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Abstract 

Concerns regarding the impact of climate change, food price volatility, and weather uncertainty 

have motivated users of simulation models to consider uncertainty in their simulations. One way 

to do this is to integrate uncertainty components in the model equations, thus turning the model 

into a problem of numerical integration. Most of these problems do not have analytical solutions, 

and researchers, therefore, apply numerical approximation methods. This article presents a novel 

approach to conducting an uncertainty analysis as an alternative to the computationally 

burdensome Monte Carlo-based (MC) methods. The developed method is based on the degree 

three Gaussian quadrature (GQ) formulae and is tested using three large-scale simulation models. 

While a standard single GQ method often produces low-quality approximations, the results of this 

study demonstrate that the proposed approach reduces the approximation errors by a factor of nine 

using only 3.4% of the computational effort required by the MC-based methods in the most 

computationally demanding model.  

 

Keywords: Uncertainty analysis, systematic sensitivity analysis, stochastic modeling, multiple 

rotations of Gaussian quadratures, Monte Carlo sampling, computable general equilibrium models, 

partial equilibrium models. 
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1. Introduction 

1.1. Uncertainty in simulation modeling 

Simulation models are an established tool for assessing the impact of an exogenous shock, such as 

political or biophysical changes in ecological, economic, and social systems. Such models are also 

widely applied in analyses of agro-environmental systems and land-use changes. However, 

because all models are imperfect representations of real-world systems and accurate input data are 

not always available, the robustness of the model results needs to be addressed. In the context of 

uncertainty analysis (UA), Sheikholeslami et al. (2019) defined robustness as the stability of the 

results, i.e., a lower variability of the results obtained by solving a model with a sample of 

parameter values drawn from a probability distribution indicates a higher degree of robustness. 

Interested readers are directed to Kwakkel et al. (2016) for a comparison of different robustness 

metrics.  

A standard approach to tackling uncertainty in simulation models depicting agro-environmental 

systems is to incorporate uncertain terms1 sampled from a probability distribution. This allows us 

to address not only issues of robustness but also a wide range of policy questions related to 

uncertainty. Simulation model analyses that use such terms to depict uncertainty can be classified 

into two main groups according to their purpose. The first group applies a systematic sensitivity 

analysis (SSA) regarding uncertain model parameters, typically referred to as epistemic 

uncertainty resulting from a lack of knowledge (Uusitalo et al. 2015) (e.g., Arndt and Hertel 1997; 

Valenzuela et al. 2007; Beckman et al. 2011; Villoria et al. 2013; Cho et al. 2016). The second 

group explicitly considers the uncertainties inherent in the input variables, such as the weather, by 

describing such variables with probability distributions and producing distributions of the model 

outputs under an input uncertainty (e.g., European Commission 2018; Lammoglia et al. 2018; 

OECD/FAO 2018). The latter group is a type of UA (Loucks and van Beek 2017). The uncertainty 

considered by the second group is known as aleatory uncertainty (Uusitalo et al. 2015). In 

simulating agro-environmental systems, many studies have addressed the policy implications of 

uncertainty (Westhoff et al. 2005; Hertel et al. 2010; Moss et al. 2010; Verma et al. 2011; Gouel 

                                                 
1 Some studies refer to such uncertain terms as stochastic; see Beckman et al. (2011), Gouel and Jean (2013), and 

Pianosi et al. (2016). 
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and Jean 2013). In this article, the term “uncertainty” refers to aleatory uncertainty because we 

consider the uncertainty resulting from crop yield variability to be due to weather uncertainty.  

1.2. Uncertainty analysis as a numerical integration problem  

To quantify uncertainty in simulation models, researchers normally apply numerical 

approximation methods because, in most cases, such problems do not have analytical solutions 

(Arndt 1996). One approach to modeling uncertainty is to consider it as a problem of numerical 

integration. Consider the following simple example of UA in a simulation model: Let x be an 

exogenous variable or parameter, g(x) be the probability density function describing the 

uncertainty of x supported on a particular interval [a, b], and f(x) be a function in the model for 

which we wish to find the expected value: 

(1)  𝐸[𝑓(𝑥)] = ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥
𝑏

𝑎
. 

 

In many applications, such integrals cannot be evaluated directly because they are not given in a 

closed form. Instead, numerical integration methods must be used. To this end, we choose n points 

𝑥𝑘  (called nodes) within the domain of integration, with associated weights, 𝑤𝑘 , and we 

approximate integral (1) using the following finite sum: 

 

(2)  𝐸̃[𝑓(𝑥)] = ∑ 𝑓(𝑥𝑘
𝑛

𝑘=1
)𝑤𝑘. 

 

The nodes and their weights for such a quadrature formula are chosen in such a way that 

approximation (2) yields the same results as (1) for polynomials of low degree. Consequently, the 

degree of accuracy of quadrature formula (2) is defined as follows: 

 

(3) max{𝑀 ∈ 𝑁0: 𝐸[𝑥𝑚] = 𝐸̃[𝑥𝑚] for 𝑚 = 0, . . . , 𝑀}. 

 

This approach approximates the continuous probability distribution with density function g(x) in 

(1) based on a finite discrete probability distribution. Thus, the finite discrete probability 
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distribution is chosen to maximize the number of shared moments (e.g., expected value, variance, 

skewness, or kurtosis) with a continuous probability distribution. 

This approach can also be used for multivariate integrals; in this case, we refer to approximations 

of type (2) as cubature formulae. As an example, consider the case of a multivariate normal 

distribution with mean vector   and covariance matrix 𝛴. Then,  g x is given by the following: 

 

(4) 𝑔(𝑥⃗) =
1

√(2𝜋)𝑑det(∑)

exp (−
1

2
(𝑥⃗ − 𝜇⃗)𝑇𝛴−1(𝑥⃗ − 𝜇⃗)).                                                       

 

Note, however, that this implies that the domain of integration is no longer bounded, but instead 

is all Rn (Euclidean space). There is a wide range of methods for choosing the nodes and their 

weights. Those most frequently used are discussed below. 

1.3. Sampling and analysis methods 

Methods for SSA/UA can be categorized as local or global. Local methods consider the uncertainty 

of the model output against variations of a single input factor (Pianosi et al. 2016). The 

disadvantage of this approach is that it does not consider interactions among input factors and 

therefore only provides a limited view of model uncertainty (Douglas-Smith et al. 2020). By 

contrast, global methods evaluate the input uncertainty over the entire range of input space, varying 

all input factors simultaneously (Matott et al. 2009). This type of method allows for a more 

comprehensive depiction of model uncertainty by accounting for the interactions among the input 

factors (Saltelli and Annoni 2010). Saltelli et al. (2019) claim that SSA/UA should always be based 

on global methods because local methods do not adequately represent models with nonlinearities. 

However, considering the computational capacity required to produce statistically robust results, 

conventional methods of global SSA/UA suffer from poor computational efficiency (Razavi and 

Gupta 2016a), which is one of the factors explaining the limited use of these methods compared 

to local methods (Douglas-Smith et al. 2020).  

Douglas-Smith et al. (2020) analyzed 11,625 studies applying or introducing SSA/UA techniques 

within the field of environmental science from 2000 to 2017. The study shows that, during the 

time period investigated, there was a sharp increase (by a factor of 5) in the number of publications 
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that apply such techniques, whereas the trend of studies introducing and applying novel tools for 

SSA/UA has remained largely flat. Despite the fact that SSA/UA is becoming more relevant, 

researchers still apply conventional methods, which are computationally burdensome.  

The remainder of this section discusses some of the most established and widely applied SSA/UA 

methods, presenting their advantages and drawbacks.    

