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Abstract: Agroecosystem modelling has increasingly focused on the integration of soil 17 

biogeochemical processes and crop growth. However, few models are available that 18 

offer high computing efficiencies for region-scale simulations, integrated decision 19 

support tools, and a structure that allows for easy extension. This paper introduces a 20 

new modeling tool to fill this gap: the GDNDC (Gridded DNDC) system for gridded 21 

agro-biogeochemical simulations. Based on the established DeNitrification and 22 

DeComposition (DNDC) model version-95, its main advancements include (i) 23 

implementation of parallel computation to significantly reduce computation time across 24 

multiple scales; (ii) a built-in parameter optimization algorithm to improve the 25 

predictive accuracy, and (iii) several decision support tools. We demonstrate each of 26 

these for county-level maize growth simulations in Liaoning Province (China) and 27 

reveal the potential of this new modeling tool to guide both long-term policy decisions 28 

regarding optimal fertilizer application and near-term crop yield forecasting for reactive 29 

decisions required in times of drought. 30 

31 

Keywords: GDNDC; parallel computation; parameter optimization; optimal 32 

fertilization; decision support; 33 
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1. Introduction 35 

In past decades, the expansion of irrigation area and fertilizer use for agriculture has 36 

significantly improved global food production especially under drought and nutrient 37 

depleted conditions (Schultz et al., 2005; Stewart et al., 2005; Yu et al., 2018). More 38 

food has to be produced sustainably to meet the demand of growing population by the 39 

middle of this century (Godfray et al., 2010). However, surplus nutrients from cropland, 40 

including nitrogen (N) and phosphorous (P), have led to severe environmental problems 41 

in both the hydrosphere and atmosphere (Cordell et al., 2009; Yu et al., 2019). For 42 

example, the loadings of N and P from cropland into surrounding water systems (rivers, 43 

lakes and coastal ocean) can result in eutrophication (Paerl et al., 2011). In addition, 44 

greenhouse gas (GHG) emissions from agriculture, such as nitrous oxide (N2O) and 45 

methane (CH4) gas emissions from rice cultivation, can contribute to global climate 46 

change (Cai et al., 1997). On top of excessive inputs into the surrounding environment, 47 

agriculture can also detrimentally remove resources from the surrounding environment. 48 

Excessive extraction of water for agricultural irrigation has been observed to contribute 49 

to groundwater depletion in some regions (e.g. the North China Plain and Northern 50 

India) (Famiglietti, 2014). It is therefore of great importance to improve our fertilization 51 

practices and irrigation management to minimize environmental impacts while 52 

maintaining food production for the population growth (Tilman, 1999). 53 

 54 

Field experiments provide important information about the relationship between crop 55 

growth and environmental factors (e.g. climate and soil properties). Experiments which 56 

investigate various management interventions (e.g. fertilization, irrigation and tillage) 57 

at different phenological stages can test the response of crop development and  58 

evaluate the effectiveness of different options (Geerts et al., 2008; Gao et al., 2012). 59 

Such controlling experiments have become popular tools for determining the optimal 60 

management of both fertilization and irrigation in the long term to minimize the 61 

environmental impacts for many important crop species, including rice, maize, wheat, 62 

soybean, etc. Further, increasingly advanced approaches, including global positioning 63 

system (GPS), wireless sensor networks and unmanned aerial vehicles (UAV), have 64 

been utilized to provide accurate monitoring of field locations, crop growth conditions 65 

and soil properties (Zhang et al., 2002; Wang et al., 2006; Gómez-Candón et al., 2014).  66 

Such approaches facilitate the collection of large amounts of data at a high spatial-67 

temporal resolution. Thus the integration of both these advanced technological 68 

approaches and field experiments can lead to the development of improved real-time 69 

management strategies. 70 

 71 

Many of these experimental and technological approaches are most beneficial at the 72 

local scale, with high costs associated with labor and equipment, as well as the need for 73 

specialized skills, which have prevented the wide use of such approaches over regional 74 

scales (Zhang and Kovacs, 2012). Simply upscaling local data to a regional level is not 75 

often possible (or advised) due to the significant heterogeneity in soil and crop 76 
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conditions, thus leading to a high amount of uncertainty in the resulting data. In addition, 77 

without long-term or good quality historical data, these approaches are limited in their 78 

predictive performances, especially during the meteorological extremes (e.g. extreme 79 

drought). A solution to these issues can be found by using process-based crop models, 80 

which are developed through a combination of mathematical equations describing the 81 

interaction between crop growth, soil nutrient dynamics and agricultural management 82 

(Rauff and Bello, 2015). For example, global gridded crop models (GGCMs) can be 83 

used to project the yield potential under climate change at regional or global scales 84 

(Rosenzweig et al., 2014). Other models, e.g. AquaCrop, WOFOST, DeNitrification 85 

and DeComposition (DNDC), are widely applied for deficit irrigation, optimal 86 

fertilization schemes and estimation of GHG emissions (Miao et al., 2006; García-Vila 87 

et al., 2009; Uzoma et al., 2015). With field experiments or monitoring providing 88 

observed facts for model calibration, models can be used to upscale the results and offer 89 

timely information about regional conditions. Driven by reliable input database (e.g. 90 

climate forecast or reanalysis), crop models can also be used to predict the potential 91 

crop growth under different scenarios and calculate the long-term climate risk for better 92 

agricultural management (Huang et al., 2018).  93 

 94 

Though originally developed and validated at field scale, process-based 95 

crop/biogeochemical models are becoming more popular in regional-scale simulations 96 

