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Abstract 

The load quantification of solutes and suspended materials in rivers provides meaningful ecological 

information about watershed functionality. High-frequency measurements of flow are often available, whereas 

concentration data are commonly recorded at low frequencies. Different calculation methods have been 

developed by various authors to provide unbiased load estimation. We provide a new R package 

(RiverLoad) that implements several of the most widely used load estimation algorithms. The package 

provides an easy-to-use tool to rapidly calculate the load for various compounds and to compare different 

methods. The package also supplies additional functions to easily organize and analyze the data. A 

bootstrapping was performed on two example datasets to illustrate the reliability of the methods at different 

sampling frequencies. The RiverLoad package should make it easier to obtain load data and to compare 

different estimation algorithms. However, attention must be paid when selecting the method to avoid consistent 

error in the load estimation.  
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1 Introduction 

The river load data have a key role in many research and monitoring programs concerning water-quality 

evaluation, as the load provides an integrated measure of inputs and biogeochemical processes within a 

watershed (Aulenbach et al., 2016; Cooper and Watts, 2002; Craven et al., 2017; Letcher et al., 2002; Shrestha 

and Kazama, 2007; Wolfs et al., 2015). Precise and accurate estimates of river nutrients and suspended solid 

loads are relevant not only to assess the water quality but also to calculate the proportion between point and 

non-point sources, to highlight critical areas that require effective management strategies, to calibrate 

catchment-scale models, and to evaluate long-term trends in river load (Chu et al., 2008; Elwan et al., 2018; 

Littlewood, 1995; Newham et al., 2004; Polyakov et al., 2007; Quilbé et al., 2006). 

The total load is the product of solute concentration and discharge integrated over time. While discharge is 

often measured in a continuous manner, the concentration of most compounds is usually measured at discrete 

points in time, usually at low frequencies (Aulenbach et al., 2016; Moatar and Meybeck, 2005; Preston et al., 

1989; Webb et al., 2000). Consequently, the load estimation may be difficult and various techniques have been 

developed for this aim (Aulenbach et al., 2016; Moatar and Meybeck, 2005; Phillips et al., 1999; Preston et 

al., 1989). The different calculation methods can be divided into three groups. The first is represented by the 

averaging methods, simple interpolation methods which use averages as representative measure of 

concentration, flow, or load for a given time interval. The implicit assumptions are that the data must be 

independent and identically distributed. The samples often do not cover the entire range of flow and 

concentration values and, consequently, load estimates can be biased (Preston et al., 1989; Quilbé et al., 2006). 

However, averaging approaches have shown relatively high precision in some surveys and might be suitable 

in special situations, for example when the purpose is to detect a temporal change in the load (Richards, 1998). 

The ratio estimators form the second group of the load calculation methods. These estimators attempt to correct 

for the conditions at the time of sampling; the mean load is adjusted by the ratio of the long-term mean 

discharge to the average daily discharge of days on which samples have been collected (Aulenbach and 

Hooper, 2006; Cooper and Watts, 2002; Lee et al., 2016). These methods are derived from the ratio estimator 

developed by Beale (1962) and are suitable when large amount of flow data are and few concentration data are 

available (Quilbé et al., 2006). Ratio estimators assume that there is a positive linear relationship between 

instantaneous fluxes and instantaneous flows (with origin at zero) and the variance in instantaneous fluxes 

increases with the variance in instantaneous flows. Both of these conditions are often satisfied, at least 

approximately, by relationships between load and discharge (Preston et al., 1989; Richards, 1998). The last 

group is represented by the regression methods (or rating curves), in which concentration over time is 

determined using a regression model defining an empirical relationship between streamflow and concentration 

(Aulenbach and Hooper, 2006; Lee et al., 2016; Preston et al., 1989; Quilbé et al., 2006). The load estimation 

depends on the accuracy of the proposed model and the model predicts the average concentration response for 

the conditions present, and therefore does not attempt to match the observed concentrations at any given time 

(Aulenbach et al., 2016; Aulenbach and Hooper, 2006). Generally, log-log regressions are applied because 



3 
 

flow and concentration are assumed to be described by a bivariate lognormal distribution (Preston et al., 1989; 

Worrall et al., 2013).  

The selection of the appropriate method depends on the frequency and distribution of sampling, watershed 

size, the variability in flow, and the strength and form of the relationship between concentration and discharge 

(Aulenbach et al., 2016).  