The Monte Carlo (MC) method was introduced by Metropolis and Ulam (1949) and has been one 

of the most commonly used sampling techniques. The basic idea behind the MC method is to 

perceive integration as a probabilistic problem and approximate its solution using statistical 

experiments. Thus, the underlying logic is to choose the nodes randomly. According to the law of 

large numbers, the numerical result will then be close to the correct value if the number of points 

is sufficiently large. Although this method is easy to apply and extremely effective, it is inefficient 

because it requires large sample sizes. According to Haber (1970), the MC sample size should 

range from 40,000 to 100,000, to obtain an error below 1%. The main disadvantages of this method 

are therefore slow convergence rates with increasing sample sizes (Engels 1980) and high 

computational requirements. Because many iterations are necessary for obtaining reliable results 

(Artavia et al. 2015; Razavi and Gupta 2016a), its application in large-scale simulation models is 

extremely demanding, if not infeasible, in terms of the computational requirements, time, and data 

management costs (e.g., European Commission (2018)).  

To achieve a higher convergence rate using MC-based methods, a type of stratified sampling is 

typically applied (Saltelli et al. 2008). The idea behind this approach is to divide the parameter 

space into sub-regions (strata) and assign an equal quota of samples to each sub-region (Norton 

2015). In this case, the sub-regions do not necessarily need to be equally weighted. Hence, the 

sample size will be equal to N S , where N is the number of strata, and S is the number of points 

selected from each stratum. This strategy has several advantages over pure random sampling. First, 

it ensures that the randomly selected points are spread somewhat evenly across the domain of the 

distribution according to the probability mass, thus considerably increasing the rate of 

convergence. Consequently, the sample size required to obtain results of equal quality is much 

smaller than that used in random sampling. The challenge with this method is the definition of the 

strata and the calculation of their probabilities (Saltelli et al. 2008). 

The Latin hypercube sampling (LHS) technique is a compromise between using pure random 

sampling and stratified sampling. It divides the domain of the probability distribution into N 
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subsets of equal probability, where N is the sample size, and then randomly selects one point from 

each subset (Helton and Davis 2003). In contrast to stratified sampling, there is no need to define 

the strata or calculate their probabilities. This method ensures full coverage of the entire parameter 

space (Norton 2015).  

As the main advantage of all MC-based methods, the accuracy of the approximation is independent 

of the degree of smoothness of the integration function. In addition, such methods are effective in 

revealing nonlinearities. Nonetheless, they require thousands of iterations for each input factor and 

can be extremely demanding computationally, particularly for large-scale simulation models 

(Razavi and Gupta 2016a). 

Because no predetermined sample size fits all models, often—and typically driven by the 

computational feasibility—SSA/UA are applied in large-scale simulation models using ad hoc and 

relatively small sample sizes that may limit the quality of the approximations (Valin et al. 2015; 

OECD/FAO 2017; Villoria and Preckel 2017; Mary et al. 2018)2. This was also recognized by 

Sarrazin et al. (2016), who stated that in environmental applications with frequently complex 

models and computationally demanding simulations, a tradeoff exists between the robustness of 

the results and the computational costs3 . Nevertheless, other studies have suggested various 

approaches to convergence evaluations. For example, Pianosi et al. (2016) suggest evaluating the 

convergence using sub-samples from the original sample and comparing the sensitivity indices of 

the results obtained from the sub-samples with the results obtained from the original sample. Yang 

(2011) suggests gradually increasing the sample size and observing the behavior of the coefficient 

of variation in the results.  

Variance-based methods are designed to evaluate the impact of the variability of the input 

parameters on the overall variability of the output (Norton 2015). Some of the more well-known 

methods falling under this category are the Fourier amplitude sensitivity test (FAST) and the Sobol 

method (Douglas-Smith et al. 2020). Because these methods are based on the MC algorithm, they 

become computationally demanding as the number of input factors considered increases (Pianosi 

et al. 2016). For example, the Sobol method requires N ( 2n 2 )   points, where N is the chosen 

MC sample, and n is the number of input factors (Yang 2011). As an advantage of these methods, 

                                                 
2 These studies applied 550, 190, 300, and 10,000 points, respectively. 
3 However, it should be acknowledged that there are also studies that apply formal convergence evaluation criteria 

when conducting an uncertainty/sensitivity analysis; see Saltelli et al. (2010), Pianosi et al. (2016), and Razavi and 

Gupta (2016b). 
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however, the properties of the model they are applied to do not influence the quality of the results 

(Saltelli et al. 2008). 

Derivative-based methods can be viewed as extensions of local UA methods. The basic idea behind 

these methods is to compute the partial derivatives of the model output concerning each model 

input. Thus, these values can be interpreted as local sensitivity indices to rank the input factors 

according to their influence on the model output (Razavi et al. 2019). As the main disadvantage of 

these methods, the derivatives are only computed at the base points of the model inputs and do not 

provide information regarding the rest of the input space (Saltelli et al. 2008). The Morris method, 

also known as the elementary effects (EE) method, is a derivative-based approach (Morris 1991) 

that computes the partial derivatives of the model outputs with respect to a sample of randomly 

selected model inputs. Each sample's mean and standard deviation is then considered as an 

uncertainty measure. For example, a higher mean value indicates that the factor is important for 

the output, and a higher standard deviation indicates the nonlinearity of the factor for the output 

and a strong interaction with other factors (Norton 2015). The EE method requires N ( n 1) 

model evaluations, where N is the MC sample size, and n is the number of factors (Saltelli et al. 

2008). This method has two main drawbacks. First, it is impossible to quantify the contribution of 

each factor to the output variability. Second, it is impossible to distinguish the factor nonlinearity 

from interactions with other factors (Yang 2011). 

Two strategies can be applied when a UA is too computationally demanding. First, an emulator 

can be used as a low-degree substitute, and second, the efficiency of the computationally 

demanding method can be improved (Song et al. 2012).  

According to O’Hagan (2006), an emulator is a statistical approximation of the original simulation 

model. If this approximation is sufficiently precise, it can substitute for the original simulation 

model in applying a costly SSA/UA. For example, Zhan et al. (2013) proposed a global SA analysis 

method that combines the Morris method with a statistical emulator to reduce the computational 

costs. Although other methods also exist, emulators are mostly based on Gaussian processes and 

represent a probability distribution for a desired function (O’Hagan 2012; Uusitalo et al. 2015). 

An emulator is based on a large sample of results from previously conducted simulations (O’Hagan 

2012). According to Stanfill et al. (2015), emulator-based methods can accurately estimate the 

first-order sensitivity indices using half the number of computer model evaluations compared to 
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traditional MC-based methods. A disadvantage of using an emulator is that it introduces numerical 

challenges related to model calibration and validation (Pianosi et al. 2016).  

Gaussian quadratures (GQs) are a family of methods designed for efficiently and accurately 

approximating definite integrals (Arndt et al. 2015). Being a static estimator, GQ requires a 

minimal number of iterations (2n, where n is the number of uncertain input factors) to reproduce 

the second central moments of a joint probability distribution (Haber 1970). According to Schürer 

(2003), the methods based on GQ are expected to be the most efficient for low-degree polynomials, 

i.e., for smooth integrands. This method is discussed more thoroughly in Section 2.  

Other sampling approaches have also been designed for specific SSA/UA methods and are based 

on a simple random sampling, for example, sampling approaches for the FAST method (Cukier et 

al. 1973) and for calculating the Sobol sensitivity indices (Saltelli 2002). Interested readers are 

directed to a review by Gan et al. (2014). 

