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aMeteorology Group. Instituto de Fı́sica de Cantabria (CSIC - Univ. de Cantabria), Santander,
39005, Spain
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Abstract

Climate-driven sectoral applications commonly require different types of climate

data (e.g. observations, reanalysis, climate change projections) from different

providers. Data access, harmonization and post-processing (e.g. bias correc-

tion) are time-consuming error-prone tasks requiring different specialized soft-

ware tools at each stage of the data workflow, thus hindering reproducibility. Here

we introduce climate4R, an R-based climate services oriented framework tai-

lored to the needs of the vulnerability and impact assessment community that inte-

grates in the same computing environment harmonized data access, post-processing,

visualization and a provenance metadata model for traceability and reproducibil-

ity of results. climate4R allows accessing local and remote (OPeNDAP) data

sources, such as the Santander User Data Gateway (UDG), a THREDDS-based
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service including a wide catalogue of popular datasets (e.g. ERA-Interim, CORDEX,

etc.). This provides a unique comprehensive open framework for end-to-end sec-

toral reproducible applications. All the packages, data and documentation for re-

producing the experiments in this paper are available from http://www.meteo.

unican.es/climate4R.

Keywords:

open science , climate indices, CMIP5, downscaling, climatic change,

NetCDF-Java

1. Introduction1

Climate data retrieval, harmonization and post-processing (e.g. bias correc-2

tion) are inherent tasks for climate vulnerability and impact assessment (VIA)3

studies in a number of sectors such as agriculture, energy, hydrology, ecology,4

health or wildfires among others (see, e.g. Casanueva et al., 2014; Ewert et al.,5

2015; Wang et al., 2017; Challinor et al., 2018; Walsh et al., 2018; Turco et al.,6

2018). Typically, these sector-specific applications require data for a reduced7

number of surface variables from different sources (e.g. observations, reanalysis8

and/or global and regional climate change projections), which can be directly ob-9

tained from different data providers and/or accessed through specialized data gate-10

ways such as the Earth System Grid Federation (ESGF; Williams et al., 2015).11

However, the resulting formats, spatial and temporal scales and aggregations or12

vocabularies (variable naming and units) are, as a rule, inhomogeneous across the13

different data sources. Moreover, some common transformation/calibration and14

post-processing steps are typically applied to raw model data before their use in15

sectoral applications, including data collocation (e.g. regridding, temporal ag-16
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gregation, or subsetting) and bias adjustment or downscaling (e.g. local scaling,17

quantile mapping, analogs or regression). In some cases, these steps are very tech-18

nical and require different specialized tools entailing multiple specific choices that19

are often insufficiently documented in practical applications. As a result, obtain-20

ing and harmonizing climate data is typically an error-prone and time consuming21

task, often preventing from an accurate replication of the research outcomes. The22

difficulty of carrying out such processes remain as an important factor hampering23

the full exploitation of available climate data to generate actionable information24

leading to an “usability gap” (Lemos et al., 2012).25

In order to bridge the usability gap, this paper presents a new R-based frame-26

work for climate studies, tailored to the specific needs of the VIA community, and27

branded as climate4R. R (R Core Team, 2017) is nowadays a very popular com-28

puting environment with powerful statistical modeling tools and excellent support29

for time series and spatial analysis, that has favoured its notable uptake by the cli-30

mate community. climate4R has been developed as a set of seamlessly integrated31

packages designed to ease climate data access (loadeR), collocation and trans-32

formation (transformeR), bias correction and downscaling (downscaleR) and33

visualization (visualizeR), including full documentation via wikis and guided34

examples. Moreover, additional functionalities from existing external packages35

have been bridged via specific climate4R wrapping packages so they can be36

transparently used within the same framework. An example of external package37

integration is climdex.pcic (Bronaugh, 2015), which implements the climate38

extremes indices defined by the Expert Team on Climate Change Detection and39

Indices (ETCCDI, Karl et al., 1999). Finally, a provenance metadata model for40

traceability and reproducibility of results has been developed based on META-41
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CLIP (METAdata for CLImate Products, http://www.metaclip.org), so full42

metadata (including the source code) can be produced for all products generated43

by climate4R.44

climate4R is aimed at fostering research transparency and reproducibility,45

issues of major concern in all experimental disciplines (see the special issue on46

reliability and reproducibility of published research http://go.nature.com/47

huhbyr). For example, Baker (2016) recently reported that the work published in48

Earth and Environment Science were mostly (over two-thirds) not reproducible.49

As a result, there is growing concern among the scientific community about re-50

sults that cannot be reproduced. With this regard, one of the main objectives of51

climate4R is to improve transparency and reproducibility of results.52

Following with the above-mentioned study by Baker (2016), the main dif-53

ficulties for research reproducibility identified include 1) access restrictions to54

raw input data and/or results, 2) methods or code unavailable and 3) incomplete55

metadata documentation of the particular workflow followed to obtain a climate56

product. In order to circumvent these problems, the following actions have been57

undertaken in climate4R:58

1. Data sources: All the data needed for the experiments described in this59

paper are publicly available at the Santander User Data Gateway (UDG,60

http://www.meteo.unican.es/udg-wiki), a data service seamlessly in-61

tegrated with the climate4R framework, thus enabling a single entry point62

for users to a wide variety of harmonized datasets, including global and re-63

gional climate projections from the Coupled Model Intercomparison Project64

Phase 5 (CMIP5; Taylor et al., 2011a) and the COordinated Regional cli-65

mate Downscaling EXperiment (CORDEX; Giorgi and Gutowski, 2015)66
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respectively (see Sec. 3 for further details).67

2. Source Code: All the R packages forming climate4R are publicly available68

through the GitHub repository http://www.github.com/SantanderMetGroup.69

Moreover, the full code to reproduce all the results presented in this work70

(as well as extended examples) are included as auxiliary material as a paper71

notebook https://github.com/SantanderMetGroup/notebooks.72

3. Metadata: The R structures handled by climate4R are built upon the com-73

mon data model described in Sec. 2, and emphasis has been put on the74

inclusion of all the necessary metadata for object description, including75

spatiotemporal collocation details (dates/times, coordinates, geographical76

projection, temporal resolution, etc.) and other relevant descriptors re-77

quired for their adequate characterization. Furthermore, climate4R is inte-78

grated within the METACLIP framework, envisaged to tackle the problem79

of climate product provenance description. METACLIP is based on se-80

mantics exploiting web standard Resource Description Framework (RDF,81

W3C, 2004), through the design of domain-specific extensions of stan-82

dard vocabularies (e.g., PROV-O; PROV Working Group, 2013; Moreau83

et al., 2015) describing the workflow stages producing a climate product84

(see http://www.metaclip.org for more details and worked examples,85

including a full provenance description of Fig. 2a in this paper).86

As a result, climate4R provides a unique framework for climate processing87

where most common tasks can be straightforwardly performed using a few lines88

of code, allowing end-to-end experimental reproducibility and facilitating the de-89

scription (metadata) and documentation of the whole data flow. Although this90

paper focuses on the application of climate4R to climate change problems, this91
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framework also allows to work with climate predictions, such as seasonal fore-92

casts, an aspect that is separately described in Cofiño et al. (2018), with further93

example research applications presented in Bedia et al. (2018a) and Frı́as et al.94

