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Abstract: 

Numerous organisations collect data in the Great Barrier Reef (GBR), but they are rarely analysed 

together due to different program objectives, methods, and data quality. We developed a weighted 

spatio-temporal Bayesian model and used it to integrate image-based hard-coral data collected by 

professional and citizen scientists, who captured and/or classified underwater images. We used the 

model to predict coral cover across the GBR with estimates of uncertainty; thus filling gaps in space 

and time where no data exist. Additional data increased the model’s predictive ability by 43%, but 

did not affect model inferences about pressures (e.g. bleaching and cyclone damage). Thus, effective 

integration of professional and high-volume citizen data could enhance the capacity and cost-

efficiency of monitoring programs. This general approach is equally viable for other variables 

collected in the marine environment or other ecosystems; opening up new opportunities to 

integrate data and provide pathways for community engagement/stewardship. 

 

 

 

 

 

 

 

  



1. Introduction 

Australia’s Great Barrier Reef (GBR) is the largest coral-reef ecosystem on earth, as well as one of the 

most biodiverse. It includes a wide array of habitats, which support over 1500 species of fish, around 

400 species of hard coral, and close to 8,000 other species of invertebrates and vertebrates including 

marine mammals, sea turtles and birds (GBRMPA 2009). The GBR also provides a suite of ecosystem 

services, such as coastline protection from wave exposure, food for people, recreational and cultural 

heritage benefits, and significant economic benefits to the Australian economy including tourism 

and fishing (Stoeckl et al. 2011; Deloitte Access Economics 2017). The GBR was designated a World 

Heritage Area in 1981 and the Australian Federal and Queensland State governments are committed 

to managing this unique natural asset using best practices. The Reef 2050 Long-Term Sustainability 

Plan includes targets, objectives, and outcomes for GBR management (Commonwealth of Australia 

2015), while the Reef Integrated Monitoring and Reporting (RIMReP) program is tasked with 

integrating monitoring data and model outputs from multiple organisations to measure progress 

towards those outcomes (Commonwealth of Australia 2018). The goal of this study is to support 

those integration tasks by demonstrating how existing data from multiple organisations can be 

combined within a statistical model, which accounts for differences in survey method and quality, to 

provide spatially and temporally explicit information used to inform science and improve 

management.  

Monitoring the GBR World Heritage Area is challenging because it is approximately 348,000 km2 in 

size and contains 2900 coral reefs with a surface area of about 25,000 km2 (Hedge et al. 2013). This 

makes comprehensive monitoring of reef health using traditional survey methods economically and 

logistically difficult. There is, however, a wealth of data available from a large number of designed 

and opportunistic studies within the GBR. A recent review identified more than 90 publicly and 

privately funded monitoring programs in operation, run by research institutions, government 

agencies, reef-based industries, citizen science groups, and traditional owners collecting various 



types of data for different purposes (GBRMPA and Queensland Government 2018). These data 

represent a significant investment of effort and money. The challenge is that these data vary with 

respect to source, type and quality, and cover different snapshots of time and space, making it 

difficult to combine them within a single analysis.  

One of the most common indicators of reef health is hard coral cover (i.e. coral cover), which 

represents the percent or proportion of the benthic zone covered in hard corals, without accounting 

for overlap in the three-dimensional coral structure. Coral cover is often used in coral-reef 

monitoring programs because hard corals build critical reef habitat, are influenced by a range of 

disturbances (e.g. destructive fishing practices, land- or ship-based impacts, tourism and recreation, 

storm damage, and climate change), and consistent monitoring methodologies are available (Hill and 

Wilkinson 2004). However, these same characteristics make coral cover monitoring challenging, 

especially at broad spatial scales. For example, coral reefs have evolved within a natural 

environment that includes cyclone and storm damage, disease outbreaks and Crown-of-Thorns 

Starfish (CoTS) predation, and so it is expected that healthy coral reefs will vary spatially and 

temporally (Osborne et al. 2011; Vercelloni et al. 2017a). However, if the frequency and intensity of 

natural disturbance regimes increase, corals become more vulnerable to stress from anthropogenic 

disturbances such as land-based pollution, bleaching, and ocean acidification (De’ath et al. 2012; 

Brodie and Waterhouse 2012; Hughes et al. 2018). Recent studies show that these pressures 

negatively affect the ability of the coral to recover from the cumulative impacts of these 

disturbances (Hughes et al. 2003; Osborne et al. 2011; Hughes et al. 2017; Vercelloni et al. 2017a; 

Ortiz et al. 2018). Thus, the challenge is to obtain enough data to measure long-term status and 

trends, as well as short-term impacts at local scales throughout the GBR in order to understand the 

underpinning science, as well as prioritise management actions and assess whether those actions 

are having the desired effect.  



One of the longest-standing programs for monitoring coral cover is the Australian Institute of Marine 

Science (AIMS) Long-term Monitoring Program (LTMP). The LTMP has measured coral cover at 47 

reefs since 1993 and an additional 56 Representative Areas Program (RAP) reefs since 2006 in order 

to assess status and trends in coral reef condition (Delean and De’ath 2008; Sweatman et al. 2008). 

These data provide a resource for estimating trends in coral cover and represent the “gold standard” 

in terms of data quality.  Although the program was designed to be spatially representative in terms 

of coral communities, it was not designed to capture spatial variability in coral cover, or to generate 

fine-scale predictions of coral cover over time, at the GBR scale. This is also true of the other 

professional, coral-reef monitoring programs run by research institutions and government agencies, 

which are individually too constrained in space or time to meet both short- and long-term 

management needs (Hedge et al. 2013). At the same time, thousands of surveys are undertaken 

each year by community groups and private organisations, but there is currently no framework to 

formally integrate these data with those from professional programs.  

The aim of this study was to demonstrate how coral cover data from a diverse array of public and 

privately funded monitoring programs can be combined to provide spatially and temporally explicit 

information throughout the GBR, which can be used to support data-enabled management 

decisions. We used a mechanistic weighting scheme to account for methodological differences in 

coral cover data from different programs and weighted spatio-temporal Bayesian models to predict 

coral cover, with estimates of uncertainty, throughout the GBR and over time. More specifically, we 

investigated whether the inclusion of multiple data sources increased the predictive ability of the 

models and/or decreased the uncertainty in predictions in areas with and without existing 

professional monitoring data. We also explored the influence of citizen-contributed data in the 

model and investigated the impact that increased participation of citizens would have on model 

outputs. We conclude with an in-depth discussion about the potential for an integrated approach to 

monitoring, evaluation, and reporting of coral cover condition using this method, including 



monitoring the effectiveness of management actions and point out how this approach could be 

applied to coral reefs and other ecosystems more broadly.  

