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Abstract 

The random-walk method is inherently simple and numerically stable. However, when used 

in hydro-environmental analyses, most of the existing random-walk methods ignore the 

influence of the non-uniform water depth and only consider the transport of inert materials, 

hence the inability of modelling biochemical reactions. In addition, they mainly examine the 

instantaneous-release problems, with a fixed number of particles moving in the computational 

domain. This paper first presents examples to showcase the capability of the newly developed 

model in simulating the continuous source of non-conservative substances. Then, the method 

is applied to simulate the BOD-DO balance along a hypothetical river. The numerical results 

agree well with the analytical solutions. Finally, the developed model is used to study the 

pollutant transport in the Thames Estuary. The current model is illustrated to be able to 

accurately predict the interaction between multiple pollutants in real-world situations with 

uneven bathymetry and extensive intertidal floodplains. 
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1. Introduction  

    Water quality deterioration has detrimental impacts on the environment, which may threat 

human health and result in significant economic losses.  Accurate and efficient water quality 

estimation is essential for establishing a control strategy for environmental protection 

(Benkhaldoun et al. 2007). In the past few decades, increasing emphasis has been placed on 

the numerical modelling of water quality status in estuarine, coastal and river waters (Lin and 

Roger 1997; Gupta et al. 2004; Murillo et al. 2006). These water bodies have some common 

characteristics, such as shallow water depth, high biochemical activity, uneven bathymetry 

and complex geometry (Yuan 2007). In these shallow waters, the horizontal scale is usually 



 

2 
 

much larger than the vertical scale, so the solute is often assumed to be well-mixed vertically 

over the water column. Many horizontal two-dimensional (2-D) models have been 

successfully developed to predict the flow fields and solute transport processes in these 

shallow-water environments (Murillo et al. 2005; Burguete et al. 2006; Pu 2016). Most of 

them rely on the mesh-based methods to solve the standard shallow water equations and 

advection-diffusion equations using finite-difference or finite-element techniques (Lin and 

Falconer, 1997; Mingham et al. 2001; Benkhaldoun and Mohammed, 2007). However, these 

Eulerian approaches tend to produce artificial diffusion when addressing steep concentration 

gradients and are sensitive to the mesh resolution (Liang et al. 2006; Yang et al. 2018). 

Thanks to advanced computing techniques, increasing level of attention has been paid to 

Lagrangian approaches in computational hydraulics, which have higher levels of stability and 

simplicity than mesh-based methods (Pu et al. 2016; Kazemi et al. 2017; Zheng et al. 2017).  

    The random walk method is a typical mesh-free approach for modelling pollutant transport 

(e.g. Israelsson et al. 2005; Liang and Wu 2014). It originates from statistical physics and has 

been applied in many disciplines such as finance, biology and hydrology. In modelling solute 

transport, the random walk method tracks the movement of discrete particles, which serve as 

indicators to represent the pollutant cloud. Israelsson et al. (2005) summarised the strengths 

and weaknesses of three Lagrangian techniques and concluded that the random walk method 

is most accurate and flexible. Wu and Liang (2019) and Yang et al. (2020) proved that the 

random walk method can achieve higher accuracy than Eulerian models and is better suited to 

the situation with high contamination gradients. This method is attractive for several reasons: 

(1) perfectly conservative by definition, (2) capable of resolving steep concentration gradients 

with high accuracy, (3) efficient when pollutant clouds only occupy a small area of the 

computational domain.  

    Because a large number of particles are needed to obtain smooth concentration 

distributions, the random walk method is often thought to require more computational 

resources than the mesh-based method. The computational cost of the traditional mesh-based 

model depends on the mesh resolution and the time step, with the latter often limited by the 

Courant–Friedrichs–Lewy condition. The computational cost of the random walk model 

depends the number of particles and the time step. Wu et al. (2019) showed that large time 

steps can be used without sacrificing accuracy or stability. The relative computational 

efficiency of the different models depends on the studied problems. The mesh-based method 

often suffers from numerical diffusion unless extremely fine mesh is used. If such extremely 

fine mesh is used, then Yang et al. (2020) demonstrated that the random-walk method can be 
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more efficient as it is free from numerical diffusion and the computation is restricted to 

regions where pollutant clouds exist. In practice, the mesh-based model has to adopt coarse 

meshes for the computational time to be affordable. Then, the dispersion and diffusion 

coefficients need to be specified by calibrating the computational results against 

measurements, and their values take into account the effect of numerical diffusion rather than 

truly reflect the physical processes. When taking such a strategy, the mesh-based model is 

often more efficient than the random-walk method. 