(2018).95

This article is structured as follows: Section 2 describes the core components96

of climate4R. Sections 3 and 4 provide further aspects and details on the Data97

Services Layer and the bias correction tools, respectively. Sections 5 and 6 present98

two illustrative case studies. The first example describes the application to calcu-99

late and bias-correct future projections of a standard ETCCDI climate index (sum-100

mer days, http://etccdi.pacificclimate.org) for a Southern European do-101

main using locally stored CORDEX data. The second example illustrates an ex-102

tended case study accessing CORDEX data remotely from the Santander UDG.103

Final conclusions are provided in Sec. 7.104

2. The climate4R Framework105

The climate4R data model is based on the Grid Feature Type (for gridded106

data) and the Station Time Series Feature (for point data, e.g. stations or individ-107

ual gridbox values) implemented in the Unidata’s Common Data Model version 4108

(CDM1). As such, the climate4R data access layer builds on Java to interpret109

these CDM features (see Sec. 3) which are inherited by the R data/metadata110

structures. The coordinate system for each object type includes, at least, the111

time and position dimensions (latitude and longitude for grids and location for112

point data). Besides the standard regular geographic coordinates, climate4R also113

1https://www.unidata.ucar.edu/software/thredds/current/netcdf-java/CDM/
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Figure 1: Schematic illustration of the climate4R framework consisting of three layers: (a) Data

services building on NetCDF-Java and THREDDS in order to load local or remote (exposed via

a THREDDS OPeNDAP service) data, and also datasets from the in-house Santander User Data

Gateway (UDG); (b) The climate4R R bundle for data access and post-processing, formed by

four core packages for data loading, transformation, downscaling (including bias correction) and

visualization. These core packages are the basis for other sector-specific packages for impact anal-

ysis (e.g. forest fires, species distribution modelling, etc.) which further extend the climate4R

capabilities. (c) External packages, which are connected to climate4R via specific wrapper pack-

ages. (d) Additional climate4R packages for extended functionality, including provenance meta-

data model (based on METACLIP) or unit handling (based on UDUNITS). The arrows indicate

the possible data flows and the blue shading differentiates the in-house developments. All com-

ponents are distributed under GNU General Public License. The THREDDS, NetCDF-Java and

UDUNITS logos are courtesy of UCAR/Unidata. The R logo is c©2016 The R Foundation. The

RDF icon used by METACLIP is c©1994-2006 W3C.
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handles rotated-pole and Lambert conformal conic projections used in CORDEX114

gridded datasets2. Both grids and point datasets are transparently handled by all115

relevant climate4R functions.116

Furthermore, the basic climate4R data structure includes additional dimen-117

sions, such as the member, which allows to work with ensembles. For instance,118

this extra dimension is used when loading seasonal predictions using the loadeR.ECOMS119

extension of the loadeR package (see Cofiño et al., 2018, for more details), tai-120

lored to the specific needs of the seasonal forecasting community. The member121

dimension can be also used to construct multi-model ensembles. This poses sev-122

eral advantages from the user point of view, as next highlighted in case study 2123

(Sec. 6). For instance, most of the climate4R operations (e.g. index calcula-124

tion and aggregation) are implemented to deal with grids containing the member125

dimension and therefore, the necessary looping over several members is done be-126

hind the scenes. Furthermore, the use of members is also beneficial from the127

computational point of view, since most relevant functions have the option to par-128

allelize across members through the optional argument parallel, thus providing129

ease of use and computational efficiency.130

A description of the core R packages forming the climate4R framework is131

next presented (see Fig. 1 for a schematic representation):132

loadeR (Bedia et al., 2018b) is the central building-block of the climate4R133

bundle allowing to transparently access local and remote climate datasets134

(through the OPeNDAP service, see https://www.opendap.org) build-135

ing on NetCDF-Java (see Sec. 3 for more details). Moreover, loadeR is136

2http://is-enes-data.github.io/cordex_archive_specifications.pdf
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the interface to the Santander User Data Gateway (UDG), a THREDDS-137

based (Unidata, 2006) service from the Santander Climate Data Ser-138

vice providing access to several climate datasets popular in impact stud-139

ies. A comprehensive description of functionalities of this package is140

given in the loadeR’s wiki (https://github.com/SantanderMetGroup/141

loadeR/wiki), as well as installation instructions and worked examples.142

An extension of loadeR to work with climate predictions is also available143

(loader.ECOMS), dealing with the initialization time (or lead time) selec-144

tion in a user-friendly way (see Cofiño et al., 2018).145

transformeR (Bedia et al., 2018c) performs common data processing tasks146

such as regridding/interpolation, subsetting or spatio-temporal aggrega-147

tion, among others. Unlike downscaleR, all the post-processing oper-148

ations performed by transformeR do not necessarily entail a second149

reference observational dataset. Examples of application are available150

in the transformeR’s wiki (https://github.com/SantanderMetGroup/151

transformeR/wiki).152

downscaleR (Bedia et al., 2017) performs bias correction (see Sec. 4 for more153

details) and statistical downscaling. An introduction to the package and154

examples of application are available in the downscaleR’s wiki (https:155

//github.com/SantanderMetGroup/downscaleR/wiki).156

visualizeR (Frı́as et al., 2018) performs climate data visualization, implement-157

ing basic visualization functionalities for gridded and point-based data, time158

series, and a set of advanced tools for forecast visualization in a form suit-159

able to communicate the underlying uncertainty, such as tercile plots, bub-160
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ble plots, climagrams, reliability categories, etc. Examples and further func-161

tionalities are detailed in the visualizeR’s wiki (https://github.com/162

SantanderMetGroup/visualizeR).163

Besides these core packages, climate4R extends its capabilities by integrating164

the functionalities of other external packages via auxiliary wrapping packages.165

