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A B S T R A C T

Two dimensional hydraulic models are useful to reconstruct maximum discharges and uncertainties of historic
flood events. Since many model runs are needed to include the effects of uncertain input parameters, a so-
phisticated 2D model is not applicable due to computational time. Therefore, this papers studies whether a
lower-fidelity model can be used instead. The presented methodological framework shows that a 1D-2D coupled
model is capable of simulating maximum discharges with high accuracy in only a fraction of the calculation time
needed for the high-fidelity model. Therefore, the lower-fidelity model is used to perform the sensitivity analysis.
Multiple Linear Regression analysis and the computation of the Sobol’ indices are used to apportion the model
output variance to the most influential input parameters. We used the 1926 flood of the Rhine river as a case
study and found that the roughness of grassland areas was by far the most influential parameter.

1. Introduction

Currently, the Dutch water policy is changing from a probability
exceedance approach towards a risk based approach. In addition to the
probabilities of floods due to multiple failure mechanisms, this new
approach also considers the consequences of a flood. The risk based
approach results in a significant increase in the safety levels in areas
where the consequences are large (Dutch Ministry of Infrastructure and
the Environment and Ministry of Economic Affairs, 2014). A maximum
return period of 1250 years was defined for the river areas in the
probability exceedance approach, while the risk based approach has
maximum return periods of 100,000 years. The prediction of design
discharges corresponding to such rare events is highly uncertain. These
predictions are most often based on relatively short data sets of mea-
sured weather conditions or discharges. Therefore, the data set does not
include the natural phenomena characterised by a very low frequency
(Barriendos et al., 2003).

The confidence interval of large design discharges can be reduced
by extending the data set of measured discharges with historical and
paleo data of extreme flood events (Neppel et al., 2010; Sheffer et al.,
2003). Many studies have reconstructed historic floods to expand the
data set of measured discharges (e.g Herget et al. (2015); Herget and
Meurs (2010); Llasat et al. (2005); Neppel et al. (2010); O'Connell et al.
(2002); Sheffer et al. (2003); Toonen et al. (2015); Zhou et al. (2002)).

Herget et al. (2015) and Herget and Meurs (2010) reconstructed his-
toric discharges in the city of Cologne, Germany, based on historical
documents. They predicted mean flow velocities at the time of the
historic flood events with the use of a reconstructed river channel and
floodplain bathymetry. The empirical Manning's equation was used to
estimate the historic discharges of a specific cross section near the city
of Cologne. Neppel et al. (2010) used hydraulic modelling of a reach of
about two kilometres length to account for geomorphological changes.
With this model, present and historic rating curves were constructed
and applied to determine flood discharge series (Neppel et al., 2010).
O'Connell et al. (2002) used Bayesian statistics to create paleohy-
drologic bound data for flood frequency analysis. Paleohydrologic
bound data represent stages and discharges that have not been ex-
ceeded since the geomorphic surface stabilized (O'Connell et al., 2002).
These bounds are not actual floods, but are limits on flood stage over a
measured time interval. O'Connell et al. (2002) found that paleohy-
drologic bounds reduce the uncertainties of the flood distribution curve
by placing large observed discharges in their proper long-term contexts.
Toonen et al. (2015) reconstructed Lower Rhine historical flood mag-
nitudes of the last 450 years with the use of grain-size measurements of
flood deposits at two separate research locations. They made use of
linear regression plots between various grain-size descriptors and
measured discharges to determine the discharges of the historic events.

Above mentioned studies tried to gain insight in the maximum
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discharge of a historic flood. However, none of these studies used hy-
draulic models to describe maximum discharges and its uncertainties
along a long stretch of a river including possible bifurcations during the
historic events. However, the use of hydraulic models may decrease the
confidence intervals of the predicted maximum discharges of the re-
constructed flood events. Furthermore, hydraulic models provide in-
sight in the flow patterns and inundation extents of the historic events.
For these reasons, hydraulic models will be used for historic flood re-
constructions in this study.

Hydraulic models require a reconstruction of the historical geo-
metry as input data. In addition, they require proper boundary condi-
tions to determine the flood wave propagation along the model domain.
However, the data available to reconstruct historic flood events is
limited. Measured discharges or water levels are generally not avail-
able. Also, the geometry of the river, its floodplains and the hinterland
may be uncertain. This uncertainty is reflected in the uncertainty of the
model input parameters, affecting the maximum discharges during a
flood event. For this reason, a sensitivity analysis on the maximum
discharge will be necessary to find the input parameter that mostly
influences the model output. This analysis will also gain insight in the
confidence interval of the reconstructed maximum discharge. This in-
sight provides us with useful information for other historical geometry
reconstructions, since parameter prioritization can be used during the
reconstruction.

Commonly, sophisticated two dimensional (2D) hydraulic models
(in this context also called a high-fidelity model, see Section 2.1) are
used for hydraulic modelling. This is because they are capable of de-
scribing maximum discharges, flood extent and inundation patterns
with high accuracy. However, they have the disadvantage that a single
run of a discharge wave usually takes at least several hours. Since
sensitivity analyses require many model runs, 2D models are not sui-
table for this purpose. To reduce computational time, a surrogate model
will be set up. A lower-fidelity model is developed since this type of
surrogate model does not lose many physical processes of the original
system. Therefore, the objective of this paper is to study whether a
lower-fidelity hydraulic model can be used for historic flood re-
constructions.

Lower-fidelity surrogate modelling has just recently started to gain
popularity in the water resources literature (Razavi et al., 2012b). The
modelling approach has been applied to groundwater models to reduce
model complexity for optimization and calibration purposes (e.g.
Maschler and Savic (1999); McPhee and Yeh (2008); Ulanicki et al.
(1996)). It has also been applied in combination with the Monte Carlo
framework for uncertainty analysis (e.g. Efendiev et al. (2005); Keating
et al. (2010)). However, almost no studies have applied a lower-fidelity
surrogate model for hydraulic modelling purposes. These models may
have great benefits in this field since computational time can be re-
duced significantly while model accuracy remains sufficient. For an
elaborated review on surrogate models in environmental modelling, see
Razavi et al. (2012b).

Razavi et al. (2012b) argue that the response patterns of a lower-
fidelity model and of a sophisticated 2D model can differ, even if both
models are based on the same input data. Therefore, the results of a 2D
model will be used for validation purposes. If the model output of the
lower-fidelity model is close to those predicted by the 2D model, the
lower-fidelity model is capable of accurately simulating the system
behaviour. Hence, the lower-fidelity model can be used to perform the
sensitivity analysis. For future work, the lower-fidelity model can be
treated as a high-fidelity model. The proposed method (Fig. 1) will
answer the following three research questions:

• Under what circumstances can a lower-fidelity model be used to
simulate a historic flood event?

• How can we apply a lower-fidelity model to compute the maximum
discharge and its uncertainty of a historic flood event?

• Which uncertain input parameter contributes most to the

uncertainty of the maximum discharge?

We apply the proposed method to the 1926 flood of the Rhine river.
Sufficient information is available to reconstruct the 1926 geometry. In
addition, water levels were measured during the event. Due to high
rainfall intensities in the Lower Rhine catchment area and increased
amount of melting water as a result of relatively high temperatures in
Switzerland, the 1926 discharge resulted in the highest discharge at
Lobith since measurements have been performed.