(Holzworth et al., 2015). Yu et al., (2019) used the DNDC model to quantify the 97 

provincial-level N discharge from cropland in China and evaluated the contribution of 98 

optimal fertilization to water quality. At the global scale, Liu et al., (2016) analyzed the 99 

response of wheat yield to rising temperature at a 0.5° spatial resolution based on the 100 

simulations of seven crop models. Elliott et al., (2014) projected the global water 101 

limitation to maize, soybean, wheat and rice productivity under climate change by 102 

combining 16 global hydrological and crop models and then assessed the adaptation 103 

potential by irrigation improvement. Overall, regional simulations using process-based 104 

models have been proven as a powerful approach in predicting the effects of climate 105 

change on crop productivity and the response of agroecosystems to different 106 

management practices (Deryng et al., 2011; Zhao et al., 2013; Drewniak et al., 2015; 107 

Müller et al., 2015; Bowles et al., 2018). As such, these models have the potential to 108 

play an important role in policy making regarding food security, climate change 109 

mitigation and environmental protection. The utilization of these models continues to 110 

expand, due in part to the many agricultural modelling systems (or software) providing 111 

user-friendly tools for various applications (Gerber et al., 2008; Yu et al., 2014; Capalbo 112 

et al., 2017; Han et al., 2017; Rurinda et al., 2020). However, there are still several key 113 

challenges: 114 

 115 

(i) Computing efficiency prohibits the use of models in regional simulation with very 116 

high resolution (i.e. global-scale simulations with 0.1° grid cells) over decadal time 117 

periods. The traditional approach, where the computation proceeds grid cell by grid cell 118 

is time intensive. Some crop models (e.g. PaSim, APSim) adopt high performance 119 
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computing (HPC) technology to accelerate the model run time by using parallel 120 

computing, where independent grid cells are processed at once across multiple CPUs 121 

(Vital et al., 2013; Zhao et al., 2013). For integrated modelling systems, Buahin et al., 122 

(2019) cloned each component in a water temperature model and designed a parallel 123 

execution framework to achieve high computing efficiency. However, most crop 124 

models (e.g. WOFOST, AquaCrop) and more complex biogeochemical models (e.g. 125 

DNDC, DayCent) do not have open-access parallel versions compatible with different 126 

operating environments.  127 

 128 

(ii) There are few agricultural modelling systems available for users with all necessary 129 

components to perform a complete end-to-end simulation, from model calibration to 130 

scenario prediction and finally optimal management assessment. Most studies only 131 

focus on one aspect, such parameter optimization (Iizumi et al., 2009; Abbaspour, 2013), 132 

drought prediction (Yu et al., 2014), improved practices for ecosystem service (Chen et 133 

al., 2016) and water quality (Kaini et al., 2012). However, it is a difficult and time 134 

consuming process for users to perform these tasks independently with different 135 

software packages or source codes – something that could be changed by using a 136 

coupled system. 137 

 138 

(iii) The structure of most modelling systems does not easily allow for further extension. 139 

Even when using the same original model code base, researchers will develop the model 140 

in different directions relevant to their own research interests. For example, based on 141 

the DSSAT model, Han et al., (2017) developed the CAMDT software to provide the 142 

seasonal forecast of crop growth and adaptation of managements, while Nguyen et al., 143 

(2017) applied the ant colony algorithm to optimize the irrigation and fertilization 144 

schedules. Although each application makes a novel contribution, combining both 145 

approaches could lead to even greater insights; however, such integration would be near 146 

impossible due to the disparate approaches, methods, and software used in each study. 147 

Even with very powerful processing systems, such integration would remain 148 

insurmountable. Therefore, a flexible structure is critical for the sustainable 149 

development of agricultural modelling system. 150 

 151 

This paper seeks to address these challenges by developing an integrated modelling 152 

system, entitled Gridded- DeNitrification and DeCompostion (GDNDC). This is based 153 

on the established DNDC model, which is a nitrogen-based biogeochemical model for 154 

agroecological processes (Li et al., 1992). It models crop growth, soil water dynamics, 155 

soil carbon and nitrogen cycles under different management practices, with widespread 156 

use across GHG emission estimation (Li et al., 2001), yield prediction (Yu et al., 2014; 157 

Huang et al., 2018) and N leaching (Qiu et al., 2011; Yu et al., 2019) at regional scales. 158 

Using the DNDC model as the emulator for agro-biogeochemical processes, we aim to: 159 

(i) present a new structure for agricultural modelling systems by introducing a central 160 

coupler to integrate existing and potential future modules; (ii) enable parallel 161 
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simulations with MPI (Message Passing Interface) protocol to increase computing 162 

efficiency for simulating tasks with high computational expenses; (iii) couple a number 163 

of additional modules to the model including a parameter optimization module using 164 

SCE-UA algorithm (Duan et al., 1992), a tool for scenario-based drought prediction and 165 

risk analysis of yield, and finally an optimal fertilization estimator for decision support. 166 

 167 

In Section 2 of this paper, we introduce the newly developed structure of GDNDC, 168 

which now mainly depends on the dispatch of the coupler. In Section 3, we describe the 169 

detailed methods used in different modules including parallel running, parameter 170 

optimization, optimal fertilization estimate, drought scenarios settings and risk 171 

calculation. In Section 4, case studies for regional scale applications are presented to 172 

illustrate the whole workflow for using GDNDC. Finally, we discuss potential 173 

improvements and summarize the characteristics of our system in Section 5 and 6. 174 

 175 

2. Framework of the GDNDC system 176 

2.1 Overview of the GDNDC system 177 

The current version of GDNDC system is developed using C++. With only standard 178 

libraries (normally compilable for most common compilers) invoked across the whole 179 

program, the system is compatible with different operating systems (Windows and 180 

Linux) and hardware environment (PC and cluster). Similar to DNDC 95, users of 181 

GDNDC are able to perform both field-scale simulations and regional-scale simulations. 182 

In regional-scale simulations, users can split their study regions (e.g. state, nation, globe) 183 

into a larger number of grid cells at a defined spatial resolution from 0.01° to 0.5°, 184 

according to the corresponding resolution of input data (e.g. soil map, climate data). 185 

The temporal scale is also defined by users from one month to over 100 years. 186 