In this work, we present a new R package, called RiverLoad, to provide a useful tool to perform different 

calculation methods to estimate load, from the concentration values of various chemical constituents and flow 

records. We provide twelve functions to perform different algorithms previously elaborated and reported by 

various authors (Dolan et al., 1981; Moatar and Meybeck, 2005; Phillips et al., 1999; Preston et al., 1989; 

Quilbé et al., 2006; Smith et al., 2016). The RiverLoad package allows the load to be estimated, but also 

allows to organize the database in an easy way and to obtain statistical parameters. The aim of the package is 

to provide an accessible, user-friendly tool to quickly get an estimation of load, also with limited databases, 

and to easily compare different methods of calculation. The release package is available on CRAN and the full 

open-source code is freely accessible for examination and extension online.  

 

2 Conceptual background: algorithms for load estimation 

2.1 Averaging methods 

2.1.1 Method 1: Time-Weighted Q and C  

Method 1 considers the mean of concentration and the mean of flow of the different samples to obtain the load 

value, with the following equation: 

𝐿 = 𝐾 (∑
𝐶𝑖

𝑛

𝑛

𝑖=1

)(∑
𝑄𝑖

𝑛

𝑛

𝑖=1

)

where Ci (g m-3) is the instantaneous concentration associated with individual samples, Qi (m
3 s-1) is the 

instantaneous discharge at time of sampling, n is the number of samples collected, K is a conversion factor to 

account for the measurement units, and thus its value depends on the measurement units in which flow and 

concentration data are reported (e.g., Littlewood, 1995; Moatar and Meybeck, 2005; Phillips et al., 1999; 

Walling and Webb, 1985; Worrall et al., 2013). 

Various studies have reported that this estimator is precise, given similar results with different subsamples 

from the same dataset, but sometimes biased, resulting in an underestimation of the actual load (Ferguson, 

1987; Quilbé et al., 2006; Walling and Webb, 1981a).  

2.1.2 Method 2: Discharge-weighted C 

Method 2 is a simple interpolation method that involves the mean value of loads over a certain time period 

where both concentration and flow are measured (Dolan et al., 1981; Littlewood, 1995). All concentration and 

flow pairs are equally weighted (Worrall et al., 2013) and the load is calculated with the following equation: 

𝐿 = 𝐾 (∑
𝐶𝑖𝑄𝑖

𝑛

𝑛

𝑖=1

) 
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This method seemed to have a large bias for discrete concentration data (Quilbé et al., 2006). 

2.1.3 Method 3: Mean discharge-weighted C 

Method 3 is based on the hypothesis of constant concentration around a sample and the load is estimated as 

follows: 

𝐿 = 𝐾′ ∑𝐶𝑖𝑄𝑖,𝑖−1
̅̅ ̅̅ ̅̅ ̅

𝑛

𝑖=1

 

where Qi,i-1 (m
3 s-1) is the mean discharge for the interval between samples i and i-1, derived from frequent 

flow records, and K’ is a conversion factor to account for the period of load estimation (Moatar and Meybeck, 

2005; Preston et al., 1989).  

2.1.4 Method 4: Time-Weighted C 

The fourth method, developed by Dolan et al. (1981), is the product of the means of sampled concentrations 

and the annual discharge: 

𝐿 = 𝐾𝑄̅ (∑
𝐶𝑖

𝑛

𝑛

𝑖=1

) 

where 𝑄̅ (m3 s-1) is the annual mean discharge, derived from frequent flow records. Unlike the previously 

reported procedure, this algorithm uses all the available flow data (Moatar and Meybeck, 2005; Quilbé et al., 

2006). This estimator is reported to be precise, given similar results with different subsamples from the same 

dataset, but sometimes biased, resulting in an underestimation of the actual load (Ferguson, 1987; Quilbé et 

al., 2006; Walling and Webb, 1981b). A previous study highlighted that this method gives good load estimation 

for specific compounds, such as particulate-P (Moatar and Meybeck, 2005). 

2.1.5 Method 5: Time and discharge weighted 

Method 5 weighs the mean daily load by the mean of all measured flows and estimates the load as follows: 

𝐿 = 𝐾
∑ 𝐶𝑖

𝑛
𝑖=1 𝑄𝑖

∑ 𝑄𝑖
𝑛
𝑖=1

𝑄̅ 

This estimator was found to be less biased than method 1 and method 4, but resulted in large variability in load 

estimations (Quilbé et al., 2006).  