For instance, the wrapper climate4R.climdex allows to transparently compute166

the 27 ETCCDI core indices implemented in the climdex.pcic R package3.167

Furthermore, advanced unit checking and conversion can be achieved at168

any point during the data analysis via the climate4R package convertR (Be-169

dia and Herrera, 2018), that exploits the Unidata’s UDUNITS-2 software li-170

braries (Unidata, 2017) —a widely used standard containing an extensive and171

user-extensible unit database in XML format— through its R binding pack-172

age udunits2 (Hiebert, 2016). More information is available in the convertR173

GitHub repository (https://github.com/SantanderMetGroup/convertR).174

In addition to the core and external climate4R packages, there are also spe-175

cific packages for some sectoral applications, such as fireDanger (Bedia et al.,176

2018a, implementing several popular fire-weather and drought indices) or mopa177

(Iturbide et al., 2018, providing tools for species distribution modelling), which178

are integrated within the climate4R framework. With this regard, the climate4R179

data model has been conceived to minimize external dependencies and ease inter-180

operability, relying on basic R data structures. Conversion to other data formats181

is straightforward for specific applications when needed, thus providing a flexible182

framework for interacting with other packages of the R ecosystem according to183

3http://github.com/pacificclimate/climdex.pcic

10

Revised version submitted to Environmental Modelling & Software (Aug. 2018)

https://github.com/SantanderMetGroup/visualizeR
https://github.com/SantanderMetGroup/visualizeR
https://github.com/SantanderMetGroup/visualizeR
https://github.com/SantanderMetGroup/convertR
http://github.com/pacificclimate/climdex.pcic


Dataset Type Resolution(s) Scenario Members Ref

WFDEI Observations 0.50◦ - 1 Weedon et al. (2014)

EWEMBI Observations 0.50◦ - 1 Lange (2016)

E-OBS Observations 0.25◦ (0.22◦ rot) - 1 Haylock M. R. et al. (2008)

Spain02 Observations 0.11◦ (0.1◦ rot) - 1 Herrera et al. (2012, 2016)

ERA-Interim Reanalysis 2◦ - 1 Dee D. P. et al. (2011)

JRA55 Reanalysis 2◦ - 1 Kobayashi et al. (2015)

CMIP5 Projections 2◦ RCP4.5,8.5 10 GCMs Taylor et al. (2011b)

EURO-CORDEX Projections 0.44◦, 0.11◦ RCP4.5,8.5 12 RCMs Jacob et al. (2014)

AFRICA-CORDEX Projections 0.44◦ RCP4.5,8.5 12 RCMs Nikulin et al. (2012)

Table 1: Summary of the main public climate datasets available at the Santander User Data Gate-

way (UDG). For brevity, the datasets for seasonal forecasting are not included here (see Cofiño

et al., 2018, and http://meteo.unican.es/ecoms-udg/catalog for details).

the specific user’s needs. For instance, spatial data conversion to Spatial-class184

objects (Bivand et al., 2013) is internally done in visualizeR for specific geo-185

graphical data representations, while mopa exploits the raster-class capabili-186

ties (Hijmans, 2017) to handle static climatological layers.187

The following two sections provide further information on two aspects of188

climate4R of special relevance for better understanding the illustrative examples189

provided in this paper: the climate services layer and the available bias correction190

methods.191

3. Data Services Layer192

There is a number of R packages supporting read/write operations on NetCDF193

files, like ncdf, ncdf4 (Pierce, 2017), RNetCDF (Michna, 2014) and raster (Hi-194

jmans, 2017), all of them supporting both NetCDF-3 and 4 with the exception195
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of ncdf which only supports the older NetCDF-3 file format and has been there-196

fore removed from the R-CRAN repository since 2016. loadeR goes beyond197

the file-oriented concept for data access, supporting reading (and writing) CDM198

datasets, i.e. “collections” of NetCDF files, instead of individual files. Unlike199

the file-based approach, the most immediate advantage from the user point of200

view of using such collections is that one does not need to worry about a par-201

ticular directory tree structure or file naming schema when the required data is202

split into several files (usually due to size constraints), and only one single URL203

pointing to the dataset need to be used, as if all the data was contained in a single204

“file”. loadeR allows for a direct creation of such CDM datasets from R (function205

makeAggregatedDataset), so multiple CDM files can be conveniently combined206

(“aggregated”) along the selected dimension(s), a process that is fully automatized207

for the most usual cases that users typically face after raw data retrieval from ex-208

ternal repositories/servers. This entails for instance joining different files of the209

same variable along the specified dimensions (e.g, joining files along time) and/or210

performing unions of different variables stored in separate files to obtain a single211

multi-variable dataset. However, loadeR is also able to read from single files if212

preferred by the user, following exactly the same procedure as reading from CDM213

datasets.214

By exploiting the capabilities of the NetCDF-Java libraries built upon215

Unidata’s CDM (Sec. 2), loadeR also allows for an efficient access to remote216

datasets via OPeNDAP, providing users a transparent access to the data regard-217

less of whether these are stored locally or remotely. This is internally achieved218

through the rJava package (Urbanek, 2016) that provides a low-level interface219

between R and the Java virtual machine. In addition, not only NetCDF, but also a220
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variety of other geoscientific data formats (HDF, GRIB, etc.) can be aggregated to221

produce CDM datasets via the NetCDF Markup Language (NcML) and accessed222

by loadeR using identical code. NcML is an XML dialect that allows not only223

creating CDM datasets, but also to modify (rename, add, delete and/or restructure)224

the data and metadata of the original NetCDF files and/or CDM datasets, without225

the need of modifying the original files.226

3.1. The Santander User Data Gateway227

Besides local and remote OPeNDAP datasets, climate4R is transparently228

connected to the User Data Gateway (UDG), from the Santander Climate229

Data Service hosted by University of Cantabria (http://meteo.unican.es/230

udg-wiki) consisting of two main components: (1) A THREDDS Data Server231

(TDS) and (2) the THREDDS Access Portal (TAP), which provide standard ser-232

vices for data access (e.g. OPeNDAP or the NetCDF Subset Service –NCSS–) and233

user management and authentication (based on data policies associated with vir-234

tual datasets), respectively. The UDG provides harmonized access to a variety of235

common datasets typically used in sectoral applications, including state-of-the-art236

global and regional climate projections such as those from CMIP5 (Taylor et al.,237