The outline of the paper is as follows. Firstly, the high-fidelity (2D)
model is described in Section 2.1, after which the surrogate model is set
up (Section 2.2). Then, the 1926 case is provided and the methodology
of the sensitivity analysis is given in Section 2.3 and Section 3, re-
spectively. Subsequently, the calibration results of the high-fidelity
model (Section 4.1) and the validation results of the surrogate model
(Section 4.2) are provided. Finally, the results of the sensitivity analysis
are elaborated on Section 4.3. The paper ends with a discussion and the
main conclusions in Section 5 and 6, respectively.

2. Methodology of surrogate modelling

In this section, the model structure of a fully 2D model is explained.
This model represents the high-fidelity model in this study and is used
to validate the lower-fidelity model. Thereafter, the 2D model is sim-
plified to decrease computational time significantly. Many methods
exist to simplify a high-fidelity model to create a lower-fidelity model.
Why a 1D-2D coupled model is used in this study, is explained in
Section 2.2.

2.1. High-fidelity model

Most often, 2D flood models are used to get insight in the con-
sequences of high discharge stages. With 2D models, it is possible to get
a high detailed and accurate representation of potential floods along a
river. Up till now, the 2D Shallow Water equations are usually solved
with the use of a curvilinear grid (Fig. 2). The curvilinear grid cells are
aligned with the flow direction since flow variations in the channel
length direction are often smaller than those in channel cross direction
(Kernkamp et al., 2011). This is convenient in terms of computational
time. However, a curvilinear grid has several disadvantages. Firstly,
grid lines are focused and sometimes even intersect in sharp inner
bends (Fig. 2, where the dashed lines indicate the focused grid lines).
The focused grid lines result in unnecessarily small grid cells if the
model domain is extended in the inner bend. These small grid cells
significantly increase computational time. Additionally, the grid will
lead to a staircase representation along closed boundaries since the grid
is not capable of following the smooth boundaries of the model domain
(Kernkamp et al., 2011). Finally, the grid is restrictive in representing a
natural river system with different geometric features such as main
channels, junction points and wide floodplains due to the curvilinear
shape of the grid cells (Lai, 2010).

Due to the above mentioned shortcomings of a curvilinear grid, a
hybrid grid is used to solve the 2D Shallow Water equations in this
study (Fig. 2). The summer bed is discretized by curvilinear grid cells.
These cells are aligned with the flow direction. The winter bed is dis-
cretized by triangular grid cells such that each triangular grid cell is
connected to a single curvilinear grid cell. As a result, a smooth tran-
sition exists between the curvilinear and triangular grid cells (Fig. 2).
This hybrid grid overcomes the shortcomings of a curvilinear grid. It
also reduces the computational time while model accuracy stays suffi-
cient (Bomers et al., 2019). Fig. 3 shows the hybrid grid and a typical
example of model output. The open source software D-Flow Flexible
Mesh (FM) is used to set up the 2D model (Deltares, 2016). In each grid
cell, parameters such as water level and flow velocity can be computed
for every time step. A variable time step is used based on the maximum
Courant number. As a result, the model stays stable during the
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simulation:

=C u t
x (1)

where u represents the velocity magnitude [m/s], t the time step [s]
and x the grid size in x-direction [m]. A maximum Courant number of
0.95 is used and t is adapted accordingly.

D-Flow FM allows multiple roughness definitions to be implemented
in a single model run, e.g.: a Manning's value, a Nikuradse value or a
Van Rijn predictor. In general, the land use classifications, and hence
the roughness classes, are based on an input database. A database
provided by the Dutch Ministry of Infrastructure and Water
Management is used. This database includes multiple roughness defi-
nitions that coincide with the land use classification of the studied area.

Calibration of a 2D grid is required since each 2D grid has its own
numerical friction caused by the resolution of the grid cells (Caviedes-
Voullième et al., 2012). A coarser grid results in a somewhat dampened
discharge wave. This effect can even become larger than those gener-
ated by physical friction (Caviedes-Voullième et al., 2012). During ca-
libration, this numerical grid generated friction will be compensated
such that reliable water levels are predicted. Hydraulic model calibra-
tion is most commonly done by changing the roughness of the summer
bed until simulated water levels are close to measured water levels (e.g
Bomers et al. (2019) and Caviedes-Voullième et al. (2012)). In this
study, the same approach was used. The calibration procedure was
performed with the use of the open source software OpenDA (http://
www.openda.org/). The basic idea of the procedures of OpenDA is to
find the set of model parameters which minimizes the cost function
measuring the distance between the measured water level and the
model prediction (The OpenDA Association, 2016). The Quadratic Cost
Function is used in combination with the Sparse DUD (Does not Use
Derivate) algorithm. For N calibration parameters (in this study
N = 10), the algorithm requires (N + 1) set of parameter estimates.
The cost function, based on the model predictions and measured data, is
used to get a new estimate. If the cost function does not produce a
better estimate, the Sparse DUD algorithm will search in opposite di-
rection and/or decreases the searching-step until a better estimate is

found (The OpenDA Association, 2016). In this study, the calibration
procedure is stopped if the average RMSE of each measurement station
is smaller than 0.05 m. For more information on the calibration pro-
cedure of OpenDA, see The OpenDA Association (2016).

2.2. Lower-fidelity physically based surrogate model

A hybrid 2D grid reduces computational time compared to a cur-
vilinear grid. However, the computational time of simulating a dis-
charge wave of approximately three weeks is still in the order of many
hours. For sensitivity analysis purposes, many model runs (120 in this
study) have to be performed. Therefore, a model with a computational
time in the order of minutes is desirable. For this reason, a surrogate
model based on the high detailed 2D model is developed. This model is
explained in more detail in the next sections.

2.2.1. Types of surrogate modelling
Surrogate models approximate the response pattern of a high de-

tailed and computationally intensive simulation model (Razavi et al.,
2012a). Many methods to construct a surrogate model exist in litera-
ture. These methods can be divided into two classes, namely (1) re-
sponse surface surrogates which are statistical or empirical data-driven
models emulating the original system, and (2) lower-fidelity physically
based surrogates which are simplified models of the high detailed model
(Razavi et al., 2012b).

Regardless of the type of response surface surrogates, usually three
steps are involved (Simpson et al., 2001): (1) choosing a design of ex-
periment for generating the training data, (2) choosing a statistical or
empirical data-driven model (e.g. Artificial Neural Network, Support
Vector Machine, Gaussian Progress Regression model) to represent the
data, and (3) fitting the surrogate model to the training data. Response
surface surrogates are commonly used for automatic model calibration
(Razavi et al., 2012b). To fit the response surface surrogate, training
data is required. Therefore, the high-fidelity model still needs to be run
multiple times. Because of the relatively long simulation time of this
model, the methods based on response surface surrogates are not

Fig. 1. Methodology for historic flood reconstruction.

Fig. 2. An example of a curvilinear grid in which the dashed lines represent the focused grid lines (left figure) and a hybrid grid (right figure) in a sharp meander
bend.
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desirable. For this reason, the high-fidelity model is simplified using
method (2): creating a lower-fidelity physically based surrogate model.
Lower-fidelity surrogate models are set up based on the original input
data. Therefore, for lower-fidelity modelling, only a single run with the
high-fidelity model is required for validation purposes. Moreover,
lower-fidelity models are more reliable in predicting the output of the
high-fidelity model in unexplored regions of the input space since they
predict model output based on the original input data (Razavi et al.,
2012b). Different methods exist to simplify the original model, e.g.
larger grid size, less strict numerical convergence tolerances or, ig-
noring or approximation physics of the original system (Razavi et al.,
2012b). Those methods were not sufficient to reduce the computational
time of the high-fidelity model significantly. Therefore, it was decided
to approximate several physical processes of the original system by: (1)
lowering the dimension of the model, (2) increasing the computational
time step, and (3) simplifying the Shallow Water equations of the fully
2D model. The set-up of the lower-fidelity model is explained in the
next section.

