorithm. Bandit and imitation algorithms are
greyed out. The black interval line represents the 2 standard deviations interval of per-scenario performance
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4 Discussion

4.1 General results

In all scenarios, the most complicated class of agents (heatmap) performed better. However within each class,
simpler agents outperformed complicated ones. Among heatmap agents, ad-hoc classification outperformed
geographical weighted regression; among imitative algorithms, explore-exploit-imitate outperformed particle
swarms; among bandit algorithms, ε-greedy outperformed UCB1.

There is therefore a balance to strike between sophistication and flexibility. Adding imitation and spatial
awareness may improve overall profits (agent efectiveness) but too much sophistication may make agents
unable to adapt to a changing environment (as greater accumulation of data and finer tuned parameters are
needed to get the best from such algorithms). This matches the split in fishery science(Branch et al. 2006)
between “generalist fishers” (more flexible) and “specialist” (more sophisticated). Because all the scenarios
studied here had fast-changing biologies, generalist agents had an edge which matches empirical observations.

Some strategies (especially heatmap ones) performed well in all scenarios, including when a policy shock
made all their memories obsolete and misleading (section 3.3). Bandit strategies performed well as long
as they faced simple scenarios. When fish aggregated into a hard to track school (section 3.4) all bandit
algorithms performed no better than random. Vice-versa, imitative algorithms performed poorly except when
facing a moving school. This is because for most examples the congestion costs (multiple boats fishing the
same spot) outweighed the benefits of learning from others.

We expect therefore bandit strategies to explain well the behaviour in fisheries with a limited number of
fishing spots where information sharing is not necessary (such as clam fisheries) or where few boats can
quickly consume local aggregations of fish (such as herring). We expect imitative algorithms to better explain
either fleets chasing fast moving schools of fish (such as dolphin-set tuna) or small fisheries where the effort
of many boats produces little congestion.

Finally, a comment on the importance of applying well-known and well-understood algorithms to specific
problems through agent-based models. Most of these algorithms are decades-old and within the field of
computer science, their complexity and regret bounds have been studied extensively. Solutions are typically
framed in terms of worst case performance, but our findings suggest these are not necessarily relevant for
judging algorithm performance for other less extreme cases and for the very specific problem of fishing
behaviour. Hence we show that the theoretically inferior ε-greedy algorithm outperforms UCB1. Other
applied work will without doubt uncover other such reversals, as in fact the “no free lunch” theorems predicts
(Wolpert and Macready 1995).

4.2 Relevance

O’Sullivan et al. (2016) warns of the YAAWN (yet another agent-based model) syndrome: fitting tightly to
a specific scenario with no hope to generate general insights. Many agent-based models of fisheries exist,
for example Gao and Hailu (2011) models recreational fishers in Western Australia through random utility
models, Dorn (2001) models commercial hake fishers in North America through fixed thresholds and Kalman
filters, Elliston and Cao (2006) models conceptual fishers by Bellman equation programming. Each decision
algorithm is incompatible with the other models. It may be that the fisheries’ economic and biological
features are all so unique to require highly specialized algorithms. We showed however that some algorithms
are general enough to be useful in all scenarios, challenging the assumed need for specificity.

On the other hand we did show that some algorithms perform well in one scenario and poorly in another. It
is possible then, perhaps due to a policy shock or climate change, for system conditions to change to the point
where a previously optimal heuristic becomes inefficient. As such, the endogeneity of the heuristics is a serious
risk for policy analysis: even a perfectly identified heuristic (due to surveys, interviews or data-analysis)
may be too contingent on current conditions and therefore of limited use for prediction. Our heuristic zoo

33



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

approach however can help through sensitivity analysis. We can ask ourselves what would be the worst
possible heuristic to emerge for a given policy shock and plan around it.

4.3 Future work

Through POSEIDON we built a platform to study the patterns generated by different decision algorithms
in the same environment. The next step of our work is to apply this to real fisheries and compare them
to simulated behavioural patterns. It may be that a single statistical agent will be able to describe fisher
behaviour in a wide range of fisheries, but it may be that each single area will exhibit its own highly specialized
algorithm.

We extracted all the decision algorithms from POSEIDON in pseudo-code in this paper, and in the separate
Java library discrete-choosers. We hope other agent-based modellers will find this library useful and test
its efficiency in other geographical agent-based models. We agree with Groeneveld et al. (2017) that re-use is
fundamental for the progress of agent-based modelling and we hope a ready-made library will contribute to
the task.

4.4 Weaknesses

These simulations contained no heterogeneity: all agents within the same run used the same decision algorithm.
This was done to showcase each algorithm in isolation but as Klein, Barbier, and Watson (2017) interviews
show: some fishers always deviate from the majority. Not pursued here is also any attempt to model an
ecology of algorithms to see which would survive. For example we show that a population using kernel
regressions is more efficient in general than one using imitation techniques. However it may be the case that
when the population is split in half where some use regressions and some imitate, the imitative sub-population
would do better. A replicator dynamic (see Sandholm 2009) could be implemented to see which algorithms
are imitated and which discarded when personal rather than global profitability is at stake.