2.1.6 Method 6: Linear interpolation of C 

Method 6 is based on the linear interpolation of the concentration values; then, the values drawn are multiplied 

by the flow records to obtain the load estimation as follows: 

𝐿 = 𝐾′′∑𝐶𝑗
𝑖𝑛𝑡𝑄𝑗

𝑛

𝑗=1

 

where 𝐶𝑗
𝑖𝑛𝑡  (g m-3) is the daily concentration linearly interpolated between two measured samples, 𝑄𝑗 (m

3 s-1) 

is the mean daily discharge, and K’’ is a conversion factor to account for the period of load estimation (Moatar 
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and Meybeck, 2005). Interpolation procedures essentially involve the assumption that the values of 

concentration or discharge obtained from instantaneous samples are representative of a much longer period of 

time and it is important to take this into account when applying this algorithm (Moatar and Meybeck, 2005). 

This method seemed to be accurate and precise, and in a previous study, it is highlighted to be suitable for 

nitrate and soluble reactive phosphorus load estimation (Chu et al., 2008; Moatar and Meybeck, 2005). 

2.2 Ratio estimators 

2.2.1 Beale Ratio estimation 

The Beale Ratio Estimator (Beale, 1962) is a method that has been shown to produce robust and statistically 

unbiased results (Quilbé et al., 2006). The mean daily load, calculated as the product of concentration and flow 

of days on which samples are taken and then averaged, is multiplied by a flow ratio, which is derived by 

dividing the average flow as a whole by the average flow recorded in the chemical sampling days. A bias 

correction factor is included in the calculation, to compensate for the effects of the correlation between 

discharge and load (Richards, 1998): 

𝐿 = 𝑄
𝑙 ̅

𝑞̅
[
 
 
 1 +

1
𝑛

[
𝐶𝑜𝑣(𝑙, 𝑞)

𝑙 ̅𝑞̅
]

1 +
1
𝑛

[
𝑉𝑎𝑟(𝑞̅)

𝑞̅2 ]
]
 
 
 
 

where Q (m3 s-1) is the total flow for the considered period, 𝑞̅ (m3 s-1) is the mean flow for times when chemical 

compounds were measured, and 𝑙 ̅(g s-1) is the mean flow for times when samples were collected. The term in 

square brackets is the bias correction term. This method does not assume a normal distribution and it is not 

recommended to be used with log-transformed data (Richards, 1998; Worrall et al., 2013).  

2.3 Regression methods 

2.3.1 Log-log rating 

The most common regression equation for load estimation is the log-log linear rating curve derived from the 

relationship between the values of concentration and river flow at the time of sampling:  

𝑙𝑜𝑔10(𝐶) = 𝑎 + 𝑏 ∙ 𝑙𝑜𝑔10(𝑄) 

where a and b are the intercept and the slope of the least square regression line, respectively. 

This relationship is applied to the high frequency discharge record to generate the daily concentration. The 

values obtained are used to calculate the load by summing, over a specific period, the product of daily 

concentration and daily streamflow (Phillips et al., 1999; Quilbé et al., 2006), as follows:  

𝐿𝑟 = ∑𝐶𝑖𝑄𝑖

𝑛

𝑖=1

 

2.3.2 Ferguson rating curve  

Ferguson (1986) recommended a correction to the previous method to obtain an unbiased estimator 𝐿𝑐𝑟: 

𝐿𝑐𝑟 = 𝐿𝑟 ∙ 𝑒2.651 𝑠2
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where s is the standard error of the estimate of the rating curve in log10 units (Phillips et al., 1999; Quilbé et 

al., 2006; Worrall et al., 2013). 

 

3 RiverLoad package features 

The load estimation algorithms of the package are listed in Table 1. In Table 2, we reported the additional 

functions provided to organize the initial matrix (Table 2a-b), to perform descriptive statistics on flow records 

(Table 2c-f), and to analyze regression models (Table 2g-i). 

Table 1. List of the different load estimation algorithms provided by RiverLoad package. The reference number of the method 

(“Method no.”), the name of the function in the package (“Function name”), the algorithm of the method (“Algorithm”), the method 

typology (“Class”), and selected references for the different calculation (“References”) are reported. 