2.2.2. Set-up lower-fidelity model
The surrogate model developed represents a 1D-2D coupled model

to combine the advantages of both a fully 2D and a fully 1D model. 1D
profiles give an accurate representation of flood wave propagation in
case of in-channel flows (Tayefi et al., 2007). Additionally, the com-
putational cost is relatively low compared to a fully 2D model. How-
ever, the use of 1D profiles may be insufficient for more complex flow
patterns because of the simplified assumptions in the computational
schemes. In the embanked areas rapidly changes in flow velocity and
direction may occur. For this reason, 1D profiles are solely used for the
flow between the winter dikes, i.e. the summer bed and winter bed. The
1D profiles are coupled with 2D embanked areas that are possible to
inundate. The embanked areas refer to the areas protected by dikes and
are therefore not part of the river system. The embanked areas are
discretized with a rectangular 2D grid. Flexible grid shapes are used
along the boundaries of the model domain such that the 2D grid cells
follow these boundaries. The flexible grid cells along the boundaries
can have a maximum of eight boundary edges. Fig. 4 shows an example
in which the 1D profiles of the rivers and the 2D embanked areas are
given by yellow lines and grey areas, respectively. A close-up of the 2D
grid and its flexible grid shapes along the grid boundaries is also pro-
vided.

HEC-RAS (v. 5.0.3), developed by the Hydrologic Engineering
Centre (HEC) of the US Army Corps of Engineers, is used for the 1D-2D
flood modelling. HEC-RAS is well known for its 1D flood modelling
applications. Horritt and Bates (2002) even showed that HEC-RAS
produces flood extents more accurately than the 2D models of

LISFLOOD-FP and TELEMAC-2D in cases of a confined and relatively
narrow river. In 2016, HEC-RAS 5.0 was officially released. With this
version, it is possible to perform 1D-2D coupled computations.

Several studies have shown the applicability of 1D-2D flood mod-
elling. Most software programs (e.g. Mike-11, HEC-RAS) that allow 1D-
2D coupling are based on mass-conservation. The conservation of mo-
mentum is often neglected. Bladé et al. (2012) argue that neglecting the
momentum in the coupling of a 1D profile and the 2D grid cells affects
flow patterns in the floodplains in most cases. The more connected the
river and the floodplains are, e.g. in case of overland flows, the more
important momentum becomes since an increase in flow velocity results
in an increase in momentum (Bladé et al., 2012). Conservation of mo-
mentum can only be neglected if the 1D profiles are coupled with 2D
grid cells by a weir/embankment since the hypothesis of the Shallow
Water equations are not fulfilled for this specific case (Bladé et al.,
2012). With HEC-RAS, the weir-equation can be used to compute the
flow over the embankment using the results of the 1D and 2D solution
algorithms on a time step by time step basis. This allows for direct
feedback at each time step between the 1D profiles and 2D grid cells
(Brunner, 2014). Neglecting conservation of momentum is justified for
this modelling purpose since the 1D profiles are coupled with the 2D
grid cells by an embankment. Hence, the 1D-2D coupling can be treated
as a weir-type connection.

2.2.3. Differences between the high-fidelity and lower-fidelity model
A 1D-2D coupled model requires the same input data as a fully 2D

model. Therefore, we use the same input data of the high-fidelity model
to set up the 1D-2D coupled model. The Digital Elevation model (DEM)
of the 2D model is used to establish the 1D profiles and 2D grid cells of
the 1D-2D coupled model. Also, the boundary conditions consisting of
measured discharges and water levels, as well as the land use classifi-
cation for both models are identical. Therefore, we can conclude that
the differences in the representations of the input parameters of the
high-fidelity and the lower-fidelity model are solely caused by the level
of detail of the two models itself and the different settings of D-Flow FM
and HEC-RAS. These differences are explained in more detail below and
are summarized in Table 1.

Firstly, the 2D Shallow Water equations of the high-fidelity model
are simplified to the Diffusive Wave equations. The Diffusive Wave
equations are applicable if flow separation and turbulence eddies can be
neglected. This is the case if the inertial terms are much smaller than
the gravity, friction and pressure terms. Test runs showed that ne-
glecting the inertial terms of the momentum equations did not result in
a change in model results. On the other hand, the use of the Diffusive
Wave equations resulted in a significant reduction of the computational
time. Therefore, the Diffusive Wave equations are used to compute the

Fig. 3. Example of a hybrid grid of a 2D hydraulic model (left figure) and computed water depths as a result of an upstream discharge wave (right figure). The red
arrows indicate the flow direction. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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flow characteristics at each 1D profile and 2D grid cell. The applic-
ability of the Diffusive Wave equations for flood modelling purposes has
also been shown by e.g. Moya Quiroga et al. (2016), Moussa and
Bocquillon (2009) and Leandro et al. (2014).

Secondly, the computational time step of the lower-fidelity model is
increased compared to the fully 2D model to speed-up computational
time. In a 2D model, the river is usually the time step limiting factor
since the depths and velocities in the main channel are larger than in
the embanked areas (Bladé et al., 2012) (see equation (1)). The high-
fidelity model had an average time step of 3.9 s, based on the maximum
Courant number. A fixed time step of five minutes can be used for the
lower-fidelity model. This time step is based on a convergence argu-
ment: reducing the time step further did not result in a reasonable
improvement of the model accuracy.

The land use classification of the high-fidelity model is used as input
for the lower-fidelity model. D-Flow FM allows multiple roughness
definitions to be implemented in a single model. However, HEC-RAS
only allows a Manning's roughness coefficient for the various land use
classes. Therefore, the roughness classes as used in the high-fidelity
model were transformed towards Manning's roughness values based on
Tables 5–6: “Values of the roughness coefficient n” of Chow (1959).

We recall that it is necessary to calibrate the summer bed roughness
of the high-fidelity model, since each 2D grid has its own numerical
friction. On the other hand, it is decided to not calibrate the lower-
fidelity model. As a result, the summer bed roughness can be included
in the sensitivity analysis as a random parameter. This is justified since
no inundations along the Lower Rhine occurred during the 1926 flood
event. Therefore, correct prediction of the water levels becomes irre-
levant. The lower-fidelity model is set up to accurately predict max-
imum discharges at Lobith during flood events instead. During the

simulation, the entire discharge wave flows in downstream direction
independent of simulated water levels, since inundations are not pos-
sible to occur. Consequently, it is expected that simulated maximum
discharges of the uncalibrated surrogate model are close to those pre-
dicted by the calibrated high-fidelity model. However, validation is
recommended to study whether the lower-fidelity model is capable of
simulating the system behaviour sufficiently.