As an important conclusion from this discussion on SSA/UA methods, there is always a 

compromise between the computational requirements and the output reliability when choosing the 

method. The choice of method does not depend solely on the dimensionality of the problem, but 

also on the smoothness of the integrand, i.e., the number of times the function is continuously 

differentiable (Arndt and Preckel 2006). GQ methods outperform MC-based methods in terms of 

efficiency and accuracy for smooth integrands. For highly nonlinear integrands, by contrast, MC-

based methods may be more suitable because they are neither dependent on the smoothness of the 

integrand nor on the dimensionality of the problem (Schürer 2001, 2003).  

After the initial uptake when applying the GQ methods in large-scale simulation models (Arndt 

and Hertel 1997; Valenzuela et al. 2007; Villoria et al. 2013), Artavia et al. (2015) found that the 

quality of the approximation differs depending on the initial position of the octahedron from which 

the rotation starts. In addition, a recent study by Villoria and Preckel (2017) pointed out 

inaccuracies in results based on GQ methods applied in the global trade analysis project (GTAP) 

model. Specifically, large differences have been found in the first three moments of the probability 

distributions of the results produced by GQ and MC. To address these inaccuracies, this article 

presents a novel approach to the reduction of the approximation error for GQ methods, called 

multiple rotations of Gaussian quadratures (MRGQ). The MRGQ method aims at improving the 

quality of the approximations using traditional GQ methods while keeping the computational 
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requirements low. It is primarily designed for computationally demanding models, where the cost 

of applying MC-based methods without consideration of the emulators is prohibitively high4.  

The remainder of this article is organized as follows: Section 2 provides a short overview of the 

theoretical background of Stroud’s degree three GQs. Section 3 introduces the proposed MRGQ 

method along with an example. It also details the approach used to generate a benchmark for 

evaluating the quality of the approximations made using GQ and the proposed MRGQ method. 

Section 4 provides an overview of the simulation models applied to compare the results between 

the MRGQ and GQ methods. Section 5 evaluates the approximation results generated by GQ and 

MRGQ by comparing them against an LHS benchmark. Sections 6 and 7 offer a discussion and 

some concluding remarks with respect to the potential of the MRGQ method. 

 

2. Theoretical background: Stroud’s Gaussian quadratures 

The method presented in this section refers to the degree three quadrature formulae by Stroud 

(1957), aiming to obtain results with a certain degree of accuracy using the fewest possible points. 

Stroud’s (1957, p. 259) theorem states the following: 

As a necessary and sufficient condition in which 2n points ν1,…, νn and -ν1,…, -νn form an equally 

weighted numerical integration formula of degree three for a symmetrical region R, these points 

form the vertices of a Qn whose centroid coincides with the centroid of the region and lie on an n-

sphere of radius 𝑟 = √𝑛𝐼2/𝐼0.  

Here, Qn is a regular, n-dimensional generalized octahedron being integrated into an n-sphere, I0 

is the volume of R, and I2 is the integral of the square of any variable over region R. Region R is 

symmetric in the sense of Stroud’s theorem if it is invariant under the group of automorphisms of 

an n-cube (Stroud 1957, p. 257). Figure 1 is a graphical representation of the theorem, which 

indicates that, to obtain an n-dimensional GQ formula of degree three for an n-dimensional cube, 

we must use 2n points, which are the vertices of a regular n-octagon (points 1–6 in Figure 1), the 

centroid of which is the centroid of the cube. Because we have 2n quadrature points, which are 

                                                 
4 The cost or efficiency of a method is usually assessed by the number of iterations required to obtain statistically 

robust results (Razavi and Gupta 2016a). This is particularly relevant for computationally demanding simulation 

models. This is the case, for example, for models with global coverage, such as the CAPRI model (Britz and Witzke 

2014) and the EPIC-IIASA model (Balkovič et al. 2014), recursive-dynamic models, such as the Aglink-Cosimo 

model (OECD/FAO 2015), and gridded models, such as GLOBIOM (Havlík et al. 2011; Havlík et al. 2014), which 

can produce results on a 10 km × 10 km grid level. These models comprise hundreds of thousands of variables and 

equations and hence require a large computational capacity for multiple solutions. 
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supposed to be equally weighted, each weight must equal 1/2n. If these conditions are met, an 

approximation with an accuracy of degree three can be obtained. 

 

Figure 1. Graphical representation of Stroud’s theorem for degree three quadrature 

formulae.  

Notation: a, half of the side length of the cube; r, the radius of the n-octahedron 

Source: Artavia et al. (2015) 

 

Stroud, however, encountered a problem, in that whenever the dimensionality is greater than three, 

the vertices fall outside of the integration region, yielding unusable formulae. This problem can be 

observed in the calculation below, which is adopted from Artavia et al. (2015). 

The volume of an n-cube (Cn) with vertices (±a, ±a,…, ±a) can be obtained as follows: 

(5) 𝐼0 = ∫ 𝑥𝑖
0

𝐶𝑛 𝑑𝑥⃗ = (2𝑎)𝑛. 

The integral of the square of any variable over this region is 

(6) 𝐼2 = ∫ 𝑥𝑖
2

𝐶𝑛 𝑑𝑥⃗ = ∫ 𝑑𝑥̃⃗
𝐶𝑛−1 ∫ 𝑥𝑖

2
[−𝑎,+𝑎]

𝑑𝑥𝑖 = (2𝑎)𝑛−1 [
1

3
𝑥𝑖

3]
−𝑎

+𝑎
= (2𝑎)𝑛−1 2

3
𝑎3 =

2𝑛

3
𝑎𝑛+2. 

Here, 𝑥̃⃗ ∈ 𝑅𝑛−1  is the vector 𝑥⃗  with the coordinate 𝑥𝑖  omitted. This yields the radius of the 

octahedron: 
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(7) 𝑟 = √𝑛
𝐼2

𝐼0
= √𝑛 (

2𝑛

3
𝑎𝑛+2/2𝑛𝑎𝑛) = √𝑛

𝑎2

3
= 𝑎√

𝑛

3
. 

In the case presented in Figure 1, we deal with a three-dimensional cube with vertices (±1, ±1, ±1), 

and for n = 3, we obtain r = 1. However, note that, for n > 3, we have r > a, and thus the vertices 

of the n-octahedron lie outside the n-cube. 

As a solution to this problem, Stroud (1957) suggested the following formula to rotate the 

octahedron and bring the quadrature points back into the integration region. For k = 1,…, 2n, let 

Γk denote the quadrature point (𝛾𝑘,1, 𝛾𝑘,2, . . . , 𝛾𝑘,𝑛), where  

(8) 𝛾𝑘,2𝑗−1 = √
2

3
cos (

(2𝑗−1)𝑘𝜋

𝑛
), 

(9) 𝛾𝑘,2𝑗 = √
2

3
sin (

(2𝑗−1)𝑘𝜋

𝑛
), 

for 𝑗 = 1, . . . , [n/2], where [𝑛/2] is the greatest integer not exceeding n/2. In addition, if n is odd,  

(10) 𝛾𝑘,𝑛 =
(−1)𝑘

√3
 .  

The quadrature points generated by these formulae fulfill the three prerequisites mentioned above. 

