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Systematic Analysis of Uncertainty in 2D Flood Inundation Models

Thomas Willis¹, Nigel Wright2, Andrew Sleigh1

1. University of Leeds 

2. Nottingham Trent University

Abstract: Assessing uncertainty is a critical part of understanding and developing flood inundation 

models for use in risk assessment. Typically, uncertainties are investigated by comparing the effects of 

an ensemble of key model inputs, such as friction values and hydrographic uncertainties, on model 

outputs. In this study, an approach is adopted that also consider the uncertainty associated with the 

computational models. Using the LISFLOOD-FP code, which contains multiple methods for solving 

floodplain flow, two test cases with different hydraulic characteristics are used in a systematic 

uncertainty analysis. An ensemble of inputs including cell size, hydrological uncertainty, and 

representation of buildings are assessed for impact on modelling results. Results show the numerical 

complexity is a significant source of uncertainty in complex flow regimes, but this reduces in typical 

fluvial flood events. The method of assessing the modelling output is also found to be important in 

determining the overall influence of parameters.

Highlights:

 This paper analyses the major sources of uncertainty in flood inundation model and evaluates 

which source of uncertainty is the most significant.

 Two test cases, with different hydraulic properties, are used to provide broader conclusions to 

the uncertainty analysis

 The complexity of the physical model is shown to be highly influential on model results in both 

test cases.

 The significance of an input on model outputs is dependent on the assessment method used.

Keywords

Flood Inundation modelling, Uncertainty Analysis, Numerical Modelling, Hydraulics

1. INTRODUCTION

Flood inundation models are an essential tool in understanding the hydrodynamics of flood events and 

in assessing and analysing risk. Computed flood depths and extents are an essential requirement to 

determine areas at risk of damage from flooding, the effectiveness of flood mitigation measures and in 

the assessment of economic losses of flooding. In order to develop these data sets, numerical models 

have been created which use the shallow water equations to describe the movement of water in a river 

channel and across the floodplain. These numerical models form the basis of a computational model 

which will be used to simulate flooding. Additional datasets are required as inputs and to parametrise 

the numerical model to create the complete flood inundation model. Collectively, these components of 

the flood inundation model are a source of uncertainty that will impact on the accuracy of the results, 

and ultimately on the decisions that can be made from these datasets (Beven, 2008). To understand 

the significance of uncertainty in the models and input datasets, the contribution of each source of 

uncertainty must be assessed to determine which source of uncertainty provides the greatest impact 
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on the model results (Willems, 2012). This is underlined with the legal requirement of decision makers 

to understand computational models, particularly Catastrophe models, through legislation such as the 

UK Solvency 2 scheme for insurers (Boss, 2011). Broadly, this requires end users of computational 

models to understand the assumptions and uncertainties of the model used to create them. This in turn 

places an emphasis on modellers to justify often complex choices in model setup and to understand 

the uncertainty associated with these choices. Analysis of model uncertainty is therefore a critical 

requirement of current modelling approaches.

Model uncertainty is typically divided into four categories (Willems, 2012): input data uncertainty (the 

uncertainty related to input data sets such as hydrology and terrain data), parametric uncertainty (e.g. 

friction coefficient values), model structure uncertainty (the uncertainty associated with the numerical 

model), and model assessment uncertainty (such as the data and approaches used to validate the 

model). A number of studies have investigated the effects of these sources of uncertainty on model 

results (Warmink et al. (2011), Pappenberger et al. (2005), Hunter et al. (2005a), Willems (2012), Van 

Steenbergen et al. (2012)). A further number of studies have provided detailed analysis of the impact 

of individual components of modelling uncertainty, such as terrain data (Morgan et al 2016 , Tsubaki et 

al 2013, Stephens et al 2012), friction parameters (Pappenberger et al. (2008), Dung et al. (2011), Apel 

et al. (2009), Hall et al. (2005)), input boundary conditions (Domeneghetti et al. (2012), Aronica et al. 

(2012)) and grid cell size (Wildemeersch et al., 2014).

By comparison uncertainty associated with the model structure is less frequently studied as it is difficult 

to analyse. Methods to describe the distribution of uncertainty associated with the model structure are 

difficult due to the number of factors that influence the uncertainty (Gupta et al., 2012). One of the key 

factors of the model structure uncertainty is the level of physical representation chosen for the 

conceptual model, which forms the basis of the numerical model. In hydrodynamic modelling, the 

complexity of the conceptual model and the level of physical representation, is typically associated with 

the number of terms used from the momentum component of the governing equations. The governing 

equations are the Shallow Water Equations (SWE), which are comprised of the conservation of mass 

equation (which describes the preservation of mass as water moves through an area) and the 

momentum equation (Equation 1). These equations describes the principal forces that conserve energy 

and control the movement and flow of water, and the number of terms used from it leads to different 

numerical models of the flood wave (Chow (1988), Bates et al. (2010)). 

A number of studies that have explored the impact of the level of physical representation focus on 

benchmarking approaches, rather than structured uncertainty approaches (Hunter et al (2008), Neelz 

and Pender (2010), Neelz and Pender (2013)). These studies identified that models can be divided into 

two categories dependent on the underlying numerical model: simplified and full physics approaches, 

where the simplified approach removes terms from the momentum equation leaving 2-term or 3-term 

numerical models (Neelz and Pender, 2013). They further identified that model behaviour and 

interaction with other parameters vary greatly between these categories, and that in appropriate 

situations simplified approaches serve as well as full physics approaches. Further studies have used 

this benchmarking approach to cross compare further model structure uncertainty and parameter 

uncertainty (Liu et al., 2019). Typically, it has been difficult to include this aspect of the computational 
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model uncertainty in uncertainty analyses, as this has required the use of multiple model codes to 

represent the different levels of model complexity. These codes will not share common code structure, 

such as grid discretisation and time stepping approaches, meaning direct comparison is often difficult 

(Hunter et al 2008) and (Neelz and Pender, 2010). To overcome this issue, and to allow for a 

comprehensive approach to analysing modelling uncertainty, a computational model framework is 

required with multiple numerical models with varying levels of complexity. This approach is 

demonstrated in Neal et al (2012) using the LISFLOOD-FP code, which has multiple options for solving 

the 2D floodplain flow within a single model framework for a series of benchmarking problems. This 

further highlights the difference between the simplified and full physics approaches. Further sources of 

uncertainty are not considered in this study.

This study aims to continue the course of previous studies by investigating model structure uncertainty 

alongside other sources of uncertainty in flood inundation modelling. A systematic approach to 

analysing the uncertainty is used, where key model inputs including friction coefficients, model inflow, 

and cell size, are assessed as discrete inputs. Model structure uncertainty is included as a key model 

input by using the multiple floodplain flow solvers in the LISFLOOD-FP code. This approach provides a 

degree of control on the results, allowing the impact of varying the model inputs to be understood within 

the model (such as comparing depths at specific points), rather than considering only global model 

outputs.

A typical problem in uncertainty analysis, is the effect of test case bias, where the physical properties 

of the model domain may favour elements of a model. To reduce this impact, two test cases are selected 

with different hydraulic conditions. The first is a surface water flood in Glasgow, that has been used in 

previous studies (Hunter et al 2008, Aronica et al. (2012), Fewtrell et al 2008)), which is dominated by 

transcritical flow in a complex urban environment. The second is a river overtopping event, in a 

predominantly rural domain, a case study based on an event from the 2007 UK summer floods in 

Mexborough, South Yorkshire. 

The approach adopted focuses on pragmatic modelling decisions, using parameters and values that 

would typically be used in a modelling exercise. This method is preferred to variance-based sensitivity 

analysis which provide quantitative analysis, but at a high computational cost (Hall et al 2005 and 

Savage et al 2016). The aim of this approach is to provide results that are relevant to model developers, 

model users and decision-makers. This paper is divided into the following sections: a methodology 

section with an introduction to the LISFLOOD-FP code and a review of the different solutions of 

floodplain flow, a description of the methods used to assess uncertainty, the presentation of the results 

from the two test cases, followed by a discussion and conclusions. 

2. METHODOLOGY

2.1 Hydraulic Model: LISFLOOD-FP

In order to explore model structure uncertainty, a model framework is required that allows the complexity 

of the model, and the level of physical representation, to be isolated from other factors in the numerical 

model. The LISFLOOD-FP code is a regular grid 2D code with different methods for solving floodplain 
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flow. The difference in the methods are based on varying levels of complexity in the numerical engine, 

and removing terms from the governing equations, to create simplified physics approaches. 