Methods 

2.1 Hard coral cover measurements 

Estimates of hard coral cover are often based on transects of individual images of the benthos, 

which are captured using a still or video camera oriented perpendicular to the seabed. The images 

are then either manually annotated (i.e. classified) by marine scientists or automatically classified 

using software such as CoralNet (Beijbom et al. 2015) to document percent cover of hard coral. We 

used coral cover data from a number of different sources including the: XL Catlin Seaview Survey 

(González-Rivero et al. 2014); Great Barrier Reef Long-Term Monitoring Program (LTMP) and the 

Reef Rescue Marine Monitoring Program (MMP), conducted by the Australian Institute of Marine 

Science (AIMS); and the University of Queensland Remote Sensing Research Centre surveys (UQ-

RSRC; Roelfsema et al. 2018a; Roelfsema et al. 2018b). Each dataset provided multiple estimates of 

coral cover, but there were differences in the scale of the estimates and the estimation methods 

(Table 1). For additional details about how the data were collected, please see Appendix 1.  

2.2. Covariate data 

A reference raster with a spatial resolution of 0.005 decimal degrees (dd) was created 

(approximately 500m2), covering the extent of the reefs in the GBR. In addition, 85529 unsampled 

prediction locations were generated at the centroid of each reference raster cell.  

A number of physical, topographic and disturbance covariates were included in the model to 

account for direct and indirect sources of variation in coral cover (Table 2). The covariate rasters 

were resampled (i.e. the spatial resolution was altered) to match the spatial resolution of the 

reference raster (0.005 dd). Covariate values were then extracted for all of the observed and 

prediction locations for inclusion in the model. Please see Appendix 2 for a description of the 



relationship between coral cover and the potential covariates and details about the geo-processing 

operations used to create them.  

  



Table 1. Differences in the coral-cover data sources, s, including the number of estimates used in the modelling (N), scale of the coral cover estimate, number 
of images the estimate was based on, extent of each individual image, classification method, and number of classification points per image. These factors 
were used to derive a weight for each coral cover estimate, by source.   

Source N Scale 

Number of 
images 

(𝒘𝑵𝒔
) 

Image extent 
(m2) 

(𝒘𝒆𝒋𝒔
) 

Classification 
method 

Classification 
points 

(𝒘𝒏𝒋
) 

Coral cover 
estimate 
weight 
(𝒘𝒎𝒔) 

UQ-RSRC1 18077 Image 1 1.00 Manual 24 10 

XL Catlin2 42386 Image 1 1.00 Automated 50 10 

LTMP3 16851 5 × 50m 
transects 

40 0.20 Manual 5 40 

MMP4 6068 5 × 20m 
transects 

32 0.20 Manual 5 32 

Reef Check 
Australia 

218 Image/citizen 1 0.12 Manual 20 Variable 

1 University of Queensland Remote Sensing Research Centre, 2 XL Catlin Seaview Survey, 3 Long-term Monitoring Program, 4 Marine Monitoring Program  
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2.3 Citizen-contributed images 

A total of 218 citizen-contributed images were sourced from Reef Check Australia (i.e. Reef Check; 

http://www.reefcheckaustralia.org), a citizen science organisation working to monitor Queensland 

reefs using a globally standardised methodology. Reef Check recruits and trains volunteer divers to 

conduct underwater visual-reef surveys, including collecting benthic cover data, using point-

intercept transects. From 2003-2009, video was also recorded along a series of transects, with the 

video camera oriented down directly towards the seabed. We extracted images from video footage 

taken at dive sites from Magnetic Island to Osprey Reef ensuring that at least 10 seconds had 

elapsed between them. The geographic position of each image was estimated based on the 

timestamps of the sampled frames, and information about the start location and bearing of the 

transect. Please see Appendix 1 for additional details.  
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Table 2. Covariates that were included in the coral cover model. The spatial resolution is given in 
decimal degrees. 

Covariate Description Source 

Spatial 

Resolution 

Temporal 

Resolution 

Cyclone 

exposure 

Hours of exposure to 

damaging waves caused by 

tropical storms/cyclones 

(>4m):  

0= No cyclone effects,        

1 = Some cyclone effects 

Puotinen et al. 

(2016) 

0.01° 2002-2015 

Bleaching 

exposure 

0= No coral bleaching, 1 = > 

1% coral bleached 

Matthews et al. 

(2019) 

0.01° 2002 

Sea surface 

temperature 

anomaly 

Difference between 

measured sea surface 

temperature (SST) and 

monthly long-term mean 

SST (°C) 

BOM (2014) 0.02° Annual means 

for 2002-2015 

Shelf position Position of reefs on the 

continental shelf;  

1= inshore/inner shelf; 

2 = middle shelf; 

3 = outer shelf 

GBRMPA (2014) 0.005° Great Barrier 

Reef Zoning Plan 

2003 

No Take Zone Protected areas where no 

fishing is allowed. 1 = no-

take, 0 = otherwise 

GBRMPA (2014) 0.005° Great Barrier 

Reef Zoning Plan 

2003 

 

2.4 Eliciting coral cover using citizen scientists 

An elicitation (i.e. classification) tool was developed to allow citizens to browse a map of the GBR 

and select images for classification (www.virtualreef.org.au). There were a total of 12 citizen 

scientists who took part in this study. This included 6 members of the project team (a subset of the 

co-authors) with no expertise in marine science or hard coral identification.  The other 6 citizen 

scientists were members of Reef Check, who had undertaken multi-day classroom and field-based 

training in a standardised, reef-health monitoring protocol, including identifying hard corals to 

http://www.virtualreef.org/
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growth form. Data collected by Reef Check have been successfully used to detect major trends in 

coral cover (Done et al. 2017), which suggests that trained surveyors have the skills to identify hard 

corals in images.  

We used the classifications contributed by citizens in the model in two ways and this affected the 

way the classification was performed. For the 218 Reef Check images, a unique spatially balanced 

random sample of 20 classification points was generated for each citizen, which they classified as 

either water, (hard) live coral, algae, sand, unknown, or other (Figure 1). Once all 20 points were 

annotated, the user submitted the classifications to a database, where the image's media identifier 

(ID), latitude and longitude, a classification identification (ID) number (for each point in the image), 

classification label, and the user ID for the citizen providing the classification were recorded. For 

each image and each citizen, a coral cover estimate was obtained based on the number of points 

labelled "coral" as a fraction of the number of points labelled as something other than "unknown". 

Citizens were also asked to annotate an additional 20 Catlin images, which we used as validation 

images. We asked a marine scientist with expertise in coral reef ecology to classify the 20 validation 

images and then asked each citizen to classify the same classification points within the images. This 

allowed us to assess each individual’s ability to accurately identify coral in the imagery. We describe 

how this accuracy measure was calculated and is used in Section 2.5.1.2.  
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Figure 1. Partially classified citizen science image (0.12m2), derived from Reef Check Australia videos. 
Green circles have yet to be classified, whereas white text are locations that have been classified. Each 
circle can be classified as water, (hard live) coral, algae, sand, unknown, or other.  

