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Abstract: This paper proposes an Intelligent Decision Support (IDS) methodology based on 
the integration of data-driven and model-driven techniques for control, supervision and 
decision support on environmental systems. Design stage of control and decision support tools 
for environmental systems tend to be somehow ad-hoc regarding to the nature of the 
processes involved. Hence, an automated approach is proposed here for the sake of 
scalability to different types and configurations of environmental systems, and the 
methodology has been designed in a general fashion to allow scalability to further types of 
systems. The interoperation of a data-driven technique –Case-Based Reasoning (CBR)– and 
a model-driven technique –Rule-Based Reasoning (RBR)– is considered in this work. The 
proposed hybrid scheme provides complementarity and supervised redundancy in the set-
point generation for the process controllers and actuators, increasing the reliability of the 
Intelligent Process Control System (IPCS), which is the core component of the IDS 
methodology.  A Decision module selects which reasoning approach to use –i.e. CBR or RBR– 
depending on a metric quantifying the confidence in the CBR solution. Furthermore, the IDS 
methodology is flexible and dynamic enough to be able to cope with the dynamic evolution of 
environmental systems, learning from its relevant experienced situations. The approach 
presented has been implemented in a real facility within the ambit of a local water 
administration in the area of Barcelona.  

Keywords: Case-Based Reasoning; Rule-Based Reasoning; Intelligent Environmental 
Decision Support System; Intelligent Process Control; Data Mining; Wastewater Treatment 
Plant. 

1 INTRODUCTION 

1.1 Background 
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Decision support, supervision, control and optimisation systems can be challenging because 
of the variability and the potential inherent complexity of the processes involved. These 
processes may include a wide variety of elements of different types interacting with each other 
—e.g. mechanical, electronic, human, biological, or chemical—, sometimes with unknown 
dynamics, that may raise a real challenge for the control, supervision and decision support 
tasks involved. In the case of environmental systems —e.g. Wastewater Treatment Plants 
(WWTPs) here—, the risk of dysfunction is even more severe, since the consequences can 
be dangerous for the environment and for human beings. To avoid this, the quality of certain 
monitored parameters of the environmental system —e.g. the effluent of the WWTP here— 
must comply with different applicable environmental regulations, e.g. European, regional, 
local. Specifically regarding WWTPs, these facilities are in operation 24 hours a day, 365 days 
a year, and hence, their energy consumption is remarkably high. Using adequate monitoring 
and intelligent control techniques these energy costs can be minimized, while ensuring a more 
reliable environmental management of the process, i.e. improving the diagnosis of possible 
problems providing appropriate solutions. In the field of environmental process monitoring and 
control systems, Artificial Intelligence (AI) techniques have been shown effective and used for 
some time to improve the reliability of the supervision of these processes and overcome 
certain shortcomings of the classic control systems. The set of AI techniques used ranges 
from Knowledge-Based Systems (Flanagan, 1980; Berthuex et al., 1987; Maeda, 1989; Gall 
and Patry, 1989; Tzafestas and Ligeza, 1989; Serra et al., 1994; Ahmed et al., 2002; Aulinas 
et al., 2011; Castillo et al., 2016; Corominas et al., 2018), Fuzzy Control Systems (Czoagala 
& Rawlik, 1989; Wang et al., 1997; Ruano et al., 2010; Santín et al., 2018; Bernardelli et al., 
2020), control using Artificial Neural Networks (Capodaglio et al., 1991; Kosko, 1992; Côte et 
al., 1995; Syu and Chen, 1998; Hamed et al., 2004; Ráduly et al., 2007), Case-Based 
Reasoning (Sànchez-Marrè et al., 1997, 2002, 2005) or Genetic Algorithms (Karr, 1991; 
Béraud et al., 2007) to Intelligent Decision Support Systems (IDSS) (Sànchez-Marrè et al., 
2004; Torregrossa et al., 2017; Nadiri et al., 2018; Han et al., 2020). AI methods can provide 
important improvements to the supervision and control of these processes, such as qualitative 
information management, expert knowledge modelling, uncertainty modelling and reasoning 
and learning abilities. 
Regarding the water sector, the smart water concept is incipiently emerging and strongly 
depends on properly address several key challenges, e.g. the formulation of an integrated 
water information system with standardised ontologies in order to achieve real interoperability 
(Gourbesville, 2016), as suggested e.g. in the Smart Water Management Initiative introduced 
in (Choi et al. 2016). As pointed out in (Gourbesville, 2016; Sànchez-Marrè, 2014), several 
technical challenges are still to be tackled in order to achieve real integration and functional 
interoperability, needing further efforts in order to reach maturity, particularly in the definition 
of standards for managing workflows among various applications and models in order to 
produce real time information useful for decision makers. The lack of interoperability standards 
in Information and Communication Technology (ICT) systems for water management is also 
pointed out in (Laxmi and Laxmi-Deepthi, 2017; Robles et al., 2014), jeopardizing proper 
monitoring, control and overall efficiency of water management and preventing their evolution 
and improvements e.g. the adoption of Internet of Things (IoT) paradigm. The need for 
standards in the management of water infrastructures is also pointed out in (Di Biccari and 
Heigener, 2018) as an essential step for a fully integrated management and for reaching 
efficient levels of interoperability and communication. (Poch et al., 2017) points out that the 
construction of a successful Environmental Decision Support System (EDSS) should focus 
significant efforts on the use and transfer of the tool to the market. In (Mannina et al., 2019), 
a review of the state of the art in the Decision Support Systems (DSS) for WWTPs is 
presented. Here, the development of user-friendly applications and the challenge to reach the 
water market are also emphasized. 
 