Chow (1988) defined 3 physical wave structures types based on the 1D conservative momentum 

equation of the Shallow Water Equations (Equation 1), which can then be applied to 2D numerical 

models. 

(1)       
1� ∂∂�(�2� )   +          

1�∂�∂�         +     �∂�∂�    ‒    �(�� ‒    ��) = 0

 Convective term           Local term            Pressure term    Gravity and Friction Source Terms

Diffusion Wave model (LISFLOOD-ATS)

 Acceleration Wave model (LISFLOOD-ACC)

Full Physics Dynamic Wave model (LISFLOOD-Roe and Rusanov)

Where A is channel cross section area (m²), Q is discharge (m3/s), t is time, g is gravitational constant 

(m²/s), x and y are cell node directions, S0 is the gravitational source term and Sf in friction source term. 

A fully physics based approach is made up of all terms in Equation 1. Wave models that do not include 

all these terms are described as simplified physics approaches. Two simplified physics approaches 

have been developed in LISFLOOD-FP, a diffusion wave approach which is represented by the removal 

of the convective and local acceleration terms, and the ‘acceleration’ wave which is represented by the 

removal of the convective acceleration term. The latter wave type formulation has been used more 

frequently in flood models in recent year, as a way of improving the physical representation of simplified 

physics approaches (Aronica et al 1998, Bates et al 2010, de Almedia et al 2012). In principle these 

simplified formulations should be only used in appropriate circumstances, such as when variations in 

the free surface and local velocities are negligible to the length scale of the problem being investigated 

(Hunter et al., 2007). This can be understood in the context of fluvial flooding where theoretically, the 

convective acceleration term is negligible compared to the effects on the overall movement of flood 

waters, and the diffusive wave become more dominant. Conversely, this means for scenarios with 

complex topography the diffusion wave formulation will no longer adequately represent the complexity 

of the hydraulics. However, simplified approaches have an advantage in that they can be solved by 

more direct numerical methods than those employed in solving the full momentum equation. This will 

in principle produce efficient computational code that is quicker to run than models that use the dynamic 

wave approach, at the expense of complete representation of the hydraulic processes (Hunter et al., 

2008). As a result, there is a temptation to push the limits of the simplified approaches, beyond the 

theoretical limits of these methods.

There are 3 formulations used in the LISFLOOD-FP framework which utilise these physics models. 

LISFLOOD-ATS is an approximation to the diffusive wave formulation, using a decoupled Manning’s 
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equation to update cell variables, in a finite difference approach (Bates and De Roo, 2000). The intercell 

unit discharge value, Q, is performed using Equation 2; 

(2) ��,�� =
ℎ 5/3����� (ℎ� ‒ 1,� ‒ ℎ�,�∆� )

1/2∆�
Where h is the water depth in a cell, n is Manning’s friction coefficient, i and j are cell locations, x and y 

are grid cell size and hflow  is the difference between the highest water cell depth and elevation in two 

adjacent cells. The continuity equation is then used to sum the cell values to determine the new water 

depth values. The ATS formulation uses an adaptive timestep (Hunter et al., 2005b) and represents the 

lowest level of complexity for solving floodplain flow in LISFLOOD-FP. 

LISFLOOD-ACC is based on the acceleration wave described in Equation 1, where the convective term 

is removed from the Equation 1 to create a numerical solution to this in the form of Equation 3; 

(3)
 �� + ∆� =   

�� ‒ �ℎ�∆�∂(ℎ� + �)∂�
(1 + �ℎ�∆��2�� ℎ10/3� )

Where z is the elevation in a cell. In order to recreate the acceleration wave, a semi-implicit formulation 

is utilised that approximates the upwinding methods used in finite volume approaches (de Almeida et 

al., 2012).

A full physical solution is available in the LISFLOOD-FP code, which uses a Godunov-based finite 

volume method for solving the SWE on a regular grid. A full description of the method can be found 

elsewhere (Villanueva and Wright, 2006), but the basic approach to the method involves updating cells 

using a form of Equation 4;

(4) �� + 1� = ��� ‒ ∆�∆�[�� +
1

2

‒ �� ‒ 1

2

]

Where t is the time step interval U is the conserved variables of depth and velocity to be updated at the 

next time step for cell i and F  is the intercell flux to update the variables.

The Godunov method recreates a Riemann problem at the intercell boundary, for which there are a 

number of numerical methods available to solve this problem, and to calculate the intercell flux. Here, 

two are considered with different levels of numerical complexity. The first is a linear approximation to 

the Reimann problem - the Roe solver (Roe, 1981) which has been implemented in LISFLOOD-FP and 

other 2D regular grid flood inundation models (Neal et al. (2012) and (Villanueva and Wright, 2006)). 

The second is a simplified upwind method, the Rusanov solver, which approximates the Riemann 

problem using information determined in the calculation of the timestep. This solver has been used 

previously for solving 2D flood problems (Simoes, 2011) and according to Toro represents the simplest 

approach to an upwind boundary solver (Toro 2001). 

By using these two full physics approaches, LISFLOOD-Roe and LISFLOOD-Rusanov, insight into the 

significance of the complexity of the numerical method can also be understood and can be cross-

compared to the different levels of physical representation. Other approaches to solving the SWE 

including higher order solvers may provide more robust and accurate solutions to these equations but 
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are not considered in this study, due to the scale and computational costs of the test cases. These 

approaches could be used as a potential area of future study.

These different solutions to solving floodplain flow in LISFLOOD-FP will be collectively referred to as 

modules.

2.2. Uncertainty analysis methodology

The systematic approach is based on discretising each uncertain input into levels, and cross-comparing 

each level of all the input parameters, as in a Monte Carlo approach. For each input a maximum and 

minimum value for an input is chosen and is divided into discrete values (or levels). Unlike a Monte 

Carlo approach, the level of an input reflects values that might be typically considered by a modeller, 

rather than representing value based on the distribution of that input (as in Pappenberger et al. (2008)). 

This is similar to the approach of Hunter et al (2008). Although an approach of sampling the inputs from 

an underlying input uncertainty distribution is not used, the upper and lower limit of the input values 

chosen will implicitly assume the range of values in a uniform distribution.

For the two test cases used, the same principal inputs are used in the input ensemble; friction values, 

hydrograph inputs, cell size, random error in the Digital Elevation Model (DEM) and approaches to 

representing flow through a building. The values used are shown in Table 1.

Table 1. Parameter type, range and levels for the systematic assessment

Parameter 

Type
Range Levels Notes

Model 

Complexity

Full SWE to diffusion 

wave

4 levels based on the 

LISFLOOD-FP modules 

(ATS,ACC,Roe, 

Rusanov)

Further detail is 

provided in Section 2

Cell Size

2m – 4m for urban 

tests, 20m-40m for 

rural tests

2 levels 
Based on work by 

Fewtrell et al (2011) 

Hydrograph
20% of calculated 

hydrograph

5 levels 

(-20%,-10%, 

0,+10%,+20%)

Value based on Di 

Baldassarre et al 

(2012)

DEM error 0cm - 15cm

2 levels -

Original surface and 

15cm degraded 

LiDAR vertical 

RMSE

Building 

Representation
BR, BP, BB

3 levels (Building Block, 

Building Porosity, 

Building roughness)

Based on Schubert 

and Sanders (2012)

Surface Low High

1. 0.008 0.015

2. 0.009 0.02
Friction Value

Low Friction - 0.008-

0.020 (13 levels with 

a difference of 0.01 

n)

3. 0.010 0.025

The value of the 
spatially distributed 
friction coefficient is 
split into 13 levels. 
Each level has a 

corresponding high 
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4. 0.011 0.03

5. 0.012 0.035

6. 0.013 0.04

7. 0.014 0.045

8. 0.015 0.05

9. 0.016 0.055

10. 0.017 0.06

11. 0.018 0.065

12. 0.019 0.07

High Friction 0.015-

0.075 (13 levels with 

a difference of 0.05)

13. 0.02 0.075

friction surface value 
and low friction 
surface value

As described in Section 2, model complexity is represented by one of the four different floodplain solver 

formulations used in LISFLOOD-FP to solve floodplain flow. The lowest level is the two-term diffusion 

wave based ATS solver, followed by the three-term ACC solver. For the two full SWE models, the 

simplified interflux solver used in LISFLOOD-Rusanov is the third tier, whilst the more complex and 

robust Roe solver is the upper level of the model structure uncertainty.