Compared with DNDC 95, the parallel computing mode has been developed for 187 

regional-scale simulation to accelerate the computing efficiency. In addition to this 188 

development, we have coupled several additional modules in this system, in which users 189 

can use for predicting crop yield and the risk under drought events, as well as proposing 190 

improved N fertilization schemes to protect water quality. The structure of GDNDC 191 

enables convenient extension for other applications (see section 2.3 and 2.4). 192 

 193 

2.2 Modules in the GDNDC system 194 

The GDNDC system consists of five modules (see Fig. 1b): 195 

(1) Coupler module: The Coupler works as the trunk of GDNDC system to couple other 196 

modules together. Initially it recognizes the input settings from modelling tasks with 197 

different goals, and begins to initializes the corresponding modules. Throughout the 198 

simulation process, the Coupler collects the outputs and delivers relevant 199 

information between working modules. Further detail is explained in section 2.3. 200 

(2) DNDC module: This module is responsible for the calculation of all biogeochemical 201 
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processes from the DNDC model. This only includes the original process-based 202 

parts of the DNDC95 version with the rest such as the input/output (I/O) integrated 203 

into the I/O module. It therefore makes it a pure emulator in this system. 204 

(3) I/O module: The I/O module reads the settings of a modelling task and input 205 

database and writes the outputs to be exported. The detailed description of the I/O 206 

files is presented in Table 1. 207 

(4) Parameter optimization module: This module uses an optimization algorithm to 208 

determine the optimal parameters to reduce the discrepancy between model outputs 209 

and corresponding observation data. Users can improve the predictive capacity for 210 

targeted outputs given the spatial heterogeneity at regional scales. We explain the 211 

mathematical background of this module in section 3.2. 212 

(5) Decision support modules: It includes the Optimal fertilization, Scenario prediction 213 

and Risk analysis modules. They are developed to realize the estimation of optimal 214 

fertilization schemes, scenario-based prediction and yield loss analysis, respectively. 215 

The methods used in GDNDC to realize these functions are shown in sections 3.3-216 

3.5. 217 

 218 

2.3 Module coupling 219 

While different modules can be directly coupled into the DNDC source code to extend 220 

the corresponding functions (see Fig. 1a), following such an approach has a number of 221 

disadvantages. Firstly, as the source code is bounded together, the program becomes 222 

increasingly complicated. As such, further modification can become challenging if 223 

previous alterations not be documented properly, and developers fail to remember how 224 

modules are coupled together. Secondly, to extend the code, a developer requires a deep 225 

understanding of almost every process in the system in order to make their required 226 

changes without compromising the wider code base – an inherently complicated and 227 

time consuming task. Finally, for models like DNDC with many users across the world, 228 

incorporating all of the valuable contributions into one single codebase is not a trivial 229 

task. 230 

 231 

On the other hand, for Earth system models (e.g. Community Earth System Model, 232 

CESM) with several complex components (e.g. land surface model, atmosphere model 233 

and ocean model), a coupler is used as the trunk of the system to communicate with all 234 

the other components. The outputs of a certain component are firstly delivered to the 235 

coupler, which then will send the required information in suitable format to initialize 236 

and activate another component. Such a structure keeps all process-based components 237 

independent from each other (and able to run in parallel or further developed in isolation) 238 

while the coupler is primarily used for information exchange between them. Following 239 

this, we added a simple coupler as the kernel to coordinate the processes among 240 

different modules in GDNDC. The general structure of GDNDC is presented in Fig. 1b. 241 

 242 
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In the GDNDC system, the coupler consists of four main components: Mode control, 243 

Data stream, Task manager, and Timer (see descriptions in Table 2). In the general 244 

workflow of this system, the I/O module is first called by the coupler to read the setting 245 

file (see Table 1). All the information is packed as a structure and delivered into coupler. 246 

Then in the coupler, mode control recognizes which computing mode (serial or parallel) 247 

is used, the Timer calculates the time nodes to read/write data, while Task manager 248 

initializes DNDC and other modules. Following these steps, the modelling process 249 

starts. For every individual day within the simulated time period, the Timer checks if 250 

the system needs to update the input data (e.g. parameter, climate and management 251 

practices) from the input database. If so, I/O will be called again to read the 252 

corresponding data (Table 1, [1.2]) and it transmits the data into Data stream. Then the 253 

data will be handled by Data stream and delivered to DNDC to activate and enable the 254 

modelling process. After completing the calculation for one day, model outputs (e.g. 255 

aboveground biomass, soil moisture, leaching, N2O emission, amongst others) are 256 

collected in Data stream for inputs into other targeted modules: 257 

(1) For parameter optimization, model outputs are transported from Data stream to 258 

Parameter optimization module and then compared with observation data. Then new 259 

parameter sets can be updated and passed to Data stream and then to DNDC module 260 

for the next iteration of the simulation. 261 

(2) For estimating the optimal fertilization strategy, the Optimal fertilization module 262 

generates different levels of fertilizer application and different kinds of fertilization 263 

methods. These combinations are transported into Data stream and used to replace the 264 

fertilization scheme. Data stream delivers the new management information to DNDC 265 

module to test the performance of new fertilization schemes.  266 

(3) For scenario-based prediction, Timer provides the time information to Scenario 267 

prediction module, in which the future climatic scenarios are generated and then used 268 

to update the climatic information in Data stream. Afterwards the climate scenarios are 269 

transported to DNDC which enables the yield modelling. 270 

(4) For yield loss estimation, Risk analysis module receives the simulated yield values 271 

in different irrigation and fertilization levels and then calculates the corresponding 272 

return period of yield loss at different spatial scales.  273 

 274 

2.4 Advantages over the DNDC 275 

The structure of the GDNC, based on the coordinating coupler shows a number of 276 

advantages over DNDC 95 for maintenance and expansibility purposes. These include: 277 