2.2.4. Validation lower-fidelity model
Razavi et al. (2012b) argue that, even though the lower-fidelity

model may be based on the same input parameters as the high-fidelity
model, the response pattern can differ somewhat. This was also shown
by Thokala and Martins (2007). They neglected the fluid viscosity in the
Navier-Stokes equations to set up a lower-fidelity model. This resulted
in less accurate results compared to the high-fidelity model. The dis-
crepancies between the response patterns of the lower-fidelity and high-
fidelity models mostly influence the local and global minimum and
maximum of the system (Razavi et al., 2012b). Since this study tries to
predict maximum discharges during a historic flood event, it is of high
importance that the global maximum of the system is correctly mod-
elled by the lower-fidelity model. If this is not the case, the dis-
crepancies between the lower-fidelity and high-fidelity model can be
addressed with a correction function (Razavi et al., 2012b). These kind
of functions correct the response of the lower-fidelity model and align it
with the response pattern of the high-fidelity model. It is thus of high
importance to validate the lower-fidelity model to study whether a
correction function is required to tune the model results.

If the response pattern of the lower-fidelity model is close to that of
the high-fidelity model, the lower-fidelity model can be treated as the
high-fidelity representation of the underlying system. Consequently, the
lower-fidelity model can replace the sophisticated 2D model (Razavi
et al., 2012b). The sensitivity analysis can then be safely performed
with the lower-fidelity model since the input parameters of the lower-
fidelity model are based on the input parameters of the high-fidelity
model.

2.3. The 1926 casus

The 1926 flood event of the Rhine river is used to examine the
methodology of developing a lower-fidelity model for historic flood
reconstruction. The study area stretches from the areas downstream of
Andernach in Germany to the three Rhine river branches in the
Netherlands (Fig. 5). In this paper, the German part of the river is re-
ferred to as the Lower Rhine. The river enters the Netherlands at Lobith,
where it bifurcates into the Waal river and Pannerdensch Canal.

Fig. 4. Set-up of the 1D-2D coupled model (left figure) in which the yellow lines indicate the 1D profiles and the grey areas the 2D embanked areas, and a close-up of
the 2D grid which clearly shows the flexible grid shapes along the boundaries of the model domain (right figure). (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)

Table 1
Overview of the differences between the high and lower-fidelity model.

High-fidelity model Lower-fidelity model

Software D-Flow FM HEC-RAS
Dimension Fully 2D 1D cross sections in summer bed and

winter bed,
2D in the embanked areas

Nature Shallow Water equations Diffusive Wave equations
Time step Variable time step based on

maximum Courant number
Fixed time step

Roughness Different roughness
definitions

Manning's roughness coefficient

Calibration Calibrated summer bed
roughness

Uncalibrated
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Subsequently, the Pannerdensch Canal bifurcates into the Nederrijn and
IJssel rivers. Only the summer bed, its floodplains and two embanked
areas that are connected by an inlet (Ooijpolder and Rijnstrangen area
(Fig. 5)), are captured in the model domain. The term inlet is used for a
dike section with a relatively low crest level. Due to this low crest level,
a part of the discharge wave will enter the lower-lying area behind the
inlet as soon as a certain water level is exceeded. As a result, the
maximum discharge further downstream decreases. The dikes represent
the boundaries of the model domain and are assumed not to overflow.

2.3.1. Geographical situation
To reconstruct a historical geometry, the changes in the river system

between the current geometry and the historical period of interest must
be defined. An existing data set representing the 1995 geometry is made
available by the Dutch Ministry of Infrastructure and Water
Management. This data set is used as starting point and is adapted such
that it represents the historical geometry. The following measures were
taken to create the 1926 situation (Fig. 5):

• Increase summer bed level due to erosion. Measurements of the
summer bed levels were available for the entire model domain. The
changes in summer bed level between the 1995 measurements and
the oldest measurements available at each location were used to
estimate the 1926 summer bed level by linear extrapolation.

• Decrease winter bed level due to sedimentation. No measured
sedimentation rates along the study area were available. Therefore,
the following sedimentation rates were used to predict the 1926
winter bed level: 1 mm/year along the IJssel river, Pannerdensch
Canal and Lower Rhine, 3 mm/year along the Waal river and
0.5 mm/year along the Nederrijn river (Silva et al., 2001). A linear
decrease of the sedimentation rate in channel cross direction was
assumed. As a result, the sedimentation near the summer bed equals
the predicted sedimentation rates according to Silva et al. (2001).
The sedimentation near the outside border of the floodplain equals
zero.

• Dike relocation. On the left side of the Lower Rhine, close to the
city of Emmerich, Germany, the floodplains of the river were much
larger in 1926 than they are nowadays. The 1926 dike locations and
hence the 1926 winter bed were based on old maps dating back to

1895 (Fig. 5, Dike relocation), provided by the German Deichver-
band Xanten-Kleve Der Oberdeichinspektor Dusseldorf (1895).
The current summer dikes along the Pannerdensch Canal close to
the Pannerdensche Kop were the 1926 winter dikes. Therefore, the
present floodplains were not part of the 1926 river system. The area
outside the 1995 summer dikes were removed from the geometry
(Fig. 5, Pannerdensche Kop).

• Restoration of inlets. In 1926, two retention areas were possible to
inundate at high discharge stages as a result of inlets. The Spijke
inlet caused inundation of the Rijnstrangen area when the water
level exceeded 15 m + NAP, equal to the crest level of the inlet
(Fig. 5, Rijnstrangen area).
In the Ooijpolder, three inlets were active. The total length of the
inlets was 150 m. The Ooijpolder started to inundate at a water level
of 12.5 m + NAP, equalling the height of the three inlets. The lo-
cation of the inlets was based on historical 1926 maps (Fig. 5,
Ooijpolder).

• Restoration of meander cut offs. In 1955 and 1969 two meanders
near Doesburg and Rheden were cut off (Fig. 5, Meander cut offs).
Due to these meander cut offs the total length of the IJssel river
decreased with almost nine kilometres. The location of the meander
bends are based on historical 1926 maps.

2.3.2. Boundary conditions
The 1926 flood event is simulated for a period of approximately

three weeks, starting on the 22nd of December 1925 till the 8th of
January 1926. From the 26th of December onwards, the weather con-
ditions changed drastically. High rainfall intensities occurred in almost
the entire catchment area of the Rhine river (Dutch Ministry of
Infrastructure and the Environment, 1926). This resulted in a rapid rise
of the discharge wave, starting on the 27th of December.

Fig. 6 shows the discharge wave at Andernach, representing the
upstream boundary condition (Data source: German Federal Waterways
and Shipping Administration (WSV), communicated by the German
Federal Institute of Hydrology (BfG)). The downstream boundary con-
ditions consist of h(t)-relations based on daily measured water levels
available at http://waterinfo.rws.nl and provided by the Dutch Ministry
of Infrastructure and Water Management. Three streams enter the
Lower Rhine, namely the Lippe, Ruhr and Sieg rivers. These streams

Fig. 5. Boundaries of the study area and location of inflow (left figure) and location of artificial measures taken to change the 1995 geometry into the 1926 situation
(right figure).
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were included in the model domain by source points (discharge inflow,
Figs. 5 and 6). The presented boundary conditions and source points are
used in both the high-fidelity as well as the lower-fidelity model to set
up the models.

3. Methodology of sensitivity analysis

In this study uncertainty and sensitivity analyses are performed. An
uncertainty analysis is executed to compute the maximum discharge at
Lobith with its standard deviation as a result of the uncertain input
parameters. Next, a sensitivity analysis is performed to study which
parameter mostly influence the uncertainty of the model output. The
main objective of the sensitivity analysis is the so called factor prior-
itization. With this prioritization, it becomes clear on which parameter
to focus during historical geometry reconstruction for flood modelling
purposes in order to reduce the potential uncertainty in the model
output.