 

2.5 Deriving weighted coral cover estimates 

There were numerous discrepancies in the image-based coral-cover data to account for during the 

data integration process; including differences in sampling methodologies (Table 1), non-response 

rates (e.g. number of points classified as “unknown”), and disparities in classification accuracy 

between citizens, which adds to measurement uncertainty. Failing to account for these differences 

give data with high variances (e.g. high measurement uncertainty) too much weight in the model, 

leading to biased parameter estimates and confidence intervals (Gelman 2007). We chose to use 

weighted regression because it provides a natural way to account for these differences (Weisberg 

2014). A detailed description of the deterministic weighting scheme applied to the citizen-science 

and the professional monitoring data are described in Sections 2.5.1 and 2.5.2, respectively. In 

Section 2.6, we describe the spatial data aggregation process used to generate the weighted coral-
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cover value for each reference raster cell and in Section 2.7, the weighted spatio-temporal Bayesian 

Beta regression model fit to the integrated dataset.  

2.5.1 Weights for citizen-elicited coral cover measurements 

The weight associated with the classification of image 𝑗, within source 𝑠, and classified by person 𝑝 is 

given by: 

𝑤𝑗𝑝𝑠 = 𝑤𝑒𝑗𝑠
𝑤𝑛𝑗𝑝𝑠

𝑤𝑎𝑝
𝑤𝑁𝑠

, (1) 

where 𝑤𝑒𝑗𝑠
 is the physical extent of each image, 𝑤𝑛𝑗𝑝𝑠

 is the number of points used to elicit the coral 

cover in an image, 𝑤𝑎𝑝
 is the overall accuracy of the person classifying the image, and 𝑤𝑁𝑠

 is a factor 

used to up- or down-weight an image depending on source (Table 1). Each component contributing 

to 𝑤𝑗𝑝𝑠 is described in more detail below. 

2.5.1.1 Image extent 

For each image and source, an extent weight, w𝑒𝑗𝑠
= A𝑗/𝑚𝑎𝑥(A𝑗), was set based on the physical 

area of the image, A𝑗, captured by the camera. This is important because coral cover measurements 

are unitless proportions, but the extent over which they are calculated differs depending on the 

survey (Table 1). We standardized the weights based on the maximum image extent to ensure that 

w𝑒𝑗𝑠
≤ 1.  

2.5.1.2 Citizen’s accuracy 

We generated a classification accuracy weight, 𝑤𝑎𝑝
, for each citizen based on their classification 

results for the 20 validation images annotated by the marine scientist. This was defined as the 

average accuracy across that person’s classifications (Sammut and Webb 2010),  

𝑤𝑎𝑝
=

1

𝒥𝑝
∑

TP𝑗𝑝+TN𝑗𝑝

TP𝑗𝑝+TN𝑗𝑝+FP𝑗𝑝+FN𝑗𝑝
𝑗 , 𝑗 ∈ 𝒥𝑝, (2) 
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where TP𝑗𝑝 is the number of true positives identified by citizen 𝑝 in image 𝑗, TN𝑗𝑝 is the number of 

true negatives and similarly FP𝑗𝑝 and FN𝑗𝑝 are the false positives and negatives for each image and 

citizen, respectively. The set 𝒥𝑝 represents the collection of images classified by person 𝑝. 

2.5.1.3 Number of classification points and number of images 

Citizens were asked to annotate 20 points on each of the 218 citizen science images, but individual 

responses labelled as “unknown” were removed from the analysis. Thus, the number of 

classifications per image for each person, 𝑤𝑛𝑗𝑝𝑠
, was sometimes less than 20. An additional factor, 

𝑤𝑁𝑠
, was used to account for the number of images used to generate a coral cover estimate (Table 

1). However,  𝑤𝑁𝑠
= 1 for all citizen contributed images in this study.  

2.5.1.4 Weighted coral cover estimates: Citizen science data 

Although classification points can be classified into numerous benthic categories, we are only 

concerned with whether a point was classified as hard coral or not. Thus, the coral cover estimate 

for a citizen’s classification of an image from a specific source was the number of points, indexed 𝑘, 

that they labelled “coral” out of 𝑤𝑛𝑗𝑝𝑠
 

𝑦𝑗𝑝𝑠 =
1

𝑤𝑛𝑗𝑝𝑠

∑ 𝐼(𝑦𝑗𝑝𝑠𝑘 = "coral")

𝑤𝑛𝑗𝑝𝑠

𝑘=1

, 

(3) 

 

with 𝐼(⋅) an indicator function and 𝑦𝑗𝑝𝑠𝑘  the classification category label for point 𝑘 in image 𝑗 from 

source 𝑠 by citizen 𝑝.  

Multiple people annotated the same image, but we ultimately wanted a single coral-cover estimate 

per image. Thus, the weighted coral-cover estimate, by image and source (i.e. Reef Check), was 

taken to be a weighted mean of the coral cover estimates derived from the participants, 
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�̅�𝑗𝑠 =
∑ 𝑤𝑗𝑝𝑠𝑦𝑗𝑝𝑠𝑝

𝑤𝑗𝑠
 , 𝑝 ∈ 𝑃𝑗𝑠  , 

(5) 

where 𝑃𝑗𝑠 represents the collection of people classifying the image and 𝑤𝑗𝑝𝑠 is defined in (1).  Note 

that this number is depicted as “variable” in Table 1 since it varies over images and sources. The 

total weight allocated to a measurement from a citizen-contributed image was 

𝑤𝑗𝑠 = ∑ 𝑤𝑗𝑝𝑠𝑝 , 𝑝 ∈   𝑃𝑗𝑠. (4) 

Thus, as more participants generate coral cover estimates for an image, the total weight for the 

citizen-science derived image, 𝑤𝑗𝑠, will increase, as desired. 

2.5.2 Weights for professional monitoring data 

The amount of information represented by the professional survey measurements differed 

depending on the survey design and classification procedures (Table 1). The image extent was 

accounted for in the same way it was for the citizen science images and we set 𝑤𝑎𝑝
= 1 for all 

professional survey data, reflecting the increased ability of marine scientists to identify hard corals. 

The total number of points annotated on an image was included as 𝑤𝑛𝑗
 (Table 1). The number of 

points required to obtain an automatic estimate of coral cover which is comparable to a manual 

classification by an expert is approximately 10 (Beijbom et al. 2015), and manual classification of 

additional points by a marine scientist within an image has not been shown to substantially improve 

coral cover estimates for an individual image. Therefore, the number of classification points 

allocated to the Catlin and UQ-RSRC coral cover estimates was 𝑤𝑛𝑗
= 10, while the number of 

classification points for LTMP and MMP was set to 5. It was also necessary to include a weight to 

account for the number of images used to estimate coral cover, 𝑤𝑁𝑠
, for the transect-level LTMP 

(𝑤𝑁𝑠
= 40) and MMP (𝑤𝑁𝑠

= 32), with 𝑤𝑁𝑠
= 1 for all other sources (Table 1). This up-weighted 

these data to account for the fact that the measurements were aggregated over multiple images. 
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Thus, the weights associated with each estimate of coral cover from a professional survey, 𝑤𝑗𝑠, were 

derived as shown in Equation 1.   