    This paper further develops the random walk model to simulate more complex hydro-

environmental phenomena that involve the transport of non-conservative materials. In water 

quality modelling, there are three types of indicators of the water quality, including physical, 

chemical and biological indicators. Most of them represent non-conservative materials. For 

example, the concentration of Dissolved Oxygen (DO) is an essential indicator for analysing 

the nutrient cycle (Jha et al. 2007). The ability to maintain adequate DO is important for the 

waste assimilative capacity. Streeter and Phelps (1958) are the first to establish the 

relationship between the decay of organic waste, measured by the Biochemical Oxygen 

Demand (BOD), and the DO resource of the river. These chemical indicators quantify the 

amount of non-conservative substances in the water. However, most of the previous research 

on the random walk model only considers inert materials, without taking into account 

chemical and biochemical reactions. This paper first presents three ideal test cases to examine 

the capability of the random walk model for addressing the continuous release of non-

conservative materials. Then, the model is applied to simulate the BOD-DO balance along a 

hypothetical river, with the analytical solutions as references. Finally, the developed scheme 

is used to predict the development of BOD and DO concentrations in the Thames Estuary, so 

as to examine the model’s capability of handling the complex geometry with large tidal 

oscillations.  

2. Depth-averaged random-walk model 

2.1 Governing equations 

    The random walk model used in this paper is based on the depth-averaged advection-

diffusion-reaction equation, which is a variant of the classical 2-D transport equation (Gresho 

& Sani 1998; Pu, et al. 2012). The pollutant substances are assumed to exactly follow the 

shallow flow in the advective stage, but the presence of the solute does not affect the water 

motion. Compared with turbulent diffusion and longitudinal dispersion, the molecular 
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diffusion can be neglected. Under these assumptions, the conservative formulation of the 

solute mass conservation can be cast as: 
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where S = sh, with h being the water depth and s being the depth-averaged concentration of 

the solute; t is time; u and v represent the flow velocities along x- and y-axis, respectively; qs 

is the source term due to the pollutant release or biochemical reaction; U and V represent the 

modified advective velocities, which allow the particle-tracking scheme to use a random-

walk technique designed for the solution of the classical transport process and for the 

simulation of diffusion (Hunter et al. 1993); Dxx, Dxy, Dyx and Dyy represent the dispersion-

diffusion tensor of the depth-averaged mixing in Cartesian coordinates. The streamwise 

dispersion coefficient 𝐷௦ and transverse diffusion coefficient 𝐷௧ can be calculated as:  

𝐷௦ = 𝜀௦ℎ𝑢∗, 𝐷௧ = 𝜀௧ℎ𝑢∗                                            (4) 

𝑢∗ = √௚

஼
⋅ √𝑢ଶ + 𝑣ଶ,  𝐶 =

௛భ/ల

௡
                                                  (5) 

where u∗ is bed shear velocity; 𝜀௦ and 𝜀௧ are two non-dimensional coefficients quantifying the 

magnitude of streamwise dispersion and transverse diffusion, respectively. In Equation (5), C 

is the Chézy coefficient and n is the Manning roughness coefficient, both used to describe the 

bed friction in the flow. For straight open channel flows, 𝜀௦ and 𝜀௧ can be set to typical values 

of 13.0 and 1.2, respectively. For meandering natural free-surface flows, their values should 

be increased significantly. The relationship between the local streamwise-transverse 

coordinator and global Cartesian coordinates can be expressed as:  

𝐷௫௫ = 𝐷௦ 𝑐𝑜𝑠ଶ 𝜃 + 𝐷௧ 𝑠𝑖𝑛ଶ 𝜃                (6) 

𝐷௫௬ = 𝐷௬௫ = (𝐷௦ − 𝐷௧) 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃                (7) 

𝐷௬௬ = 𝐷௦ 𝑠𝑖𝑛ଶ 𝜃 + 𝐷௧ 𝑐𝑜𝑠ଶ 𝜃                (8) 

where θ = arctan(v/u) is the angle between the flow direction and the x-axis.  
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    According to the random walk method, S, which represents the amount of solute per unit 

horizontal area, can be approximated by a probability density function of the particles moving 

with some degree of randomness. In general applications, the water depth, modified 

advective velocities and dispersion-diffusion tensor should be obtained first by solving the 

depth-averaged Navier-Stokes equations, i.e. shallow water equations. Then, this depth-

averaged random walk model is implemented by performing the advective, diffusive and 

reactive procedures successively in each time step, as explained in the following sections. 

 

2.2 Advective process 

Prior to the solution of the transport equation, the flow field should be solved first. For 

most shallow flow solvers, water depths and velocities are stored on discrete points in the 

computational domain. We assume that the water depth, flow velocity and dispersion-

diffusion tensor are stored on Cartesian grid. To reconstruct a continuous variation of the 

flow field over the computational domain, we adopt bilinear interpolation in space. Taking 

the velocity at a point P(x, y) for example, the value is interpolated from the velocities at four 

nearby grid points Qi,j , Qi+1,j , Qi,j+1 , and Qi+1,j+1 , as illustrated in Figure 1.  