During the analyses, we only focus on the parameters that influence
the maximum discharge at Lobith. A test run was performed in which
all roughness parameters along the Dutch river branches were increased
with 20%. In this run, the roughness values are close to the upper
bound of the truncated normal distributions. The run showed that the
increase in roughness resulted in only a minor decrease of the max-
imum discharge at Lobith of approximately 0.2%, from 12,402 to
12,373 m3/s. This minor decrease suggests that the Dutch river bran-
ches are sufficiently downstream such that the effects of different
summer bed roughness on the maximum discharge are negligible.
Therefore, the study only focuses on the uncertainties of the input
parameters in the most upstream part of the model domain: the city of
Andernach until the location where the Rhine river bifurcates into the
Waal river and Pannderdench Canal. The Dutch Rhine river branches
are seen as fixed boundary conditions of the model since they do not
influence model response. Therefore, they can be excluded from the
global sensitivity analysis.

3.1. Input parameters

The lower-fidelity model is used to establish the uncertainty and
sensitivity of the 1926 discharge at Lobith. Only the input parameters
that are based on an estimation, i.e. those that are uncertain, are in-
cluded in the analysis. In addition, parameters that require the devel-
opment of a new surrogate model when changed (e.g. a planometric
change) are excluded from the analysis for pragmatic reasons. The

following parameters are considered during the sensitivity analysis: (1)
roughness parameters of the various types of land use classes and (2)
the bed levels of the summer bed and winter bed. In general, two kinds
of uncertainties exist. The first uncertainty is as a result of the ran-
domness of variations in nature (inherent uncertainty). The second
uncertainty is caused by limited knowledge (epistemic uncertainty)
(Warmink et al., 2013). The uncertainty of the different roughness
classes is mainly caused by inherent uncertainty since it depends
amongst others on the season (e.g. grass grows faster during summer
periods resulting in a larger roughness) as well as on maintenance (e.g.
the frequency of mowing grass fields). The uncertainty of the summer
bed and winter bed levels are caused by epistemic uncertainty. No
measured 1926 bed levels are present. Therefore, the bed levels are
based on extrapolation techniques and estimated sedimentation rates.

For all roughness parameters, we link the value with the largest
probability of occurrence as well as its minimum and maximum bounds
to the tables of Chow (1959). Truncated normal distributions are used
in this study since a normal distribution better fits the data if some
information about the input parameters is available (tails of the dis-
tribution and the expected value). Contrarily, a uniform distribution
assumes that there is no knowledge about the value with the largest
probability of occurrence. Only a range of input values is known.
Therefore, we can conclude that for older historic events, the dis-
tributions of the uncertain input parameters will shift towards uniform
distributions since less and less information is available.

The roughness parameters are divided into five land use classes:
summer bed, lakes, grasslands, forest and urban areas. A smooth
channel with no vegetation is assumed for the entire summer bed,
having a minimum Mannings roughness of 0.025, a normal value of
0.028 which is used as the expected value, and a maximum value of
0.033 (Chow, 1959). These numbers are used to set up the truncated
normal distribution. The same method was used to define the truncated
normal distributions of the other roughness classes (Table 2).

A comparable method is used to set up the truncated normal dis-
tributions of the summer bed levels and winter bed levels. The 1926
summer bed levels were computed based on extrapolation of measured
bed level changes (see Section 2.3). The uncertainty ranges of the
summer bed levels were based on these extrapolation values. The
minimum change in bed level corresponds to no change compared to
the oldest measured bed value. Consequently, the 1926 bed level equals
the oldest measured bed level. The maximum change in bed level equals
the extrapolation of the trend between 1995 and the latest measured
bed level multiplied with a factor two. A factor of two is chosen to

Fig. 6. Discharge waves of the Rhine river at Andernach (left figure) and the three tributaries Sieg, Ruhr and Lippe (right figure). Note: only daily discharge
measurements are available resulting in the sharp peaks of the different discharge waves.
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include a large uncertainty range. The summer bed is divided into three
classes:

1. From the most upstream location Andernach (river km 614) until
Walsum (river km 789). Here, almost no erosion has occurred be-
tween 1995 and 1926. Additionally, the bed level has been com-
pensated for bed level decrease due to mining activities at several
locations.

2. From Walsum until the German-Dutch border (river km 857). Here,
there is relatively much uncertainty in the amount of erosion since
the oldest measured bed level dates back to only 1960.

3. From the German-Dutch border till the first bifurcation point of the
Rhine river (river km 867). Here, there is little uncertainty in the
1926 bed level since the oldest measurements date back to 1934.

The winter bed level consists of just one class since no deviations in
uncertainty along the Lower Rhine exist. The estimated sedimentation
rate of 1 mm/year is used to define the ranges of the winter bed level in
the Lower Rhine (Silva et al., 2001). The minimum value equals no
change in bed level compared to the 1995 situation. The maximum
range equals the sedimentation rate of 1 mm/year multiplied with a
factor of two. Again a factor of two is chosen to include a large un-
certainty range since the 1 mm/year sedimentation rate is relatively
speculative. Since the summer bed and winter bed levels vary along the
study area, their truncated normal distributions and corresponding
minimum and maximum values are given as change from its 1926 re-
ference value (Table 2). These values will be referred to as Standardized
(St.) bed levels from now on. A value equal to zero correspond with the
reconstructed 1926 geometry.

3.2. Design of experiment

Before a sensitivity analysis can be performed, a Design of
Experiment (DoE) has to be defined. DoEs employ different space filling
strategies to capture the behaviour of the underlying system over lim-
ited ranges of the input parameters (Razavi et al., 2012b). A DoE results
in a sample in which the boundary values of the input parameters are
based on physical conditions. This sample can be used in a Monte Carlo
analysis. Most commonly used DoE methods in literature appear to be
full factorial design, fractional factorial design, central composite de-
sign and latin hypercube sampling (LHS) (Razavi et al., 2012b). In
general, a full factorial design, a fractional factorial design and a central
composite design require a relatively large number of simulations to
generate all combinations to represent the corners of the input space
(Razavi et al., 2012b; Saltelli et al., 2008). Contrarily, LHS can easily
scale to different numbers of input parameters without the need for
extra simulation runs (Razavi et al., 2012b). Thus, a stratified LHS
sample has as advantage that less model runs are requried since a
stratified sample achieves a better coverage of the sample space of the

input parameters (Saltelli et al., 2000). For this reason, a LHS design is
used in this study.

The nine input parameters are divided into eight levels. Each level
has an equal probability of occurrence of 12.5%, based on the de-
termined truncated normal distributions in Section 3.1. For each run,
each level is randomly selected, constraining that if a level is already
selected it cannot be selected again. This results in a set of eight si-
mulations in which all eight levels of the nine input parameters are
present.

No clear guidelines exist concerning the minimal number of runs
required in a Monte Carlo analysis. This number depends on the
number and range of the input parameters and on the shape of the
response surface. Theses features are largely unknown in advance
(Pappenberger et al., 2005). In this study convergence of the un-
certainty of the discharge at Lobith, expressed as standard deviation, is
used as stopping-criteria, following the method of Pappenberger et al.
(2005). If an additional run results in a change of the standard deviation
smaller than 0.05 m3/s, it is assumed that the sample sufficiently re-
presents the input space of the different input parameters. This criteria
resulted in 120 model runs, corresponding with 15 latin hypercube sets.