2.6 Spatial data aggregation 

The weights described above provided a way to aggregate the various data sources into weighted 

measurements of coral cover. Next we spatially aggregated these observations to the reference-

raster cell level for each source and year. It is common to spatially aggregate coral reef data prior to 

analyses (Gonzalez-Rivero et al. 2016; Sweatman et al. 2005) to separate true ecological patterns in 

space and time from noise (Habeeb et al. 2005). Aggregation also improves computational efficiency 

and ensures that the model is scalable as the number of images increases in the future. The spatial 

aggregation was accomplished by calculating the weighted-mean coral cover  

𝑦𝑖𝑡𝑠 =
∑ 𝑤𝑗𝑠�̅�𝑗𝑠 𝑗

∑ 𝑤𝑗𝑠𝑗
 , 𝑗 ∈ 𝒥𝑖𝑡𝑠,  (6) 

and the total weight  

𝑤𝑖𝑡𝑠 = ∑ 𝑤𝑗𝑠𝑗∈𝒥𝑖𝑡𝑠
, (7) 

for the collection of images, 𝒥𝑖𝑡𝑠, that were contained within a cell, i,  by source, s, and time, t. In 

total, there were 2056 cell-level estimates of coral cover. We wanted to model 𝑦𝑖𝑡𝑠 using the Beta 

distribution (Section 2.7) and so we added the minimum weighted-mean coral cover greater than 0 

(approximately 0.0005) to  𝑦𝑖𝑡𝑠 to ensure that all values fell between 0 and 1.  

To aid in interpretation and numerical stability, these weights were normalised prior to model fitting 

𝑤𝑖𝑡𝑠
′ =

𝑁×𝑤𝑖𝑡𝑠

∑ 𝑤𝑖𝑡𝑠𝑖
, (8) 

based on the sample size, N=2056, for each cell, time, and source.  
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2.7 Spatio-temporal modelling 

Gaussian process models are often used for spatial statistical modelling and prediction, but these 

methods quickly become computationally infeasible for large datasets (Cressie and Wikle 2011). 

However, low rank approximations to Gaussian processes have been developed to address this 

issue, and freely available software has been developed to implement them. We chose to use a 

stochastic partial differential equation (SPDE) approach (Lindgren and Lindgren 2011) because the 

model’s predictive accuracy is relatively high when data are spatially correlated and the prediction 

interval coverage reliably captures the true value when a nugget effect is included in the model. For 

an excellent overview of modelling methods for large spatial data and a comparison of their 

predictive performance, please see Heaton et al. (2018). 

The proportion of coral cover, 𝑦𝑖𝑡𝑠, within a cell, time, and source was modelled as a random draw 

from a Beta distribution with mean, 𝜇𝑖𝑡𝑠, and a common precision parameter, 𝜙, with a logistic link 

function and with the log likelihood, 𝐿𝑖𝑡𝑠, weighted by the normalised values generated in Eq. 8 and 

scaled to sum to 1. Hence the posterior distribution of the full parameter set, 𝜃, given the data, is 

given by  

𝑝(𝜃|𝑦𝑖𝑡𝑠)  ∝  𝑒∑ 𝑤𝑖𝑡𝑠
′ 𝐿𝑖𝑡𝑠, (9) 

where 

𝑦
𝑖𝑡𝑠

~ Beta(𝜇𝑖𝑡𝑠, 𝜙),  

and 

𝑙𝑜𝑔𝑖𝑡(𝜇𝑖𝑡𝑠) = X𝑖𝑡𝛃 + 𝑢𝑖 + 𝑣𝑡 + 𝜀𝑖𝑡𝑠 

𝑓𝑖(𝑢𝑖) = 𝐺𝐹(0, 𝛴). 

 

The logit of the mean parameter was a function of a matrix of covariates, X𝑖𝑡, and a vector of 

coefficients, 𝛃, a temporal effect, 𝑣𝑡, fit using a first-order random walk, and a spatial random effect, 

𝑓𝑖(𝒖𝒊), modelled using a Gaussian Markov random field with mean 0 and covariance, Σ, and fit using 
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a SPDE. The triangulation nodes for the SPDE were based on the observed data locations and 

boundaries were constrained using the GBR Features shapefiles (GBRMPA 2014), with an extension 

radius of 0.5 dd. 𝜀𝑖𝑡𝑠 was also included to represent uncorrelated errors. The spatio-temporal model 

was implemented using the r-INLA package (Rue et al. 2017) using the default priors. For 𝜙, this was 

a log-gamma prior with parameters 1.0 and 0.1, while the regression coefficients had a Normal prior 

with mean 0 and precision 0.001. A log-gamma prior was also used for the first-order random walk 

with parameters 1.0 and 0.00005. The SPDE is defined based on two parameters (κ and τ), which 

were modelled using a multivariate normal prior. The initial values for κ and τ depend on the size of 

the mesh and in our case were set to -0.872 and -0.394, respectively. The covariates, X𝑖𝑡, were 

always included in the model and no formal model selection was undertaken. All of the analyses 

were implemented in R statistical software (R Core Team 2017).  

2.7.1 Prediction 

The fitted model was used to generate coral cover predictions, �̂�𝑖𝑡, and corresponding standard 

deviations at each of the 85529 locations over time. The prediction locations were assigned a weight 

equal to the mean of the standardised weights generated in Eq. 8, which was 1.  

2.7.2 Model Assessment 

We fit the model to two separate datasets to test whether including additional data collected by 

multiple organisations (citizen science groups, universities, etc.), in addition to those collected by 

official monitoring programs increases the predictive ability of the models and thus, provides more 

accurate and precise information about coral cover across the whole-of-the GBR. First, we fit the 

model to all of the data available (i.e. LTMP, MMP, UQ-RSRC, Catlin, and Reef Check); we refer to 

this as the “All Data” model. Then, we fit the model to the LTMP and MMP data only; we refer to this 

model as the “LTMP/MMP Only” model.   
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We used a 10-fold cross-validation procedure to assess the predictive ability of the two models. Data 

from the UQ-RSRC, Catlin, and Reef Check surveys were randomly divided into 10 parts without 

respect for the spatio-temporal structure of the data. These validation data were iteratively 

removed from the training dataset before refitting both the All Data and LTMP/MMP Only models 

and making predictions at the validation sites. The models were compared based on the root mean 

square prediction error (RMSPE) of the observations versus cross-validation predictions, which is 

given by√∑
(�̂�𝑖−𝑦𝑖)2

𝑛
𝑛
𝑖=1 , where �̂�𝑖  is the prediction for the ith datum, 𝑦𝑖, after removing it from the 

observed dataset, and n is the total number of observations used in the cross-validation procedure. 