2011a) and CORDEX (Giorgi and Gutowski, 2015). Thus, the UDG represents238

a one-stop-service for climate data access where users can efficiently retrieve the239

subsets best suited to their particular research aims (for particular regions, periods240

and/or ensemble members) and where dataset access is controlled through a fine-241

grained authorization scheme depending on the different data policies (there is a242

wide variety of datasets of public access through the PUBLIC role, see Table 1).243
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4. Bias Correction Methods244

The R package downscaleR implements several statistical downscaling245

(analogs, generalized linear regression, neural networks, etc.) and bias correc-246

tion (scaling, parametric and empirical quantile mapping, etc.) methods, some of247

which have been already used and tested in the VALUE initiative (Gutiérrez et al.,248

2018). In this paper we focus on bias correction methods, which adjust model out-249

puts, e.g. maximum temperature in this paper, using as reference the correspond-250

ing local observations (either point-wise stations or an interpolated grid, E-OBS251

in this paper). Bias correction methods are trained over a representative historical252

period (typically 30 years), and then applied to correct model outputs for a test253

(or future) period. Due to their simplicity and straightforward application, these254

methods have become very popular during the last decade and have been used in255

numerous recent papers covering different forecast temporal horizons. However,256

it is important to understand their assumptions and limitations in order to avoid257

the misuse of these techniques (see, e.g., Maraun et al., 2017; Manzanas et al.,258

2017b).259

The biasCorrection function is the workhorse to apply several standard bias260

correction techniques, ranging from the simplest local-scaling to more sophisti-261

cated parametric or empirical quantile-quantile mapping approaches. Next, we262

provide a brief description of the two bias correction methods that are used in this263

work (for further information on all available methods, the reader is referred to264

the downscaleR’s wiki):265

Local-scaling: This method is specified by the argument method = "scaling".266

It consists in scaling the predictions with an additive (scaling.type267

= "additive") or multiplicative (scaling.type = "multiplicative")268
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factor, which is obtained as the difference/ratio between the predicted and269

the observed mean in the train period. The additive version is preferable for270

unbounded variables (e.g. temperature) and the multiplicative is typically271

used with variables with lower bound = 0 (e.g. precipitation or wind speed).272

Empirical quantile mapping (EQM): This method is applied using the argument273

method = "eqm". The EQM method does not make any assumption about274

the statistical distribution of the variable and consists in calibrating the275

empirical predicted Cumulative Distribution Function (CDF) by adjusting276

the model quantiles towards the observed ones (Déqué, 2007). The op-277

tional argument n.quantiles allows to specify the number of quantiles278

to be adjusted (by default, percentiles are used for the correction). More-279

over, different extrapolation alternatives can be selected via the parameter280

extrapolation. For the case of precipitation, the frequency adaptation281

proposed by Themeßl et al. (2012) is applied by default when the predicted282

frequency of dry days is larger than the observed one. A precise description283

of the EQM method, as used in this paper, is provided in Appendix A of284

Gutiérrez et al. (2018).285

Additionally, in order to tackle the issue of seasonality —and also model286

drift in seasonal forecasting (see, e.g., Manzanas, 2016),— the optional argu-287

ment window allows to specify the center and width of a moving time window288

(calendar days) that can be used for independently correcting consecutive periods289

(e.g. months or seasons), instead of the total available period at once. Moreover,290

biasCorrection deals with the ensemble dimension, allowing to separately cor-291

rect each member (join.members = FALSE, e.g. for multi-model ensembles in292
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climate change applications), or to use the joint ensemble distribution as refer-293

ence (join.members = TRUE, e.g. for different members of a seasonal forecast294

system, that are by definition statistically indistinguishable).295

Furthermore, all bias correction methods can be applied in cross-validation296

mode with the argument cross.val (see the downscaleR’s wiki for examples of297

application), which allows for leave-one-out ("loo") and k-fold ("kfold") cross-298

validation schemes (see, e.g., Maraun et al., 2015; Manzanas et al., 2017a).299

In order to promote a collaborative development of the bias correction meth-300

ods, these are implemented as atomic functions that receive vectors as input (ob-301

servations, predictions and, for methods requiring calendar information, the corre-302

sponding dates), so contributors do not need to worry about the particularities and303

complexities of internal metadata handling. biasCorrection recursively applies304

these methods to the N-dimensional arrays of the climate4R data model, accord-305

ing to the different optional arguments provided (e.g. cross-validation method,306

parallel computing options, window size, etc.) and performing metadata update307

as required.308

5. Example 1: Climate Indices from CORDEX Projections309

The main functionalities of climate4R are showcased describing the com-310

plete workflow needed to compute and bias correct an ETCCDI climate index (im-311

plemented in the R package climdex.pcic, Bronaugh, 2015, see also http://312

etccdi.pacificclimate.org/list_27_indices.shtml) from locally stored313

EURO-CORDEX Regional Climate Model (RCM) data (Jacob et al., 2014). In314

particular, in this example we consider the projections of summer days (SU) —315

defined as the number of days with maximum temperature > 25◦C— for a single316
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model over a Mediterranean domain. The second case study (Sec. 6) will further317

expand on this example illustrating a more comprehensive analysis that builds a318

multi-model ensemble from EURO-CORDEX data, retrieved remotely from the319

Santander UDG.320

In the following, some code is interwoven within the text in order to illustrate321

the main package functionalities (the lines of code are identified by the R prompt322

symbol “>”). As a first step, the climate4R packages can be installed4 from the323

GitHub repository using the devtools package:324

> library(devtools)

> install_github(c("SantanderMetGroup/loadeR",

"SantanderMetGroup/loadeR.java",

"SantanderMetGroup/transformeR",

"SantanderMetGroup/visualizeR",

"SantanderMetGroup/downscaleR",

"SantanderMetGroup/climate4R.climdex")

5.1. Loading, collocating and harmonizing data325

In this section, we show the climate4R data access capabilities (including326

on-the-fly temporal aggregation and filtering), in order to directly load monthly327

summer days (SU) from the original maximum daily temperature data. However,328

only a reduced set of indices can be directly obtained in this way. Thus, in Sec.329

5.3 we revisit this example working with the original daily data. This leads to a330