(i) In the regional simulation mode in DNDC 95, the model reads all input data at the 278 

start of the simulation and proceeds to perform all numerical calculation from start 279 

to finish. For long-term simulation, the management settings (e.g. fertilizer level) in 280 

each year are kept constant, which does not reflect reality. If users want to update 281 

their simulation with new data available, they instead have to start the simulation 282 

from the beginning year every time. Whereas in the GDNDC system, the I/O process 283 
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is an independent module controlled by the coupler, which in turn enables the 284 

dynamic update of new management information for each year of simulation whilst 285 

reloading key state variables (e.g. soil moisture, N/C pools) from the previous 286 

timestep. 287 

(ii) All the other modules only exchange information with the coupler, keeping the 288 

program clear and understandable for efficient maintenance. Developers can focus 289 

on the single module of interest and do not need to consider others, thus enabling 290 

the parallel development of GDNDC from users across different specialties. 291 

(iii) The opportunity for developing custom modules and enhancing existing modules 292 

in GDNDC will strengthen its power as an agricultural modelling system. For 293 

example, in the I/O module, developers can couple numerical climate models (e.g. 294 

Weather Research and Forecasting model, WRF) to provide short-term climate 295 

predictions for the DNDC module. Similarly, different algorithms can be 296 

supplemented into the Parameter optimization module. Modifying the data 297 

exchange interface in coupler would allow lots of other models (e.g. agent-based, 298 

water quality and economic models) to be integrated as additional modules to extend 299 

the application of GDNDC. 300 

 301 

3. Methodology 302 

3.1 Parallel computing 303 

Across the components of the GDNDC system, the DNDC model has the greatest 304 

computational expenses as it runs at an hourly resolution and includes lots of numerical 305 

calculation for soil dynamics. Therefore, by enabling the DNDC model to run in parallel 306 

will greatly reduce the simulation run time. We develop two options for users: the serial 307 

mode and parallel mode. In the serial mode, a multiple of grid cells (e.g. regular 0.05° 308 

grids or irregular administrative grids) are allocated with one single process. The 309 

computation of certain grid only starts after the completion of the previous one (see Fig. 310 

2a). This mode is recommended for field-scale simulations and debugging. Whereas in 311 

parallel mode, a number of processes (user defined within cluster’s capacity) can be 312 

initialized simultaneously using MPI protocol. All the grid cells are matched to these 313 

processes uniformly, and each process can independently perform its calculations in 314 

parallel (see Fig. 2b). Users can expect significant improvements in the efficiency of 315 

regional-scale simulations. 316 

 317 

3.2 Parameter optimization 318 

In GDNDC, we couple the global optimization algorithm SCE-UA to automatically 319 

calibrate the model performance and obtain the optimal parameter sets. SCE-UA is a 320 

global optimization method to solve nonlinear problems in high-dimension space by 321 

combining deterministic and probabilistic approaches. In this algorithm, multiple 322 

“complexes” are initialized with their points randomly sampled from the search space. 323 

The downhill simplex algorithm (Nelder and Mead, 1965) is applied for evolving each 324 
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complex independently in the direction of global improvement. Meanwhile, these 325 

complexes are periodically shuffled and all the points are reassigned to avoid the search 326 

getting trapped in local optima (for detailed mathematical processes see Duan et al., 327 

1992; Duan et al., 1994). It enables the search progress to converge towards the global 328 

optimum with high efficiency. SCE-UA was initially developed for the hydrological 329 

models (Sorooshian et al., 1993; Duan et al., 1994; Yang et al., 2008), and later became 330 

popular for crop models and biogeochemical models (Ueyama et al., 2016; Jin et al., 331 

2018; Cui and Wang, 2019). For consistency with the wider GDNDC system, the 332 

Fortran version of the SCE-UA source code was translated into C++ before being 333 

adopted as a module. 334 

 335 

In Table 3, eight crop-related parameters which are sensitive in the modelling of water 336 

and nitrogen dynamics are listed. These parameters include: (i) MaxY for the theoretical 337 

rate of daily N uptake and model’s response to N supply; (ii) TDD for the phenological 338 

process; (iii) WD for the theoretical rate of daily water uptake and model’s response to 339 

drought; (iv) G_CN, L_CN, G_Fra and L_Fra for the biomass accumulation and 340 

allocation in different organs; and (v) VarY for the influence of technology 341 

improvement (e.g. breeding). The relevant input file (see Table 1, [1.4]) is designed for 342 

users to select any combination of these eight parameters for optimization, while other 343 

parameters adopt default values from the regional database. The algorithm minimizes 344 

the RMSE (root-mean-squared-error) as the objective function: 345 

obj RMSE =  √
1

𝑛
∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑛

𝑖=1 → min                                 (1) 346 

where 𝑦𝑖̂ and 𝑦𝑖 are the predicted and observed variables (e.g. yield, soil moisture) at 347 

the ith time step, respectively. By running the optimization module, the DNDC model 348 

will be called iteratively with a set of parameters from SCE-UA. After each iteration, 349 

model outputs are fed back to the coupler and then used for deriving a new set of 350 

parameters to minimize the objective function in Eqn (1). The optimization process 351 

stops when it reaches user-defined convergence standard or maximum iteration. 352 

 353 

3.3 Optimal fertilization 354 

The Optimal fertilization module determines the minimum fertilizer application 355 

required to maintain targeted yield levels while minimizing the environmental costs, 356 

including N2O emission and N leaching. Compared with the n-dimension search for 357 

optimal parameters in section 3.2, the 1-dimension search for optimal fertilizer amount 358 

is much less demanding. We adopt the method of bisection with the workflow given in 359 

Fig. 3. In the first step, the system simulates the yield level using the current fertilization 360 

level (see Table 1, [1.5]) and sets it as the target. The range of optimal fertilizer amount 361 

is set between 0 and current level. By using the method of bisection, the module 362 

compares the targeted yield with the simulated yield using the mid-range of the fertilizer. 363 