Grid cell size is a critical input to the computational model, and the precise consideration of this is 

determined by two competing factors, minimum feature representation and computational runtime 

(Savage et al., 2016). Previous studies have identified that a rule of thumb for a minimum cell size is 

that main flow paths should be represented by three cells width (Fewtrell et al., 2011). For urban areas, 

the main flow path for surface flow will be the road network, which will have a minimum width of around 

6m, so a 2-meter cell size is selected as the lowest level. A maximum value of 4 meters is used for the 

urban test case presented here, creating a 2-level input to represent the uncertainty in grid cell size. 

The maximum value is selected to test the assumption of Fewtrell et al. (2011). For the rural test case 

this is increased to 20-40m due to the computational time of the model runs but is justified as the road 

network is less critical in floodplain flow path development. At this scale, catchment scale geometry and 

topology will have a significant effect on flood event dynamics, which is suitably represented at the 20-

40m resolution model.

Inflow boundary conditions can often represent the most significant uncertainty in flood inundation and 

risk modelling (Pappenberger et al., 2006). Evaluating the full range of uncertainties associated with 

hydrological inputs, including modelling approaches and is beyond the scope of this work. The 

description of uncertainties associated with gauge data and rating curve uncertainties provides a more 

focused approach to assessing inflow uncertainties. These have been analysed in previous studies and 

demonstrated to have a range of about ±20 – 25% of a calculated flow rate (Domeneghetti et al., 2012). 

As the two test cases presented here are based on historic events, this seems a suitable approach, as 

the events use observed inflows as boundary condition, which would be subject to these errors. The 

rating curve uncertainty was applied to the inflow boundary conditions with the upper and lower limits 

set at ±20%, creating a 5-level input for this model input. Whilst this range of levels does not take into 
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account precise details about either measurement procedure, it is felt to be sufficiently wide to cover 

the range of potential approaches to using gauge data to develop model inflow. 

The DEM used in the models are all based on LiDAR derived data sets, which have a RMSE of the 

relative true ground rating of ±15cm for elevation and 5cm for lateral position (Cobby et al., 2001). This 

is incorporated into the input parameter space in a similar way to the approach of Hunter et al (2008) 

and Tsubaki and Kawahara (2013), by degrading the original DEM randomly and on a cell-by-cell basis, 

according to the RMSE value for height and lateral position.

An important part of developing flood models for urban areas is to consider how buildings should be 

represented in the model. Buildings walls will act as impermeable barriers to flood waters and are critical 

in defining flow paths during flood events, by directing and restricting flow routes. During a flood event, 

water that enters a building is often stored temporarily, which remove water from the floodplain. This 

can be critical in urban areas, where the number of buildings may significantly impact the volume of 

water stored during an event. Ideally, the method used to represent buildings should incorporate both 

of these macro scale processes. Three approaches are used to represent buildings, based on the 

approaches first suggested in Sanders et al. (2008) and Schubert et al. (2008): Building Block method, 

(BB), Building Resistance method (BR), and Building Porosity method (BP). The position of the building 

is determined using Ordnance Survey (OS) Landline vector map dataset. The building block method is 

defined as raising the elevation of a cell that fall within the footprint of the building by 6m. This will 

represent the impermeable structure of the building edge. The building resistance (BR) method contains 

no physical representation but a high friction value for all cells in the building footprint, to allow for some 

representation of the flow through the building. The Manning’s coefficient is fixed at 0.1 in all test cases, 

which reduces water discharge levels through the building footprints. The BR method therefore 

represents the storage aspect of flood waters in buildings. The Building Porosity method uses a fixed 

conveyance porosity value of 0.5 for cells in building footprints for all test cases. This value represents 

the amount of cell space available to be occupied by the water, as well as the intercell discharge volume, 

and is similar to the approach adopted by Guinot (2012) and Soares-Frazao et al. (2008). The value of 

0.5 is chosen as an average blockage effect. A range of values were tested but result variations for this 

value were negligible and are not considered further in this analysis. This reflects similar findings to 

Schubert and Sanders (2012).

The friction value is often the most considered parameter in calibrating models, due to the ease of 

implementing and its use to overcome deficiencies in the flood model. To test this, 13 sets of spatially 

distributed values based on OS Landline vector data are used. Low friction surfaces such as roads and 

pathways are given values of 0.008 to 0.02 at 0.001 intervals. Remaining land surfaces are defined as 

higher friction surfaces and are assigned values from 0.015 to 0.075 at 0.005 intervals. This creates a 

13-level input as outlined in Table 1. The values are the same as used in a previous benchmarking 

case Hunter et al (2008). These values represent the theoretical range of possible Manning’s n friction 

values as defined by the surface types in Chow (1988). The larger parameter space, compared to the 

other inputs is justified, as the values represent the range of values that could be justified in a modelling 

exercise.
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2.3 Case Studies and Data

A typical problem for uncertainty analysis is the issue of test bias – where the specific test may unduly 

favour a particular input (Hall et al 2005, Hunter et al 2006, Apel et al 2009,). Two test cases with 

contrasting hydrodynamic characteristics are used to address this. The first test case is a culvert 

overtopping event that lead to a rapid (<1 hour), surface water flood event in the Greenfield region of 

Glasgow. This test case has been used in previous studies (Hunter et al 2008, Aronica et al 2012, 

Pender et al 2012), but remains a highly useful test for hydraulic models. This is due to the nature of 

the topography and the flow type (shallow and fast), which provide a stringent examination of the 

numeric model. The event inflow is introduced at the culvert location, to the east of the model domain 

(red circle, Figure 1), which leads to the formation of a main flow path in an east-west direction. A 

second flow path then forms leading to the south of the model domain, where water pools throughout 

the model run. Numerous smaller flow paths then emerge between the two main flow routes. The event 

is characterised by transcritical flows as a result of the short steep topography of the catchment, and 

the speed of the outflow. The peak discharge inflow for this event is estimated at 15m3/s, with a total 

duration of 15 minutes from start to finish.

Figure 1: Model domain for Glasgow test case, where the red circle represents the culvert input 
and the red-cross is the model assessment location

The input ensemble defined in Table 1, created 3010 model runs. In the absence of observed data, a 

high-resolution benchmark model was used to act as a proxy to observed flood depth and extent data. 

The benchmark was created by resampling the original 0.5m LiDAR DEM to 0.1cm, with Manning’s n 

values of 0.015 used for areas classified in OS Landranger data as roads and pavements, and 0.045 

for the rest of the domain. Resampling the DTM is not used to improve the precision of the terrain data 

but to increase the number of calculation points in the model and improve the precision in the numeric 

model. This approach of using high resolution benchmarks to validate flood models has been used in 

previous studies (Fewtrell et al 2011). Here, the benchmark model is not being used to validate the 
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models, but to provide a dataset with which to evaluate the ensemble model runs with standard flood 

modelling evaluation methods.

The second test case is a river overtopping event, which occurred in Mexborough, South Yorkshire in 

July 2007. This was part of the larger UK Summer 2012 flood event that lead to 6 deaths and over £6 

billion of damages. The model region is predominately rural with few modifications to the floodplain or 

the channel. The main flood mechanism is the overtopping of the largely unmodified river banks caused 

by the gradual increase in water levels in the channel. This test case provides a useful counterpoint to 

the test case in Glasgow, which was dominated by transcritical and low-depth, high-velocity flows. For 

this test case the main hydraulic properties and flood mechanisms are gradual varying and are 

characterised by low velocities. It can be assumed that the level of physical representation in the model 

will be less significant in impacting model results. Theoretically, the LISFLOOD-FP floodplain solvers 

should contain a level of physical representation to be able to replicate the main flood processes, and 

the requirement of conserving momentum in the model is less important in replicating this event.

A series of post-event wrack marks were surveyed with RTK GPS, which provide point information 

about flood depths and extents (Neal et al 2009). The position of the wrack marks was used to derive 

a water surface for the event (as seen in Figure 2) to compare the model run output.

Figure 2: Model extent for the Mexborough test case, with the surveyed wrack mark points (red 
crosses) and the calculated observed water surface

The base model setup uses river gauge data for the inflow boundary conditions and LiDAR terrain data, 

with the model domain defined around the limits of the wrack mark data. The inflow is taken from 15- 

minute discharge data from the Bolton-upon-Dearne weir gauge which is located to the west of the 

model domain. The channel is represented as a series of wet cells located along the river centre line, 

rather than an explicit representation of the channel in the model. The downstream boundary is 

represented as a normal depth boundary condition which was tested to ensure that the boundary did 
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not influence model results through drawdown or backwater effects. Due to the larger model domain 

and associated computational costs, the event is defined as being 15 hours, rather than the 7 days of 

the actual event, but this is sufficient to capture the peak of the event.