 

Figure 1. Bilinear interpolation 

    Three steps are involved in the spatial interpolation procedure. Firstly, we determine (Up1, 

Vp1) on the southern side of the cell at a position aligned with Qi,j and Qi+1,j as follows: 

𝑈௣ଵ = 𝑈௜,௝ + (𝑈௜ାଵ,௝ − 𝑈௜,௝)(
௫೛ି௫೔,ೕ

௫೔శభ,ೕି௫೔,ೕ
)              (9) 

𝑉௣ଵ = 𝑉௜,௝ + (𝑉௜ାଵ,௝ − 𝑉௜,௝)(
௫೛ି௫೔,ೕ

௫೔శభ,ೕି௫೔,ೕ
)            (10) 
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Then, we determine (Up2, Vp2) on the northern side of the cell at a position aligned with Qi,j+1 

and Qi+1,j+1 as follows: 

𝑈௣ଶ = 𝑈௜,௝ାଵ + (𝑈௜ାଵ,௝ାଵ − 𝑈௜,௝ାଵ)(
௫೛ି௫೔,ೕశభ

௫೔శభ,ೕశభି௫೔,ೕశభ
)           (11) 

𝑉௣ଶ = 𝑉௜,௝ାଵ + (𝑉௜ାଵ,௝ାଵ − 𝑉௜,௝ାଵ)(
௫೛ି௫೔,ೕశభ

௫೔శభ,ೕశభି௫೔,ೕశభ
)           (12) 

The third step involves the interpolation in the y-direction, giving (Up, Vp) as: 

𝑈௣ = 𝑈௣ଵ + (𝑈௣ଶ − 𝑈௣ଵ)(
௬೛ି௫೔,ೕ

௬೔శభ,ೕశభି௬೔,ೕ
)             (13) 

𝑉௣ = 𝑉௣ଵ + (𝑉௣ଶ − 𝑉௣ଵ)(
௬೛ି௫೔,ೕ

௬೔శభ,ೕశభି௬೔,ೕ
)             (14) 

    The new particle position after the advective transport process can be expressed by 

Equation (15) using the second-order iterative technique. 

𝑥௔ = 𝑥௢௟ௗ + 𝑈ഥ∆𝑡, 𝑦௔ = 𝑦௢௟ௗ + 𝑉ത∆𝑡              (15) 

where 𝑈ഥ and 𝑉ത  are the two velocity components used in calculating a particle’s advective 

displacement in each time step. To increase the order of accuracy, they are taken to be the 

time-averaged velocity within each time step. 

𝑈ഥ =
ଵ

ଶ
൫𝑈(𝑥௢௟ௗ , 𝑦௢௟ௗ , 𝑡൯ + 𝑈(𝑥௔ , 𝑦௔ , 𝑡 + ∆𝑡), 𝑉ത =

ଵ

ଶ
൫𝑉(𝑥௢௟ௗ , 𝑦௢௟ௗ , 𝑡൯ + 𝑉(𝑥௔ , 𝑦௔ , 𝑡 + ∆𝑡))      (16) 

 

2.3 Dispersion and diffusion process 

    Particles also undergo the dispersion and diffusion transport in each time step. The random 

streamwise and transverse velocities are calculated as follows.  

𝑈௦
ௗ = 𝑟௦ට

ଶ஽ೞ

∆௧
 , 𝑉௧

ௗ = 𝑟௧ට
ଶ஽೟

∆௧
             (17) 

where the subscripts s and t represent the streamwise and transverse directions, respectively. 

The superscript d represents the diffusion-related velocity components. The random numbers 

rs and rt are independent of each other and follow a normal distribution with a mean of zero 

and a standard deviation of unity.  According to the principles of tensor transformation 

between coordinate systems, the diffusion-dispersion process corresponds to the extra 

velocity components in the original Cartesian coordinate system: 
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𝑈௫
ௗ = 𝑈௦

ௗ cos 𝜃 − 𝑉௧
ௗ sin 𝜃, 𝑉௬

ௗ = 𝑈௦
ௗ sin 𝜃 + 𝑉௧

ௗ cos 𝜃         (18) 

Finally, the new position of the particle can be calculated as: 

𝑥௡௘௪ = 𝑥௔ + 𝑈௫
ௗ∆𝑡, 𝑦௡௘௪ = 𝑦௔ + 𝑉௬

ௗ∆𝑡           (19) 

2.4 Reactive process 

    Most of the materials transported by the flow are not inert in the fluid, such as nitrogen, 

phosphorus, bacteria and dissolved oxygen. In order to predict the spatial and temporal 

development of these non-conservative substances, the sources term qs is introduced in 

Equation (1). It represents the increase (qs > 0) or decrease (qs < 0) of the total amount of the 

solute because of chemical or biochemical reactions. For a substance subject to chemical or 

biological transformation, its decay or growth usually follows the principle of the first-order 

reaction: 

𝑞௦ = −𝐾௥𝑆                                                                                                                      (20) 

where 𝐾௥ is the decay rate or reaction constant. In the random walk model, an initial value of 

the mass 𝑚௣
଴ =

ெబ

ே
  is assigned to every particle, where 𝑀଴ is the the total amount of solute 

material at time zero and 𝑁 is the total number of particles. For the first-order decay 

processes, the mass of each particle is simply reduced by a fixed proportion at each timestep. 