By this approach the fertilizer range is narrowed down until an optimal fertilizer amount 364 

is obtained. The default maximum number of iterations is set to 15 as this guarantees a 365 



11 
 

final precision of ~0.1 kgN/ha. 366 

 367 

3.4 Scenario-based yield prediction 368 

Given the uncertainties involved in a regional climate projection, the GDNDC system 369 

adopts climatic scenarios from a historical database to drive the prediction of crop 370 

growth particularly under drought conditions. Following Yu et al., (2014) and Huang 371 

et al., (2018), we assumed the climatic forcing from a given time up until harvest 372 

follows one of three scenarios: 373 

(1) Ideal scenario: The water deficit for crop growth ceases immediately after the 374 

current day. The water demand is thus fully met until the harvest. With this setting, the 375 

potential yield loss can be derived; 376 

(2) Drought continuing scenario: A period without rain (e.g. 3 days, 10 days) 377 

following the current timestep of interest can be specified in Table 1 ([1.6]). After this 378 

period, the climate returns to the ideal condition. So the potential yield loss for the 379 

following drought can be estimated; 380 

(3) Historic scenario: The climatic data in typical year in history (including historical 381 

wet, medium and dry year) are used to drive the simulation of yield. The yield losses 382 

under representative climate conditions can provide useful information to compare the 383 

severity of a current drought to others in recorded history 384 

 385 

3.5 Risk analysis 386 

Based on the dynamic update of yield predictions in section 3.4, the corresponding 387 

return period of yield loss can be estimated to demonstrate the impacts of droughts. The 388 

return period, often used to quantify the severity of natural disasters, including floods 389 

(Hirabayashi et al., 2013), droughts (Kwon and Lall, 2016) and wind storms (Della-390 

Marta et al., 2009) is calculated as the inverse of the frequency of a certain event. It 391 

therefore represents the average recurrence interval of that particular event. For 392 

example, a 50-year drought implies that a drought event with equal severity has a 2% 393 

probability to occur in any year, or simply put, it could be expected to occur every 50 394 

years on average. The GDNDC system follows three steps to quantify the agricultural 395 

drought return period. 396 

 397 

Firstly, with the optimal parameters in section 3.2, the model runs a long-term yield 398 

simulation over the past 50 years using historical climate data and current management 399 

practices (e.g. irrigation and fertilization). The yield outputs over a 50-year timespan 400 

for each grid cell constitutes the baseline yield database. 401 

 402 

Secondly, in this system, the GEV (Generalized Extreme Value) distribution (see Eqn 403 

2) is adopted as the default probability distribution curve for yield (Yu et al., 2014). For 404 



12 
 

each grid cell, the baseline yield records are used to estimate the optimal parameters k, 405 

μ, and σ such that:  406 

F(x) = {
exp (− (1 + 𝑘 (

𝑥−𝜇

𝜎
))

−1/𝑘

)       𝑘 ≠ 0

exp (− 𝑒𝑥𝑝 (−
𝑥−𝜇

𝜎
))            𝑘 = 0

                        (2) 407 

where F(x)  is the cumulative probability function; 𝑘 , 𝜇  and 𝜎  are the shape, 408 

location and scale parameters of GEV distribution, respectively; and 𝑥 is the simulated 409 

yield or yield loss in this case.  410 

 411 

Finally, after determining distribution parameters for each grid cell, we can calculate 412 

the value of F(𝑥𝑖) with the predicted yield 𝑥𝑖 driven by the ith climate scenario (e.g. 413 

drought continues 10 day without rain, as described in section 3.4). The return period 414 

is then computed as T(𝑥𝑖) = 1/F(𝑥𝑖). 415 

 416 

4. Regional Scale Demonstration 417 

4.1 Gridded modelling in parallel mode 418 

In this section, we demonstrate the regional simulation performed for the Liaoning 419 

Province, China to illustrate the computing efficiency of the new parallel mode 420 

developed in GDNDC. 30 counties in this region are randomly selected to model the 421 

annual maize yield during 1996-2008, with each county as an independent grid. The 422 

whole numerical experiment is based on the Intel i7-8700 (3.20GHz) CPU cluster. To 423 

compare parallel and serial mode run times, we run the model eight times for the serial 424 

mode and for each of the parallel modes with 2, 3, 4, 5, and 6 MPI processes. 425 

 426 

The numerical experiment in Fig. 4 explicitly demonstrates the significant improvement 427 

in the computation efficiency with the increase of MPI processes. The variations 428 

between each of the eight repeats are negligible. Therefore, the running time is expected 429 

to be greatly shortened with enough computing resources, especially for large-scale or 430 

global-scale simulation with thousands of grid cells. The enhanced computing capacity 431 

further ensures the effective performance of some other functions including parameter 432 

optimization and uncertainty analysis, which requires much more computation. The 433 

theoretical running time, computed as the average running time for one process (i.e. 434 

serial mode) divided by the number of processes, is also presented in Fig 4. We find in 435 

Fig. 4 that the run time in reality (practical running time) is slightly longer than the 436 

theoretical running time. We attribute the extra time to the computational requirements 437 

for communication between different processes. This could be increased further in a 438 

large cluster if the allocated nodes are physically far from each other. However, it is not 439 

significant considering the overall time. 440 

 441 
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4.2 Parameter optimization module for maize yield prediction 442 

To demonstrate the improvement in predictive accuracy by incorporating the SCE-UA 443 

algorithm into the GDNDC, we carry out two model runs over the all 42 counties with 444 

maize plantation in Liaoning Province for the time period 1998-2008. The first 445 

simulation adopts the default values from the regional database for each crop-related 446 

input parameter. The second simulation instead uses the SCE-UA algorithm to optimize 447 

all eight parameters (as given in Table 3) over a maximum of 1000 iterations. 448 