The interpretation of the RMSPE is fairly straight forward. For example, if the RMSPE value for the 

best model is one quarter that of a competing model the gain in predictive ability is 75%. We also 

calculated the 95% prediction interval coverage, which is the percent of intervals containing the true 

value. For a single prediction, 𝑞 = �̂�𝑖𝑡, the 95% prediction interval was calculated as  𝑞 ∓ 1.96𝜎. 

2.7.3 Influence of citizen science data 

There were relatively few benthic images available for this project from citizen scientists compared 

to professional data sources (Table 1). Yet, online platforms demonstrate the potential for citizen 

scientists to both contribute and process imagery. For example, the platform Zooniverse (Simpson et 

al. 2016) has tens-of-thousands of people who help process images and videos in scientific studies. It 

was important to understand how large volumes of citizen-contributed data would influence model 

results and so we undertook a simulation study to explore this issue. We treated the Catlin data as 

our “citizen-contributed” data because it contained a relatively large number of aggregated coral 

cover estimates collected at different locations in the GBR. We down-weighted the Catlin data to 1 

on the standardised scale (𝑤𝑖𝑡𝑠
′ ) and refit the SPDE model to obtain predictions, with corresponding 

standard deviations. We repeated this three more times, but increased the normalised weights for 

the Catlin data from 1 to 1000, 10000, and 100000 at each iteration.  The coral-cover measurement 
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weights are a product of sub-weights and so this is an approximation of what would happen if the 

number of citizens classifying data was increased by 1000, 10000, and 100000. We refit the models 

using the adjusted weights and generated the RMSPE and 95% prediction coverage (proportion of 

observed values within the 95% prediction intervals).  

 

3 Results 

3.1 Classification of citizen science images 

A total of 12 citizens annotated 218 Reef Check images. The average classification accuracy of 

citizens compared to the marine scientist for the 20 validation images was 79%, while the median 

accuracy value was even higher with the exception of one participant (Figure 2). This suggests that 

the users who annotated the images were more often than not correctly identifying image features 

that were, and were not, corals. However, there was also a considerable amount of variability in the 

classification accuracy of participants (Figure 2). This variability is likely attributable to image 

properties and the benthic composition (Appendix 3); the 20 Catlin images used in the training set 

were selected to capture a wide variety of reef characteristics, such as haziness, sand, and soft and 
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hard corals and these characteristics increased or decreased the users’ ability to accurately classify 

coral. We captured these differences in the individualised accuracy weights assigned to each person. 

 

Figure 2. Boxplots show individual accuracy level of coral cover estimates obtained from 12 Citizens 
(User) compared to those of 1 marine scientist (whose accuracy is shown as a single dot at 1). Boxes 
delineate the 25th and 75th percentiles, black lines represent the 50th percentile, and black dots denote 
a user’s mean accuracy across all images they annotated. The width of the boxplot is proportional to 
the square root of the number of classifications performed. 

 

3.2 Exploratory analyses of hard coral cover data 

After spatially aggregating the data, there were 2056 coral cover estimates available between 2002 

and 2015. The number of cells that contained coral cover data, for each source and year is shown in 

Figure 3.  

 



 

23 
 

 
 
Figure 3. The number of reference raster cells containing at least one coral cover observation for 
each of the professional surveys and Reef Check citizen science data. Professional surveys included 
the Marine Monitoring Program (MMP), Long Term Monitoring Program (LTMP), the University of 
Queensland Remote Sensing Research Centre (UQ-RSRC) survey, and the XL Catlin Seaview Survey. 
 

The normalised weights (Eq. 8) for the spatially aggregated data sources ranged between 0.0315 and 

22.6717 for coral cover estimates derived from different sources (Figure 4). As expected, the 

aggregated coral-cover estimates from the Reef Check data were assigned the smallest weights (< 

0.0947) because of the limited image extent (Table 1), the small number of citizens annotating the 

images (n=12), and the fact that citizens had accuracy weights less than 1 (Figure 2). Although the 

spatially aggregated coral-cover estimates for the LTMP and MMP were substantially up-weighted 

(Table 1) compared to other data sources, the coral cover estimates from the UQ-RSRC and Catlin 

surveys often had much larger weights (Figure 4) because large numbers of images were collected 

within the same cell (Appendix 1).  
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Figure 4. Normalised weights assigned to each coral cover estimate, by each of the professional 
surveys and Reef Check citizen science data. Professional surveys included the Marine Monitoring 
Program (MMP), Long Term Monitoring Program (LTMP), the University of Queensland Remote 
Sensing Research Centre (UQ-RSRC) survey, and the XL Catlin Seaview Survey. Differences in shading 
reflect overlaid points. 
 

3.3 Model Results  

As anticipated, the posterior estimate of the Beta precision term, 𝜙, was much larger for the All Data 

model than the LTMP/MMP Only model, reflecting the greater amount of data in the former. 

However, the fixed effects parameters in the two models were similar (Appendix 3, A3.4 and A3.5, 

respectively). Cyclone and bleaching damage were the only substantive covariates based on the 95% 

credible intervals and both negatively influenced coral cover, as expected. In addition, bleaching had 

the strongest negative influence in both models. Nevertheless, the relative reduction of the RMSPE 

between the two models indicates that the predictive ability of the All Data model was 42.76% 

better than the LTMP/MMP Only model and also better with respect to the 95% prediction coverage 

(Table 3). Both models tended to over-predict when observed coral-cover values were low and 

under-predict when they were high, but this was much more severe in the LTMP/MMP Only model 

(Figure 5; Appendix 3). As a result, there was a relatively strong positive relationship between the 
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observed and cross-validation predictions in the All Data Model, but almost no relationship between 

the two in the LTMP/MMP Only model (Table 3; Figure 5).  

 

Table 3. Results of the 10-fold cross-validation for the model fit to all the data (All Data) and the model 
fit to the LTMP and MMP data only, including the 95% prediction coverage, the root mean square 
prediction error (RMSPE), and the correlation (Corr) between the observed and predicted coral cover.  

Model 95% Coverage RMSPE Corr 

All Data  86.47 0.0826 0.7431 
LTMP/MMP 77.34 0.1443 -0.0560 

 

Figure 5. Plots of observed coral cover values versus the 10-fold cross validation predictions (CV 
Predictions) for the All Data model (a) and the LTMP/MMP Only model (b). 
 

Animations of the model predictions and associated standard deviations for the All Data model are 

shown in Appendix 4, Figure A4.1 for years 2002-2015. The spatial variability in the predictions and 

corresponding standard deviations was greater in the All Data model compared to the LTMP/MMP 

Only model.  It is not surprising that these patterns were found in areas where LTMP and MMP have 

not been collected because new data provide information about coral cover where none was 

previously present. However, this spatial variability was also found in areas where LTMP data have 

been collected, such as the area surrounding Heron Island (Figure 6a andFigure 7a). The LTMP has 
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collected data in this area since 2002 (10 cells, n = 80), with the exception of 2005 and 2009. 