To check whether the input space is sufficiently captured by the
sample, two additional model runs were performed with the most ex-
treme situations. These scenarios represent the limits of the probability
distribution functions of the input parameters. Table 3 and Fig. 7 show
the range of maximum discharges at Lobith modelled in the 120 Monte
Carlo runs and the range found with the two most extreme cases. Note
that all runs are performed with the lower-fidelity surrogate model. The
minimum and maximum values of the sample are close to the predicted
values of the two most extreme runs. Therefore, we can conclude that
the input space is sufficiently captured by the sampling data set.

3.3. Stratified Monte Carlo analysis

The results of the Monte Carlo analysis are used to determine the
uncertainty in model predictions. Additionally, the results are used to
apportion this uncertainty to the contribution of the individual input
parameters. Two sensitivity analysis methods are used, namely Multiple
Linear Regression analysis and Sobol’ indices explained in Sections
3.3.1 and 3.3.2 respectively.

3.3.1. Multiple linear regression analysis
If the number of simulations is much larger than the number of

input parameters, a LHS can be very effective in revealing the influence
of each parameter using a regression analysis (Saltelli et al., 2008). If
the model does not contain any interactions between the input para-
meters (i.e. the model is additive), the linear regression function can be
given as (Scheidt et al., 2018):

= +
=

y x
i

N

0
1

i i
(2)

where y represents the model output (in this study the maximum dis-
charge at Lobith) and xi the different input parameters. The coefficients

0 and i are determined by the least-square computation, based on the
squared differences between the model output produced by the re-
gression model and the actual model output produced by the surrogate
model (Saltelli et al., 2008).

Table 3
Minimum and Maximum discharge at Lobith (Qmin, Lobith/Qmax, Lbith) as a
result of the two most extreme model runs and the 120 runs within the Monte
Carlo (MC) analysis.

Extreme case MC runs Difference

Qmin, Lobith [m3/s] 12,285 12,293 17
Qmax, Lobith [m3/s] 12,548 12,531 8

Table 2
Minimum, maximum and standard deviation of the different input parameters.

Input parameter Minimum value Maximum value Standard
deviation

Summer bed 0.025 0.033 0.002
Lakes 0.024 0.034 0.003
Graslands 0.037 0.075 0.009
Forest 0.098 0.178 0.020
Urban areas 0.029 0.039 0.003
St. Winter bed level −0.070 m 0.070 m 0.035 m
St. Summer bed level

(1)
−0.150 m 0.150 m 0.075 m

St. Summer bed level
(2)

−0.520 m 0.520 m 0.260 m

St. Summer bed level
(3)

−0.090 m 0.090 m 0.045 m
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The coefficient i is used to determine the importance of each
parameter xi with respect to the model output. If the input parameters
are independent, the absolute standardized regression coefficient î can
be used as a measure of sensitivity (Scheidt et al., 2018):

=î i
i

y (3)

where î represents the standardized regression coefficient, and i and
y represent the standard deviations for the input parameter xi and the

model output respectively.
However, the applicability of a linear regression analysis depends

on the degree of linearity of the model (Saltelli et al., 2008). A measure
for linearity is expressed by (Saltelli et al., 2008):

=
=
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2
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where R2 represents the model coefficient of determination. This value
is equal to the fraction of the variance of the original data that is ex-
plained by the regression model. A value of R2 equal to one indicates
that the model is linear (Saltelli et al., 2008) and that the multiple
linear regression model is capable of expressing all variance of the
original data.

3.3.2. Sobol’ indices
If the model is not linear, Sobol’ indices can be used to determine

the sensitivity of the input parameters. Sobol’ indices are widely used as
global sensitivity analysis method in literature. We are specifically in-
terested in the first-order indices, i.e. the effect without interactions of
input parameters, since the sensitivity analysis is used for factor
prioritization purposes (Saltelli et al., 2008). Li and Mahadevan (2016)
present an effective method to estimate the first-order Sobol’ indices
analytically. This method can be applied to any kind of data set and is
not restricted to a specific sampling strategy. Furthermore, the method
can be applied to models with correlated input parameters. Li and
Mahadevan (2016) found that the method is highly efficient and that it
is especially useful in ranking and identifying important parameters.
The formula used is as follow (Li and Mahadevan, 2016):

=S E V y x
V

1 ( ( | ))
i

xi x i i

y (5)

where Si represents the Sobol’ first-order index, V y x( | )x i xi indicates the
conditional variance of y caused by all input parameters other than xi,
Exi represents the expected value as a result of fixing input parameter xi,
and Vy represents the variance of y.

The Monte Carlo sample has a relatively small size. Therefore, the
95% confidence intervals of the Sobol’ indices are computed based on a

resampling strategy. The MATLAB Statistics Toolbox is used to perform
the computation. The method to compute the 95% confidence intervals
is based on the work of Dubreuil et al. (2014) in which a bootstrap
resampling strategy is used. Computation of confidence intervals by
bootstrap resampling is widely used in global sensitivity analysis and
has been used in combination with surrogate models by Gayton et al.
(2003) and Janon et al. (2011). Bootstrap resampling aims at de-
termining confidence intervals of a parameter of interest using only one
design of experiment (Efron and Tibshirani, 1993). The method consists
of the creation of new designs of experiment by drawing with re-
placement in the original design.

The method used is presented in Fig. 8. The LHS sample consisting
of 120 model runs is resampled, after which the confidence intervals of
the first-order Sobol’ indices are computed. If these confidence intervals
have not reached a specific convergence criterion yet, more bootstrap
resamples are drawn. The computation is repeated until the con-
vergence criterion is met. The criterion as suggested by Dubreuil et al.
(2014) is used. They suggested to stop the procedure at the iteration for
which all confidence interval sizes have reached a range which is less
than x percent of the maximum bootstrap mean of the sensitivity in-
dices. The choice of parameter x depends on the goal of the sensitivity
analysis. If the goal is only determining the most dominant input
parameter, a relatively large value of x in the order of 30% can be used.
However, if the model has many variables of equal sensitivity indices, it
is better to look at the convergence graph at each bootstrap iteration
and decide manually when to stop the procedure (Dubreuil et al.,
2014). The first convergence criteria (30%) is used which will be
evaluated by checking the convergence graphs of the Sobol’ indices as
suggested by Dubreuil et al. (2014).

4. Results

4.1. Calibration high-fidelity model

The river branches Lower Rhine, Waal river and Pannerdensch
Canal were calibrated with the use of measured water levels. The dis-
charge partitioning along the Dutch river branches was based on the
report of the Dutch Ministry of Infrastructure and the Environment
(1952). During the calibration procedure, this discharge partitioning
had to be met. The IJssel and Nederrijn rivers were excluded from the
calibration procedure since many inundations along the IJssel river
have occurred during the 1926 flood event. These inundations influence
the water levels at both river branches. Even a very low summer bed
roughness near the locations of the inundations did not result in the
correct water levels. For this study purpose, it is accepted that the water
levels along the IJssel and Nederrijn rivers were not calibrated

Fig. 7. Input space of the LHS representing the maximum discharges at Lobith
modelled during each model run. The grey lines indicate the results of the two
most extreme model runs.

Fig. 8. Bootstrap method for resampling in which CI stands for confidence in-
tervals.
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correctly. These branches are located more than 15 km downstream of
Lobith such that backwater effects has vanished at Lobith. The IJssel
and Nederrijn rivers have thus no effect on the maximum discharge at
this location.