 449 

Results are presented at both the county level and aggregated together to form a 450 

provisional level estimation in Fig. 5. Bias correction methods have not been applied to 451 

the simulated results as a post-process, although doing so would be expected to improve 452 

the accuracy of the yield produced by the model (especially when using default 453 

parameters). We present the original outputs here as our system is also designed for 454 

water- or N-related simulations and any post-processing to yield outputs will cause a 455 

mass imbalance of the system when continuing model simulations for other applications. 456 

 457 

By comparing the county-level simulated yields with observed statistical records in Fig. 458 

5a and Fig. 5c, we can find the parameter optimization approach effectively enhanced 459 

the R2 from 0.505 to 0.706 while reducing the RMSE from 1836 kg/ha to 1347 kg/ha. 460 

The number of outliers (distant from the 1:1 line) also decreases by using the optimal 461 

parameters. Similarly, for the province-level aggregation (Fig. 5b and 5d), the yield 462 

simulations using parameter optimization also correspond better to the observations – 463 

particularly in the recorded drought years 2000 and 2006.  464 

 465 

4.3 Return period of yield loss in droughts  466 

To demonstrate the Risk analysis module, GDNDC is used to simulate annual maize 467 

yields over 42 counties in Liaoning province across a 50-year period from 1961 to 2010. 468 

The optimal parameters obtained in section 4.2 are used to drive the model while the 469 

ideal maximum grain biomass is set to the 2008 level. Both the county-level outputs 470 

and province-level aggregation are used to derive the parameters of the GEV 471 

distribution (section 3.5). The province-level return period of maize yield in this region 472 

is shown in Fig. 6.  473 

 474 

The most significant drought across the simulation time period was observed in 2000 475 

with a recurrence interval of nearly 60 years. This is consistent with reality given the 476 

extreme summer drought that occurred across Liaoning that year. The droughts of the 477 

1960’s are estimated with around 15-year return periods – consistent with the 478 

conclusions of (Yu et al., 2018) who acknowledged that besides the natural drought 479 

conditions, socioeconomic factors also played an important role in the food deficit 480 

during that period. 481 
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 482 

Taking the 2000 drought, we demonstrate the workflow of the scenario-based dynamic 483 

yield prediction. Assuming the drought period started July 1st, (approximately the 484 

beginning of the productive stage for maize growth), we adopt observed climate data 485 

up until this date. From July 1st onwards, different climatic scenarios are generated 486 

(according to the scenarios listed in section 3.4) such that simulation can proceed until 487 

harvest. In Fig. 7, the drought-induced yield losses and corresponding return periods 488 

under different scenarios are shown. We calculate the yield loss as followed: 489 

𝑌_𝑙𝑜𝑠𝑠𝑖 =
𝑌𝑖𝑑𝑒𝑎𝑙−𝑌𝑖

𝑌𝑖𝑑𝑒𝑎𝑙
× 100%                                            (3) 490 

where Y_lossi is the relative yield loss under ith scenario (including the drought-491 

continuing scenarios and typical-year scenarios); Yideal is the simulated yield under the 492 

ideal scenario without any water deficit since the current day; and Yi is the simulated 493 

yield under ith scenario.  494 

 495 

We find the drought-induced yield loss, as well as the corresponding return period, 496 

increases with the assumed length of drought. The next 10-20 days is the critical period 497 

for hazard mitigation, during which drought conditions are likely to cause further losses 498 

(from <15% at current stage to >30% 20 days later) which makes the magnitude of 499 

yield loss equal to the driest level in history. After 20 days, no further yield losses are 500 

observed since irreversible damage has been generated in the first 20 days. Special 501 

attention should be paid to the western and northern areas of this province given the 502 

areas seem to be more sensitive to drought conditions and therefore potentially more 503 

yield loss. Such dynamic maps for yield prediction are able to provide useful 504 

information and forecasts for decision makers. 505 

 506 

4.4 Improved nitrogen use efficiency by optimal fertilization 507 

Here the annual optimal fertilizer amounts from 2000-2008 are derived by GDNDC for 508 

the maize plantation of the 42 counties in Liaoning. We set the fertilization level of this 509 

region in 2008 (~227 kgN/ha synthetic fertilizer and ~20 kgN/ha manure) as the 510 

baseline for maize production and then calculate the minimal fertilizer amount which 511 

can still maintain the production while increase the nitrogen use efficiency (NUE). The 512 

calculation of NUE is defined as followed: 513 

NUE =
𝑁𝑦𝑖𝑒𝑙𝑑

𝑁𝑓𝑒𝑟+𝑁𝑑𝑒𝑝+𝑁𝑚𝑎𝑛+𝑁𝑓𝑖𝑥
                                           (4) 514 

where Nyield, Nfer, Ndep, Nman and Nfix refer to the nitrogen in yield, fertilizer, deposition, 515 

manure, and biological fixation, respectively. In Fig. 8, we show the long-term annual 516 

average of (i) the fertilizer reduction rate by optimal fertilization compared with 517 

baseline level, and (ii) the NUE at both the baseline and optimal levels. It reveals the 518 

over-fertilization still exists in Liaoning and a 14% reduction of N fertilizer application 519 
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can be achieved without lowering the production level. The west and north counties in 520 

Liaoning have a relatively lower rate of fertilizer reduction because more N is required 521 

to maintain the higher maize yield compared with the counties in the east. Besides, the 522 

NUEs at county level are also improved significantly by optimal fertilization (Table 4). 523 

The averaged NUE in Liaoning increases from 0.19 to 0.42 by optimizing fertilizer 524 

application. Therefore, it is expected to effectively save monetary and energy costs 525 

associated with fertilizer application whilst improving the regional environment by 526 

reducing the surplus N load to groundwater and surface water. Although the NUE 527 

values vary annually due to meteorological factors (e.g. heavy precipitation and runoff), 528 