Arndt (1996) adapted Stroud’s formulae for integrals over all Rn  (Euclidean space) with the 

multivariate standard normal distribution as a weight function. Arndt’s formulae are Stroud points 

multiplied by √3, which is derived from the fact that the value of the radius (𝑟 = √𝑛
𝐼2

𝐼0
) changes 

as follows: 

(11) 𝐼0 = ∫ 𝑥𝑖
0

𝑅𝑛

1

(2𝜋)𝑛 2⁄ 𝑒−
‖𝑥⃗⃗⃗‖2

2 𝑑𝑥⃗ = (1)𝑛 = 1 

(12) 𝐼2 = ∫ 𝑥𝑖
2

𝑅𝑛

1

(2𝜋)𝑛 2⁄ 𝑒−
‖𝑥⃗⃗⃗‖2

2 𝑑𝑥⃗ = ∫
1

(2𝜋)(𝑛−1)/2
𝑅𝑛−1

𝑒−
‖𝑥̃⃗⃗⃗‖

2

2 𝑑𝑥̃⃗ ∫ 𝑥𝑖
2

𝑅

1

(2𝜋)1 2⁄ 𝑒−
𝑥𝑖

2

2 𝑑𝑥𝑖 =

(1)𝑛−11 = 1. 

Here, ‖𝑥⃗‖ denotes the Euclidean norm of the vector 𝑥⃗ ∈ 𝑅𝑛, and 𝑥̃⃗ ∈ 𝑅𝑛−1 is the vector 𝑥⃗ with the 

coordinate xi omitted; therefore, in particular, ‖𝑥⃗‖2 = ‖𝑥̃⃗‖
2

+ 𝑥𝑖
2. 

It follows that  

(13) 𝑟 = √𝑛
𝐼2

𝐼0
= √𝑛. 
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Therefore, Equations (8)–(10) must be adapted accordingly, and for the kth quadrature point 

Γk= (γ
k,1

,γ
k,2

,. . . ,γ
k,n

), where k = 1, 2,…, 2n, we obtain the following: 

(14) 𝛾𝑘,2𝑗−1 = √2cos (
(2𝑗−1)𝑘𝜋

𝑛
), 

(15) 𝛾𝑘,2𝑗 = √2sin (
(2𝑗−1)𝑘𝜋

𝑛
), 

for 𝑗 = 1, . . . , [n/2], where [n/2] is the greatest integer not exceeding n/2, and if n is odd,  

(16) 𝛾𝑘,𝑛 = (−1)𝑘. 

The GQ points generated by Stroud’s (1957) formulae, that is, (8)–(10), have a restricted variation 

around a mean of no more than √2/3𝜎𝑖 on each coordinate axis. Consequently, the variation of 

the GQ points proposed by Arndt (1996) is restricted to no more than √2𝜎𝑖 on each coordinate 

axis, where σi is the standard deviation of the i-th uncertain input factor. This sampling interval, 

however, can be broadened by a desired factor using the method proposed by Preckel et al. (2011). 

To endow the finite distribution with the desired covariance matrix 𝛴, the sampling points need to 

be multiplied by a square matrix A satisfying 𝛴 = 𝐴𝐴𝑇. There are several standard methods that 

can be used to obtain A from 𝛴, such as eigenvalue decomposition, Cholesky factorization, or 

reverse Cholesky factorization (Artavia et al. 2015). Therefore, the matrix of the final quadrature 

points can be obtained as 𝐺𝑄 = 𝜇⃗ + 𝛤𝛢, where 𝜇⃗ is the vector of the mean values (e.g., the base 

values of the input factors). In this study, we use the eigenvalue decomposition technique.  

 

3. Methods 

3.1. Benchmark generation 

In the first step, we generate a reliable benchmark against which the results obtained by the 

proposed MRGQ method are compared. We use the well-established LHS technique and 

systematically determine a sufficient sample size for each model. To this end, we solve each model 

using the LHS technique with a converged sample size, that is, by following the convergence 

evaluation method suggested by Yang (2011), we solve the model with a small sample size and 

gradually increase it5. We observe the behavior of the coefficients of variation (CVs) of two 

                                                 
5 For all models, we use sample sizes of 1,000 and 2,000 as well as further increases in sample sizes in increments of 

2,000. Depending on the complexity of the model, we use sample sizes smaller than 1,000 as ad hoc choices. 
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variables: the total production of each crop for which the productivity was shocked and the 

respective price levels. These two variables are the most relevant for simulated shocks that depict 

model uncertainty. In general, the variables most relevant to the respective study should be 

selected. The stop criterion is satisfied when the percentage of change in the results of interest, 

compared to the results from the previous sample size, stays within an interval of [-1%, 1%]. The 

advantages of using the CVs as an indicator are twofold: first, this measurement is dimensionless, 

thus facilitating a comparison, and second, it captures both the first and second moments of the 

data. 

 

3.2. MRGQ method 

Artavia et al. (2015) showed that the quality of the GQ results depends strongly on the selected 

rotation of Stroud’s octahedron. To counteract this effect, we use several families of GQ points 

generated from different random rotations of Stroud’s octahedron. To this end, we randomly 

choose k of n! possible permutations in the n coordinates. Owing to the structure of Stroud’s 

matrix, the easiest way to introduce random rotations is by randomly permuting the rows of 

Stroud’s matrix. This is achieved by multiplying the matrix from the left by a permutation matrix, 

that is, a matrix containing a single one in each row and column and zeros everywhere else. Using 

k permutations increases the number of quadrature points by a factor of k, and at the same time, 

considerably improves the quality of the output, as will be shown in the results section.  

Following the insights of Artavia et al. (2015), we investigate how the initial position of Stroud’s 

octahedron, from where we start the rotation, affects the final results of the GQ approximation. 

We generate ten series of quadratures through ten random rotations of the octahedron for the 

GLOBIOM model, and 20 series from 20 random rotations for each of the other two models. Note 

that each series contains only 2n points, where n is the number of uncertain variables. The number 

of random rotations is selected arbitrarily, considering the available computational capacities. 

After solving the models with the quadrature points generated by each individual rotation, we also 

solve them using the MRGQ method.  

To evaluate the quality of the results of the MRGQ method, we compare them to the previously 

generated LHS benchmark. In the case of the dynamic computable general equilibrium (CGE), we 

follow the approach of Arndt and Thurlow (2015) and observe only the final 5-year average of the 
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results, assuming that doing so will allow us to capture the cumulative effects of the uncertain 

input factors from previous time periods. The MRGQ method is implemented in four steps: 

Step 1: Calculating the Stroud matrix 

The first step is to generate a Stroud matrix for the joint standard normal distribution using 

Equations (14)–(16). For example, in the case of a three-dimensional problem, the Stroud matrix 

will have the following form:  

1 1 1 1
2 2

2 2 2 2

3 3 3 3
0 0

2 2 2 2

1 1 1 1 1 1



 
   

 
 

   
 
   

 
  . 

Step 2: Transforming the covariance matrix 

To incorporate the desired covariance structure and the base values into the Stroud matrix, the first 

step is to derive a covariance matrix of the uncertain input factors. For example, in this study, the 

covariance matrix is derived from historical data using the methodologies of Burrell and Nii-Naate 

(2013) and Araujo-Enciso et al. (2017). As an example, let us consider the following covariance 

matrix Σ and the vector 𝜇⃗  of the base values, which in this case are randomly generated for 

demonstration only: 

0.289558 0.246504 0.583676

0.246504 1.430970 0.215241

0.583676 0.215241 1.699880



 
 


 
  

, 

1.46798

7.88187

5.59115



 
 


 
  

. 

As described in Section 2, to endow a finite distribution with the desired covariance matrix 𝛴, we 

need to multiply Stroud’s matrix, generated in Step 1, by a square matrix A satisfying 𝛴 = 𝐴𝐴𝑇. 