Method 

no. 
Function name Algorithm Class References 

1 method1 𝐿 = 𝐾 (∑
𝐶𝑖

𝑛

𝑛

𝑖=1

)(∑
𝑄𝑖

𝑛

𝑛

𝑖=1

) Interpolation 
(Moatar and Meybeck, 2005; Phillips et 
al., 1999; Verhoff et al., 1980; Walling 

and Webb, 1985) 

2 method2 𝐿 = 𝐾 (∑
𝐶𝑖𝑄𝑖

𝑛

𝑛

𝑖=1

) Interpolation 

(Moatar and Meybeck, 2005; Phillips et 
al., 1999; Quilbé et al., 2006; Rodda 

and Jones, 1983; Walling and Webb, 
1985; Worrall et al., 2013) 

3 method3 𝐿 = 𝐾′∑𝐶𝑖𝑄𝑖,𝑖−1
̅̅ ̅̅ ̅̅ ̅

𝑛

𝑖=1

 Interpolation 
(Moatar and Meybeck, 2005; Phillips et 

al., 1999; Walling and Webb, 1985, 
1981a) 

4 method4 𝐿 = 𝐾𝑄̅ (∑
𝐶𝑖

𝑛

𝑛

𝑖=1

) Interpolation 
(Moatar and Meybeck, 2005; Ongley, 
1973; Quilbé et al., 2006; Walling and 
Webb, 1985) 

5 method5 𝐿 = 𝐾
∑ 𝐶𝑖

𝑛
𝑖=1 𝑄𝑖

∑ 𝑄𝑖
𝑛
𝑖=1

𝑄̅ Interpolation 
(Moatar and Meybeck, 2005; Quilbé et 

al., 2006; Verhoff et al., 1980; Walling 
and Webb, 1985) 

6 method6 𝐿 = 𝐾′′∑𝐶𝑗
𝑖𝑛𝑡𝑄𝑗

𝑛

𝑗=1

 Interpolation 
(Moatar and Meybeck, 2005; Williams 
et al., 2015) 

7 beale.ratio 𝐿 = 𝑄
𝑙 ̅

𝑞̅
[
 
 
 1 +

1
𝑛 [

𝐶𝑜𝑣(𝑙, 𝑞)

𝑙 ̅𝑞̅
]

1 +
1
𝑛 [

𝑉𝑎𝑟(𝑞̅)
𝑞̅2 ]

]
 
 
 
 Ratio 

(Beale, 1962; Elwan et al., 2018; Lee et 
al., 2016; Phillips et al., 1999; Quilbé et 
al., 2006) 

8 beale.period 𝐿 = 𝑄
𝑙 ̅

𝑞̅
[
 
 
 1 +

1
𝑛 [

𝐶𝑜𝑣(𝑙, 𝑞)

𝑙 ̅𝑞̅
]

1 +
1
𝑛 [

𝑉𝑎𝑟(𝑞̅)
𝑞̅2 ]

]
 
 
 
 

Ratio 

(different covariance  

and variance for  

month and year) 

(Beale, 1962; Elwan et al., 2018; Lee et 
al., 2016; Phillips et al., 1999; Quilbé et 
al., 2006) 

9 rating 

𝐶 = 𝑎𝑄𝑏;  

𝐿𝑟 = ∑𝐶𝑖𝑄𝑖

𝑛

𝑖=1

 
Regression 

(Phillips et al., 1999; Quilbé et al., 
2006; Walling and Webb, 1981a) 



7 
 

10 rating.period 

𝐶 = 𝑎𝑄𝑏;  

𝐿𝑟 = ∑𝐶𝑖𝑄𝑖

𝑛

𝑖=1

 

Regression 
(different regression 

for month and year) 

(Phillips et al., 1999; Quilbé et al., 
2006; Walling and Webb, 1981a) 

11 ferguson 
𝐶 = 𝑎𝑄𝑏;  

𝐿𝑐𝑟 = 𝐿𝑟 ∙ 𝑒2.651 𝑠2
 

Regression 
(Ferguson, 1986; Phillips et al., 1999; 
Preston et al., 1989; Quilbé et al., 2006; 

Worrall et al., 2013) 

12 ferguson.period 
𝐶 = 𝑎𝑄𝑏;  

𝐿𝑐𝑟 = 𝐿𝑟 ∙ 𝑒2.651 𝑠2
 

Regression 

(different estimation 

for month and year) 

(Ferguson, 1986; Phillips et al., 1999; 
Preston et al., 1989; Quilbé et al., 2006; 
Worrall et al., 2013) 

 

Table 2. List of the additional useful functions provided by RiverLoad package, with the name of the function (“Function name”) 

and a brief description (“Description”). 