GDNDC has the advantage of being able to compute the optimal fertilizer amount year-529 

by-year based on the climatic and management conditions. 530 

 531 

5. Discussion 532 

DNDC model has been widely used for the regional-scale simulation for agro-533 

biogeochemical dynamics in the past decade. While improvements have been made to 534 

the scientific processes of the model, its serial computing mode limits its application 535 

for modelling tasks with high computational demand. At the same time, the general 536 

structure has been maintained in its original form – originally intended for field-scale 537 

applications. It combined I/O processes, biogeochemical processes, and some other 538 

functions for decision support, which makes the whole program difficult to understand. 539 

Researchers who are not familiar with the detailed processes in this model must invest 540 

significant time familiarizing themselves with it before embedding their contributions 541 

into the source code. Subsequently, many unique versions with the same underlying 542 

model have been developed as it is not possible for the current structure to integrate all 543 

modifications by different individuals. It leads to issues with version control and is not 544 

sustainable for DNDC’s development. 545 

 546 

The coupler developed in GDNDC is to substitute the previous structure and coordinate 547 

the cooperation between different modules. As the process-based module (DNDC) and 548 

application modules (e.g. Optimal fertilization) are all independent from each other, 549 

both the developing efficiency and maintenance of different versions could be 550 

significantly improved. Apart from its basic use for biogeochemical modelling, a more 551 

integrated system can be achieved in the future for hazard prediction and resource 552 

management by coupling other modules (e.g. regional climate model and agent-based 553 

model) in a similar way. 554 

 555 

The compatibility for both the serial mode and parallel mode is achieved in GDNDC. 556 

Unlike the previous work by Huang et al., (2018), which parallelized the DNDC in a 557 

unique supercomputer platform, the MPI method used in GDNDC is more compatible 558 

in universal computing environments, including PC and large HPC clusters. Now users 559 

of this model are able to choose between serial mode for debugging or small-scale 560 

simulation, or using parallel modes to accelerate the computation for regonal-scale 561 
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modelling. Furthermore, GPU-based accelerating approaches have the potential to 562 

further speed up the calculation of these processes across multiple soil layers, however, 563 

this has not been coupled to GDNDC given the heavy reliance on specific hardware and 564 

therefore compatibility/usability. 565 

 566 

The modules Parameter optimization and Scenario prediction are integrated in 567 

GDNDC to improve the modelling accuracy and quantify future potential yield loss, 568 

respectively. As crop N uptake is one of the most important components for both the 569 

crop growth dynamic and soil N balance, the optimization in the current version of 570 

GDNDC only focuses on these parameters which are sensitive to crop growth. Further 571 

development could be made by adding other parameters if more accurate simulations 572 

are required for GHG emission, N leaching, or soil organic carbon. Compared with the 573 

single-objective optimization, multi-objective optimization could not only improve the 574 

predictive accuracy of multiple metrics of model simulations, but also contribute to 575 

more complex management goals when users have to consider yield productivity, soil 576 

quality, and environmental effects simultaneously. Relevant algorithms like NSGA-II 577 

(Deb et al., 2002) and MOEA/D (Zhang and Li, 2007) are targeted additions to the 578 

system. Further development is also focused on a data assimilation module. As the 579 

predictive bias can still accumulate in the long-term running (even when adopting 580 

optimal parameters), this module will utilize real-time satellite data (e.g. Modis LAI) 581 

to correct the model state variables. Additionally, considering the uncertainty of the 582 

climatic scenarios derived from historical datasets, the online data extraction for climate 583 

observations and forecast will also be supplemented into the following version. 584 

 585 

A method of bisection is used in the algorithm to derive the minimal N fertilizer amount 586 

while maintaining the production level. With this approach, an optimal nitrogen use can 587 

be obtained with the overall environmental cost considered. However, users may 588 

consider the term “optimal fertilization” to have a broader scope than the minimal 589 

fertilizer use defined in GDNDC. As a result, the module will be enhanced over time to 590 

incorporate additional targets based on the practical demand in the future. For the risk 591 

analysis module, the return period metric provides a readily useable and understandable 592 

metric for local governments seeking to mitigate the impacts of drought. Others, e.g. 593 

Huang et al., (2018) and Gaupp et al., (2017) have used a Copula function to derive the 594 

joint probability of yield losses among multiple region. Thus far, it has not been 595 

included in GDNDC because of the dependence on both the distribution curve and 596 

Copula function, and therefore the information is not always easily translated for 597 

dissemination to the public and policy makers. 598 

 599 

GDNDC system integrates different modules together to provide useful information for 600 

decision support. Compared with other agricultural modelling system concentrating on 601 

a specific application, GDNDC system connects the whole workflow from parameter 602 

optimization to drought prediction, optimal management strategy and risk analysis. It 603 



17 
 

provides convenience to users with different backgrounds as they do not need to switch 604 

between software or applications to achieve their desired results. Meanwhile, the new 605 

structure of GDNDC presented in this research creates a user-friendly environment for 606 

joint collaboration among the community of DNDC users. It does not require expertise 607 

across the whole system before developers can start to develop their own modules. 608 

Unlike some agricultural modelling systems which may be maintained by a professional 609 

team or stop seeing further support/development after completion of project, we believe 610 

GDNDC is suitably structured to allow widespread international collaboration and 611 

development and advance the science of agricultural systems modelling. 612 

 613 

6. Conclusion 614 

In this research, we presented the new GDNDC system based on crop-DNDC95 for 615 

regional simulation on agro-biogeochemical processes. The original structure of this 616 

model is substituted with the new framework and a coupler as its kernel to coordinate 617 

the interaction between different modules. We believe that the GDNDC system can 618 

significantly improve the efficiency of development for both the scientific and practical 619 

purposes among different developers and contribute to the version control of this model. 620 

Users can run simulations in both serial and parallel modes which are embedded into 621 

GDNDC, of which the significant benefits of parallelization have been demonstrated. 622 