Missing from this paper is any algorithm that performs long-term planning. Bandit algorithms manage the
longer term benefits of exploration in an implicit and hard to control way. If we had data on the discount
rate of fishers however we might use it to solve the bandit problem through explicit dynamic programming.
This is the Gittins index strategy(Gittins 1979) and requires model knowledge. Agent based models are hard
to turn into well-behaved transition functions so that perhaps only reinforcement learning could help but this
avenue is not pursued here.

4.5 Conclusion

We presented 13 decision-making algorithms for exploiters in agent-based models. We used the fishery model
POSEIDON to isolate their strengths and weaknesses. We presented 3 general tuning methods to discover
the best parameters for these algorithms both exogenously and within the model. We strived to keep this
presentation as general as possible to show how these algorithms can be used in other models.

On the one hand we demonstrated it is easy to adapt decision making algorithms from computer science
to agents within agent-based models. On the other hand we showed that theoretical bounds judging these
algorithms will predict poorly their performance for the very specific tasks an agent-based model require. It
will pay then to test most available algorithms for each new application and we hope our library will make
the task easier for other modellers.
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Appendix

Parameters

Baseline scenario

Table 2: The parameters of the baseline scenario; these are actually
just the parameters of the default POSEIDON run except for r = 0
(no regrowth).

Parameter Value Meaning
Biology One Species
K 5000 max units of fish per cell
m 0.001 fish speed
r 0 Malthusian growth parameter
Fisher Explore-Exploit-Imitate
rest hours 12 rest at ports in hours
fishers 100 number of fishers
max days at sea 5 time after which boats must come home
Map
width 50 map size horizontally
height 50 map size vertically
port position 40,25 location of port
cell width 10 width (and height) of each cell map
Market
market price 10 $ per unit of fish sold
gas price 0.01 $ per litre of gas
Gear
catchability 0.01 % biomass caught per tow hour
speed 5.0 distance/h of boat
hold size 100 max units of fish storable in boat
litres per unit of distance 10 litres consumed per distance travelled
litres per trawling hour 5 litres consumed per hour trawled

Fine scenario

Table 3: The parameters changed between the baseline and fine
scenario

Parameter Old Value New Value
Biology 1 Species 2 Species
K 5000 10000 red; 10000 blue;
market price 10$ 10$ red; -10$ blue
Gear
catchability 0.01 0.01 red; 0.01 blue

Gear scenario
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Table 4: The parameters changed between the baseline and gear
scenario

Parameter Old Value New Value
Biology 1 Species 2 Species
K 5000 10000 red; 10000 blue;
market price 10$ 10$ red; 10$ blue
Gear
catchability 0.01 0.01 red; 0 blue
catchability at year 2 - 0 red; 0.01 blue

Chasing School scenario

Table 5: The parameters changed between the baseline and chasing
school scenario

Parameter Old Value New Value
Biology One Species One School
K 5000 -
m 0.001 -
r 0 -
School diameter (cells) - 4
Speed in days - 10
Waypoints - (0, 0); (40, 0); (40, 40); (0, 40)

Tuning

The algorithms presented are general purpose enough that behaviour can change radically
with the parameters

When algorithms are as general as the ones listed above, parameters have a large effect on performance and
behaviour. Figure 24 shows the performance of the discretized ε-greedy algorithm in the “fine” scenario. The
same algorithm can generate average fisher profits of 200,000 when properly tuned or lose money when poorly
tuned.

This section contains three separate ways to tune parameters. In POSEIDON we used exogenous tuning for
bandit and imitation algorithms, social tuning for heatmap algorithms. We tuned the bandit and imitation
algorithms to optimize their performance in the baseline scenario. Those parameters were then used without
being re-optimized in all the other tests. We did so in order not to exaggerate their performance. The list of
all parameters used is in table 6.

Table 6: List of parameters used and how they were tuned. For
algorithms tuned socially we list the initial range at which the
parameters are initialized.

parameter algorithm tuning value
ε E-Greedy exogenous 0.009583
α E-Greedy exogenous 0.97
x UCB1 exogenous 0
x̄ UCB1 exogenous 12
α UCB1 exogenous 0.274
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parameter algorithm tuning value
Z Gravitational exogenous 1
velocity0 Gravitational exogenous -10
G Gravitational exogenous 10
inertia Particle Swarm exogenous 0.733
α Particle Swarm exogenous 0.1
β Particle Swarm exogenous 0.37
ε Particle Swarm exogenous 0.001661
ε Explore-Exploit-Imitate exogenous 0.48
δ Explore-Exploit-Imitate exogenous 20
δ Social Annealing exogenous 10
hx Nearest Neighbour social 1-1000
hy Nearest Neighbour social 1-1000
htime Nearest Neighbour social 1-1000
hport distance Nearest Neighbour social 1-1000
neighbors Nearest Neighbour social 1-10
hx RBF Kernel social 50-500
hy RBF Kernel social 50-500
htime RBF Kernel social 100-100000
hport distance RBF Kernel social 1-1000
hx EPA Kernel social 50-500
hy EPA Kernel social 50-500
htime EPA Kernel social 100-100000
hport distance EPA Kernel social 50-500
hx Kernel Transduction social 1-200
hy Kernel Transduction social 1-200
hport distance Kernel Transduction social 1-200
λ Kernel Transduction fixed .95
ε Kalman social 1-100
σ2
x Kalman fixed 10000
σ2
z Kalman social 1-100
β Kalman social 1-100
c Kalman social -2-2
σ2
x GWR fixed 10000
h GWR social .1-50
λ GWR social .8-1
µg Ad-Hoc social 10-30
µb Ad-Hoc social -20-0
σ2 Ad-Hoc social 10-30
h Ad-Hoc social 0.1-50
δ Ad-Hoc fixed .005