Function name Description 

a) db.intersect 
Merge concentration and flow data on the basis of the “datetime” column, maintaining 

only the date and time in which both the data are available 

b) db.union 
Combine concentration and flow data on the basis of the “datetime” column, maintaining 

all the flow data and returning ‘NA’ when concentration data are not available 

c) daily.mean Return the mean daily flow 

d) monthly.mean Return the mean monthly flow, not differentiated by year 

e) monthly.year.mean Return the mean monthly flow, differentiated by year 

f) annual.mean Return the mean annual flow 

g) CQregression 
Return R2 of the regression between concentration and flow for the application of 

rating and ferguson functions. 

h) rsquared.period 
Return R2 for monthly or annual regression for the application of the rating.period 

and ferguson.period functions 

i) reg.inspection 
Return the regression parameters: coefficients and the associated p-value, R2, degrees-of-

freedom 

j) residual.plot 
Return the residual plot of the specified compound of the regression analyses by rating 

and ferguson function  

 

3.1 Input data arrangement 

The input data must include flow and concentration records. The input matrix must have at least three columns. 

The first is the column with the date and the hour of the sampling and must be labeled with “datetime”. The 
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date and hour information have to be in the standard format yyyy-mm-dd HH:MM:SS (ISO 8601). The second 

column must contain the flow records, expressed in m3 s-1, and must be labeled with “flow”. The following 

columns must contain the available concentration data of one or more compounds, expressed in g m-3. The 

labels can be freely chosen by the user. For the datetime in which the concentration records are not available, 

‘NA’ must be reported. 

The package provides a useful function, named db.union (Table 2a), to easily create the requested matrix.  

In many cases, the concentration and the flow data are available in two distinct matrices and the matching 

operation can be time-consuming, especially for an extended dataset. This function allows the data to be 

merged, maintaining all the available flow records with the scattered concentration values based on date and 

time information. Two arguments are required: the first is the matrix with flow records, the second is the matrix 

with concentration data. The flow matrix must contain a first column with the datetime information, labeled 

“datetime” and expressed in the standard format yyyy-mm-dd HH:MM:SS (ISO 8601), and a second flow 

column, in m3 s-1, labeled “flow”. The concentration matrix must contain the “datetime” column in the standard 

format (yyyy-mm-dd HH:MM:SS) and the concentration data with user-defined labels (see Figure S1). 

In addition, RiverLoad allows the concentration and flow records to be matched in a second manner. The 

function db.intersect (Table 2b) pairs the data maintaining the rows in which both the concentration and 

the flow records are available. In this case, no ‘NA’ value is reported. The arguments requested are equivalent 

to that of the db.union function. 

All data must be quality assured/quality controlled (QA/QC) before use for load estimation (Winslow et al., 

2016). We strongly suggest manual inspection of all the data to identify data gaps, anomalies and potential 

pitfalls in the dataset. 

3.2 Explorative analyses of flow 

Supplementary functions permit explorative analyses of the flow data, calculating the mean value over 

different periods. The function called daily.mean (Table 2c) allows a daily mean of flow to be obtained. 

The function monthly.mean (Table 2d) returns a monthly mean not differentiated by year; therefore, if 

more year records are reported, the function provides a single mean value for the same month in different 

years. Meanwhile, the monthly.year.mean function (Table 2e) returns a monthly mean with a different 

value for different years. Finally, annual.mean gives the annual flow mean. The argument of all of these 

functions must be the flow matrix, with “datetime” and “flow” columns, or the matrix previously obtained 

with the db.union function. An optional argument is “sd” to obtain the standard deviation. 

3.3 How to obtain load estimation 

The package provides twelve load estimation algorithms, listed in Table 1. All of these functions require the 

same arguments. The first argument is the matrix described previously, user-created or obtained by the 

db.union function, with flow records and scattered concentration data (Figure S1). The second mandatory 

argument is the number of compounds, for which the concentration data have been reported and load estimation 

must be performed. Indeed, it is possible to simultaneously perform the calculation of different compounds 
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measured at the same time. For example, if the user wants to estimate the load for total phosphorus, total 

nitrogen and soluble reactive phosphorus, he/she must specify “3” as number of compounds. The last is an 

optional or mandatory argument, depending on the function considered, indicating that the period throughout 

the estimation must be performed. If this argument is missing, the default calculation is done on the time period 

occurring from the first and to the last flow record reported in the matrix included in the function. Otherwise, 

this argument can assume two different specifications: “year” for an annual estimation of load, and “month” 

to obtain a load estimation every month. Monthly and annual load estimation with regression methods and the 

Beale ratio can be performed in two different ways: 

a) the functions rating, ferguson, and beale.ratio estimate the load calculating a single log-

log linear rating curve, value of variance and bias correction factor throughout the period spanned by 

the streamflow data; 

b) the functions rating.period, ferguson.period, and beale.period estimate the load, 

calculating the monthly or annual log-log linear rating curve, value of variance, and bias correction 

factor. For these functions, the third argument is mandatory, as they require the specification of the 

period of estimation, i.e., “month” or “year”. 