4loadeR depends on package rJava, which might present installation problems as reported by

some users. See the related loadeR’s Wiki section for help and installation recommendations:

https://github.com/SantanderMetGroup/loadeR/wiki/Installation
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more general approach where a variety of indices can be computed using, e.g.,331

the climdex.pcic package implementing the 27 ETCCDI core indices (which332

include SU).333

First, we describe the use of loadeR to load data subsets from the two datasets334

used in this example: (1) remote E-OBS gridded observations from the E-OBS335

OPeNDAP server5, and (2) locally stored regional climate projections from a par-336

ticular EURO-CORDEX RCM (for both the historical and the RCP8.5 scenarios)337

previously downloaded from ESGF —see Appendix A—.338

The following call to the function loadGridData retrieves the E-OBS maxi-339

mum temperature (var = "tx") field of the full year (season = 1:12), from a340

single remote NetCDF file (dataset = eobs url), considering a Mediterranean341

spatial domain (lonLim = c(-10, 20), latLim = c(35, 46)) for a historical342

period (years = 1971:2000). In order to compute the SU index on-the-fly at a343

monthly scale, optional arguments are used both for data filtering (condition =344

"GT", threshold = 25, to indicate the binary filtering “strictly greater than 25”)345

and aggregation (aggr.m = "sum", to indicate the monthly aggregation func-346

tion).347

> library(loadeR)

> eobs_url <- "http://opendap.knmi.nl/knmi/thredds/

dodsC/e-obs_0.25regular/tx_0.25deg_reg_v17.0.nc"

> SU <- loadGridData(dataset = eobs_url,

var = "tx",

5The E-OBS dataset URL is not persistent, being updated with each new version of the dataset.

Please check the ECA&D site for the current E-OBS version and its corresponding active OPeN-

DAP URL at http://opendap.knmi.nl/knmi/thredds/e-obs/e-obs-catalog.html
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season = 1:12,

years = 1971:2000,

lonLim = c(-10, 20),

latLim = c(35, 46),

aggr.m = "sum",

condition = "GT",

threshold = 25)

Data transformation (e.g. regridding or additional temporal aggregation), is fa-348

cilitated by the various functions of the transformeR package, and visualization349

capabilities are provided by the visualizeR package. For instance, the follow-350

ing commands perform annual aggregation and plot the climatological map of the351

resulting annual SU index:352

> library(transformeR); library(visualizeR)

> SU <- aggregateGrid(SU, aggr.y = list(FUN = "sum"))

> # Generates Figure 2a:

> spatialPlot(climatology(SU))

EURO-CORDEX regional climate change projections from the RCA RCM —353

driven by the EC-EARTH GCM— can be loaded in a similar way. The NetCDF354

files of these simulations were downloaded from ESGF and stored locally (as355

detailed in Appendix A):356
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Figure 2: Annual climatology of Southern Europe summer days (ETCCDI SU index) for the

reference period 1971-2000 according to: (a) 0.22◦ E-OBS gridded observations dataset, (b) 0.44◦

RCA regional climate model (driven by EC-EARTH GCM, historical scenario), (c) same as (b),

but after regridding onto the regular E-OBS grid and (d) RCM bias (days/year) w.r.t. E-OBS.
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> dir <- "/myDirectoryHistoricalScenario/"

> list.files(dir, recursive = TRUE)

# [1] "tasmax_EUR-44_EC_hist_SMHI-RCA4_2006-2010.nc"

# [2] "tasmax_EUR-44_EC_hist_SMHI-RCA4_2011-2015.nc"

# [3] "tasmax_EUR-44_EC_hist_SMHI-RCA4_2016-2020.nc"

...

Note that, in this case, five-year periods are stored in separate files. As ex-357

plained in Sec. 2, one key strength of loadeR is that, in addition to single358

files —which can be directly loaded with loadGridData as in the previous E-359

OBS case—, it can transparently work with collections of files (catalogs) with360

a single access point (given by a NcML file; see Sec. 3 for more details) .361

This greatly facilitates data access, separating the logical structure of files from362

the way these are accessed. The following code shows the use of functions363

makeAggregatedDataset and dataInventory to write a catalog including the364

information contained in the files within a particular directory (in this case 19 files365

containing maximum temperature data for the period 2006-2100), and to display366

an overview of the dataset from the resulting NcML file (CDX hist.ncml in this367

example):368

> makeAggregatedDataset(source.dir = dir,

recursive = TRUE,

ncml.file = "CDX_hist.ncml")

> di <- dataInventory("CDX_hist.ncml")

> str(di$tasmax)

# List of 4

# $ Description: chr "Daily Maximum Near-Surf...
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# $ DataType : chr "float"

# $ Units : chr "K"

# $ Dimensions :List of 3

# ..$ time:List of 4

# .. ..$ Type : chr "Time"

# .. ..$ TimeStep : chr "1.0 days"

# .. ..$ Units : chr "days since 1949-12-0...

# .. ..$ Date_range: chr "2006-01-01T12:00:00Z...

# ..$ lat :List of 3

# .. ..$ Type : chr "GeoY"

# .. ..$ Units : chr "degrees"

# .. ..$ Values: num [1:103] -23.2 -22.8 -22.3...

# ..$ lon :List of 3

# .. ..$ Type : chr "GeoX"

# .. ..$ Units : chr "degrees"

# .. ..$ Values: num [1:106] -28.2 -27.8 -27.3...

Note that the units of this dataset are given in Kelvin (K). Therefore, harmo-369

nization with E-OBS units (degC) is required. This can be done using the function370

‘udConvertGrid‘ from package ‘convertR‘ (see Sec. 2) after data load, or directly371

on load using the harmonization capability implemented in climate4R through372

the definition of a standard vocabulary (complying with the UDUNITS standards)373

and the possibility to create raw-to-standard dictionaries for particular datasets.374

The climate4R standard vocabulary is displayed by function C4R.vocabulary:375

> C4R.vocabulary()

# identifier standard_name units

...
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# 17 tas 2-meter air temperature degC

# 18 tasmax maximum 2-m air temperature degC

# 19 tasmin minimum 2-m air temperature degC

# 21 pr total precipitation amount mm

...