In the data set, only daily measured water levels are available.
Hence, the maximum measured water level may be lower than the
occurred maximum water level. Therefore, we calibrated on the three
days with the highest water levels for each measurement station present
along the river branches. If the model is capable of predicting the
correct shape and correct water levels at three moments in time near
the peak discharge, it is likely that also the correct maximum water
level is predicted by the model.

The 1926 discharge wave was simulated. Maximum water levels at
10 measurement stations were validated after model calibration. It was
found that simulated maximum water levels only deviated 2 cm on
average compared to the measurements. Therefore, it can be concluded
that the high-fidelity model is capable of simulating maximum water
levels with high accuracy after calibration of the summer bed rough-
ness.

4.2. Validation and uncertainty of the lower-fidelity model

The model output was compared with the model output of the high-
fidelity model to study whether it is justified to use the lower-fidelity
model to perform the sensitivity analysis. We found that the high-fi-
delity model simulates a maximum discharge at Lobith of 12,282 m3/s
with the 1926 measured discharge wave at Andernach as upstream
boundary condition. The lower-fidelity model, with all random input
parameters set to their expected value, predicts a maximum discharge
of 12,402 m3/s. This deviates less than 1.0% compared to the high-fi-
delity model. Although, correct prediction of the maximum discharge at
Lobith has the focus in this study, it is also desirable that the lower-

fidelity predicts correct discharge stages at other locations. Table 4
shows that the lower-fidelity model predicts maximum discharges along
the Lower Rhine with high accuracy, having a maximum deviation of
2.1% compared to the high-fidelity model. In addition, the lower-fi-
delity model is capable of accurately predicting the discharge parti-
tioning along the Dutch Rhine river branches (Table 4). These values
indicate that the surrogate model is capable of representing the system
behaviour of the high-fidelity model. Therefore, no correction-function
is needed to tune the model results of the lower-fidelity model. We can
thus conclude that the lower-fidelity model can be treated as a high-
fidelity model from now on. Hence, the sensitivity analysis can be
performed with the 1D-2D coupled model.

The results of the uncertainty analysis show that the average max-
imum discharge at Lobith as a result of the Monte Carlo sample equals
12,424 m3/s. This value has a standard deviation of 49 m3/s caused by
the uncertainty in the input parameters. This relatively low standard
deviation shows that uncertainties in the input parameters only have a
limited effect on the maximum discharge at Lobith during the 1926
flood event.

4.3. Sensitivity analysis

4.3.1. Multiple linear regression analysis
A multiple linear regression analysis was performed in which it was

assumed that the model response as a result of the varying input
parameters was linear. This is not the case since the model coefficient of
determination R2 (equation (4)) equals 0.81. This value means that the
regression model is capable of explaining 81% of the variance of the

Table 4
Maximum discharges along the Lower Rhine and discharge partitioning along
the Dutch Rhine river branches predicted by the high-fidelity and lower-fidelity
model, where Qmax represents the maximum discharge at the specific location.

High-fidelity
model

Lower-fidelity
model

Difference [%]

Qmax Bonn [m3/s] 11,509 11,580 0.6
Qmax Cologne [m3/s] 11,632 11,715 0.7
Qmax Dusseldorf [m3/s] 11,365 11,598 2.1
Qmax Rees [m3/s] 12,351 12,572 1.8
Qmax Emmerich [m3/s] 12,297 12,453 1.3
Qmax Lobith [m3/s] 12,282 12,402 1.0
Waal river [%] 70.3 71.9 1.5
Pannerdensch Canal [%] 29.7 28.0 1.7
Nederrijn river [%] 58.7 56.2 2.4
IJssel river [%] 41.4 43.8 2.4

Table 6
Computed Sobol’ indices with the method of Li and Mahadevan (2016) in which
the most influential parameter has a ranking equal to 1 and the most non-
influential parameter a ranking equal to 9.

Input parameter Si Ranking Surface
area [%]

Roughness class Summer bed 0.10 2 13.3
Lakes 0.01 7 13.2
Grasslands 0.77 1 55.6
Forest 0.05 5 6.4
Urban areas −0.03 9 11.4

Bed level Winter bed 0.09 3
Summer bed (1) 0.01 8
Summer bed (2) 0.06 4
Summer bed (3) 0.03 6

Table 5
Results Multiple Linear Regression analysis in which the most influential parameter has a ranking equal to 1 and the most non-influential parameter a ranking equal
to 9.

Input parameter i i [m3/s] ˆ
i

Ranking Surface
area [%]

Roughness class Summer bed −3.65 × 103 1.97 × 10−3 0.15 2 13.3
Lakes −1.81 × 103 2.68 × 10−3 0.10 5 13.2
Grasslands −4.81 × 103 8.71 × 10−3 0.86 1 55.6
Forest −2.83 × 102 1.95 × 10−2 0.11 4 6.4
Urban areas −2.29 × 102 2.73 × 10−3 0.01 7 11.4

Bed level Winter bed −70.3 3.18 × 10−2 0.05 6
Summer bed (1) 1.2 7.00 × 10−2 0.00 9
Summer bed (2) 27.5 0.25 0.13 3
Summer bed (3) 8.3 0.04 0.01 8
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surrogate output. The remaining 19% is ignored by the regression
model. However, Table 5 clearly shows that the roughness of grasslands
highly influences the maximum discharge at Lobith because of its high
sensitivity measure î (equation (3)). The high standardized regression
coefficient of the roughness of grasslands can be explained by the fact
that grassland is the most dominant land cover in the model domain
with a surface area of 55.6% (Table 5). In addition, the uncertainty
within the class itself is relatively large (Table 2) since grasslands most
often have a higher roughness during summer periods due to growing
season compared to the winter periods. Only the roughness of forest has
a larger uncertainty range. However, the surface area covered by forest
is much less (6.4%).

4.3.2. Sobol’ indices
In the previous section it was shown that with the Multiple Linear

Regression analysis only 81% of the variance of the surrogate model
output could be explained. In order to check the results of the Multiple
Linear Regression analysis, the Sobol’ indices are computed. These in-
dices are independent of model linearity. The results show that the
roughness of grasslands is dominant with respect to influencing the
uncertainty of the maximum discharge at Lobith (Table 6). This is in
line with the results of the Multiple Linear Regression analysis.

If == S 1i
r

1 i , the variance of the model output is solely caused by
the variance of the input parameters itself. In that case, there are no
interactions between the different input parameters resulting in an in-
crease in the variance of the model output. In other words, the model is
additive. The results show that the first-order Sobol’ indices are ap-
proximately 1 indicating that the model does not include any interac-
tions of the input parameters.

In principle = Si
r

1 i cannot be larger than 1. In addition, the first-
order Sobol’ index computed for each uncertain input parameter cannot
be lower than 0 (Saltelli et al., 2008). In this study, the computed

= Si
r

1 i is slightly larger than 1 and the Sobol’ index for the roughness of
urban areas is smaller than 0. This is caused by the relatively little
sample size of only 120 runs. To overcome this problem, we resampled
the 120 runs as explained in Section 3.3. With this resampled data set,
the 95% confidence intervals of the first-order Sobol’ indices are com-
puted (Fig. 9). Fig. 10 shows that the first-order Sobol’ indices have
converged after approximately 700 bootstrap resamples. This results in
a data set of 700 × 120 model runs. The outcomes then show that the
roughness of grasslands remains the most dominant input parameter.