The output returns a matrix with the load estimation for the different compounds in grams on the time specified.  

3.4 Specifications for regression methods  

A statistically significant correlation between concentration and flow is mandatory to perform regression 

methods (Quilbé et al., 2006). RiverLoad provides the function called CQregression (Table 2g) to 

obtain R2 before the application of the rating and ferguson function, and the rsquared.period 

function (Table 2h) to obtain the R2 before rating.period and ferguson.period application. 

Aulenbach et al. (2016) suggested using a regression method when the coefficient of determination (R2) is 

higher than 0.3.  

For rating and ferguson functions it is possible to obtain, beyond load estimation, statistical data using 

the function reg.inspection (Table 2h). This function requires the same arguments as the algorithm 

functions: the matrix with flow records and scattered concentration data, and the number of compounds for 

which the analysis must be performed. The output returns the slope and intercept coefficients and their related 

p-value, the R2, and the residual degrees-of-freedom.  

In addition, the residual.plots function permits the diagnostic plots returned by plot.lm to be 

obtained: a plot of residuals against fitted values; a Scale-Location plot of √|𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠| against fitted values; 

a Normal Q-Q plot; a plot of residuals against leverages. The first argument is the usual matrix with flow 

records and scattered concentration data and the second is the number of specific compounds for which the 

user would obtain the plots, as the function returns the graphs for one compound at a time. The user can indicate 

a file path as an optional argument, specifying the folder in which the output plot will be saved and the name 

of the file with a .jpeg extension. Otherwise, the plot will be shown in the R window. 
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A workflow displaying the functioning of the RiverLoad package is reported in Figure 1. Further practical 

examples of the standard application of the package are included in the Supplementary Materials with three 

datasets, which are also embedded in the package structure. 

 
Fig. 1. An example workflow of the RiverLoad package. 

4 Test cases: a bootstrap approach 

To determine the reliability of the various methods provided in the RiverLoad package, two further example 

datasets of rivers, with different watershed extension and flow features, are reported and analyzed below. These 

datasets have been carefully selected to demonstrate the behavior and the utility of the software. The actual or 

‘true’ load must be known in order to determine the error of load estimates using the different methodologies 

(Aulenbach and Hooper, 2006); thus, high-frequency datasets were selected. A daily frequency is assumed to 

be sufficient for capturing most of the significant variability within a given year (Moatar and Meybeck, 2005; 

Preston et al., 1989). We designed a bootstrap experiment to evaluate the effects of weekly, fortnightly and 

monthly sampling intervals on the accuracy and precision of the different load estimation procedures, seeing 

whether the load estimates were close to converging on the true load. We artificially decimated the dataset, by 

randomly choosing the concentration data collected in a fixed number of sampling days within the defined 

frequency. Ten thousand replications were performed for each test cases using the ‘boot’ package in R (Canty 

and Ripley, 2017). We estimated the load for total phosphorus (TP) for both the datasets to allow an immediate 

comparison between them. Different compounds could have different behaviour, thus we anticipate that the 

outcomes reported should be extended to the other compounds with caution. 

4.1 Dataset description 

The datasets are provided by the National Center for Water Quality Research, Heidelberg University within 

the Heidelberg Tributary Loading Program (Heidelberg University, 2019), that was initiated in 1974 as part of 

state and federal programs to restore Lake Erie (United States). All stream flow measurements used by the 

Heidelberg Tributary Loading Program are provided by the United States Geological Survey (USGS). Within 

this database, two water bodies, belonging to the Lake Eire watershed but with different basin extension and 

discharge, were selected: Maumee River and Honey Creek. 
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With the largest watershed of any Great Lakes river (21538 km2), the Maumee officially begins at the 

confluence of the St. Joseph and St. Mary’s rivers in Fort Wayne, Indiana, draining all or part of 17 Ohio 

counties, two counties in Michigan, and five more in Indiana. The International Joint Commission set a 

phosphorus load limit for Lake Erie of 11 000 t per year; the Maumee River itself discharges about 24% of 

this value, with fertilizer appearing to be the major source, as the watershed is largely agricultural (Moog and 

Whiting, 2002). The dataset reported includes the measurement collected from 1st January 2013 to 31st 

December 2013 (n=365). Discharge and total phosphorus concentration data are reported in Fig. 2. 

 
Fig. 2. Time series for Maumee River dataset included in RiverLoad package showing variation in (a) discharge (m3 s-1) and (b) 

total phosphorus concentration (mg L-1) from 2013-01-01 to 2013-12-31. 