The input sample space for this test case is adjusted slightly from the Glasgow test case, with fewer 

friction surfaced sampled. This leads to a total of 2020 model realisations, 505 model runs for each 

numerical solver.

2.4 Model Evaluation

For each test case, two model evaluation techniques were used. Common to both test cases is the use 

of the F(2) binary flood extent comparison method, where modelled extent is compared to observed 

extent (Aronica et al., 2002). The function ranges from 0 to 1, where a value of 1 represents a perfect 

fit between observed extent and modelled extent. This method for evaluating model output has been 

criticised for failing to distinguish between models where the terrain constrains the limits of flooding 

(Prestininzi et al., 2011) and for being only a small component of the complete evaluation of risk 

(Stephens et al., 2012). It still provides an indication of model performance, as well as providing a model 

evaluation technique that incorporates some of the spatial aspect of flooding. For the Glasgow test 

case, the second model evaluation is made by comparing water depths at the location of the red-cross 

point in the model domain. The Nash-Sutcliffe efficiency function is used to evaluate the differences in 

flow between the benchmark model and the model run. As with the F(2) approach, this has been 

criticised in the past for favouring peak values (Pappenberger et al 2004). For this test case, the peak 

value is of interest and this function is used for that purpose. For Mexborough, the second model 

function for the test is a comparison of water depth across the model domain using a Root Mean Square 

error measure (RMSE) as used by Stephens et al. (2012). The skill of replicating observed depths as 

opposed to extents alone can provide more insight into model ability (Apel et al 2009, Bates 2010, 

Stephens et al 2012). For this test case, both the modelled depths and extents were compared to the 

observed depths and extents using a RMSE measure and the F(2) function.

The test cases were analysed with a set of common approaches. An uncertainty flood extent diagram 

(also referred to a probabilistic flood extent in Aronica et al 2002) was created for each of the 

LISFLOOD-FP modules. Using the maximum flood extent from each model run, a cell is classified as 

flooded or not flooded, and given a score of 1 or 0. The average cell value is then calculated from the 

ensemble of model results, with a value of 1 representing a cell that has flooded in all test cases and a 

value of 0 a cell that has not flooded in any test cases. This value is described as the flood frequency 

value to distinguish it from a probabilistic estimation of uncertainty values. 

A hazard uncertainty diagram is also used, and is based on a similar principle to the uncertainty flood 

extent diagram (Aronica et al., 2012). The level of hazard for each cell is calculated at each timestep 

using Equation 5, where d is the depth of water in the cell at a timestep and v is the associated velocity

(5) � = �� ∗ (�� + 0.5)

From each model run the maximum hazard value for a cell across the runtime is calculated. Using this 

output, a cell that has a maximum value that exceeds 0.7 is defined as hazardous and given a value of 
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1 as a model output. The average cell value across the model ensemble is then determined, where 

values of 1 are cells that have been defined as hazardous in all model realizations. These diagrams 

allow major flood flow paths to be identified in the model domain, as areas of higher, faster flow that 

defines major flow paths can be determined from the regions defined as hazardous in the diagram. 

As well as investigating the main sources of uncertainty, it is also important to analyse second order 

input effects on model outputs, where combination of parameters may create a significant influence on 

model outputs. Typically, this could be done with variance-based sensitivity analysis approaches (Hall 

et al., 2009), although these are computationally expensive. In this paper, grouped interaction plots 

were used to display how parameters influence results and the impact with each other, and is described 

in detail in Section 4.

3. RESULTS

This results section is split into two sections: a comparison of the direct model outputs (where the direct 

model outputs include water depths and hazard ratings) and an evaluation of the model evaluations 

(such as the F(2) function). For both test cases the direct model outputs indicate that the model 

complexity has a strong control on model output. This is demonstrated in the uncertainty flood extent 

diagrams for each of the LISFLOOD-FP floodplain solver modules in the ensemble, displayed in Figure 

3 and Figure 4. The range of flood frequency values for each module are summarised in Table 2;

Table 2: Summary of number of cells in each flood frequency bin for the Glasgow case

Model Type 0 0.1 -0.3 0.3-0.6 0.6-0.9 1

ATS
77899 

(79.7%)
2645

(2.7%)
4126

(4.2%)
1781

(1.8%)
11317

(11.67%)

ACC
70874 

(72.5%)
6945

(7.1%)
5116

(5.2%)
1488

(1.5%)
13345

(13.6%)

Rusanov
60842 

(62.2%)
8946

(9.2%)
7409

(7.6%)
3705

(3.8%)
16866

(17.3%)

Roe
69775 

(71.4%)
4482

(4.5%)
6487

(6.6%)
2785
(2%)

14239
(14.5%)
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Figure 3: Uncertainty flood extent plots for the LISFLOOD-FP modules for Glasgow

The output is similar to results seen in the benchmarking paper of Hunter et al (2008). The simplified 2-

term ATS solution is unable to overcome a significant topographical blockage at the end of the main 

flow pathway due to the lack of conservation of momentum over complex terrain (Neal et al 2011). In 

comparison, the full SWE models of LISFLOOD-Roe and Rusanov, are able to overcome this blockage 

and produce wider flood extents on the left-hand side of the model domain. This is perhaps surprising, 

considering that the inflow hydrograph is varied by 20% in the parameters space that may have provided 

the ATS solution with a greater volume of water to overcome the blockages in the topography. This 

demonstrates that uncertainty in the boundary conditions may not account for variations between 

numerical models. The ACC in comparison, can overcome this blockage, although the difference 

between this and the full SWE, both in terms of extent and flood frequency value, indicates that the 

exclusion of the advective term is still significant in conserving flow momentum in this flow path. The 

modules that use the full SWE by comparison, regularly flood this section, although distinctions occur 

between the flood extents for these solvers. For example, the Rusanov solver produces a number of 

models runs that flood the western extent of the flood map, as can be seen in the high flood frequency 

values in Figure 3, but is combined with a number of cells in this region classified as uncertain (values 

between 0.1 and 0.9 in Table 2). The total of these cells is as large as the number of cells predicted as 

flooded in all simulations, 20.5% vs 17.3%. By comparison the Roe and ACC contain a more even ratio 

of uncertain cells vs flooded in all model runs (13.9% vs 13.6% and 14.1% vs 14.6%). For both solvers, 

the area of the model domain that contributes the greatest number of uncertain cells is the western 

extent. In comparison the ATS solver shows a level of insensitive to the input parameters. This solver 

has a lower number of uncertain vs flooded cells (8.7% vs 11.6%), and fewer regions of uncertainty.

The differences between the solvers in this test cases suggest that the precise value of Manning’s n, 

cell size and building representation are relatively unimportant in comparison to terrain data and the 

numeric model.
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There are smaller variations in uncertainty flood extents of the four LISFLOOD-FP modules for the 

Mexborough test case (Figure 4).
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Figure 4: Uncertainty flood extent plots for the LISFLOOD-FP modules for Mexborough

Table 3: Summary of number of cells in each flood frequency bin for the Mexborough case

Model Type 0 0.1 -0.3 0.3-0.6 0.6-0.9 1

ATS
23727

(74.5%)
784

(2.5%)
760

(2.4%)
715

(2.2%)
5871

(18.4%)

ACC
23851

(74.9%)
800

(2.5%)
505

(1.6%)
406

(1.3%)
6295

(19.8%)

Rusanov
21051

(66.1%)
1719

(5.4%)
1309

(4.1%)
645

(2.0%)
7133

(22.4%)

Roe
22486

(70.6%)
878

(2.8%)
719

(2.3%)
473

(1.5%)
7301

(22.9%)

Each of the solvers produces a similar extent across the model input space, with high levels of flood 

frequency values, as can also be seen in Figure 4 and Table 3. This is due to the constraining nature 

of the floodplain and the scale of the event. However, small distinctions between these plots provide 

insight into the influence of the level of physical representation. Overall, the ATS and ACC solver results 

contain few regions of low flood frequency occurrence, with most model runs producing similar extents 

and with low ratio of uncertain cells vs flooded cells (7.1% vs 18.4% for ATS and 5.4% vs 19.8% for 

ACC, Table 3). For both solvers the area with high levels of uncertainty is located in a region to the east 

of model domain, which is located behind a gap in the northern river bank. By comparison, the full SWE 

modules produce high flood frequency values in this region. This difference is due to the ACC module 

producing a slower moving flood wave, which fails to inundate this region in the simulation time and the 

ATS solver failing to overtop the bank due to the lack of suitable physical processes in the model. The 

simulation time for the event has caused an unintentional bias against the ACC module.