For example, the mass of particle P at time t is expressed as: 

𝑚௣
௧ିఛା∆௧ = 𝑚௣

௧ିఛ + ∆𝑡(−𝐾௥𝑚௣
௧ିఛ)                                                                                     (21) 

where 𝜏 in the superscript represents the time of the particle release so that the duration of 

this particle experiencing decay is (t - τ). For particles released at time zero, their value of 𝜏 is 

zero and they have experienced decay from time zero to the considered instant t. If particles 

are not released into the domain at the same time, such as in the situation of a continuous 

source, different particles carry different masses, and the concentration can be calculated via 

the probability density function weighted by the particles’ masses.  

 

2.5 Time advancement  

    When updating a particle’s position and mass using the above method, only first order 

accuracy can be achieved. In the present implementation of the random walk model, a 

second-order Runge-Kutta time integration method is used. The time advancement from 

instant t to instant t+Δt is carried out as follows: 
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𝑥௣
௧ା௱௧ = 𝑥௣

௧ +
ଵ

ଶ
𝛥𝑡(𝑘ଵଵ + 𝑘ଵଶ)                                                                                         (22) 

𝑦௣
௧ା௱௧ = 𝑦௣

௧ +
ଵ

ଶ
𝛥𝑡(𝑘ଶଵ + 𝑘ଶଶ)                                                                                         (23) 

𝑚௣
௧ା௱௧ = 𝑚௣

௧ +
ଵ

ଶ
𝛥𝑡(𝑘ଷଵ + 𝑘ଷଶ)                                                                                       (24) 

𝑘ଵଵ = ቀ
𝑑𝑥

𝑑𝑡
ቁ

𝑥𝑝,𝑦𝑝

𝑡
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ቁ
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ቁ
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                                                                (25) 

𝑘ଵଶ = ቀ
𝑑𝑥

𝑑𝑡
ቁ

௫೛ା௞భభ௱௧,௬೛ା௞మభ௱௧ 

௧ା௱௧
, 𝑘ଶଶ = ቀ

𝑑𝑦

𝑑𝑡
ቁ

௫೛ା௞భభ௱௧,௬೛ା௞మభ௱௧

௧ା௱௧
, 𝑘ଷଶ = ቀ

𝑑𝑚

𝑑𝑡
ቁ

௫೛ା௞భభ௱௧,௬೛ା௞మభ௱௧

௧ା௱
     (26) 

This is a second-order accurate iterative scheme, meaning that the total accumulated error is 

on the order of O(𝛥𝑡ଶ). 

 

2.6 Treatment of moving boundaries 

    The wetting and drying phenomena is common in environmental flows, especially in 

shallow waters with uneven bottoms. A special treatment for this moving boundary is 

explained in detail in Liang et al. (2006). In the random walk model, a minimum water depth 

hmin is introduced, below which the bed is regarded to be day. The water depth at each 

particle’s location is checked in each time step. If a particle is found to be on a dry bed, then 

the particle will be frozen to the position. The frozen particles are excluded in the advective 

and diffusive processes, but the reaction process is still considered on frozen particles. When 

the water depth is higher than hmin, the frozen particles are freed and then participate in the 

advective, diffusive and reactive processes.  

 

3 Model refinement and verification  

3.1 Continuous source  

The present 2-D random walk model was first applied to the continuous release problem. A 

continuous discharge is released from the location (x0, y0) = (0, 400 m). The flow is uniform 

with 𝑢଴ = 1 m/s along the x-axis. The water depth is constant with h = 1 m and the Chézy 

coefficient is 40 m1/2/s over the whole test area. The constants for calculating the streamwise 

dispersion and transverse diffusion coefficients are set to be typical values of 13.0 and 1.2, 

respectively, for straight open channel flows. According to Equation (4-8), the mixing 

coefficients in this case are calculated to be Dxy = Dyx = 0, Dxx = Ds = 1.020 m²/s,  Dyy = Dt = 

0.094 m²/s.  
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(a) Scatter of particles 

 

(b) Concentration distribution for the case of constant discharge rate 

 

(c) Concentration distribution for the case of variant discharge rate 

Figure 2 Continuous release problem in a uniform flow 

    Two pollutant discharge conditions are considered in this section. Firstly, the mass 

discharge rate 𝑀̇ is constant at 𝑀̇଴ = 233.06 kg/s. For this ideal case with uniform flow 

along the x-axis and constant mass discharge rate 𝑀̇ , the analytical solution can be expressed 

as: 

𝑆(𝑥, 𝑦) =
ெ̇బ

ඥସగ஽೤೤௫௨బ
𝑒

ି
ೠబ೤మ

రವ೤೤ೣ                                                                                                (27) 

Secondly, the time-varying mass discharge rate is applied to the model. The mass discharge 

rate 𝑀̇ is assumed to be a sinusoidal function of time, as seen in Equation (28).  

𝑀̇ = 𝑀̇଴ ቀ1 +
ଵ

ଶ
sin ቀ

గ௧

ହ଴
ቁቁ                                                                                                  (28) 



 

10 
 

    The time step is ∆𝑡 = 1 s. The number of particles released to the computational domain is 

103 per time step. Whether the mass discharge rate is constant or time-varying, the scatter of 

particles is the same, as illustrated in Figure 2(a). The only difference is the mass associated 

to each particle. In the case of constant discharge rate, all the particles have the same mass. In 

the case of time-varying discharge rate, particles may carry different masses. The 

concentration contour 600 s after the start of the simulation is presented in Figures 2(b,c). It is 

notable that the concentration generally decreases away from the source and the centreline of 

the pollutant cloud is in the flow direction. The contour of the concentration for the time-

varying mass discharge rate depicts a certain degree of periodic oscillation along the flow. 