Honey Creek is a major tributary of the Sandusky River (USA), which drains 463.4 km2 of land area in North 

Central Ohio. The average annual runoff for Honey Creek is 13.7 km3. This value is about average for 

subwatersheds in the Sandusky Basin and similar to those for surrounding watersheds. For Honey Creek, 

64.1% of the 242.9 miles of streams are first-order streams. Generally, February, March and April are the 

months with the highest average discharges while August, September and October have the lowest discharges 

(Loftus et al., 2006). In Fig. 3, flow and concentration data from January 2015 to December 2015 are reported. 

 
Fig. 3. Time series for Honey Creek dataset included in RiverLoad package showing variation in (a) discharge (m3 s-1) and (b) total 

phosphorus concentration (mg L-1) from 2013-01-01 to 2013-12-31. 
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4.2 Bootstrap results 

The true load from the daily flow and concentration data of Maumee River and Honey Creek is equal to 

2494.12 t year-1 and 50.75 t year-1, respectively. While these loads are derived from measurements of 

concentration and discharge that cannot be considered free of all error, they approximate the actual or true load 

at these sites during the study period. Accordingly, these estimates were used as the reference values against 

which the error of the load estimates, produced for the Maumee River and Honey Creek under several sampling 

scenarios, were assessed. The error in load estimates is a combination of bias (accuracy) and precision, whose 

values are reported in Table 3–4. The accuracy of each subsampling scenario is calculated as the mean of the 

relative errors (ε); the precision is estimated as the standard deviation of the percentage errors (σ). The values 

are reported in percentage to easily compare the results between the two different datasets. As reported by 

Moatar and Meybeck (2005), many studies have highlighted an inverse relationship between accuracy and 

precision of the different estimation methods and suggested the root-mean-square error (𝑅𝑀𝑆𝐸 = √𝜀̅2 + 𝜎̅2), 

which combines bias and precision, as a suitable evaluation criterion (Table 3–4).  

Table 3. The percent bias ‘ε (%)’ and standard deviation of the percentage errors ‘σ (%)’ of the weekly, fortnightly and monthly 
estimated load of total phosphorus for Maumee River.  

Method no. Statistics WEEKLY FORTNIGHTLY MONTHLY 

1 

ε (%) -91 -88 -85 

σ  (%) 17 38 55 

RMSE (%) 93 96 101 

2 

ε (%) -1 0 -1 

σ  (%) 24 49 70 

RMSE (%) 24 49 70 

3 

ε (%) -18 -51 -118 

σ  (%) 13 31 23 

RMSE (%) 23 60 120 

4 

ε (%) -92 -93 -94 

σ  (%) 5 12 16 

RMSE (%) 92 94 95 

5 

ε (%) -2 -5 -11 

σ  (%) 14 26 37 

RMSE (%) 14 26 38 

6 

ε (%) -19 -39 -56 

σ  (%) 10 19 24 

RMSE (%) 21 43 61 

7 

ε (%) 1 -1 -6 

σ  (%) 14 27 39 

RMSE (%) 14 27 39 

9 

ε (%) -34 -36 -37 

σ  (%) 6 13 20 

RMSE (%) 34 38 42 

11 

ε (%) -24 -26 -27 

σ  (%) 6 13 20 

RMSE (%) 25 29 33 
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Table 4. The percent bias ‘ε (%)’ and standard deviation of the percentage errors ‘σ (%)’ of the weekly, fortnightly and monthly 
estimated load of total phosphorus for Honey Creek.  

Method no. Statistics WEEKLY FORTNIGHTLY MONTHLY 

1 

ε (%) -125 -143 -127 

σ  (%) 23 52 76 

RMSE (%) 127 152 148 

2 

ε (%) 11 -1 0 

σ  (%) 25 55 79 

RMSE (%) 27 55 79 

3 

ε (%) -38 -90 -142 

σ  (%) 16 39 36 

RMSE (%) 41 98 147 

4 

ε (%) -144 -152 -152 

σ  (%) 8 17 25 

RMSE (%) 144 153 154 

5 

ε (%) 4 -7 -15 

σ  (%) 12 26 38 

RMSE (%) 13 27 41 

6 

ε (%) -27 -71 -98 

σ  (%) 11 24 29 

RMSE (%) 29 75 102 

7 

ε (%) 6 -3 -10 

σ  (%) 12 26 39 

RMSE (%) 14 27 40 

9 

ε (%) -13 -16 -16 

σ  (%) 8 17 26 

RMSE (%) 15 23 30 

11 

ε (%) 2 -1 0 

σ  (%) 9 17 26 

RMSE (%) 9 17 26 

 

The various methods show different reliability compared to the true load, as it can be seen from the RMSE 

values and from the boxplots, showing the percentage relative error of the estimation of the different replicated 

estimates (Figs. 4–5). Given the different subsampling scenarios, the procedures that provide the most accurate 

and precise estimation are method 11 (Ferguson rating curve), method 7 (Beale ratio estimator) and method 5. 