The model runs that have flooded this region have input parameters with values in the extremes, for 

example low friction values, and the upper limit of the hydrograph. This highlights a common issue in 

calibrating model that the combination of inputs in the limit of acceptable values may be considered 

physically unrealistic, and using this models going forward from a calibration process would reduce 

confidence in the models’ ability to predict future events. 
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The two full SWE modules also produce similar results to the Glasgow test case, in that a higher 

percentage of flooded cells are observed in comparison to the simplified approaches (22.4% of all cells 

for Rusanov, 22.9% for Roe), although the Rusanov solver has a higher percentage of uncertain cells 

(11%). In this test case, there are a number of regions in the model domain with moderate levels of 

uncertainty that provide insight into the difference in the outputs of the models (Figure 4). The first 

region is near the eastern boundary of the domain, where secondary channels allow water from the 

main channel to inundate a region of the model through the backwater effect. In this region the ATS 

fails to flood any cells, unlike the other 3 modules. The ACC solver produces a small area of flooding 

with an average flood frequency cell value of 0.4. The Roe and Rusanov solver produce a wider flood 

extent but with different levels of frequency (0.2 on average for Rusanov, 0.4 for the Roe solver). This 

level of flooding is consistent with the observed wrack marks (Figure 2). The infrequency of flooding in 

this region across the different modules demonstrates the difference not only between simplified and 

full physics approaches in solving local scale flow patterns, but also show a high level of uncertainty 

relating to the choice of parameters. 

A second region of interest is a storm drain located in the centre of the model domain which also shows 

variation between the modules. The ATS, ACC and Roe solver produce a similar extent with increasing 

frequency value as the level of physical representation increases. This region is protected from the main 

river flow by a large embankment. As with the first area of interest, flooding of this channel occurs due 

to backwater effects and overtopping of a bank. The ATS solver flood this region only for model runs 

which include higher inflow levels, and allow the module to overtop a small bank. For both the Roe and 

ACC solver this region consists of high flood frequency values indicating consistent flooding of this 

section, which is again consistent with the observed flood extent in this region in Figure 2. By 

comparison the Rusanov produces a wider flood extent, but with lower frequency values, in part due to 

instabilities that occur in the module in this region. These small sections show that small variations in 

modelled extents may occur due to local scale hydraulic effects even when the main flood mechanisms 

for an event are captured by a range of approaches to solving floodplain flow.   

Further insight into the significance of the numerical model can be determined with the hazard 

uncertainty figures (Figure 5 and Figure 6). Both test cases show differences between the simplified 

approaches and the fully physics based approaches. For the Glasgow model, the main flow paths can 

be seen in the outputs for all the solvers, which show the main east–west flow path and the secondary 

north–south flow path with high hazard frequency values. For the ATS module however, there are more 

cells with values of between 0.3 and 0.6, representing areas of uncertainty. This is particularly 

noticeable to the western edge of the model domain, where velocity reduces significantly. The other 

modules demonstrate consistency in replicating the flow paths (this can be interpreted from the high 

frequency hazardous values along the main flow path), but with more areas of uncertainty than had 

been seen in the flood frequency diagrams. The pattern of uncertainty is also discontinuous as a result 

of variations in the topography causing small differences of depth and velocity from cell to cell, which 

leads to different hazard index values at the cell level. This effect, and the extensive regions of 
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uncertainty for this figure, indicate that all inputs in the model ensemble may impact combined velocity 

and depth outputs from the model runs.

Figure 5: Hazard Uncertainty plots for Glasgow

The hazard uncertainty plots for the Mexborough test case show less variation than the Glasgow test 

case (Figure 6), but there are some distinctions between the simplified and full physics approaches. 

The ATS and ACC modules produces a narrower, high frequency hazard extent, whereas the full SWE 

models create a similar hazard extent to their uncertain flood extents, with high values of hazard 

frequency throughout the domain. As with the uncertain flood extent figures, one of the main differences 
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between the modules and the flood extents of Figure 4, relate to the smaller channels that contribute to 

flooding to the west of the model domain. This leads to either high levels of uncertainty, or as in the 

case for the ATS module, no cells having a hazard level over 0.7. As the flood wave moves across the 

domain, there are further differences, with the ATS and ACC solvers producing progressively lower 

hazard values in the eastern side of the domain in comparison to the full SWE approaches. This is 

related to differences in the velocities of the water at this point in the model domain which is not apparent 

in the analysis of the flood frequency figures. The full SWE approaches contain few regions of 

uncertainty. The areas of uncertainty are similar to those identified in Figure 4. This similarity, which 

can also been seen in Figure 5, suggests that these module are able to cope with a range of uncertain 

parameters and can reproduce critical flood processes, such as transcritical flow along main flow paths, 

regardless of the input. Comparing across these plots it would appear the location of the maximum flood 

extent contains greater regions of uncertainty than the hazard uncertainty plots.
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Figure 6: Hazard Uncertainty plots for Mexborough

Whilst the direct model outputs provide insight into how each module represents particular flood 

mechanisms across the model domain, the objective functions elaborate on this further. A comparison 

of the spread of F(2) results across the 4 different modules and for both test cases is made using box 

and whisker plots in Figure 7and Figure 8. 
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Figure 7: Box and whisker plots for analysis of F(2) for each LISFLOOD module for both Glasgow 
test case (red boxes) and Mexborough (blue boxes)

Figure 7 demonstrates how the significance of the physical model changes across the two test cases. 

Overall, the Glasgow test case demonstrates a monotonic relationship between the complexity of the 

floodplain flow solver and an increasing mean F(2) value (red boxes), whilst the Mexborough model 

results display both a narrower range of model results for each module, with a similar range of results 

(around 0.6 to 0.8 for all models). This can be seen by comparing the line of median model results in 

Figure 7. For the Glasgow case, this is perhaps not surprising considering the use of a benchmark 

model to compare results but still shows the influence of physics approaches in this test. By comparing 

the two lines, it can be seen that the ranges of results for both test cases varies between the LISFLOOD 

modules for each of the test cases. The extent of the boxes (which represent the range between the 

25th and 75th percentiles), is larger for the Glasgow test case, which shows that the modules are more 

sensitive to the input ensemble when the hydraulic characteristics are more complex. This figure 

demonstrates that the simplified physics models have some ability to replicate the full physics model 

results for part of the parameter space. In the Mexborough test case, the highest performing model 

across the input ensemble is an ATS driven model (F(²)= 0.78), although the difference between the 

best performing realisation from each module is less than 0.01 in the F(²) function. For the Glasgow test 

case, this becomes less clear, but the range is reasonable in comparison to the full SWE modules and 

indicates that the diffusion wave approach still replicates a significant part of the baseline modelled 

flood extent test. Comparing the simplified approaches, the ACC results show an overall increase in the 

F(²) value for Glasgow compared to the ATS and demonstrates that a slight increase in model complexity 

has an impact on model results. However, for the Mexborough test case, this module has the widest 

range of results and the lowest median score. This is in part due to the sensitivity to the cell size where 

at the higher cell size of 40m, the overall F(²) value drops and suggests this module has a level of 

sensitivity to the range of input parameters. For the Glasgow test case, the full SWE models, produce 
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both higher median values and higher peak 95 percentile points than the simplified solutions. There is 

a distinction between the two SWE modules in both test cases, with the Rusanov numerical solver 

producing a greater range of results than the Roe solver. Further, this method also has lower percentile 

values which exceed the lowest F(2) values of the simplified models in all test cases. Both of these points 

show that the Rusanov solver not only has the highest level of variation in the model outputs across the 

input ensemble, it also indicates that the numerical structure of the computational code is also significant 

factor in modelling uncertainty. For Glasgow, the range of results for the Rusanov solver is large (0.65 

to 0.95), but is fairly insensitive to the range of inputs in the Mexborough test case (0.66 to 0.75). For 

the Roe solver, this appears to suggest that as flood mechanisms increase in complexity, the Roe solver 

will produce more varied results. This in part due to differing responses in the module to the parameter 

inputs and the flood mechanisms, where local hydraulic processes such as flow over bumps are more 

sensitive to the input parameter, as seen in Neal et al (2011).  The Rusanov solver is more sensitive to 

these inputs by comparison which demonstrates the significance of the numerical model as a source of 

uncertainty. 