Exogenous tuning

Assume that the people being simulated are experts and would know the best way to aggregate information.
It would be fair then to simulate these agents as if using the best parameters. Finding these parameters is an
optimisation problem where the model is a black box and we are looking for the inputs that will generate the
maximum performance. Once the optimal parameters are found we assume that agents use them.

To optimize parameters we need to score outputs. The choice of score function however carries a series of
unintended consequences in the POSEIDON model. If we try to maximize average profits, the optimizer
discovers parameters, especially for complicated tools like Kalman, that conserve biomass rather than greedily
exploit everything at once. Conservationist agents generate more profits in the long run but we are looking
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Figure 24: The performance of the ε greedy bandit algorithm in the fines scenario as its two parameters are
changed
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for realistic exploiting behaviour. We avoided this problem in this paper by assuming biomass never regrows
in tested scenarios.

An alternative score for heatmap algorithms would be to judge them by the prediction error made. Minimizing
prediction errors made might however lead to agents that are very conservative and fish always at the same
location which tend to produce small prediction errors but also poor profits. The best option is always to
minimize the statistical distance to behavioural data(Filatova et al. 2013; Smajgl et al. 2011).

This tuning strategy is completely exogenous as the exploration is done by the optimizer before the simulation
starts. This tuning is non-adaptive since the parameters are fixed for the duration of the simulation. It is
best used to simulate long-term expertise or human action over a steady geographical system.

Social tuning

Here we let the agents adapt their parameters over time within the simulation. The idea is to have a low
frequency exploration of the parameter space while the agents are performing a high-frequency exploration of
the geographical space.

We do this by running the explore-exploit-imitate algorithm over the parameter space of the decision algorithm.
Every period, which for the POSEIDON example is two simulated months, each agent has a probability ε of
shocking its current decision parameters (exploration), otherwise copying the parameters of a friend who is
doing better (imitation) and maintaining its current parameters if friends are doing worse (exploitation).

Because this tuning progresses with the simulation when conditions change agents can adapt their parameters
in accordance. However for this method to work imitation must make sense. This means that agents have
to be similar enough so that copying other people’s parameters is a reasonable strategy. We must also
assume agents can tell their competitors’ parameters. Finally, agents’ adaptability weakens over time as
better parameters are imitated and overall diversity decreases unless exploration is frequent. Algorithm 8 is a
pseudo-code representation of social tuning.

Algorithm 8 Social tuning
while game is not over do
if random < ε then {with probability ε, explore}
δ̂ ∼ U [−δ, δ]
parameters← parameters + δ̂

else
profitsf are the profits made by your most profitable friend
profitsme are the profits just made by this agent
if profitsf > profitsme then
copy friend parameters

else
do not change parameters

end if
end if

end while

Personal tuning

Alternatively for some algorithms we can have each agent tune parameters on their own. Since heatmaps are
used for prediction the agent can adjust her parameters over time toward values that minimize prediction
errors. We simulate this through gradient descent (Jones 2008, chap. 4 and 18) applying the algorithm at
each observation as shown in algorithm 9.

where η and ε are hyper-parameters.
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Algorithm 9 Personal tuning
while game is not over do
error← (prediction− reward)2

for i = 0 to number of parameters do {shock the parameters by a small value and see if that would have
predicted better}
h[i] ∼ U [−ε, ε] {Where ε is a small number}
alternative[i]← parameter[i] + h[i]

end for
errora is the prediction error using the alternative parameters
for i = 0 to number of parameters do {modify all parameters depending by moving along the gradient}
gradient[i] = errora−error

h[i] {compute change in prediction error}
parameter[i]← parameters[i] + η · gradient[i]

end for
end while

This tuning algorithm is adaptive like social tuning but assumes no information sharing. It makes no
assumption on the fisher except a willingness to revise parameters as new observations come in. Its main
weakness is the need to compute numerical derivatives of parameters on error. For the methods listed in
section 2.3 only the kernel regression (and Nearest Neighbour regression with enough neighbours) can be
used. For the other methods a change in parameters has no instantaneous effect until more observations
come in and are therefore unsuitable for this tuning.

We did not use this method in the POSEIDON runs because it progresses too slowly to make much difference.
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