 

(a) Constant mass discharge 

 

(b) Time-varying mass discharge 

Figure 3 Profiles of concentrations along the x-axis at y = 400 m.  

 

Figure 3(a) shows the concentration along centreline of the pollutant could predicted by the 

random walk model, which is perfectly consistent with the analytical solution. When the 

discharge rate is not constant, then there is no analytical solution, The black square symbols 

in Figure 3(b) represent the variation of concentrations along the centreline of the pollutant 

cloud predicted by the random walk model with time-varying mass discharge rate. Here, the 

time-averaged flow rate is the same as that in Figure 3(a), but it varies from 0.5𝑀̇ and 1.5𝑀̇. 
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The predicted results show an overall trend of decrease along the flow but are accompanied 

by periodic fluctuations. The predicted concentrations are bounded by the analytical solutions 

with constant mass discharge rates of 0.5𝑀̇ and 1.5𝑀̇, which are also plotted in Figure 3(b) as 

solid and dashed lines, respectively.  

Figure 4 Cross-flow concentration distribution at four downstream sections at t = 600 s  

 

    As analytical solutions exist for case 1, quantitative comparisons are made between the 

predicted and theoretical concentration distributions in the cross-flow directions. Figure 4 

illustrates the concentration profiles at four sections downstream of the source. The 

concentration distribution follows a Gaussian distribution in the cross-flow direction. The 

peak concentration gradually decreases while the distribution range increases with the 

location moving farther away from the discharge point. These results predicted by the random 

walk model, indicated by square symbols, agree well with the analytical solution, indicated 

by solid lines.  

 

3.2 Mass decay  

    Another ideal test case with known analytical solutions is used in this section to verify the 

random walk prediction quantitatively. The flow is uniform with 𝑢଴ = 1 m/s along the x-axis. 

The water depth h = 1 m, and the Chézy coefficient is 40 m1/2/s over the whole test area. The 

values of 𝜀௦ and 𝜀௧ are set to be 13.0 and 1.2, respectively. Then, the mixing coefficients are 

calculated to be Dxy = Dyx = 0, Dxx = Ds = 1.020 m²/s,  Dyy = Dt = 0.094 m²/s. In this case, the 

total amount of solute material of M = 233.06 kg is released suddenly at the origin. The 

material is assumed to be subject to biological decay, which can be expressed as the first-

order reaction function, i.e. Chick’s Law, as given in Equation (20). Then, the analytical 

solution to this 2-D reaction case can be written as:  
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𝑆(𝑥, 𝑦, 𝑡) =
ெ/௛

ସగ௧ඥ஽ೣೣ஽೤೤
𝑒

ି
(ೣషೣబషೠ೟)మ

రವೣೣ೟
ି

(೤ష೤బ)మ

రವ೤೤೟
ି௄ೝ௧

                                                               (29) 

 

Figure 5 Evolution of the pollutant cloud at 30 s, 180 s, 360 s and 600 s 

 

 

Figure 6 Time variations of the peak concentration of the pollutant cloud  

 

    The time step ∆𝑡 of 1 s is adopted. The number of particles released to the computational 

domain is 2.33 × 106. As all the particles are released at t = 0, the value of τ in Equation (21) 

is zero. Each plot in Figure 5 corresponds to one decay rate, which includes the predicted 

concentration contours at four instants: t = 60 s, t = 180 s, t = 360 s and t = 600. A total of six 

decay rates are considered, i.e. Kr = 0 min-1, 0.2 min-1, 0.4 min-1, 0.6 min-1, 0.8 min-1 and 1.0 

min-1, hence the six plots. In general, these concentration contours are elliptical. Due to the 

much smaller level of transverse diffusion than that of streamwise dispersion, the solute 

clouds experienced rapid elongation along the flow direction. The grey colour is used to 

represent the non-zero solute concentration that is lower than 0.001 units, indicating where 

the pollutant is nearly assimilated into the ambient water. In theory, the concentration should 

be non-zero everywhere in the domain. However, there is a minimum concentration that can 

be numerically resolved by the random walk method, which is determined by the number of 
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particles deployed. No particles can reach the regions with concentrations smaller than the 

minimum value, and thus the concentration in these regions will be deemed to be zero in the 

random walk simulation. A qualitative comparison of the predictions with different decay 

rates highlights the effect of mass decay over time, which becomes more and more apparent 

as time progresses. The high-concentration area shrinks rapidly with time, especially with a 

high decay rate of the non-conservative solute. Taking 𝐾௥ = 0.2 min-1 for example, the 

concentration everywhere in the domain falls below 0.001 units at t = 600 s. As the decay 

coefficient increases to 𝐾௥ = 1.0 min-1, it takes only 180 s for the concentration everywhere 

in the domain to fall below 0.001. The quantitative analysis is illustrated in Figure 6, which 

compares the theoretical and predicted maximum concentrations. The results generated by the 

random walk model, indicated by symbols, are in perfect agreement with analytical solutions, 

indicated by solid lines. When the solute is assumed to be conservative (𝐾௥ = 0), the 

combination of computational parameters produces a peak concentration of unity at t = 60 s. 