The other objective functions used to evaluate the model results (Nash-Sutcliffe and Root Mean Square 

Error of depths), are also summarised with boxplots in Figure 8. Whilst the two methods are not directly 

comparable, the comparison of the two results demonstrate that the second evaluation technique 

responds differently to the model inputs. The Mexborough results appear to be similar for all the module 

types for both the RMSE and F(²) evaluation functions, whereas the Glasgow results now show different 

characteristics between module types. For the Nash-Sutcliffe results, the variation between the different 

LISFLOOD modules is now no longer monotonic, and a significant amount of variation between each 

solver exist. The ATS solver produces the highest peak median and 75th and 25th quantiles (0.88-

0.94), whilst both the ACC solver and the Roe solver produce a similar range of model results, around 

0.75-0.92 (although the Roe solver produces a higher median value of 0.87, compared to 0.82). The 

narrow range of results for the ATS module indicates insensitivity to other parameters, whilst the wide 

range of results for the Rusanov solver show a high level of sensitivity, which confirms the conclusions 

of the analysis of F(²) and Figure 7. The Roe solver demonstrates a degree of robustness against the 

range of parameter inputs and produces smaller range of possible depths than the Rusanov solver. 

This in part due to amount of numerical diffusion to the solution that can reduce the peak values of 

depth and discharge. This is particularly noticeable when comparing modelled depth outputs for spot 

locations, and further demonstrates the importance of the numerical solver as a potential source of 

uncertainty.
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Figure 8: Box and whisker plots for analysis of Nash-Sutcliffe coefficient (Glasgow, red) and 
RMSE for Mexborough (blue) for each LISFLOOD module.

The RMSE measure displays less variation between both the LISFLOOD modules and between the 

box plots of Figure 7. The range of results is between 0.3 and 0.7, indicating that all simulations produce 

reasonable approximations to the observed depths. As with the F(²) evaluation, the ranges of results 

appear to be very similar but further details of how each solver operates can be demonstrated. The 

ATS solver produces the highest level of model performance (RMSE ~ 0.24), but produces a wider 

range of model results with a higher mean value than the Roe solver. By contrast, the ACC produces a 

similar range of results, but with the lowest model performance of the modules. This occurs because 

the ACC solver produces a higher peak water depth as the flood wave moves across the model domain 

in comparison with the other solvers. This difference between the two simplified approaches highlights 

that broad assumptions about how simplified approaches may perform for given hydraulic conditions 

may not always be straight forward. The full SWE based models also display similar responses to the 

input ensemble as has been seen in the analysis of the F(²) function. The Rusanov solver demonstrates 

similar behaviour of greater sensitivity to parameter input, and the Roe solver appears more robust to 

the parameters. This further emphasise the importance of the numerical model in the consideration of 

uncertainty in flood models. 

These insights into module performance are further confirmed by analysing how a model performs with 

respect to multiple evaluation techniques (Dung et al 2011). Figure 9 is a comparison space of the 

function results for each model run from the model ensemble for both tests. Each dot represents a 

model run with the corresponding F(2) value on the y-axis and the second function on the x-axis. The 

LISFLOOD-FP module used is indicated by the shape of the dot. The Pareto front, representing the 

region of the figure occupied by models with high values of performance function results, is formed at 

the top right of the axis space. 
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Figure 9: Combined results for F(²)(y-axis) and second function (x-axis), for Glasgow and 
Mexborough test case (left and right) where each dot represents a model run. The pareto front 
of best performing models occurs in the top right section of the graph

These plots demonstrate that only a few simulations across the ensemble can provide good results for 

both objective functions. By displaying the model type as well in Figure 9, trends related to numerical 

complexity can be identified from the test cases. For the Glasgow test case, the region of best 

performing models is occupied by models computed with the Roe solver, whereas the Mexborough test 

case contains all model types. In the Glasgow test case results, the sensitivity of the full SWE models 

to the model parameters is evident by the wide spread of results. The simplified approaches occupy a 

narrow range, indicating the opposite. This indicates that although full SWE-based approaches can 

provide a high level of performance in this test case, they are more sensitive to uncertain parameters, 

and require detailed calibration. Of the simplified approaches, the ACC solver though demonstrates a 

greater sensitivity to the other inputs, than the ATS solver.

Analysis of the results from the Mexborough test case (left hand side, Figure 9) shows that a number 

of individual models can achieve a high goodness of fit level as well as a low RMSE value. For this test 

case, the Pareto front is not dominated by any individual LISFLOOD module, as the Roe solver does 

for Glasgow. By contrast with Glasgow results, the Rusanov code and the ATS code have a number of 

model runs that occupy the Pareto region, although overall these two codes produce model results that 

occupy a wide region of this plot. This shows that these codes are capable of replicating observed 

depths and extents to a high level of accuracy when suitable parameters are chosen, but only when a 

detailed calibration process has been conducted to select these parameters. Further to this, the analysis 

of these results suggest that the diffusion wave approach can replicate observed data where the flood 
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event is dominated by sub critical and low energy flows. This contrasts with the position of the ACC 

models in this figure, where most of the model runs appear in the centre of the figure, with a wide 

distribution across the x-axis. This again highlights the difference between simplified approaches in 

overall model performance. In comparison, the consistency of evaluation values from models using the 

Roe solver is apparent by the smaller area occupied by these runs. Whilst the code does not produce 

an outright best performing model, this demonstrates that the code is more resilient to the range of 

model inputs, and thus indicates that the model is robust to uncertainty.

Further insights into modelling uncertainty can be seen when comparing all the parameters from the 

input ensemble. Interaction plots provide a means to visually compare the influence of each parameter 

on the overall model function results. These plots are comprised of an array of plots, each of which 

compare the mean values of model results for 2 parameters, where the inputs being compared are 

denoted by the column and row headings. For the interaction plots used below (Figure 10, Figure 11 

and Figure 12) the plot in the first column, second row is the comparison of LISFLOOD-FP module 

(represented along the x-axis) and the level of building representation (represented by the line). The 

position of the line is determined from the mean value of the model results (which is the dependent 

variable) where these two factors are shared. For example the mean value of models that use the ATS 

solver and the BP building representation inputs in Figure 10, is 0.68, whereas models that use ACC 

and BP building representation is 0.71. The overall significance of the input represented on the x-axis 

in the first order can be determined by the gradient of the line across the x axis, whilst the significance 

of the input represented by the y axis can be determined by the spread of the lines across the individual 

plot. The level of interaction of the two parameters can be determined from any crossings of the lines 

and the variation of two lines along the x axis, which indicate that the factor on the y-axis influences the 

factors on the horizontal axis in different ways. By looking broadly at an interaction plot, the significance 

of an input can be determined from the overall gradients of a line in either its corresponding row or 

column. These plots can be used to determine the effects of one parameter on another, and across the 

input ensemble. The plot provides a method to efficiently compare multiple model inputs, without relying 

on multiple plots of other evaluation techniques. Whilst the use of comparing mean values in this way 

may limit the insight into overall levels of interaction that a more computationally costly sensitivity 

analysis approach may determine, the significance of a parameter can still be understood from this 

approach.

Figure 10 and Figure 11 provide analysis of combined parameter performance for Glasgow and 

Mexborough for the F(2) function.
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Figure 10: Interaction plot for each input factor comparing mean value of F(2) per level of factor 
vs other levels of factors for the Glasgow Test Case (where F(2) is the value on the y axis of all 

plots and the x axis in each column is the levels for the named parameter)

A number of conclusions can be drawn from Figure 10. The gradient of the lines in first column shows 

that the difference in mean for each of the LISFLOOD-FP modules is greater than the difference in 

mean for other inputs, as can be seen by inspection of column 1 in both plots. Here, the range of the 

mean results from each module is from 0.65 for ATS up to 0.8 for the Roe solver and this pattern is 

replicated in each of the rows of the first column, which shows that this factor will be more influential in 

affecting model outcome than the other parameters. The lower influence of other factors can be 

determined by the flatter gradients in the other columns. This shows that despite a change in level for 

a parameter, the mean result is essentially the same. For example, the 3rd column which represents the 

friction value, produces small variation across the x-axis for all the different model inputs – the range of 

the mean values is typically from 0.68 to 0.73. This implies that even for edge case friction values, the 

overall output of extent will be similar. The low significance of the friction parameter can be explained 

in part due to the constraining urban topography, which limits the extent to which water can flow across 

the model and thus limits the influence of this factor. Whilst direct first order impact of other parameters 

is low, analysis of the other inputs also displays some variations and interactions. The building 

representation method shows some interaction with module type (first row and second column). A small 
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upward inflection due to a change in the mean values can be seen when comparing the blue ATS line, 

the red Rusanov line, and the grey Roe line in this plot, as the building representation method changes 

from Building Resistance (BR) to the Building Porosity (BP) method. The ACC solver by contrast creates 

a higher mean value when using the building resistance method and a lower value when used with the 

BP method, leading to a downward inflection (grey dotted line). This change, although small is indicative 

of higher order interaction, and suggests the ACC solver response varies non-linearly to this parameter. 