To obtain the square matrix A, we apply the diagonalization method according to the following:  

(17) 𝛴 = 𝑈𝐷𝑈𝑇 = (𝑈√𝐷)(√𝐷𝑈𝑇) = 𝐴𝐴𝑇, 

where U is the matrix of the eigenvectors of 𝛴, and D is the diagonal matrix of the eigenvalues of 

𝛴. From the example above, we obtain the following:  
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1.94088 0 0

D 0 1.46611 0

0 0 0.0134251

 
 


 
  

, 

0.289240 0.281216 0.915018

U 0.250202 0.944856 0.211297

0.923980 0.167823 0.343651

 
 

 
 
  

. 

 Solving Equation (17) yields the following: 

(18)  

0.289240 0.281216 0.915018 1.39315 0 0

A U D 0.250202 0.944856 0.211297 0 1.21083 0

0.923980 0.167823 0.343651 0 0 0.115867

0.402957 0.340505 0.106020

0.348570 1.144060 0.024482

1.287250 0.203205 0.0

   
   

   
   
      



 

 39818

 
 


 
  

 

Step 3: Incorporating the covariance structure into the Stroud matrix 

The GQ points can now be generated using the equation below: 

(19)   

 

GQ A 1...1

1 1 1 1
2 2

2 2 2 2
0.402957 0.340505 0.10602

3 3 3 3
0.34857 1.14406 0.0244823 0 0

2 2 2 2
1.28725 0.203205 0.0398178

1 1 1 1 1 1

1.46798

7.88187 1 1 1 1 1 1

5.59115

1.49406 2.2

  

 
   

  
  

       
       
 
 

 
 


 
  



7597 1.93183 1.44191 0.659999 1.00414

9.55401 9.0121 7.4134 6.20973 6.75165 8.35034

6.21268 4.47188 3.73089 4.96962 6.71043 7.45141

 
 


 
  

 

 

As can be seen from the final matrix obtained by Equation (19), the required sample size is equal 

to 2n, where n is the number of uncertain input factors.  

Step 4: Generating the MRGQ points 
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 To perform a random rotation of the GQ, we apply a randomly generated permutation matrix, e.g., 

0 1 0

P 0 0 1

1 0 0

 
 


 
  

. Thus, the randomly generated GQRand matrix is calculated as follows:  

(20)   RandGQ AP 1...1

1 1 1 1
2 2

2 2 2 2
0.402957 0.340505 0.106020 0 1 0

3 3 3 3
0.348570 1.144060 0.024482 0 0 1 0 0

2 2 2 2
1.287250 0.203205 0.039818 1 0 0

1 1 1 1 1 1

1.46798

7.88187

5.59115

  

 
   

    
    

         
           
 
 



  1 1 1 1 1 1

0.70893 1.24000 0.97754 2.22704 1.69597 1.95842

7.14741 9.47015 6.77244 8.61633 6.29359 8.99131

7.39906 6.93634 5.73805 3.78324 4.42460 5.44426


 


 
  

 
 

 
 
  

 

This indicates that the application of the permutation matrix yields extremely different GQ points. 

Finally, to obtain the matrix of MRGQ points, we need to combine the GQ matrices generated by 

all different rotations: 

1.49406 2.27597 1.93183 1.44191 0.659999 1.00414 0.70893 1.24000 0.97754 2.22704 1.69597 1.95842

MRGQ 9.55401 9.0121 7.4134 6.20973 6.75165 8.35034 7.14741 9.47015 6.77244 8.61633 6.29359 8.99131

6.21268 4.47188 3.73089 4.96962



6.71043 7.45141 7.39906 6.93634 5.73805 3.78324 4.42460 5.44426

 
 


 
  

 

Working separately with both GQ families generated above, and taking the average yields the same 

result as taking the union of the two families and adjusting the weights accordingly. In this case, 

the weights are equal to 1/2 ∙ 1/6 = 1/12.  

4. Simulation models and data 

The MRGQ approach is tested using three different simulation models covering environmental 

dimensions such as land-use and weather-driven yields, i.e., a comparative-static, single-country 

CGE model based on the static applied general equilibrium model, ver. 2 (STAGE2) (McDonald 

and Thierfelder 2015), and extended for and applied to Bhutan (Feuerbacher et al. 2018) (called 
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static CGE throughout this article); GLOBIOM (Havlík et al. 2011; Havlík et al. 2014), a global 

partial equilibrium model of the agricultural and forestry sectors; and a multi-sector recursive-

dynamic CGE model for the Sudan (Diao and Thurlow 2012) (called dynamic CGE throughout 

this article). All models are programmed using the General Algebraic Modeling System.  

In all models, we simulate the uncertainty of the crop yields resulting from weather and other 

environmental factors (such as the prevalence of disease), which constitutes a major determinant 

of agricultural price volatility. For this purpose, we use historical data from agricultural databases 

(FAOSTAT 2018; ICRISAT 2018) and national institutions (MoAF 2016). Following Burrell and 

Nii-Naate (2013), we separate the uncertainty components from the historical crop yield data as 

deviations from the estimated trends for crops with sufficient data availability. Subsequently, 

uncertain input factors are generated. For example, let yc,y be the observed yield of crop c in year 

y, where c = (1,2, …, n) and y = (1,2, …, m), and 𝑦̂c,y be the estimated trend for the same crop in 

the same year. Thus, the uncertainty component (zc,y) is calculated as zc,y = yc,y / 𝑦̂c,y – 1.  Following 

the same procedure for all variables, we generate the matrix of uncertainty components (deviates) 

𝑍𝑐×𝑦 . The covariance matrix of the derived uncertainty components is used to generate the 

multivariate distributions from which the uncertain input factors are drawn, as explained in Section 

3. Because the expected value of these uncertainty components is equal to zero, it is irrelevant 

which crop yields are chosen as uncertain in this context.6  

 

4.1. Static CGE 

Static CGE is a single-country, comparative-static CGE model that uses the STAGE2 framework 

and has been documented extensively by McDonald and Thierfelder (2015). Static CGE extends 

the basic STAGE2 model to include a multi-level production structure of nested constant elasticity 

of substitution (CES) and Leontief fixed-coefficient technology functions. The demand system 

follows a two-stage linear expenditure system (LES)-CES nest, allowing for a substitution of 

commodities. The model extension and parameters were documented by Feuerbacher et al. (2018). 

The model is calibrated7 to a 2012 social accounting matrix for Bhutan (Feuerbacher et al. 2017) 

with multiple sectors, 10 of which are crop-producing.  

                                                 
6 In this article, the choice of uncertain yield variables is based on data quality and availability.  

7 By calibration we mean that the model reproduces the observed data if no shock is applied (Howitt 1995). 
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The model is run such that household saving rates are adjusted to meet a given level of investment. 