On the contrary, method 4 and method 1 produce the greatest error in terms of RMSE. A common feature of 

these two algorithms is that concentration and discharge are separately averaged and then multiplied, and 

consequently the relationship between flow and concentration, if any, is lost. It is likely that this kind of 

methods could give a reliable estimation for other rivers that display a low inter-annual variability, without 

marked seasonal variations. 
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Fig. 4. Boxplot of the percentage relative error ‘ε (%)’ obtained from the bootstrap (n=10000) estimation of the load of total phosphorus 
(TP) of Maumee River (Ohio), based on the nine estimation methods implemented (see Table 1 for the acronym of the method on the 
x-axis). The results are reported for the three different sampling frequencies tested: 1) weekly; 2) fortnightly; 3) monthly. 

 

 
Fig. 5. Boxplot of the percentage relative error ‘ε (%)’ obtained from the bootstrap (n=10000) estimation of the load of total phosphorus 
(TP) of Honey Creek (Ohio), based on the nine load calculation methods implemented (see Table 1 for the acronym of the method on 

the x-axis). The results are reported for the three different sampling frequencies tested: 1) weekly; 2) fortnightly; 3) monthly.  

 

Many procedures seem to underestimate the reference load, and this is especially verified for method 4. For 

Honey Creek, the absolute value of the median is between 1.1% and 144% of the reference load at a weekly 
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frequency, 1.6–168% at a fortnightly frequency and 1.8–179% at a monthly frequency, where the best 

estimation is given by the method 11 (Ferguson rating curve) and the worst by methods 1 and 4. Whereas, for 

the Maumee River, the equivalent range is between 0.1% and 93% at a weekly frequency, 5–101% at a 

fortnightly frequency, and 14%–119% at a monthly frequency, where the best estimation is given by method 

7 (Beale ratio estimator) and the worst by the methods 1 and 3. The reduction in sampling frequency results in 

a reduction of precision and, to a lesser extent, to an enhancement of bias. Indeed, the results obtained through 

a monthly sampling show a larger difference in load estimates, which indicates that there was insufficient 

sampling and the estimated true load might be biased and imprecise. Therefore, great attention must be paid 

to the selection of the most suitable methods, as a not careful consideration could lead to a large error in the 

estimation, especially when concentration data are sparse (e.g. less often than twice a month).  

It is important to underline as the bootstrap procedure was performed on a random basis and the data were not 

specifically selected. In real cases, the knowledge of the studied site and the researcher expertise play an 

important role, and accurate evaluation of the data before employing them in the package must be done, as the 

quality of input data largely affects the quality of the outcome obtained. An effective selection of the sampling 

dates, due to the prior knowledge of the studied site, and the evaluation of “outlier” conditions is recommended. 

5 Conclusion and future improvements 

RiverLoad is a useful tool to facilitate load estimation, information of primary importance for water quality 

assessment and pollution source identification. Load data constitute prior information in a wide range of 

ecological studies; however, their estimation can represent a complex challenge. Indeed, different algorithms 

have been proposed by various authors and the application of whole of them can be a very time-consuming 

activity. This package allows different methods to be easily compared and we also provided documented 

references to allow the user to learn about the development of the algorithms and previous applications. 

RiverLoad is suitable for both extended and limited dataset and allows the contemporary estimation for 

different compounds. 

The package provides twelve different functions, but the quality of their estimation changes depending on 

different parameters, e.g., the field study characteristics and extension, the frequency and distribution of the 

sampling, the variability in flow, and the user must take this into account. Indeed, the outcomes obtained may 

be wrong if the method is not properly chosen. A general rule for the selection of the right procedure could not 

be provided, because the validity of the results is largely dependent on the site features. Moreover, the 

validation of estimates, is in general, a perplexing task as it would require a complete sequence of data that, if 

any, makes the use of an estimation method unnecessary. However, we provided some guidance to load 

estimation methods as a certain procedure may be more appropriate over another in some situations. 

We believe that RiverLoad is highly useful and it benefits from being a completely open source tool, open 

to further examination and extension. 
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