The grid cell size also has an element of influence when compared to the LISFLOOD-module. A 

convergence of overall results is apparent as this factor increases, across all the input factors as well 

as the choice of numeric model. (This can be determined from the converging lines in column 4 row 1, 

and through the other plots in column 4). This suggests that with increasing cell size, the significance 

of the model complexity reduces, but at the cost of confidence and accuracy of model results. This 

response to cell size suggests that the ‘rule of thumb’ for determining the grid resolution for a model is 

appropriate. The convergence of results for the model type, and at a lower mean value show that micro 

scale hydraulic processes are not as well replicated at the higher grid resolution, and the overall model 

is less representative of the underlying processes of the event. 

The DEM error and the hydrographic input appear to be less significant as a primary source of 

uncertainty which can be determined from the low gradient variations of the columns 5 and 6. The 

importance of the friction parameter has been noted as being of low significance in primary effects, but 

there is influence in the higher order effects. The plot in column 3 row 1, shows that at low friction 

values, there is a wide range of model results for the 4 LISFLOOD modules (represented by the lines). 

Moving along the x-axis and with increasing friction value, there is a convergence of model results 

between the levels of physical representation, until the lines converge at the end of the x-axis, 

representing the highest level of friction values. It can be inferred that at higher friction values, the 

significance of the model structure uncertainty will reduce. This plot also underlines that although model 

complexity is significant, interactions with other parameters influence the level of this significance in this 

test case. This suggests that whilst the values adopted in an urban model will be far less critical in 

creating uncertain input, than the initial choice of numerical model, they will still exert control on model 

results.

By comparison there is relatively narrow range of F(2) values in the model results of the Mexborough 

test case. In order to demonstrate this, the Y axis of Figure 11, representing the mean F(²) value is 

scaled to the same range as Figure 10, to demonstrate the lower range of results. 
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Figure 11: Interaction plot for each input factor comparing mean value of F(²) per level of factor 
other levels of factors for the Mexborough Test Case

As is seen in Figure 10, model type and the friction value have a significant control on the overall model 

results. The gradient of the lines representing the model types (column 1), shows a decrease in the 

mean value from ATS to ACC, then rise with increased representation of the full SWE models, which 

reflects findings of the earlier analysis. In comparison with Glasgow though, other parameters exert 

greater control on model results. For the friction value input (column 3) there is a clear decrease in F(²) 

value with increasing Manning’s n, which indicates more primary influence on model results. A large 

part of this influence is caused by the sensitivity of the Rusanov solver to this value, which can be seen 

in the plot of column 1, row 3, where a large variation in results occurs for Rusanov solver position on 

the X-axis. Although buildings occupy a smaller area of the model domain, the use of a Building Porosity 

model appears to have a negative impact on model result, as can be seen across the plots of Row 2, 

where the line representing this level is consistently below the other building representation methods. 

This is due in part to buildings located around the floodplain nearest to the model inflow location. This 

is the opposite pattern that is seen in the Figure 10 and suggests that the building representation method 

is an important influence on results, regardless of the underlying hydraulic conditions. 
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As with the Glasgow test case, higher order parameter interactions appear to be relatively limited, with 

few crossings of lines in any of the columns. An exception is between cell size and friction value (column 

4, row 3), which shows a converging of model performance when both factors increase. As has been 

seen in Figure 10, there is an improvement in the model results for the simplified approaches and the 

higher grid resolution (column 1, row 4). Both points demonstrate that the increase in cell size appears 

to reduce the significance of other factors in altering model output. 

As the variations of the F(²) results are small, further insight to the results of the Mexborough test case 

is made by analyzing the other model function, RMSE (Figure 12). This figure shows that the 

LISFLOOD-FP module is the most significant factor in affecting results, as can be seen in the gradients 

of the line in column 1. This significance is a result of the ACC module, which skews the results as the 

other 3 modules appear to produce roughly the same mean value module. This can be seen in the top 

row, where the mean ACC results, represented by the dotted line are far higher than the other 3 

modules. The effects of other parameters on module performance can also be seen. The Roe solver is 

more intuitively responsive to friction parameters (column 3, row 1), where the dashed grey line 

increases in RMSE values at the edges, and decreases in the center, where the Manning’s n value is 

0.035, which would typically be used as a value for representing grass area, which dominates this model 

domain. In comparison the ATS solver (solid blue line) produces a more linear relationship. Further, the 

Roe solver (column 1, row 6) also demonstrates a small variation with respect to DEM error, which is 

noted by a small difference in the position of the two lines. Unlike the previous two figures, other factors 

are have a similar level of influence, with the gradients of the columns and rows associated with the 

inflow uncertainty, friction value and cell size are greater than had been seen in Figure 10. 
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Figure 12: Interaction plot for each input factor comparing mean value of RMSE per level off 

factor other levels of factors for the Mexborough Test Case

The value of friction choice displays a strong gradient of increasing RMSE with increasing value 

(Column 3). As with the analysis of F(²) an interaction occurs between increasing friction and increasing 

cell size, where the higher cell size creates a similar mean level for all friction values (as can be seen 

in the plot in column 4, row 3). The significance of this is that with increasing cell size the sensitivity of 

the friction value decreases, and therefore requires less effort to determining an appropriate value. Cell 

size also has a similar effect on the LISFLOOD modules, and shows a similar pattern to Figure 10 

(column 4, row 1). This higher RMSE value is the result of increased water depths on the floodplain. 

This greater depth with increased cell size suggests that coarsening or removing topographic features 

alters a controlling factor in floodplain flow mechanisms. This can also be seen when comparing the 

hydrographic input, which also shows a similar pattern of increasing RMSE with higher inflow boundary 

conditions (column 5). The significance of the inflow as a primary control on model results is less than 

the cell size or model type, which can be seen by the range of results across the x-axis of column 5, 

which is less than either of these factors. There is however, a level of interaction with the level of cell 

size (column 4, row 5). At the higher grid resolution, the results are similar, but as the grid size 

increased, there is a divergence in results between the different levels of inflow, which along with the 

comparison of Figure 10 and Figure 11, show the importance of cell size in model results. The impacts 
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between these factors are difficult to determine when only considering the difference in F(²), which 

highlights the advantage of the multiple function approach. Overall, though the relatively limited range 

of values across all the results for Mexborough, and at a relatively high level for both objective functions 

indicates that most parameters sets appear to be representative of the observed flood conditions, and 

despite the uncertainty in the inputs, produces similar model outputs. 

4. DISCUSSION 

The test cases presented here indicate that the model complexity has a significant influence on most 

of the model functions and model results. For the Glasgow test case, the level of physical representation 

controlled most of the variation in model results and was reflected in both evaluation techniques and 

direct model outputs. The impact appears to be monotonic in this test case when evaluating extent, 

where levels of model complexity are matched by alterations in the output and evaluation techniques. 

Variations between the modules in replicating main pathways, observed extent and timings of depths 

are clear across the evaluations of the flood domain. Whilst the results are potentially biased by the use 

of the high-resolution benchmark approach, this confirms previous findings about the significance of the 

level of physical representation to accurately model inundation in urban environments (Hunter et al 

2008, Neal et al 2011).  Further, by comparing these results to the work of Hunter et al (2008), the 

significance of the model has been demonstrated when considered as part of the input ensemble. 

However, the significance of the numerical model appears to be lower in the rural test case of 

Mexborough, where the main flood mechanisms and flow paths vary gently with time, and sub critical 

conditions dominate the event. In this test case, whilst variations between the different LISFLOOD-FP 

modules are smaller, the control of the floodplain topography ensures that all models across the 

ensemble produce similar results. What is also clear in this test case in comparison to the urban test 

case, is a relative insensitivity of the LISFLOOD modules to input parameters. This would indicate that 

not only is the choice of numerical model less significant in affecting the model outputs, but that a certain 

amount of insensitivity to the parameter inputs exists. This is similar to the conclusions made by Pender 

and Neelz (2010) which identified that for larger domains with regular flood plain topography, models 

with varying levels of complexity would produce similar final water depths and extents. By comparing 

multiple inputs, this research has further illustrated this point. 

Although the Mexborough test case had fewer difference between model runs than had been observed 

in the Glasgow test case, these dissimilarities still provided insight into the importance of physical 

representation in the model. The variations noted in Figure 4, which are caused by backwater effects 

and conservation of momentum over complex terrain, affect flood extents along small channels. These 

variations demonstrate the impact of the modules on macro scale hydraulic problems. These variations 

have not been significant enough to alter the overall results however. What this demonstrates is that 

analysis methods that focus on general model comparisons will not fully display all local variations. 