The exchange rate is flexible, and the foreign savings are fixed. Reflecting the short-term nature 

of the uncertain input factors, the model closures account for fixed land allocation (no land 

mobility across crop sectors), fixed government spending, and flexible government savings (all 

tax rates remain constant). The impact of the yield uncertainty is evaluated for all ten crop-

producing sectors, namely paddy, maize, wheat, pulses, vegetables, potatoes, spices, apples, citrus 

fruits, and other fruits and nuts. The uncertainty in the crop yields is modeled by shocking the 

respective crop sector’s total factor productivity (TFP). The changes in TFP are expressed using 

the variable ADXa for activity a in the following model equation depicting production: 

(21) 𝑄𝑋𝑎 = 𝐴𝐷𝑋𝑎 ⋅ (𝛿𝑎
𝑥 ⋅ 𝑄𝑉𝐴𝑎

−𝑟ℎ𝑜𝑐𝑎
𝑥

+ (1 − 𝛿𝑎
𝑥) ⋅ 𝑄𝐼𝑁𝑇𝑎

−𝑟ℎ𝑜𝑐𝑎
𝑥

)
−1

𝑟ℎ𝑜𝑐𝑎
𝑥
, 

where QXa is the output of activity a; 𝛿𝑎
𝑥 is the share parameter for the CES production function 

determining the aggregated number of factors used, that is, aggregated value added (QVA) and 

aggregated intermediates (QINT) used; and 𝑟ℎ𝑜𝑐𝑎
𝑥 is the substitution parameter. In addition, ADXa 

is endogenously determined according to the following adjustment mechanism: 

(22) 𝐴𝐷𝑋𝑎 = [(𝑎𝑑𝑥𝑏𝑎 + 𝑑𝑎𝑏𝑎𝑑𝑥𝑎) ⋅ 𝐴𝐷𝑋𝐴𝐷𝐽] + (𝐷𝐴𝐷𝑋 ⋅ 𝑎𝑑𝑥01𝑎), 

where adxb is the base value, dabadx is an absolute change in the base value, ADXADJ is a 

multiplicative adjustment factor, DADX is an additive adjustment factor, and adx01 is a vector 

consisting of zeros and non-zeros used to scale the additive adjustment factor. The uncertainty 

component (randa) is added to Equation (22) as follows: 

(23) 𝐴𝐷𝑋𝑎 = (1 + 𝑟𝑎𝑛𝑑𝑎) ⋅ [[(𝑎𝑑𝑥𝑏𝑎 + 𝑑𝑎𝑏𝑎𝑑𝑥𝑎) ⋅ 𝐴𝐷𝑋𝐴𝐷𝐽] + (𝐷𝐴𝐷𝑋 ⋅ 𝑎𝑑𝑥01𝑎)].   

 

4.2. GLOBIOM 

GLOBIOM is a bottom-up, recursive-dynamic partial equilibrium model with global coverage, 

integrating the agricultural, bioenergy, and forestry sectors (Havlík et al. 2011; Havlík et al. 2014). 

It is a linear programming model with a spatial equilibrium approach (Takayama and Judge 1971). 

The market equilibrium for agricultural and forestry products is computed based on a welfare-

maximizing objective function subject to resource, technology, demand, and policy constraints. 

The model version applied in this study covers 31 regions globally and considers the 18 most 

important crops in terms of globally harvested quantities. Because this version of the model 

requires a large computational capacity, we use it in a comparative static framework, starting from 
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a fixed 2010 solution and solving the model for only one time step (2020). We analyze the yield 

uncertainties of groundnuts, maize, rice, soybeans, and sugarcane grown in Indonesia, and of 

barley, groundnuts, sorghum, potatoes, dry beans, rice, wheat, sugarcane, maize, soybeans, 

cassava, and sweet potatoes grown in Brazil. In GLOBIOM, at the national level, land-use data 

are based on FAOSTAT statistics, which are spatially allocated using data from the spatial 

production allocation model (SPAM) (You and Wood 2006). Production technologies, as indicated 

by SPAM data, are specified through Leontief production functions. Four different management 

systems (irrigated–high-input, rainfed–high-input, rainfed–low-input, and subsistence) are 

simulated using EPIC, a biophysical-process-based crop model (Williams 1995; Izaurralde et al. 

2006), and fitted to the national averages of FAOSTAT yield data for the years 1998–2002. Over 

the course of a particular scenario, yields react through changes in the management system, spatial 

reallocations, or exogenous components representing technical change. For our analysis, uncertain 

yield shocks are applied as exogenous shifters in the same manner as shown in Equation (23) for 

all management systems.  

 

4.3. Dynamic CGE 

Dynamic CGE is an economy-wide, recursive-dynamic CGE model (Diao and Thurlow 2012) 

linked to the IMPACT modeling system (Robinson et al. 2015). The model is calibrated to the 

most recent social accounting matrix for the Sudan with multiple sectors, 26 of which are crop-

producing (Siddig et al. 2018). The demand for the primary factors is governed by the CES 

functions, whereas the intermediate input demand is determined by the Leontief fixed-coefficient 

technology function. As in static CGE, we assume government savings to be flexible and all tax 

rates to be fixed. For the external balance, a flexible exchange rate is chosen, and the foreign 

savings are fixed. Finally, for the saving–investment identity, a fixed share of investment in terms 

of the absolute absorption is assumed, whereas household saving rates are endogenously adjusted 

in a uniform way to generate the necessary funds. 

In the context of dynamic CGE, the uncertainty of the following crop yields is analyzed: irrigated 

cotton, irrigated and mechanized rain-fed sorghum, irrigated wheat, irrigated groundnuts, 

mechanized rain-fed millet, and mechanized and traditional rain-fed sesame. Similar to static CGE, 

uncertainty components affect the TFP, as presented in Equation (23). Although the recursive-

dynamic framework of the model is set up to project the period of 2018–2050, considering the 
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large computational requirements of the LHS approach, we conduct our study for the time interval 

of 2018–2025 to obtain a benchmark. As extreme weather shocks in Sudan occur in a cyclical 

manner (MEDP 2013), every five years on average, the uncertainty components are applied every 

fifth year, in this case, in 2018 and 2023. 

5. Results 

The benchmark results for each model and the results generated by the proposed MRGQ method 

are presented in the following subsections. 

5.1. Benchmark using the LHS method 

The comparative-static single-country CGE model represents a model category that, unlike the 

other two models, is characterized by relatively low computational requirements. The convergence 

criterion in the production quantities is satisfied at 10,000 iterations. However, the convergence 

criterion in the prices is reached only at 20,000 iterations, which is subsequently selected as the 

benchmark sample size (Figure 2). 

For GLOBIOM, the number of iterations is increased to 10,000. At this point, however, the 

convergence criterion is not satisfied for all crops: 4 out of 17 price variables still exhibit changes 

slightly above the 1% threshold (1.46% at maximum). However, given the resources required to 

continue increasing the number of iterations (approximately 3,000 computer-hours for 12,000 

iterations), we consider the results of 10,000 iterations as a reference because the limit of the 

available computational capacity was reached (Figure A.1).  

For dynamic CGE, we evaluate the convergence by analyzing the behavior of the mean absolute 

CVs in the growth rates of the production and prices over the projected period. The convergence 

criterion for the price growth rate is reached at 12,000 iterations (Figure A.2). The convergence 

criterion for the production growth rate is reached at 14,000 iterations, which is chosen as the 

benchmark for the dynamic CGE model. 

In the above-mentioned figures, the model dimensionality and complexity are positively correlated 

with the relevance of the increasing sample size required to reach the convergence of the CVs. 
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Figure 2. Convergence of the CVs of production prices and production quantities for static 

CGE.  

The total factor productivity parameters of the respective crops are considered uncertain and are randomly drawn 

from a multivariate normal distribution using the LHS method. The starting sample size is 1,000. The sample size is 

gradually increased until the percentage of changes in the results compared with those obtained from the previous 

sample size remain within a ± 1% range.  
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5.2. MRGQ results 

Example results from each model are presented in Figures 3–5 as percent deviations from the 

benchmark results derived using the LHS method (for the complete results, see Figures B.1–B.3). 