A dictionary is a text file including simple unit conversion parameters (offset and376

scale) as well as temporal characterization attributes (further information can be377

found in the wiki https://github.com/SantanderMetGroup/loadeR/wiki/378

Harmonization). The construction of a dictionary for a dataset should be care-379

fully performed (with the help of dataInventory) and may require detailed in-380

formation from the data owner (e.g. temporal attributes). The dictionary file is381

usually saved locally —for instance together with the dataset— for its repeated382

usage (further instructions on dictionary usage are given in the loadGridData383

help menu). For better reproducibility, in the following code chunk a dictionary384

for the CORDEX RCM dataset is created on-the-fly as a temporary file to con-385

vert the raw maximum temperature units (K) to the stand ones (degC). Note that386

the code for this variable is the same (tasmax) in the CORDEX and standard387

vocabularies, as specified in the dictionary with short name and identifier,388

respectively.389

> dic <- tempfile(pattern = "cordex", fileext = ".dic")

> writeLines(c(

"identifier,short_name,time_step,lower_time_bound,

upper_time_bound, cell_method,offset,scale,

deaccum,derived,interface",

"tasmax,tasmax,24h,0,24,max,-273.15,1,0,0,"), dic)
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The dictionary can be passed to loadGridData by the optional argument390

dictionary = dic; otherwise the original data would be loaded in its original391

units:392

> SUh <- loadGridData(dataset = "CDX_hist.ncml",

var = "tasmax",

season = 1:12,

lonLim = c(-10, 20),

latLim = c(35, 46),

years = 1971:2000,

aggr.m = "sum",

threshold = 25,

condition = "GT",

dictionary = dic)

> SUh <- aggregateGrid(SUh, aggr.y = list(FUN = "sum"))

> # Generates Fig 2b:

> spatialPlot(climatology(SUh))

Note that the CORDEX RCM data is provided in rotated coordinates (Figure393

2b) and therefore, regridding is needed in order to compare the results with E-394

OBS, so basic arithmetic operations can be applied (e.g. ‘difference’ to obtain the395

bias). This can be achieved using the interpGrid function. It uses the nearest396

gridbox by default, but additionally, two different bilinear interpolation imple-397

mentations are available. In this example, the rotated coordinates of the RCM are398

interpolated onto the regular E-OBS grid:399

> SUh <- interpGrid(SUh, getGrid(SU))

> # Generates Fig 2c:
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> spatialPlot(climatology(SUh))

> bias <- gridArithmetics(SUh, SU, operator = "-")

> # Generates Fig 2d:

> spatialPlot(climatology(bias))

Similar data access and regridding operations are followed to load the projec-400

tions of RCP 8.5 scenario (e.g. for the period 2071-2100), obtaining the future401

summer days (SUf, Figure 3a) and the climate change signal (delta, Figure 3b),402

as the difference with the historical signal (see the auxiliary notebook for the full403

code).404

Note that the results obtained from CORDEX are affected by systematic biases405

—see Fig. 2d,— which prevent their direct use in most impact studies. Therefore,406

these results are typically post-processed in order to adjust the bias using bias407

correction techniques.408

5.2. Post-processing: Bias Correction409

The function biasCorrection of package downscaleR allows applying a410

number of standard bias correction techniques within the climate4R framework411

(see Sec. 4). In particular, when dealing with monthly data (as in the present412

example), the common bias correction technique is the (additive and/or multi-413

plicative) local scaling method (Sec. 4). The projections of future summer days414

(newdata = SUf) are corrected using the method calibrated using the historical415

model as training data (“predictor”, x = SUh) and the observed reference data416

(“predictand”, y = SU):417
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Figure 3: Climatology of Southern Europe annual SU (summer days) for the future period 2071-

2100: (a) RCA (EC-EARTH driven, RCP8.5 scenario) RCM, (b) climate change signal (delta)

w.r.t. the historical 1971-2000 RCA value —Figure 2c—, (c) bias corrected (additive scaling,

based on E-OBS) results.
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> library(downscaleR)

> SUf.bc <- biasCorrection(y = SU,

x = SUh,

newdata = SUf,

method = "scaling",

scaling.type = "additive")

> SUf.bc <- aggregateGrid(SUf.bc,

aggr.y = list(FUN = "sum"))

> # Generates Fig 3c:

> spatialPlot(climatology(SUf.bc))

The function temporalPlot displays temporal series for several datasets and418

periods on the same plot. temporalPlot is based on the powerful lattice pack-419

age (Sarkar, 2008) and therefore, fine-tuning plotting parameters can be passed420

through the argument xyplot.custom (see the auxiliary notebook). In this case,421

we are plotting the series of a single gridbox, the one closest to Zaragoza (with422

coordinates latLim = 41.64, lonLim = -0.89).423

> # Generates Fig. 4:

> temporalPlot("E-OBS" = SU,

"CDX_hist" = SUh,

"CDX_rcp85" = SUf,

"CDX_rcp85_corrected" = SUf.bc,

latLim = 41.64, lonLim = -0.89,

cols = c("black", "red", "red", "blue"))

The resulting figure (Fig. 4) shows the inter-annual SU time series for the424

selected gridbox point (Zaragoza), highlighting the large model bias (red) w.r.t.425
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the observations (black) in the historical period. This figure also shows how bias426

correction compensates for this bias when applied to the future period (red vs blue427

for 2071-2100).428
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Figure 4: Annual summer days time series for a single gridbox (the one closest to Zaragoza, in the

Ebro valley, Spain) for the observations (E-OBS) and the projection (original and bias corrected)

in the historical and future periods.
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5.3. Working with daily data429

Loading aggregated data (monthly in the example above) is a useful feature430

allowing for an efficient use of memory. However, as we already mentioned, only431

a reduced set of indices can be directly obtained in this way. Therefore, in this432

section we revisit this example considering a more general approach using daily433

data and the climate4R.climdex package for index calculation (a wrapper of434

climdex.pcic, implementing the 27 ETCCDI core indices).435

The data loading process for E-OBS (TX) and the historical (TXh) and future436

(TXf) RCM data is similar to the previous cases, but omitting the aggregation and437

filtering options. For instance the historical period can be loaded by:438

> TXh <- loadGridData(dataset = "CDX_hist.ncml",

var = "tasmax",

season = 1:12,

lonLim = c(-10, 20),

latLim = c(35, 46),

years = 1971:2000,

dictionary = dic)

In this case, it is possible to apply bias correction methods better suited for439

daily data than local scaling, before calculating the index. For instance, in the ex-440

ample below we use empirical quantile mapping (method = "eqm") with a mov-441

ing window of 30 days to correct each 7-day time interval (see Sec. 4 for EQM442

method description and argument explanation):443

> TXf.bc <- biasCorrection(y = TX,

x = TXh,
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newdata = TXf,

method = "eqm",

window = c(30, 7),

extrapolation = "constant")

> SUf <- climdexGrid(tx = TXf, index.code = "SU")

> SUf.bc <- climdexGrid(tx = TXf.bc, index.code = "SU")

> # Generates Fig. 5:

> spatialPlot(climatology(SUf.bc))
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Figure 5: As Figure 3c, but for the index computed from bias corrected (empirical quantile map-

ping) daily maximum temperature data.