This peak concentration decreases more rapidly with the increase of the decay rate. 

 

3.3 BOD-DO model  

    In this section, the random walk model is applied to predict the variations of the BOD and 

DO concentrations in uniform flows. An aerial view of a narrow river is illustrated in Figure 

7, together with the key parameters. In this case, the flow is uniform with 𝑢଴ = 0.25 m/s along 

the river. We use the x to designate the streamwise coordinate in this one-dimensional river 

model, so x-axis may be curved rather than straight. The water depth is constant at h = 1 m. 

The traditional BOD-DO interaction model was established by Streeter and Phelps (1958). 

The concentration of the DO may increase due to re-oxygenation and photosynthesis at the 

free surface. The wastewater is assumed to be continuously discharged into the narrow river 

at a constant rate. The distribution of the solute is steady and can be assumed to be totally 

mixed over a cross-section. Then, the relationship between the BOD and DO concentrations 

can be simplified as follows: 

𝑈
ௗௌಳೀವ

ௗ௫
= −𝐾௥𝑆                                                                                                               (30) 

𝑈
ௗௌವೀ

ௗ௫
= 𝐾௔(𝑆஽ை௦௔௧ − 𝑆஽ை) − 𝐾௥𝑆஻ை஽                                                                            (31) 

The analytical solution to the Equations (30-31) can be expressed as: 
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𝑆஻ை஽ = 𝑆஻ை஽଴𝑒ି௄ೝ௫/௎                                                                                                      (32) 

𝑆஽ை = 𝑆஽ை௦௔௧ − 𝑆஻ை஽
௄ೝ

௄ೌି௄ೝ
ቂ𝑒ି

಼ೝೣ

ೆ − 𝑒ି
಼ೌೣ

ೆ ቃ − (𝑆஽ை௦௔௧ − 𝑆஽ை଴)𝑒ି௄ೌ௫/௎                    (33) 

where 𝑆஽ை଴ and 𝑆஻ை஽଴ are DO and BOD concentrations, respectively, at origin x = 0; 𝑆஽ை௦௔௧ 

is the saturated DO concentration in water; 𝐾௥ is the BOD deoxygenation rate and 𝐾௔ is the 

re-oxygenation rate.  

 

 

 

 

Figure 7 Continuous discharge of wastewater in the uniform flow 

 

(a) Profile of BOD and DO concentrations  

 

(b) Relative errors for BOD and DO predictions 

River    SBOD0 = 5 mg/l 
SDO0 = 8.8 mg/l 
SDOsat = 9.17 mg/l 

Wastewater Discharge Flow direction    

u0 = 0.25 m/s 
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Figure 8 Variations of BOD and DO concentrations and prediction errors along x-axis  

 

 

(a) Profiles of DO concentration 

 

(b) Relative errors for DO predictions  

Figure 9 Variations of DO concentration and prediction errors along x-axis for different 

combinations of Kr and Ka.  

    In random walk modelling, the original unsteady advection-diffusion-reaction equations 

are solved. Two sets of particles are used as BOD and DO indicators respectively. The mass 

of a particle at time t is updated using Equations (34-35), which are the discrete form of the 

reaction terms on the right-hand sides of Equations (30-31).  

𝑚஻ை஽(𝑡 + ∆𝑡) = 𝑚஻ை஽(𝑡) + ∆𝑡(−𝐾௥𝑚஻ை஽(𝑡))                                                             (34) 

 𝑚஽ை(𝑡 +  ∆𝑡) = 𝑚஽ை(𝑡) + ∆𝑡(𝐾௔𝑚஽ை௦௔௧ − 𝐾௔𝑚஽ை(𝑡) − 𝐾௥𝑚஻ை஽(𝑡 +  ∆𝑡))              (35) 
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    In the simulation, 𝐾௥ is set to be 0.2 per day while 𝐾௔ is set to be 0.3 per day. The sewage 

effluent contains BOD of 5 mg/l and DO of 8.8 mg/l. The saturation concentration of oxygen 

in water at 20 oC is 9.17 mg/l. The time step is ∆𝑡 = 1 s. The number of particles released to 

the computational domain is 103 per time step. Figure 8(a) compares the numerical results of 

the random walk model, indicated by symbols, and the analytical solutions, indicated by solid 

lines, for the corresponding BOD decay curve and DO sag curve. It can be seen that the 

predicted results agree well with the analytical solutions. An error analysis is performed by 

calculating the relative error of each predicted concentration as follows.  