The lower bound of its confidence interval is under any condition larger
than the sensitivity index of the other input parameters. Therefore, we
can conclude that for this specific case, most attention must be paid to
the roughness class with the largest surface area and which has a re-
latively large uncertainty range. Correct prediction of this parameter
will result in a significant reduction of the output variance. It must be
noted that the uncertainty of the model output was small in this study.
In general, the output variance depends on the probability distribution
functions of the uncertain input parameters. It can be expected that the
output variance will increase for older historic events. Hence, a sig-
nificant reduction in model output variance can be reached if the most
influential input parameter is correctly predicted. This influential input
parameter can be found by applying the method for factor prioritization
as presented in this study.

5. Discussion

In this study, a methodology was developed to reconstruct historic
flood events with the use of a lower-fidelity model. The maximum
discharge is predicted as well as its uncertainty as a result of the un-
certain input parameter. General problems that arose were mostly re-
lated to the choice of the surrogate model type and the characteristics of
the flood event. Therefore, another historic event may ask for a dif-
ferent approach since the assumptions made for the 1926 event may not
apply. To put things into perspective, an overview and discussion are
presented of the problems that may arise during historic flood re-
construction and resulting sensitivity analysis.

1. To predict a historic discharge, an associated geometry should be
reconstructed. The geometry during the 1926 event was well known
since maps of this time period are available. However, for events
further in the past the geometry might be more uncertain. These
spatial uncertainties must be included in the analyses. A major
drawback is that for each (uncertain) geometric situation a separate
model must be set up. Consequently, for each model, the sensitivity
analysis must be performed separately. This significantly increases
the total number of simulations. Furthermore, for older events the
uncertainties in the input parameters may become larger. Hence, the
shape of their probability distributions may change. We assumed
that the uncertain input parameters of the 1926 flood event could be
described by truncated normal distributions. These distributions will
shift towards uniform distributions for older events if less informa-
tion is available.

2. A lower-fidelity based surrogate model was developed to reduce
computational time. Many other methods exist to set up a surrogate
model, each with their own benefits and drawbacks. A different
study approach may lead to the need of another type of surrogate
model. In general, a 1D-2D coupled model is capable of simulating
any kind of flood event. The 1D profiles enable correct prediction of
discharge stages below bankfull conditions (Horritt and Bates,
2002). These 1D profiles can be coupled by 2D grid cells to include
the possibility of simulating overland flows if the discharge exceeds
the bankfull discharge, referring to the situation in which the dis-
charge is larger than the main channel and floodplain capacity.
Therefore, this type of lower-fidelity model can be used to accu-
rately simulate flood wave propagation for both discharges below as
well as above bankfull conditions.

3. The 1D-2D coupled model was not calibrated on maximum water
levels. The objective of the surrogate model was accurate prediction
of maximum discharges at Lobith. However, calibration on max-
imum water levels is required if dike breaches and/or overtopping
have evolved during the flood event. For such a case, correct pre-
diction of maximum water levels becomes important since this value
indicates whether overtopping occurs. This influences the maximum
discharge further downstream. Therefore, it is recommended to use
the summer bed roughness of the lower-fidelity model as calibration

Fig. 9. First-order Sobol’ indices and its 95% confidence intervals based on the
bootstrap resamples.
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parameter to correctly predict water levels in case of discharges
exceeding bankfull conditions.

4. To perform the sensitivity analysis, a decision had to be made about
the range of the truncated normal distributions of the input para-
meters. The ranges of the roughness parameters were based on the
tables of Chow (1959). A smooth channel with no vegetation was
assumed to determine the roughness of the summer bed. This results
in a relatively low expected Mannings roughness value of 0.028,
with a total range of between 0.023 and 0.033. It is expected that
the dimensions of sand dunes during flood events are highly un-
certain. This uncertainty may influence summer bed roughness
significantly. The measured Mannings roughness of the summer bed
during the 1998 event with a maximum discharge of 9464 m3/s at
Lobith ranges of between 0.030 and 0.035 (Julien et al., 2002).
These values are higher than the values that we used. Paarlberg
et al. (2010) found a clear dependency between increase in the
discharge and increase in the dune heights. However, it is still un-
clear to what extent dune heights increase during flood events. Some
literature even suggest that the dunes are washed out under extreme
conditions (e.g. Best (2005) and Naqshband et al. (2014)), resulting
in much lower values of the roughness parameter. It is not the
roughness value itself that influences the uncertainty of the max-
imum discharge, but rather the uncertainty range of the summer bed
roughness. Therefore, the relatively broad roughness range for the
summer bed used in this study is considered appropriate for the
1926 flood event.

5. In this study, only geometrical uncertainties in the input parameters
are included in the sensitivity analyses. These parameters are the
bed levels of the summer bed and winter bed and the roughness of
the various land use classes. However, much more uncertainties
exist which can be related to the model structure, model parameters
and boundary conditions. These inherent uncertainties can be con-
sidered in the sensitivity analysis by including them as random input
parameters in the LHS. This will result in more insight in the most
dominant type of uncertainty, i.e. uncertainty as a result of the input
parameters, model parameters or model set-up. This study is re-
commended for future work since here, we only focused on the
uncertainties of the geometrical input parameters to illustrate our
method.

6. Conclusions

The objective of this paper was to study whether a lower-fidelity
hydraulic model can be used for historic flood reconstruction. In this
paper, a general framework is presented that shows which problems
have to be tackled in order to enable historic flood reconstruction with
the use of a surrogate model.

A 1D-2D coupled model was developed as lower-fidelity model that
is capable of simulating flood wave propagation with high accuracy. It
was found that model results predicted by the lower-fidelity model
were close to those predicted by the high-fidelity model. The lower-
fidelity model is thus capable of accurately predicting system beha-
viour. In addition, the proposed 1D-2D coupled model can be applied to
any type of historic flood event. This is because it is capable of accu-
rately simulating flood wave propagation for both discharges below as
above bankfull conditions. However, if the simulated discharges exceed
the bankfull discharge, model calibration is recommended since correct
prediction of water levels becomes highly relevant for these cases.

A sensitivity analysis is required to determine the parameters that
mostly influence the uncertainty in the model output. The lower-fidelity
model could be used to perform this analysis. This significantly de-
creased computational time compared to the use of a fully 2D model.
For future work, we propose that a 1D-2D coupled model can be treated
as a high-fidelity model in general. Therefore, setting up a sophisticated
2D model for validation will not be needed.

The proposed methodology was tested with the use of the 1926
flood event of the Rhine river. The lower-fidelity model predicts a
maximum discharge at Lobith of 12,402 m3/s for this historic event,
deviating only 1.0% compared to the high-fidelity model (12,282 m3/
s). The uncertainty of this maximum discharge at Lobith equals 49 m3/
s. The uncertainty in model output is relatively small because a large
amount of data of the 1926 flood event was available. Reconstruction of
an older flood event will probably result in larger uncertainties of the
input parameters since less information is available. As a result, the
truncated normal distributions used to describe the uncertainty of the
various input parameters will shift towards uniform distributions. This
will have a negative effect on the model output uncertainty.

The sensitivity analysis showed that the model output was most
sensitive to the roughness class with the largest share in surface area (in
this case the roughness of the grassland areas). Moreover, the location

Fig. 10. Convergence of the first-order Sobol’ indices based on the bootstrap resamples.
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of the roughness class was important since areas close to the river have
a relatively large impact on model results. These two aspects in com-
bination with the uncertainty range of the input parameter itself de-
termined the influence on model response.
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