First, the bars demonstrate that, depending on the rotations of Stroud’s octahedron, the generated 

quadrature points lead to different levels of quality compared to the benchmark results. The largest 

deviations in the CVs of the production and prices from the benchmark, presented in Figures 3–5, 

are −10% and +10%, +11% and −4%, and −14% and −16%, in the static CGE, GLOBIOM, and 

dynamic CGE models, respectively. Second, the dashed lines show that the proposed MRGQ 

method delivers results that are extremely close to the benchmark while also keeping the number 

of required iterations small compared to those required by the MC-based methods. Table 1 shows 

the number of iterations used by the two methods for each model and the percentage of reduction 

in these numbers by the proposed MRGQ method as compared to the LHS. Together with the 

results presented in Figures 3, 4, and 5, this shows that the MRGQ method produces high-quality 

results using only a fraction of the iterations required by the LHS method, and thus substantially 

reduces the computational effort. 

Table 1. Percentage of reduction in the iterations required by the MRGQ method 

compared to the converged sample size iterations required by the LHS method 
 

LHS MRGQ % reduction 

Static CGE 20,000 400 98.0 

GLOBIOM 10,000 340 96.6 

Dynamic CGE 14,000 280 98.0 
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Figure 3. Precision of single GQs and MRGQ in the static CGE model (in percent of 

deviation of the CVs of the results obtained by each GQ family from the benchmark). 

Benchmark: LHS with 20,000 iterations. 1-20 (x-axis) are the deviations of the results obtained by 20 randomly 

generated GQ families; the dashed line is the result obtained by the MRGQ method (i.e., the average of these 20 GQ 

rotations).  
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Figure 4. Precision of single GQs and MRGQ in the GLOBIOM model (in percent of 

deviation of the CVs of the results obtained by each GQ family from the benchmark). 

Benchmark: LHS with 10,000 iterations. 1-10 (x-axis) are the deviations of the results obtained by 10 randomly 

generated GQ families; the dashed line is the result obtained by the MRGQ method (i.e., the average of these 10 GQ 

rotations).  
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Figure 5. Precision of single GQs and MRGQ in the dynamic CGE model (in percent of 

deviation of the CVs of the results obtained by each GQ family from the benchmark). 

Benchmark: LHS with 14,000 iterations. 1-20 (x-axis) are the deviations of the results obtained by 20 randomly 

generated GQ families; the dashed line is the result obtained by the MRGQ method (i.e., the average of these 20 GQ 

rotations).  

In Appendix B, we present the complete results for all crops, with yields being considered 

uncertain in the three models. The difference between the minimum/maximum results and the 

MRGQ results can be considered a measure for evaluating the improvements made by the MRGQ 

method as compared to the GQ method. In all three models, we observe large deviations in the 
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approximated results obtained by a single GQ rotation. More specifically, in static CGE, we 

observe potential inaccuracies ranging from −10% to +1% for production and from −28% to +29% 

for prices (Figure B.1). In GLOBIOM, the inaccuracies range from −21% to +11% and from −24% 

to +14% for production and prices, respectively (Figure B.2). In the case of dynamic CGE, we 

observe inaccuracies in production within the range of −63% to +20%. The inaccuracies in prices 

in dynamic CGE caused by a single GQ range from −82% to +35% (Figure B.3). In the vast 

majority of cases, we see substantial improvements in the results when applying MRGQ. The 

average deviations in the MRGQ result in production and price changes of +0.04% and −6.00% 

for static CGE, −0.24% and −1.30% for GLOBIOM, and +0.09% and +0.90% for dynamic CGE, 

respectively. 

To observe the differences between the shocks produced by both methods, depicting uncertainties 

and their impacts on the final results, we also analyze their cumulative distribution functions 

(CDFs). Figure 6 presents a comparison of the CDFs of the shocks generated by the MRGQ 

method versus the LHS method and the resulting variables from both approaches. As the major 

difference between the shocks generated by these two methods, unlike the LHS method, the 

MRGQ method does not capture the tails of the shocks. However, this does not affect the accuracy 

of the approximation of the central moments of the distribution. According to two-sample t-tests 

and F-tests, the results obtained from the MRGQ and LHS methods shown in Figure 6 do not have 

statistically significant differences in means or variances at the 99% confidence level (Table 2). 

Table 2. Results of two-sample t-tests and F-tests comparing the means and variances of the 

output distributions generated by MRGQ and LHS for the results shown in Figure 6 

Variable and model Test Test 

value 

Critical value 

(99.00%) 

P-value Note 

Paddy prices generated by MRGQ 

and LHS in static CGE 

Two-Sample t-Test 0.01 2.82 0.990 a 

F-Test 1.01 1.17 0.461 b 

Groundnut production in Brazil by 

MRGQ and LHS in GLOBIOM 

Two-Sample t-Test 0.05 2.82 0.960 a 

F-Test 1.04 1.19 0.300 b 

Average mechanized rain-fed 

sesame prices by MRGQ and LHS 

in dynamic CGE 

Two-Sample t-Test -0.23 2.83 0.820 a 

F-Test 1.08 1.23 0.190 b 

Note: At a confidence level of 99% we fail to reject H0 in which a) means and b) variances are equal. 

The variables are assumed to be i.i.d., ~N(0,σ2).  
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Figure 6. CDFs of the uncertain input factors and of the results obtained based on the 

simulation models comparing LHS and MRGQ.  

The CDFs on the right-hand side indicate the results obtained from the simulation models after plugging in the 

uncertain input factors presented on the left-hand side. The respective number of model runs for each method is 

indicated in the legends.  



 

30 

 

Table 3 presents the differences between the LHS method and the proposed novel MRGQ 

approach in terms of the computational and data management requirements. Owing to the modest 

computational requirements of static CGE, we manage to obtain a benchmark with a relatively 

short solving time and a small results file. However, solving the same model with the MRGQ 

method (using 400 iterations) is much faster, requiring only 8% of the computational time and 

consuming 3% of the computational space as that used by the LHS method.  

Of these three models, GLOBIOM is the most computationally burdensome model to solve using 

the LHS approach. Solving the GLOBIOM model 10,000 times requires 2,500 computer-hours. 

To produce reliable results, MRGQ can solve the model using only 340 iterations, which requires 

only 3% of both the running time and disk space used by the LHS method. Note that the model is 

run for only one time step. Each additional time step increases the amount of effort proportionally. 

In the case of dynamic CGE, a difficulty arises from its recursive-dynamic setup. The original 

model is set up to project the time interval of 2018–2050. However, to obtain the benchmark 

results, we must shorten the interval to 2018–2025. Generating a benchmark for a single scenario 

requires 84 computer hours, and similar to GLOBIOM, dynamic CGE produces a results file of 

more than 2 GB in size. By contrast, solving the same model with the MRGQ method (using 280 

iterations) requires only 6% of the running time and 9% of the disk space consumed by the LHS 

method, which will allow such an analysis on a single standard notebook computer.  
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Table 3. Computational effort for MRGQ and LHS in three simulation models 

 LHS  MRGQ 

 Size of results 

file in GB 

Model run time 

(in computer-

hours)  

 Size of results 

file in GB 

Reduction in the size 

of results file 

(percentage of 

reduction from LHS)  

Model run time 

(in computer-

hours) 

Reduction in 

model run time 

(percentage of 

reduction from 

LHS) 

Static CGE 0.9 9.0  0.03 

(20 rotations) 

96.7% 0.7 92.2% 

GLOBIOM 70.0 2,500  2.36 

(10 rotations) 

96.6% 160.0 96.6% 

Dynamic CGE 28.0 84.0  2.60 

(20 rotations) 

90.7% 5.0 94.0% 
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6. Discussion 

In this article, we introduce a novel approach to SSA/UA, targeting large-scale simulation models 

with computational restrictions. The proposed MRGQ method is based on the degree three 

quadrature formulae by Stroud (1957) and incorporates a novel technique to reduce the 

approximation error, which not only avoids computationally burdensome MC-based approaches 

but also offers an approximation quality that is comparable with approaches requiring extremely 

large sample sizes.  