𝐸 =  
หௌ೛ೝ೐೏೔೎೟೐೏ିௌೌ೙ೌ೗೤೟೔೎ห

ௌೌ೙ೌ೗೤೟೔೎ೌ೗
                                                                                                   (36) 

where E gives the relative difference between the predicted concentration Spredicted and the 

analytical solution Sanalytical. As seen in Figure 8(b), the relative error of any predicted 

concentration, in comparison with the analytical value, is less than 1.6% in all cases.  

    Figure 9(a) illustrates the DO concentration profile with a series combination of BOD 

deoxygenation rate 𝐾௥ and re-oxygenation rate 𝐾௔. As 𝐾𝑎 increases, the DO distribution 

curve becomes flatter and approaches the value of SDOsat more rapidly. On the contrary, the 

DO curve sags more and approaches the asymptotic value more slowly when the BOD 

deoxygenation rate 𝐾௥ gets larger. It can be concluded that the BOD deoxygenation rate 𝐾௥ 

has a greater influence on the DO concentration. Figure 9(b) presents the error analysis for 

the different combinations of the reaction constants. Again, all the relative errors are less than 

1.6%. Overall, the numerical results predicted by the current random walk model agree well 

with the theoretical solutions. 

 

4. Model application to Thames Estuary  

In the previous section, the performance of the random walk model has been tested in three 

idealised examples. In this section, the validated random walk model is applied to predict the 

BOD-DO interaction in the Thames Estuary. The Thames Estuary is located in the southeast 

of the UK, where the River Thames meets the North Sea. The unsteady flow field has been 

obtained by solving the shallow water equations using the TVD-MacCormack scheme 

(Mingham et al. 2001, Liang et al. 2006 and 2010b) on rectangular mesh. This algorithm is a 

modification of the widely-used MacCormack scheme by adding an extra step according to 

the total variation diminishing (TVD) principle. This method has been widely used for 

simulating hydro-environmental dynamics and is taken as a representative mesh-based 

method here. Figure 10 presents a typical water depth distribution in the Thames Estuary. In 
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terms of the fluvial inputs from upstream, only the River Thames and River Medway are 

considered in the simulation. A number of assumptions are adopted in this real-world 

example. The variations of the water level at the seaward boundaries are assumed to follow a 

sinusoidal function. The average sea level is assumed to be 0.05 m above the Newlyn Datum, 

and the tidal period is 12 h with amplitude of 3.02 m. Manning roughness values are specified 

according to the bed condition. The value for the normal seabed is 0.02 s/m1/3, while the 

value for tidal floodplains covered with vegetation is 0.13 s/m1/3. The computational mesh 

used by the shallow water solver consists of 1250 ×500 square elements of equal size with a 

side length of 80 m. The detailed computational conditions and the verification of the 

computed flow field can be found in Liang et al. (2010a, 2010b). The time variations of the 

velocities and water depths stored on this mesh are fed into the random walk model to drive 

the pollutant transport processes. The time step is set to be 1 s in the random walk model. 

Typical values of 13.0 and 1.2 are used again for the longitudinal dispersion and turbulent 

diffusion coefficients, respectively.  

 

Figure 10 Typical water depth distribution in the Thames Estuary, superimposed with the 

discharge point Q 

    Two hypothetical release scenarios are considered. The first scenario is consistent with 

previous research in Liang et al. (2010b) for comparison purpose. It is assumed that the waste 

effluent is suddenly discharged into the tidal flow from location Q (x0, y0) = (72 km, 20.4 km) 

within 10 min. The total number of particles released is 1.95×105. Only one non-conservative 

material is considered in this scenario. The variation of the total discharge rate Qs with time is 

shown in Figure 11. In the mesh-based modelling, the discharge is introduced to a 

computational element and so it is equal to qs times the area of the element. In the random 

walk method, no mesh is used, and the effluent is exactly located at point (x0, y0).  



 

18 
 

 

Figure 11 Total discharge rate Qs at release point Q (x0, y0) = (72 km, 20.4 km)  

 

(a) Kr = 0                        (b) Kr = 0.2/day                         (c) Kr = 2/day 

Figure 12 Snapshots of solute clouds in the Thames Estuary 3 hours after the release 

 

(a) Kr = 0                        (b) Kr = 0.2/day                         (c) Kr = 2/day 

Figure 13 Snapshots of solute clouds in the Thames Estuary 9 hours after the release 

 

(a) Kr = 0                        (b) Kr = 0.2/day                         (c) Kr = 2/day 
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Figure 14 Snapshots of solute clouds in the Thames Estuary 18 hours after the release 

 

(a) Kr = 0                        (b) Kr = 0.2/day                         (c) Kr = 2/day 

Figure 15 Snapshots of solute clouds in the Thames Estuary 24 hours after the release 

 

Figures 12-15 display a sequence of the concentration snapshots over the domain predicted 

by the 2-D random walk model. The grey colour represents the wet areas where the domain is 

occupied with water. The ebbing stage can be seen in Figures 12 and 14, while the flooding 

stage can be seen in Figures 13 and 15. As expected, the pollutant cloud oscillates back and 

forth with the tidal currents. In the first tidal cycle, the solute spreads over a broader area and 

becomes less concentrated as time progresses. The mesh-based TVD-MacCormack method 

had been applied to the same case in Liang et al. (2010b). By comparison, the random walk 

model gives an even higher resolution of the concentration distribution, as the random walk 

method suffers no numerical diffusion. On the contrary, the mesh-based approaches suffer 

from numerical diffusion unless the computational mesh is very fine. As for the 

computational cost, it depends on the number of particles and the time step used in the 

random walk modelling. The current simulation time is around 8 hours on a Dell Optiplex 