Higher detail in the analysis methods (such as used by Pappenberger et al 2008) should be used to 

highlight these variations. At this larger model domain scale however, the influence of other parameters 

in affecting model results become apparent.
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There are some clear differences between the simplified and full physics solutions in both the cases 

presented here. For the urban test case, the difference in flooded extent and depths between the four 

modules is clear to see. Whilst the simplified approaches are capable of replicating aspects of the 

observed depths the range of results, that this is possible only with detailed calibration data (Bates et 

al., 2010). It can also be seen that the difference cannot be reduced through a calibration process, or 

be related to uncertainties associated with inflow volume, but through the inability of the simplified 

approaches to preserve momentum through critical areas of the model domains. This difference is not 

always clear in the Mexborough test case. By using other methods to evaluate the model, such as the 

hazard extent likelihood plots, the impacts of using simplified approaches can be clearly seen.

The results also show that the approach to solving the shallow water equations is important, not only in 

terms of model performance, but also in terms of robustness to uncertain parameters. The reduced 

complexity in the LISFLOOD-Rusanov solver can produce similar output to LISFLOOD-Roe, and in 

replicating critical flow paths through the model domain. However, this code produces significantly 

larger areas of uncertain flood inundation frequency and a wider range of model results from the model 

ensemble, indicating susceptibility to uncertain inputs. This is notable in both test cases. Examples of 

this can be seen in the uncertainty flood extents, where the Rusanov solver produces wider flood 

extents than the Roe solver, but with lower flood frequencies values in these regions. This is further 

confirmed in the range of model evaluation results. The potential savings in terms of computational cost 

is therefore offset by the requirement for robust calibration, and as with the simplified solutions to the 

governing equations, demonstrates that reduced complexity in the numerical methods should be used 

with caution. Further to this, the sensitivity of the Roe solver to the range of inputs in the Glasgow test 

case, suggests that the model could be tuned within the range of parameters to represent different 

hydraulic processes. This is a useful feature of a model and increases the potential application of the 

code to a range of problems. 

Whilst the impact of the model type is clear, a number of trends are noticeable across the test cases 

which highlight the significance of the other model inputs. The method of building representation is 

critical in the urban environment test present here. This input in particular influences the accuracy of 

flow path representation, which can impact both extent and the modelled hazard level in key locations. 

As with the variation of results caused by the model complexity, the impact is often localised in the 

model domain with variations in the water depths and extents occurring near the location of buildings. 

The overall impact is often small, compared to other factors but can impact the level of hazard 

associated with individual buildings. By comparison, the choice of cell size, appears to have a broader, 

global effect on model output. The impact of this input is often not directly noticeable, but by examining 

the interaction with other parameters it can be seen that as grid resolution is increased, model 

performance converges, including the LISFLOOD-FP modules. This indicates that underlying 

topography representation plays a significant control on model performance. This is a similar conclusion 

as noted by Savage et al (2016), which also shows a similar pattern of decreasing model performance 

and sensitivity with increasing cell size. However, it is noted in that paper that by using local measures 

of model variations rather than global measures, the cell size also plays an important part in the model 
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results during the drying phase of an event. Identifying these local variations represents a potential 

further area of research to consider when using the range of inputs presented in this paper

The inflow boundary conditions are also shown to be of lower significance than model type, building 

representation and cell size when considering the comparison of extent measures only, but this impact 

changes when comparing the depth across the floodplain. This is not surprising considering the issues 

of using F(²) , where variations in depth do not create similar variations in extent (Stephens et al 2012), 

but this furthers findings by Savage et al (2016) that shows the significance of this factor. 

By comparison the error associated with the DEM shows little signs of significant contribution to 

variations in model output. However, the method to assess this factor may be a contributing factor, 

where the error is randomly assigned between the maximum value and zero. Further information on 

this may allow the DEM to be degraded in a non-random way, to define spatial patterns between error, 

surface features and measured elevation. The results here compare with the conclusions drawn by 

Tsubaki and Kawahara (2013), who demonstrate that in urban areas, and in complex topography the 

variance related to variations in the DTM surface are significantly less than variations in rural areas. By 

employing a similar approach to representing the DTM error, and by cross comparing it with other 

parameters the overall significance of this in impacting model results is shown to be low.

The model evaluation techniques also provide further insight to the significance of each of the 

parameters. In each test case the use of extent measure F(2), provides a useful comparison point to 

previous research, and provides an indication of the response of module performance, particularly in 

urban areas. Methods that go beyond the approach of binary comparison of extent are increasingly 

popular (Stephens et al 2012) and provide different properties of the observed data with which to test 

the model outputs. In terms of evaluating uncertainty in modelling, the use of alternative evaluation 

functions has demonstrated two points. First, that the method of evaluation has a distinct impact on 

what factors are identified as critical. For example, the use of extent indicates the importance of friction 

for most test cases, and less critical is the value of inflow. However, this importance changes where 

depth becomes a key element in the model evaluation technique, such as Nash-Sutcliffe in the Glasgow 

test case. Secondly, that combined approaches can significantly overcome this issue, and can be used 

to select fewer better performing models. The combined multi objective function analysis can also refine 

the number of best performing models down to a smaller selection (as in Dung et al 2011). The use of 

two different second evaluation techniques reflects the difference in the nature of the function and the 

event - a RMSE measure would be less representative, for short, rapid events like Glasgow. But future 

studies could use the same evaluation functions to provide a comprehensive analysis between multiple 

test cases.

Further to this, using quantitative sensitivity analysis techniques with these multiple evaluation functions 

will further develop the relationship between factors and model outputs. It should be noted as well that 

choice of location in evaluating the models with the Nash-Sutcliffe coefficient in Glasgow may also 

influence the results and conclusions presented. This would not typically be a problem in most modelling 

studies, but in evaluating models, full consideration must be made to consider what the influence of 

certain approaches will be on results (Hunter et al., 2006). 
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Ultimately, to further understand the modelling results presented here, detailed sensitivity analysis that 

compares global differences in variance will be required (Hall et al., 2005). Whilst the approach here 

provides qualitative conclusions, there is a need to quantify the difference between levels of physical 

representation in an uncertainty context. By undertaking a Global Sensitivity Analysis (GSA) approach 

with the inputs used here, the variations in the model results can be further explored, which will further 

improve model development and understanding. The advantage of this is shown in the work by Savage 

et al (2016), but also some of the potential computational issues are also shown in that study. Here the 

emphasis has been on including as wide a range of potential inputs as possible, at the cost of 

quantitative analysis. 

5. CONCLUSIONS

This paper has investigated the major sources of uncertainty in flood modelling using a systematic 

approach to structure the distribution of key modelling inputs. Over the two test cases, it appears the 

level of model complexity has the greatest control on model output. The significance of this reduces 

though, for the Mexborough test case, where both the simplified physical approaches and full physics 

models are able to replicate the observed data. This test case is characterised by gradual varying flood 

processes. This confirms, to an extent, the theoretical limits of the physical model, and reaffirms that 

for suitable cases, simplified models are still valid approaches to flood risk evaluation. In this test case, 

though, the majority of models from the ensemble are able to replicate the flood processes to a 

reasonable level. Whilst the other inputs are less significant, there is still evidence of parameter 

interaction and control on model outputs increasing cell size, leads to convergence of results between 

the LISFLOOD modules. This highlights that uncertainty is a multidimensional problem, and higher 

order interactions are significant in model results. The overall model results also demonstrate that the 

use of friction alone to vary outputs results can be overestimated particularly where spatially varied 

values are used.

The use of multiple evaluations techniques across two test case has also helped to highlight responses 

and interactions between the inputs. These approaches help overcome some of the issue of bias that 

occur when uncertainty analysis is undertaken with single test case and model evaluation technique. 

Further to this where datasets to undertake model evaluation is either uncertain or not extensive, the 

use of multiple or combined evaluations can still provide insight into modelling uncertainties. Future 

uncertainty assessments should use multi data sets for assessment, where the data exists to allow this 

to occur. 

This research highlights a key aspects of flood inundation modelling, in that model selection and 

parameter choice will be problem and data specific. To suggest that one level of physical representation 

of flow is the most appropriate does not hold true in all scenarios, and each modelling study should be 

validated in turn rather than rely on broad rules. As the collective understanding of uncertainty improves, 

it may require an increase in the detail of the modelling, such as drainage models, improved building 

representation in models and more detail in the parameters than single global friction values, in order 

to overcome current levels of uncertainty. 
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