Additional data from the UQ-RSRC and Catlin surveys were also available in 2007, 2012, and 2014 for 

127 cells. There was little spatial variability in the Heron Island predictions produced by the 

LTMP/MMP Only model (Figure 6b) compared to the All Data model (Figure 6c) and this was also 

true on reefs where no samples were collected. The standard deviation of the predictions increased 

in both models as the distance from observations increased, as is expected in a spatial statistical 

model (Figure 7). However, there was less spatial variability in the prediction standard deviations in 

the LTMP/MMP Only model (Figure 7b) relative those of the All Data model (Figure 7c). Interestingly, 

adding additional data did not decrease the uncertainty in the model predictions in all places (Figure 

7c). In this case, the additional data included in the All Data model exhibited more spatial variability, 

which resulted in higher prediction standard deviations in nearby reefs where no data were 

available. Thus, these new estimates of uncertainty more accurately represent the uncertainty in the 

coral cover at those locations than those produced by the LTMP/MMP Only model.   
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Figure 6. Predictions of coral cover for the Heron Island Region (a) generated by the All Data model 
(b) and the LTMP/MMP Only model (c) in 2012. Data at LTMP survey sites were collected in 2002-
2004, 2006-2008 and 2010-2015. Data from the Other Survey Sites shown in (c) were collected by 
Catlin (2012) and the UQ-RSRC (2007, 2012, and 2014). 
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Figure 7. Prediction standard deviations for coral cover in the Heron Island Region (a) generated by 
the All Data model (b) and the LTMP/MMP Only model (c) in 2012. Data at LTMP survey sites were 
collected in 2002-2004, 2006-2008 and 2010-2015. Data from the Other Survey Sites shown in (c) 
were collected by Catlin (2012) and the UQ-RSRC (2007, 2012, and 2014). 
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As mentioned previously, the coral cover estimates from the pilot Reef Check study had little 

influence in the model because of the small number and extent of images used, as well as the small 

number of citizens classifying them. The simulation study allowed us to run a what-if scenario to 

assess the potential influence of citizen-contributed data as the number of classification points 

increases. The results showed that citizen-contributed data had no influence on model predictions 

and associated uncertainty estimates when there was a small number of images or small number of 

citizen classifications within a cell (Figure 8, Table 4). For example, when the weights were set to 1, 

there was no correlation between the observed and fitted citizen-science data values (Figure 8a), 

even though data from these exact locations and times were included in the spatio-temporal model 

(i.e. this was not a cross-validation procedure). When the weights were set to 1, the prediction 

intervals were exceptionally wide (Figure 8a), which means that the true coral cover value could fall 

anywhere within the prediction interval. This reflects the fact that we have little confidence in the 

quality of small amounts of citizen-contributed data and the subsequent model predictions based on 

those data. As the weights increased, the positive correlation between the observations and model 

predictions became progressively stronger and the prediction intervals narrower (Figures 8b,c,d), 

showing how the certainty in the model prediction grows as the number of citizen classifications 

within a cell increases. The 95% prediction intervals captured the true value at least 96% of the time 

regardless of the weights (Table 4), which means that the estimates of prediction uncertainty are 

reliable.   
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Figure 8. The predicted posterior mean coral cover values and 95% credible intervals for the simulated 
citizen-science data at the original scale (weight = 1), and then upweighted by 1000, 10000, and 
100000 (1+e05).  
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Table 4. A summary of the predictive ability of the models fit to simulated citizen-science data at the 
original scale (weight = 1), and then upweighted by 1000, 10000, and 100000, including the 95% 
prediction coverage (95% Cov), as well as the root mean square error (RMSPE) and the correlation 
(Corr) between the observed and fitted values.  

Weights 95% Cov RMSPE Corr 

1 0.9600 0.0968 0.1864 
1,000 0.9650 0.0196 0.9885 
10,000 0.9950 0.0029 0.9999 
100,000 1.0000 0.0004 1.0000 
 

 

 

4 Discussion 

Data collection in the GBR is currently fragmented over dozens of organisations, with data collected 

for different purposes, using different methods, and in different habitats (e.g. reef slopes versus reef 

flats). As a result, data are rarely, if ever, analysed together (Hedge et al. 2013). And yet, there are 

numerous environmental applications where data from smart devices, in situ sensors, remote 

sensing, and professional monitoring efforts have been integrated within a modelling framework 

(Kadlec and Ames 2017; Granell et al. 2016; Hallgren et al. 2016; Wang et al. 2018). For example, 

Kadlec and Ames (2017) combined crowd-sourced snow reports, ski tracks from Strava and Garmin 

websites, data from meteorological stations, and remotely sensed imagery to significantly improve 

predictive maps of snow cover. However, most studies that integrate data sources either ignore the 

variable level of uncertainty in the measurements (Hallgren et al. 2016) or use a binary classification 

(i.e. certain versus uncertain) to identify and remove data sources deemed unreliable from the 

analysis (Kadlec and Ames 2017). Thus, the ability to integrate data collected at multiple scales, with 

variable levels of quality, remains one of the major challenges to implementing an ‘Earth 

Observation Web’ (Havlik et al. 2011), where a variety of uncertain data sources are combined 

within a modelling framework to provide spatially explicit and timely information to inform 

management (Granell et al. 2016).  
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We addressed this challenge using a mechanistically based weighting scheme within a spatio-

temporal model to account for the differences in survey design and coral-cover estimation method 

from different image-based sources, as well as the uncertainty associated with different data 

sources. Integrating additional data in the All Data model did not negatively affect inferences about 

the relationship between coral cover and known pressures such as bleaching and cyclone damage 

(Appendix 3). In contrast, including additional data sources, in addition to the LTMP and MMP, 

significantly increased the predictive accuracy of the model (Table 3, Figure 5), even in areas where 

long-term datasets have been collected for more than 10 years (Figures 6 and 7). Thus, valuable 

information is lost when informative data from multiple sources are not integrated; information that 

could be used to support better data-enabled management decisions. This is not surprising given 

that the model contains a spatial statistical component (Eq. 9), which reduces parameter bias and 

improves predictive accuracy when data are spatially dependent (Hefley et al. 2017). Nevertheless, 

the improvement in predictive ability is significant given that only 384 additional measurements 

from 363 locations were included in the All Data model. As the volume and density of the data 

increases over time, the predictive accuracy of the spatial statistical model is also expected to 

increase; especially when new data come from areas that were not previously sampled.  