The resulting bias-corrected index (Fig. 5) is only slightly different to the one444

computed with monthly data in the previous section (Figures 3c). Therefore, both445

bias correction approaches lead to similar results in this case (see Casanueva et al.,446

2018, for further discussion on direct vs component-wise bias correction). More447

comprehensive experiments considering different indices and spanning more bias448

correction techniques could be easily undertaken using the functions here shown449

(more examples are provided in the auxiliary notebook).450
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6. Example 2: Working with remote data from the UDG451

The Santander User Data Gateway (UDG) is a data service providing harmo-452

nized remote access to a number of popular datasets in climate studies (a summary453

is given in Table 1) which is seamlessly integrated with climate4R (see Sec. 3.1).454

In this section we extend the analysis performed in the previous example building455

a multi-model ensemble of CORDEX projections for the SU index and assessing456

the resulting uncertainty.457

The UDG service requires (free) registration to accept the data policies of the458

different data providers (http://www.meteo.unican.es/udg-wiki). Prior to459

data access, authentication with valid UDG credentials is required for the current460

R session in order to access the UDG. Once a valid user name and password have461

been issued, the authentication can be done in one step within the R session using462

the loginUDG function from loadeR:463

> library(loadeR)

> loginUDG("userUDG", "pswrdUDG")

# Setting credentials...

# Success!

# Go to <http://www.meteo.unican.es/udg-tap/home>

# for details on your authorized groups and datasets

It must be noted that it is insecure and in general not advisable to pass the user464

name and password in plain text within the scripts, although here it is shown this465

way for illustration purposes. Mechanisms exist in R to ensure a secure transfer466

of personal data and to avoid revealing personal passwords when sharing code467

(see e.g. https://cran.r-project.org/web/packages/httr/vignettes/468

secrets.html).469
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The function UDG.datasets() prints a list of the UDG datasets readily avail-470

able from climate4R showing the name, type (i.e. observation, reanalysis or471

projection) and URL. The harmonization capability for all these datasets is given472

by the predefined dictionaries included in loadeR. The use of these internal dic-473

tionaries is activated by default when using the name of the target dataset as an474

entry for the argument dataset in loadGridData, instead of the full URL. In475

the following example, we use this option to load CORDEX data, thus, unlike in476

Example 1 (Sec. 5), there is no need for posterior conversion to the climate4R477

standard naming and units.478

For a lighter computational and memory demand, here we restrict the analysis479

to the Iberian Peninsula (arbitrary spatial domains can be indicated by changing480

the lonLim and latLim argument values) and use the 0.44◦ regular grid (note481

that the 0.11◦ simulations are also available at UDG). When listing the available482

datasets, pattern matching can be used to locate datasets with particular character-483

istics through the optional argument pattern:484

> mod <- UDG.datasets(pattern = "CORDEX-EUR44.*hist")

> mod$name

#[1] CORDEX-EUR44_ICHEC-EC-EARTH_r12i1p1_RCA4_v1_hist

#[2] CORDEX-EUR44_CERFACS-CNRM-CM5_r1i1p1_RCA4_v1_hist

#[3] CORDEX-EUR44_ICHEC-EC-EARTH_r1i1p1_RACMO22E_v1_hist

#[4] CORDEX-EUR44_ICHEC-EC-EARTH_r3i1p1_HIRHAM5_v1_hist

#[5] CORDEX-EUR44_IPSL-CM5A-MR_r1i1p1_RCA4_v1_hist

#[6] CORDEX-EUR44_MOHC-HadGEM2-ES_r1i1p1_RCA4_v1_hist

...

A multi-model ensemble (e.g. the first 6 models in this example) can be ac-485
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Figure 6: Summer days in Iberia for the future period 2071-2100 computed from the original

RCM daily maximum temperature data (above), and daily maximum temperature bias corrected

data using E-OBS (below). The left column shows the ensemble mean, whereas the right column

shows the ensemble standard deviation (uncertainty).

cessed using a loop on the target datasets (lapply in this example):486

> ensemble.h <- mod$name[1:6]

> TXh.list <- lapply(ensemble.h, function(x) {

loadGridData(dataset = x,

var = "tasmax",

season = 1:12,

lonLim = c(-10, 5),

latLim = c(36, 44),

years = 1971:2000)

})

The six model outputs are next regridded onto the E-OBS grid (the step is487
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detailed in the auxiliary notebook) and the multi-model ensemble is constructed488

with function bindGrid.489

> TXh.ens <- bindGrid(TXh.list, dimension = "member")

> str(TXh.ens)

Note that the new ensemble data structure contains the additional dimension490

member, that includes the six members composing the multi-model, as described491

in Sec. 2. The same process is followed to obtain the RCP 8.5 future ensemble492

(TXf.ens, see the auxiliary notebook). As a result of arranging all the ensemble493

members within the same structure, SU index calculation can be performed for the494

whole ensemble in a single line of code. Additionally, the member dimension can495

be directly aggregated to calculate the ensemble mean and deviation (Fig. 6(top)).496

> SUf.ens <- climdexGrid(TXf.ens, index.code = "SU")

> SUf.ens.m <- aggregateGrid(SUf.ens,

aggr.mem = list(FUN = mean))

> SUf.ens.sd <- aggregateGrid(SUf.ens,

aggr.mem = list(FUN = sd))

> # Generates Figure 6 (top):

> spatialPlot(climatology(SUf.ens.m))

> spatialPlot(climatology(SUf.ens.sd))

Bias correction (empirical quantile mapping in this example, method =497

"eqm") is performed similarly, with the possibility to include further arguments498

(join.members) to control how the members are treated within the bias correc-499

tion step. By default, each member is corrected separately:500

34

Revised version submitted to Environmental Modelling & Software (Aug. 2018)



TXf.ens.bc <- biasCorrection(y = TX,

x = TXh.ens,

newdata = TXf.ens,

window = c(30, 7),

method = "eqm")