We test the proposed approach on three large-scale simulation models addressing agro-

environmental systems, namely a comparative static CGE model applied to Bhutan (static CGE), 

global partial equilibrium model (GLOBIOM), and recursive dynamic CGE model applied to the 

Sudan (dynamic CGE), with 10, 17, and 7 uncertain input factors, respectively. To evaluate the 

accuracy of the results produced by the proposed approach, we generate a benchmark using an 

MC-based approach, that is, LHS, with a converged sample size. To reach convergence, we follow 

the approach by Yang (2011), gradually increasing the sample size until the percent of deviation 

of the results, compared to those of the previous sample size, remain within the interval of [-1%, 

+1%].  

The convergence criterion is satisfied at 20,000 and 14,000 iterations for the static CGE and 

dynamic CGE models, respectively, whereas for GLOBIOM, we reach the available computational 

limit at 10,000 iterations with most of the variables satisfying the convergence criterion. These 

sample sizes are realized by gradually increasing the number of iterations to reach the stop 

criterion, thus determining the minimum required sample size in each case. For a fair comparison, 

the resources required to solve the models and analyze the results with smaller sample sizes would 

certainly have to be added to the LHS approach shown in Table 3 because such steps will be needed 

to determine the sample sizes required for convergence. This will substantially increase the relative 

advantages of the MRGQ approach. However, to the best of our knowledge, there is no established 

procedure for determining the starting number of iterations or steps for increasing this number. 

Hence, we refrained from performing such steps. It is worth noting that many studies applying 

MC-based approaches to SSA/UA in large-scale simulation models rarely show any convergence 

because of the computational burden involved (Yang 2011; Sarrazin et al. 2016). Instead, they 

select one sample size that fits the available computational capacities and assume that the 



 

33 

 

approximations produced match the desired quality (Valin et al. 2015; Villoria and Preckel 2017; 

Mary et al. 2018).  

Depending on the context of its application, there are two potential limitations of the MRGQ 

method. First, MRGQ does not capture the tails of the distributions because of the restricted 

sampling interval of Stroud’s formulae (see Section 2). However, as presented in Table 2, this 

restriction does not limit the MRGQ method to approximate the first two central moments of the 

distributions with a 99% significance interval. The failure to capture the tails can be seen as both 

a disadvantage and an advantage. On one hand, the inability of MRGQ to depict the tails of the 

distributions (i.e., the effects of rare occurrences) can be viewed as a disadvantage if researchers 

are particularly interested in studying the impacts of extremes. In this case, we suggest 

implementing MRGQ along with the broader sampling approach proposed by Preckel et al. (2011). 

This approach allows the sampling intervals of GQ to be widened by the desired expansion factor. 

On the other hand, many simulation models are unable to handle large shocks to the system 

efficiently. Owing to technical model constraints, the systems operate far from their region of 

calibration, and thus far from the sound empirical foundation of the parameters. Therefore, when 

using MC-based approaches, researchers often truncate the distribution of the shocks (Hertel et al. 

2010; OECD/FAO 2011; Burrell and Nii-Naate 2013), which may result in an inaccurate 

approximation of the central moments of the results. In such a case, the MRGQ approach is the 

most suitable method for approximating the central moments of the results without losing 

information about the input uncertainty.  

As a second limitation, the MRGQ method is restricted to approximating symmetric distributions. 

The central idea of MRGQ, however, can also be applied to non-symmetric distributions. To this 

end, we suggest extending the MRGQ approach to depict asymmetric regions using the method 

developed by DeVuyst and Preckel (2007) for GQ. 

 

7. Conclusions 

This article describes the potential benefits of GQ as an efficient approach to UA in large-scale 

simulation models. It also shows the limits of traditional GQ approaches because they may 

generate approximations of much lower quality than those generated by traditional MC-based 

approaches. Therefore, we develop and test a novel MRGQ method, which overcomes the problem 

of insufficient accuracy of traditional GQ approaches. Applying MRGQ in three different 
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simulation models reveals two distinct advantages compared to MC-based approaches. First, the 

MRGQ method requires a considerably smaller number of iterations when conducting a UA. This 

is particularly relevant for large-scale or dynamic simulation models and cases in which many 

variables or simulations need to be analyzed. Second, it produces highly accurate results with 

considerably lower computational and data management costs. The MRGQ method allows a 

systematic UA with high-quality outcomes in large-scale simulation models to be conducted, even 

in cases where MC-based approaches become infeasible because of the sample sizes and 

boundaries required for the computational capacity. 

The demand for an efficient and robust approach to conducting UA, as offered by MRGQ, is likely 

to increase with the ever-expanding size and scope of the simulation models. Despite the rapid 

growth of computational capacities, the computational requirements in the era of “big data” require 

more efficient methods. 

The proposed approach is successfully tested using three different simulation models integrating 

uncertainty in various ways. This suggests that the MRGQ method has a high potential as a 

resource-efficient and highly accurate means of UA in a wide range of large-scale simulation 

models analyzing the uncertainty of model parameters, exogenous variables, or shocks.  

Although the successful application of the MRGQ method in the three case studies shows its 

advantages in terms of resource (computational and data management) requirements compared to 

MC-based approaches, open questions remain. Future research may generate a better 

understanding of the optimal number of random rotations required to reach a desired accuracy 

level, given the specific model characteristics. Moreover, research is needed to investigate the 

factors affecting the quality of GQ points produced by a single rotation of Stroud’s octahedron. 
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9. Appendix A 

 

Figure A.1. Convergence of the CVs of the production prices and production quantities for 

GLOBIOM.  

The yields of the respective crops are considered uncertain and are randomly drawn from a multivariate normal 

distribution using the LHS method. The starting sample size is 100. The sample size is gradually increased until the 

percentage of changes in the results compared with those obtained from the previous sample size remained within a 

±1% range. 
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Figure A.2. Convergence of the CVs of the average absolute production price and growth 

rates over the projected period for the dynamic CGE model.  

The total factor productivity parameters of the respective crops are considered uncertain and are randomly drawn 

from a multivariate normal distribution using the LHS method. The starting sample size is 100 iterations. The 

sample size is gradually increased until the percentage of changes in the results compared with those obtained from 

the previous sample size remain within a ±1% range.  
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10. Appendix B 

 

Figure B.1. Range of deviation of the results produced by single rotations of GQ in the 

static CGE model.  

The deviations are measured in percentage differences of the CVs of the results obtained by each GQ family from 

the benchmark (LHS with 20,000 iterations). The maximum and minimum deviations for each crop are depicted 

from 20 randomly generated GQ families. The results obtained by the MRGQ are represented by dots.
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Figure B.2. Range of deviation of the results produced by single rotations of GQ in the 

GLOBIOM model.  

The deviations are measured in percentage differences of the CVs of the results obtained by each GQ family from 

the benchmark (LHS with 10,000 iterations). The maximum and minimum deviations for each crop are depicted 

from 10 randomly generated GQ families. The results obtained by the MRGQ are represented by dots. 
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Figure B.3. Range of deviations in the results produced by single rotations of GQ in the 

dynamic CGE model.  

The deviations are measured in percentage differences of the CVs of the average growth rates of the results obtained 

by each GQ family from the benchmark during the 2021–2025 period (LHS with 14,000 iterations). The maximum 

and minimum deviations for each crop are depicted from 20 randomly generated GQ families. The results obtained 

by the MRGQ are represented by dots. 

 