Combining data from different sources, collected using different methods, with disparities in non-

response rates (e.g. number of points not classified as ‘unknown’) and measurement uncertainty, 

and different sampling intensities is challenging, which is one reason these data are not usually 

analysed together. We used weighted regression because it is a natural way to account for these 

differences (Fuller 1987), but one drawback is that the weights are generally assumed to be “known” 

(Weisberg 2014), as was the case here. The mechanistic weights were specifically designed to 

account for measurable differences in the data related to survey and estimation method, 

classification non-response rates and accuracy, and the number of images used to estimate coral 

cover at an aggregated cell level (Table 1 and Section 2.7). However, it is impossible to verify that 

these are the optimal weights for each measurement. An alternative approach is to include 
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covariates for the full weighting (e.g. image sources, extent, number of annotation points, and 

accuracy levels, and number of images within an aggregated cell), so that parameters can be 

estimated for each sub-weight. However, the model quickly becomes large and complicated, 

especially as the number of image sources and citizens classifying images increases. In addition, 

interactions must be included between sub-weight covariates, as well as other covariates in the 

model, and large numbers of interactions can lead to unstable estimates (Gelman 2007). Another 

way to address this issue in the future would be to extend the weighting scheme to allow for 

stochasticity in the weights, possibly by representing them as prior distributions within a Bayesian 

hierarchical model (Gelman 2007; Si et al. In Review). Depending on the parameterisation, this could 

also provide a way of incorporating measurement-specific precision, rather than using a pooled 

precision as we did here.  

Reef managers and scientists often refrain from using citizen-science data due to a lack of 

confidence in the quality (GBRMPA 2013; Thompson et al. 2018); a common concern regardless of 

domain (Alabri and Hunter 2010; Bird et al. 2014; Burgess et al. 2016; Kosmala et al. 2016). It was 

therefore important to demonstrate how citizen-science data of potentially questionable quality can 

be integrated with professional monitoring data, without degrading model outputs. We used a 

combination of common approaches to address uncertainty in citizen-contributed data including 

professional verification (Gardiner et al. 2012; Kosmala et al. 2016); replication (Kosmala et al. 2016; 

Kyba et al. 2016; Swanson et al. 2016); spatio-temporal modelling to address biases in sampling 

effort, spatial clustering, and temporally dependent data (Bird et al. 2014; Isaak et al. 2014); and 

weighted regression to up- or down-weight data in the analyses (Anton et al. 2018; Kallimanis et al. 

2017; Swanson et al. 2016; Mengersen et al. 2017). The average citizen’s accuracy level was 

relatively high (79%), but there was substantial variability in their responses (Figure 2). Numerous 

studies have found that accuracy of citizen science data is related to the difficulty or complexity of 

the task (Aceves-Bueno et al. 2017; Kallimanis et al. 2017; Kosmala et al. 2016). In this model the 

inherent assumption is that each classification decision is equally difficult. However, a person’s 
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classification accuracy is likely to vary depending on image characteristics (e.g. haziness) or benthic 

composition (Appendix 3), and this could bias parameter estimates (Baker and Kim 2004). We did 

not attempt to account for variable levels of classification difficulty due to the small number of 

participants (12 citizen scientists) and test images (n = 20). However, elements of item response 

theory could be used to account for the difficulty in the classification decision (e.g. hard coral versus 

soft coral), in addition to a person’s overall ability (Baker and Kim 2004; Fox 2010) as the amount of 

citizen-contributed data grows (e.g. Raykar et al. 2010).  

There was little citizen-science data used in this study (~0.3%; Table 1) and as a result it had little 

weight in the model due to the limited pool of citizen scientists, the relatively small number of 

images, and the extremely small spatial extent of the Reef Check images used in this study (Table 1). 

Thus, a simulation study was used to understand how citizen’s participation would influence model 

outputs as the amount of citizen-contributed data increased. The results showed that individual 

people, or small numbers of people, have almost no influence on the model results (Figure 8, Table 

4). Instead, the weighting scheme ensures that large numbers of citizens (~1000) would need to 

classify each image before their aggregated data would have a strong influence on model predictions 

and associated estimates of uncertainty. Although these numbers seem large, they are not 

unreasonable given the participation rates in popular, online citizen-science studies (e.g. Simpson et 

al. 2016), where researchers rely on replication to help improve the quality of observations (e.g. 

Kyba et al. 2013; Swanson et al. 2016). For example, Kyba et al. (2013) analysed citizen’s 

observations of artificial skyglow (e.g. light pollution) and found that aggregated data values from 

multiple observations provided a wealth of information, even though the uncertainty associated 

with individual observations was large. Thus, large quantities of moderate to low quality data have 

the potential to provide useful information (Reis et al. 2015).  

Development of automated artificial intelligence (AI) algorithms for coral reef classification is rapidly 

increasing (Mahmood et al. 2017). However, the need for integration approaches will only increase 
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as new algorithms are developed and implemented. Accuracy levels differ across AI algorithms and 

datasets due to differences in lighting conditions and water quality, morphological variability within 

species, similarities in the appearance of different soft and hard coral species, partial occlusion of 

objects due to the three-dimensional benthic structure, and difficulties defining the spatial borders 

between classes (Beijbom et al. 2015; Mahmood et al. 2017; Gómez-Ríos et al. 2019; González-

Rivero et al. 2016). AI algorithms also require large training datasets of images classified by experts, 

whose classification accuracy varies, introducing errors into the algorithms (Beijbom et al. 2015; 

Gómez-Ríos et al. 2019). In addition, reductions in classification accuracy occur when algorithms are 

applied to datasets other than the one they were trained on (Gómez-Ríos et al. 2019). While there is 

no doubt that AI holds promise for broad-scale coral monitoring at fine spatio-temporal resolutions, 

there will continue to be a need to integrate data of variable quality across observers, regardless of 

whether those observers are AI algorithms, citizen scientists, and/or experts. This need will only 

grow as monitoring initiatives are implemented at broader scales, where data from different 

management regions or countries, and collected using different methods, must be integrated (e.g. 

Global Coral Reef Monitoring Network; 

https://sustainabledevelopment.un.org/partnership/?p=14306).  

Management Implications 

A key goal of monitoring for conservation is to obtain information needed to guide effective 

decision-making (Nichols and Williams 2006). Within the GBR, RIMReP is tasked with coordinating 

and integrating monitoring data and model outcomes from numerous programs to 1) evaluate the 

management effectiveness of the Reef 2050 Plan (Commonwealth of Australia 2018), 2) report on 

status and trend, and 3) provide early warning on changes/impacts on the near- to mid-term 

horizon. Limited monitoring resources make it impossible for one organization to survey areas large 

enough, and with enough replication, to capture spatial and temporal heterogeneity within and 

between large regions (Nichols and Williams 2006; Yoccoz et al. 2001). Thus, the RIMReP must 

https://sustainabledevelopment.un.org/partnership/?p=14306


 

36 
 

partner with organisations collecting data for short- to medium-term response monitoring, long 

term monitoring, and compliance monitoring, as well as citizen science programs in order to 

measure progress towards these outcomes (GBRMPA 2015). The data integration framework 

developed here provides a practical way to build on and align with existing programs, without 

duplicating effort or replacing them. In addition, the ability to integrate data from these different 

sources, while accounting for bias and uncertainty, promotes collaboration between government, 

researchers, industry and the community (GBRMPA 2015). Although we used coral cover as an 

example, this general approach to spatio-temporal data integration and modelling is equally viable 

for other variables collected in the marine environment, as well as in other ecosystems. 