The SU ensemble mean projection and the corresponding uncertainty (as char-501

acterized by the standard deviation of the multi-model) can be directly obtained502

for the bias-corrected data by repeating the above code producing the top panels503

of Fig. 6, but using the bias-corrected ensemble TXf.ens.bc instead of TXf.ens,504

as shown in the two bottom panels of Fig. 6. Finally, the resulting time series for505

the target location (Zaragoza) are shown in Fig. 7, where the uncertainty of the506

ensemble is depicted by shaded areas representing the multi-model range (see the507

auxiliary notebook for the full code).508

These results show that a large reduction of the uncertainty is achieved for SU509

projections after correcting the bias of the original maximum temperature data,510

highlighting the need for bias-corrected data prior to index calculation. As SU511

is based on an absolute threshold (25◦C), the biases of the different ensemble512

members largely affect the threshold exceedances, as shown in Figure 8 (see the513

code in the auxiliary notebook). However, these results might be different for514

relative (e.g. percentile-based) threshold indices that do not make use of absolute515

values. Unlike SU, an example for the ETCCDI index CDD (consecutive dry516

days) is provided in the auxiliary notebook, yielding no significant uncertainty517

reduction after bias correction.518
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Figure 7: Annual summer days time series for a single gridbox (the one closest to Zaragoza, in the

Ebro valley, Spain) computed from (red) the original RCM daily maximum temperature data, and

(blue) daily maximum temperature bias corrected data using E-OBS (black). When it comes to

CORDEX data, continuous lines correspond to the ensemble mean and the shadowed area to the

range (uncertainty). Dashed lines correspond to the 1st member of the ensemble, the same as the

one used in Sec. 5 (see Fig. 4).
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Figure 8: (Top) Maximum temperature in Iberia for the future period 2071-2100 (RCP8.5 sce-

nario) for six CORDEX models. (Bottom) Bias of the RCMs (historical scenario w.r.t. E-OBS for

the period 1971-2000).

7. Conclusions519

This paper introduces the climate4R framework for accessing and post-520

processing climate data within the R computing environment, and describes its521

main components (data services, core packages and external packages) and func-522

tionalities, including two practical illustrative case studies that showcase its main523

functionalities. The first example describes the application to calculate and bias-524
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correct future projections of a standard ETCCDI climate index (summer days)525

for a Southern European domain from locally stored CORDEX data. The sec-526

ond example illustrates an extended case study using remote data (from the San-527

tander UDG) to construct an ensemble of future regional climate projections528

for different climate indices and to analyze the sensitivity of the results (in-529

cluding the potential reduction of uncertainty after bias correction). Moreover,530

a companion notebook allows the full reproducibility of the examples (https:531

//github.com/SantanderMetGroup/notebooks).532

Throughout these examples it has been shown how the different tools avail-533

able in the climate4R framework allow for: 1) an easy harmonized access534

of user-defined slices from complex datasets —either locally or remotely via535

OPeNDAP—, 2) flexible data handling, 3) quick and powerful visualization ca-536

pabilities and 4) straightforward application of a wide range of bias correction537

methods, providing an intuitive interface for undertaking many different climate538

data operations usually required by the climate VIA community, and easing the539

performance of complex research experiments and their end-to-end reproducibil-540

ity.541
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Software and data availability553

• All data used in this paper is publicly available (details are provided in Sec-554

tions 3, 5 and 6).555

• climate4R packages used in this paper are the following:556

‘loadeR‘ (version 1.4.6)557

‘transformeR‘ (version 1.4.4)558

‘downscaleR‘ (version 3.0.3)559

‘visualizeR‘ (version 1.2.2)560

‘climate4R.climdex‘ (version 0.1.4)561

562

• Developers in alphabetical order: J. Baño-Medina, J. Bedia, E. Cimadevilla,563

A.S. Cofiño, J. Fernández, M. D. Frı́as, J. M. Gutiérrez, S. Herrera, M.564

Iturbide, R. Manzanas, D. San-Martı́n.565

• Website: https://github.com/SantanderMetGroup.566

• Hardware requirement: General-purpose computer.567

• Programming language: R.568

• Software requirement: R version 3.5.1 or later.569
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• Installation code:570

> library(devtools)571

> install_github(c(572

"SantanderMetGroup/loadeR.java",573

"SantanderMetGroup/loadeR",574

"SantanderMetGroup/transformeR",575

"SantanderMetGroup/visualizeR",576

"SantanderMetGroup/downscaleR",577

"SantanderMetGroup/climate4R.climdex")578

Licensing579

This software is made freely available under the terms and conditions of the580

GNU General Public License Version 3.581

Appendix A. Downloading data through ESGF582

Earth System Grid Federation (ESGF, https://esgf.llnl.gov/mission.583

html) is a worldwide distributed infrastructure for the management and access584

to the climate data produced in different international initiatives as the differ-585

ent phases of the Coupled Model Intercomparison Project (CMIP) or the Co-586

ordinated Regional Climate Downscaling Experiment (CORDEX). ESGF nodes587

(https://esgf.llnl.gov/nodes.html) are the access point to search, ex-588

plore and download this large amount of data independently on the server in589

which they are located. In spite of the common access, in order to down-590

load the data several previous steps should be made, introducing some diffi-591

culties in the process. First, the user should make the registration and obtain592
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the corresponding ESGF account identified by the user’s “OpenID” (https:593

//en.wikipedia.org/wiki/OpenID) and password. Second, the user should594

enrol in the groups in which the user is interested (e.g. CMIP5, CORDEX,595

etc.). Without this step, the user can explore the available data, but can not596

download it. After data search, the user can add the selected datasets to its597

Data Cart which can be directly downloaded, dataset by dataset, using her/his598

OpenId. Alternatively, several shell scripts (e.g. wget-YYYYMMDDHHMMSS.sh)599

can be generated to download the selected dataset using the terminal. To use600

these scripts the user should have the ESGF-Credentials installed in its home601

(see e.g. https://meteo.unican.es/trac/wiki/ESGFGetCredentials or602

https://github.com/ESGF/esgf-getcert for more details). However, note603

that on the one hand, the credentials will be valid for just 72 hours and, on the604

other hand, the scripts can not be modified or adapted to download other datasets.605

To execute the script, the user can use a BASH shell code similar to the next:606

DIR=~/.esg

USR=https://esgf-node/esgf-idp/openid/userName

PASS=userPassword

# Retrieve the credentials

export PATH=/root/java/oracle/jdk1.7.0_79/bin:$PATH

java -jar ./getESGFCredentials-0.1.4.jar --openid

$USR --password $PASS --writeall --output $DIR

unset X509_USER_PROXY

# Executing the script in the terminal:

bash wget-YYYYMMDDhhmmss.sh

# Executing the script in a PBS queue

qsub -d $PWD -V wget-YYYYMMDDhhmmss.sh
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