In addition, several modular functions including parameter optimization, scenario 623 

prediction, optimal fertilization and risk analysis, which are all frequently applied by 624 

third-party software in research or practical application, are now integrated into 625 

GDNDC by default. With application to Liaoning Province, we demonstrate the 626 

effectiveness of GDNDC in providing useful information about crop yield prediction, 627 

drought hazard assessment, and fertilization guidance. While further improvements for 628 

GDNDC are in progress to integrate further state-of-the-art techniques and data 629 

products, we have demonstrated that the new GDNDC in its current form still enhances 630 

the accessibility and convenience for users from different sectors. Overall, the GDNDC 631 

is in a position to now provide timely and trustworthy simulation outputs and forecasts 632 

that stakeholders, including researchers, farmers, policy makers and insurance 633 

companies, need for both long term decision making to reduce the agricultural sectors 634 

effects on the environment and advise reactive decisions in times of severe drought to 635 

minimize yield loss. 636 

  637 
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Table 1 638 

The information about input/output files 639 

Input files (.txt) 

[1.1] Setting file 

(1) Goal of modelling task (e.g. long-term 

modelling, parameter optimization, etc); 

(2) Simulating period; 

(3) Running mode (serial or parallel); 

(4) Path of input database; 

(5) Time interval to read input; 

(6) Path of output file; 

(7) Time interval to write output; 

[1.2] Input database 

(for regional simulation, the 

same property of all grids are 

merged into one file) 

(1) Soil property file; 

(2) Crop parameter file (default); 

(3) Planting structure file; 

(4) Fertilizer amount file; 

(5) Fertilization method file; 

(6) Manure amount file; 

(7) Irrigation ratio file; 

(8) Planting/harvest date file; 

(9) Tillage information file; 

(10) Climatic data files; 

[1.3] Output selection file 

The names of over 120 variables are listed in this 

file, regarding to soil water, carbon, nitrogen cycles 

and crop growth. Users can select among them and 

decide what to write out. 

[1.4] Parameter optimization file 

(if used) 

(1) Selected model parameters;  

(2) The prior interval of parameter value; 

(3) Parameters for SCE-UA; 

(4) Observations; 

[1.5] Optimal fertilizer file  

(if used) 

(1) The current level of fertilizer amount; 

(2) Maximum iteration number; 

[1.6] Scenario prediction file 

(if used) 

(1) Typical year (dry, wet, mid); 

(2) User-defined drought continuing days; 

Output file (.dat) 

[2.1] Restart file 
The state variable on the end day of simulating 

period. It is used to restart the simulation. 

[2.2] Output file It contains information of the selected outputs in 1.3 

640 
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Table 2 641 

The description of the main components of coupler 642 

Component Role 

Mode control 
To switch between serial mode and parallel mode and 

allocate computing processes for numerical calculation; 

Data stream For the data distribution among different modules; 

Task manager To dispatch different task according to user’s requests; 

Timer 
To control the progress of system running at different time 

nodes; 

  643 
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Table 3 644 

The key parameters in GDNDC available for optimization 645 

Parameter Meaning Unit Range* 

MaxY 
The maximum biomass of grain at 

harvest 
KgC/ha (0.5, 1.5) 

TDD 
Thermal degree days required to reach 

maturity 
℃/day (0.8, 1.2) 

WD Water demand for crop growth Kg (0.7, 1.3) 

G_CN C:N ratio of grain KgC/KgN (0.8, 1.2) 

L_CN C:N ratio of leaf KgC/KgN (0.8, 1.2) 

G_Fra 
The allocation coefficient of biomass for 

grain 
- (0.8, 1.2) 

L_Fra 
The allocation coefficient of biomass for 

leaf 
- (0.8, 1.2) 

VarY 
The annual variation in maximum yield 

considering cultivar improvement 
% (0.0, 5.0) 

* It means the multiplier to the default value in DNDC’s regional database of crop 646 

properties. 647 

 648 
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Table 4 649 

The province-level annual NUE in both baseline and optimal levels  650 

 2000 2001 2002 2003 2004 2005 2006 2007 2008 Average 

Baseline 0.14 0.18 0.18 0.19 0.20 0.23 0.19 0.20 0.22 0.19 

Optimal 0.33 0.40 0.40 0.42 0.41 0.49 0.41 0.43 0.48 0.42 

 651 
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 652 

 653 

Figure 1. (a) Traditional way of coupling process-based models with other functions; 654 

(b) The new framework of GDNDC system based on coupler coordination. 655 

  656 
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 657 

Figure 2. The description of two computing modes for DNDC module: (a) serial mode 658 

with one process from start to finish; and (b) parallel mode with multiple processes 659 

operating simultaneously to significantly reduce the model simulation time. 660 

 661 
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 662 

Figure 3. The workflow to determine the optimal fertilizer amount in GDNDC 663 

  664 
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 665 

Figure 4. Boxplot of the running time using different numbers of process. S: serial 666 

mode; P: parallel mode. Theoretical runtimes for parallel processes are calculated as 667 

the practical (observed) runtime from one process (serial) divided by the number of 668 

processes in total. 669 

  670 
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 671 

 672 

Figure 5. The performance of yield simulation using (a) default parameters at the 673 

county level, (b) default parameters with yield aggregated to the provincial level; (c) 674 

optimal parameters at the county level, and (d) optimal parameters aggregated to the 675 

provincial level. 676 

  677 
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 678 

Figure 6. Estimated return periods of the province-level maize yield in Liaoning, 679 

China for 1960-2010.680 
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 681 

Figure 7. County-level predictions of both the yield loss and return period under different climate scenarios on July 1st, 2000682 
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 683 

Figure 8. The county-level annual average during 2000-2008 of fertilizer reduction by 684 

optimal fertilization and the nitrogen use efficiencies (NUEs) at both the baseline and 685 

optimal level   686 

  687 
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