In a survey of GBR managers and other stakeholders, access to digital spatial data and predictive 

information via a web-based platform was overwhelmingly identified as their ideal information 

product (GBRMPA and Queensland Government 2018). The spatio-temporal data integration 

framework presented here can be used to provide the predictive information these stakeholders 

need, which is not possible using LTMP and MMP data alone. The models produce relatively fine-

scale predictions across large areas within a probabilistic framework, with individual estimates of 

uncertainty, in areas where samples have not yet been collected (Cressie and Wikle 2011). This 

provides an integrated snapshot of coral cover condition across the GBR, based on the best available 

data at the time. However, the value of a predictive map depends on the prediction accuracy (i.e. 

how close are the predictions to the true value) and precision (i.e. how certain are we about the 

prediction). As mentioned previously, the prediction accuracy and precision is expected to increase 

as the spatial and temporal density of the data contributed by multiple organisations increases over 

time. This is a huge advantage in the GBR, where many organisations currently collect image-based 

coral cover data (Jonker et al. 2008; Ninio et al. 2003; González-Rivero et al. 2016; Roelfsema et al. 

2018a; Roelfsema et al. 2018b), or could be collecting it in the future.  
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Predictive maps of coral cover generated from statistical models such as these add value to 

programs such as RIMReP because they provide insight into coral condition across the whole-of-the 

GBR. Predictive maps allow managers to explore spatial and temporal heterogeneity in coral cover 

to inform planning, assessment and decision making (Commonwealth of Australia 2015). For 

example, coral cover maps underpin other research studies related to fish abundance and 

community composition (Jones et al. 2004) or risk of disease outbreaks (Bruno et al. 2007). They can 

also be used as inputs for decision support tools; for example, connectivity modelling to identify 

optimal larval restoration sites (Hock et al. 2017). In addition, model predictions and associated 

uncertainty estimates can be summarized at different spatial scales (e.g. whole-of-the GBR, 

management regions, or reefs; Ver Hoef et al. 2008) and used to measure and report against targets 

in environmental report cards such as the 5-yearly Great Barrier Reef Outlook report (GBRMPA 

2009), the annual Reef Water Quality Protection Plan Great Barrier Reef Report Card (Queensland 

Government 2017), and various regional report cards (e.g. Mackay-Whitsunday Healthy Rivers to 

Reef Partnership 2018).    

Spatially explicit estimates of prediction uncertainty can also provide useful information for 

management. At the most basic level, differences in prediction uncertainty help people understand 

where they can be most and least confident in the predictions (Peterson and Urquhart 2006). This 

information could be used to prioritise management actions (Yoccoz et al. 2001), or identify areas 

where additional monitoring data are needed before management actions can be informed. 

Prediction uncertainty can also be used to inform the design of monitoring programs or guide future 

sampling efforts within and between organisations to ensure that monitoring resources are used in 

the most cost-effective way (Granell et al. 2016; Kang et al. 2016). In areas where the number of 

measurements is currently high, additional samples may not significantly impact the accuracy or the 

precision of the predictions. However, additional samples in areas where there are few or no 

observations can drastically change the model predictions and reduce estimates of uncertainty in 

those areas. These estimates of uncertainty can then be shared between organisations, so that 
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sampling across the expanse of the GBR is better coordinated (Hedge et al. 2013), regardless of 

whether those collecting the data are professional monitoring teams or citizen scientists.  

Traditional field surveys are expensive (Gardiner et al. 2012; Reis et al. 2015) and this is especially 

true in marine environments (Nygård et al. 2016; Lindenmayer and Likens 2010; Roelfsema and 

Phinn 2010). Thus, the ability to extract information from alternative data sources is financially 

attractive because it provides a cost-effective way to increase the spatio-temporal data coverage 

(Gardiner et al. 2012). However, these additional data must be viewed as complementary to 

government funded, professional monitoring data, rather than a replacement because there are 

trade-offs associated with data quality, the longevity of the survey, and financial costs (Gardiner et 

al. 2012; Reis et al. 2015). While government-funded professional monitoring programs such as the 

LTMP and MMP represent a large investment, they are currently the only way to ensure that high-

quality long-term datasets exist (Figure 3) to assess long-term trends in coral cover and composition 

(Sweatman et al. 2005; Vercelloni et al. 2014). As we have shown here, these long-term datasets can 

be integrated with less certain, short- to medium-term spatially dispersed efforts by citizens. They 

can also be complemented by intensive monitoring efforts from research institutions (Roelfsema et 

al. 2018a; Roelfsema et al. 2018b), or groups funded by philanthropic organisations such as those 

from the XL Catlin Seaview Survey (González-Rivero et al. 2014), to assess spatial variability in coral 

cover. Government-funded monitoring programs are ideally suited to assess the impacts of planned 

management actions and RIMReP is an example where data from multiple sources is being 

integrated to achieve both short- and long-term sustainability targets (Addison et al. 2015). In the 

wake of broad-scale disturbances such as coral bleaching events (Hughes et al. 2018), however, 

coordinated efforts by multiple monitoring programs and institutions are required to provide rapid 

situational understanding. The modelling framework described here provides a way to integrate 

disparate data sources to maximize information value for management using all available data.   
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5 Conclusions 

Monitoring efforts in the GBR are fragmented with dozens of organisations collecting data in 

different regions to meet a variety of monitoring objectives. We developed a weighted spatio-

temporal Bayesian modelling framework that can be used to integrate and model multiple sources 

of coral cover data collected by both professional and non-professional organisations. There are 

numerous types of models that can be used to estimate coral cover, but there are a number of 

advantages to the model we describe here in terms of monitoring and management: 1) the 

mechanistic weighting scheme provides a way to integrate image-based data from multiple sources, 

while accounting for different levels of uncertainty; 2) the approach can be used with spatially and 

temporally dependent data collected for different purposes and using different survey designs; 3) 

the model produces spatially and temporally explicit predictions of coral cover, with estimates of 

uncertainty using a probabilistic framework; thus filling in gaps in space and time where no data 

exist; and 4) the accuracy of the predictions continue to improve as more data become available. 

The model results show clear advantages in terms of predictive performance and management; even 

in areas where professional datasets have been collected for more than 10 years. It also highlights 

the opportunities and potential for citizen science to contribute to data collection and processing. 

Predictive maps with estimates of uncertainty can be used to prioritize management actions, inform 

the design of monitoring programs and guide coordinated monitoring efforts within and across 

organisations, and provide scientifically rigorous information, summarised at multiple scales for 

environmental report cards. This spatio-temporal data integration approach can be applied to other 

variables and in different ecosystems, opening up opportunities to explore new ways to integrate 

data, enhance data processing power, and provide pathways for community engagement and shared 

stewardship.   
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