790 computer for 48 hours of the transport process. The substance released in the tidal flow is 

assumed to be subject to biological transformation. The decay is expressed as the first-order 

reaction function, as shown in Equation (20). In Figures 12-15, each graph shows the 

predicted concentration contours with one decay rate at one instant. It can be seen that the 

concentration of non-conservative solute decreases rapidly with the increase of the decay rate 

and with the increase of time. The good comparison between predictions using this model 

and those based Euler methods indicates that the current random walk model is capable of 

modelling the transport of non-conservative materials in real-world scenarios with unsteady 

flows over uneven bed elevations and irregular geometries.  
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(a) t = 3 hours 

 

(b) t = 6 hours 

 

(c) t = 9 hours 
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(d) t = 12 hours 

 

 (e) t = 24 hours 

 

(f) t = 30 hours 

Figure 16 Snapshots of the BOD (left) and DO (right) distributions in the Thames Estuary 

 

    The other release scenario considered is that the wastewater is continuously discharged 

into the Thames estuary. Both the BOD and DO concentrations are considered to examine the 

2-D random walk model under this complicated tidal flow condition. In the simulation, 𝐾௥ is 

set to be 0.2 per day while 𝐾௔ is set to be 0.3 per day. The wastewater contains BOD of 5 
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mg/l and DO of 8.8 mg/l at the release point. The saturation concentration of oxygen in water 

at 20 oC is 9.17 mg/l. The number of particles released per time step is set to be 103. Figure 

16 shows the snapshots of BOD and DO concentration fields at six instants. At t = 3 hours, 

the solute cloud spreads from the release point to the upper reaches of the River Thames. It is 

notable that the closer to the release point, the higher the concentration. The results at this 

instant are similar to the trend observed in Figure 2(b). After a half tidal cycle, as seen in 

Figure 16 (b), the clouds make a sharp U-turn and move towards the North Sea. Such a 

behaviour is reasonable as flow field changes direction as the tide switches into the ebbing 

stage. As seen in Figure 16 (c) and (d), there are two locally high-concentration patches in the 

DO concentration contours at 9 and 12 hours, one at the release point and the other at the 

location (x, y) = (88 km, 23 km) where the pollutant returns from the North Sea during the 

second half of the tidal cycle. At t = 30 hours, Figure 16(f) shows that the wastewater reaches 

the mouth of the River Medway. The solute cloud continues to oscillate back and forth with 

the tidal currents and spreads over a broader area as time progresses.  

 

Figure 17 Mass variations of the BOD and DO attached to each particle 

 

Figure 18 Time developments of the BOD and DO peak concentration in the Thames Estuary 
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    Figure 17 compares the BOD and DO mass variations predicted by the random walk model 

with the analytical solutions. The numerical results, indicated by symbols, are in good 

agreement with analytical solutions, indicated by solid lines. In the previous discussion, the 

solute clouds oscillate back and forth with the tidal currents and become less concentrated as 

time progresses. Such phenomena are correspondingly evident in Figure 18. The temporal 

evolution of the maximum concentration is subject to periodic fluctuations, although an 

overall downward trend is evident. The period of 12 hours is consistent with the period of the 

tide flow. 

 

5. Conclusions 

    The depth-averaged random walk model is developed to investigate unsteady solute 

transport processes in shallow water flows. Idealised cases are modelled to examine the 

capability of the present random walk method in addressing the instantaneous and continuous 

release of non-conservative substances in the simulations. The model was first applied to an 

ideal continuous release problem. The influence of the decay rate on the predictions is also 

investigated in the second test case. Then, the model is applied to solve a hypothetical BOD-

DO balance problem in a one-dimensional uniform flow. The numerical predictions of the 

solute advection/diffusion/reaction processes are in good agreement with analytical solutions. 

Finally, the validated random walk model is successfully applied to predict two scenarios in 

the Thames Estuary, including the short-duration and continuous release cases. For the case 

of short-duration release of a conservative material, the random-walk predictions agree well 

with the conventional numerical results based on fine meshes. In the case of continuous 

discharge of wastewater into the Thames Estuary, the coupling of the BOD and DO is 

satisfactorily reproduced. The peak concentration of the degradable solute periodically 

fluctuates with time, with a period consistent with the specified tidal period.  

    The model developed in this paper is shown to be capable of modelling continuous release 

of non-conservative pollutants and the interaction between pollutants. To the best knowledge 

of the authors, it is the first time that the random-walk method is applied to such situations. In 

this feasibility study of the newly developed random walk algorithm, only a maximum of two 

non-conservative pollutants are considered. In the future, we will extend the present random-

walk model to include more water quality indicators capable of conducting water quality 

analyses in more complicated real-world situations.   
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