On the one hand, experts in this area have acquired over time specific knowledge related to 
how to successfully solve complex tasks. In order to take advantage of this knowledge, its 
codification in a specific type of knowledge representation formalism would be very beneficial. 
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The most used formalism to represent these knowledge patterns is the use of inference rules. 
These rules constitute the Knowledge Base of these systems, which represent this knowledge 
provided by the experts. As the knowledge is coded by rules, the reasoning mechanism is 
named Rule-Based Reasoning (RBR) (Jackson, 1999; Buchanan and Duda 1983). An RBR 
system contains, at least, the following three components (Figure 1): a) the knowledge base; 
b) a fact base or data base and; c) the inference engine. The knowledge base is composed of 
a set of rules that codifies the expert knowledge of a specific domain. The data base contains 
all the relevant information that is necessary for the rules’ evaluation, i.e. historical information 
or parameters’ values. The inference engine is the reasoning system that uses the rules in the 
knowledge base, the information in the data base and the data from the acquisition system to 
provide a decision. 
 

 

 
Figure 1. Rule-Based Reasoning system structure 

 
Figure 2. Case-Based Reasoning system structure 

 
 
On the other hand, the Case-Based Reasoning (CBR) approach (Figure 2) tries to solve new 
problems in a domain reusing the previous solution provided to a similar problem in the same 
domain (analogical reasoning). Thus, the solved problems constitute the “knowledge” about 
the domain. The more experienced is the system, the better is the performance it achieves, 
since new relevant experiences (i.e. cases or solved problems) are stored in the Case Base 
(CB) or Case Library. This way, the system is continuously learning to solve new problems 
(Riesbeck and Schank, 1989; Kolodner, 1993; Richter and Weber, 2013). This behavior is 
based on the theory of dynamic memory of Roger Schank (Schank, 1982), which states that 
the human memory is dynamic and change with its experiences along its life. The CBR system 
structure showed in Figure 2 considers the four stages of the case-based reasoning method: 
retrieval, reuse, revision and retain (Aamodt and Plaza, 1994). The retrieval phase is the 
process by which similar problems (i.e. cases) to the new problem are searched in the CB. 
Then, in the reuse phase, the solution of the retrieved case is adapted and used to solve the 
new problem. The revision phase is to determine whether the solution found in the reuse stage 
has been successful or not. Finally, the retain phase is the stage where useful information 
from the new problem-solving episode is learnt into the existing CB. 
 
As a result of research in this field, a commercial IDSS was built in a former stage of this work 
and used in more than 100 WWTPs around the world. This IDSS was initially based on the 
methodology described in (Poch et al., 2004). In (Poch et al., 2017) the gap between the 
research in this field and the water market is pointed out. The IDSS was drastically simplified 
for its commercial implementation, using only a rule-based component, and did not aim at 
scalability, dynamic learning and gradual competence increase, interoperation of methods and 
usability issues, like in the approach presented here. Furthermore, the Intelligent Decision 
Support (IDS) approach presented here has been designed in a general fashion for the sake 
of scalability to different types of environmental systems —which pose similar challenges as 
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the particular environmental system case study considered here, i.e. WWTPs—, but also to 
further types of systems beyond the environmental framework. 
 

1.2 Overview 
 
A common and important problem when designing a new IDSS for environmental processes 
is the ad-hoc nature of this design for each particular system, depending on its particular 
specifications, e.g. processes involved (e.g. nitrification, phosphorus removal, major air 
pollution contaminants, geographic features of a territory), particular configuration of each 
system or available data. This entails the investment of a large amount of time in the analysis 
of the different requirements of the new system to design the IDS tool. In line with the 
improvement of these problems, the use of RBR and CBR methods –and particularly, the 
interoperation of both–, is proposed here to obtain an intelligent  decision support system 
based on a control and supervision solution that can be easily scaled to different 
environmental systems —without loss of generality, WWTPs here. The work presented here 
wants to delve into one of the layers of the framework presented in a previous study (Pascual-
Pañach et al., 2018). This generic framework is based on a three-layer architecture for IDSSs 
deployment. One of these layers is the process control  layer, where the integration of RBR 
and CBR approaches within the Intelligent Control Process System (ICPS) is proposed to 
tackle the set-points generation problem to manage the environmental system. The mainstay 
of this proposal is to guarantee the interoperability between the different layers and methods 
used, in addition to guaranteeing the scalability of the approach, as well as the high reliability 
and dynamic flexibility for learning from past experience environmental situations through the 
CBR component. This last feature makes the IDS methodology able to escape from static 
solution architectures which are not able to adapt to dynamic changes in the evolution of 
environmental systems.  
 
The objectives of this work are, first: to propose a reliable IDS methodology and to deploy an 
IDSS, and its main IPCS component based on the interoperation of RBR and CBR methods 
in a real WWTP, as an example of a real environmental system where the proposed 
methodology can be applied; second: to integrate this IDS methodology in a user-friendly 
graphical user interface (GUI) to help in the participatory role of practitioners in the daily 
operation and decision-making of the process, and finally: to demonstrate how this approach 
can be easily scaled to different installations.  
 
The structure of this paper is as follows: in Section 2, the methodology is presented; first, a 
general flowchart of the application operation is shown; then, RBR and CBR modules 
implementation is detailed. In Section 3, the experimental evaluation is detailed. In the first 
part of Section 3, the case study is described. Then, in the second part of Section 3, the 
methodology is validated with real data obtained from the operation of the application in a real 
system. The results are discussed in Section 4. Finally, some conclusions and future work are 
presented in Section 5.  

2 METHODOLOGY 
 
This section describes the IDS methodology used to combine both data-driven and model-
driven techniques, and its integration in the core component, which is the IPCS, deployed in 
a real environmental system —without loss of generality, a WWTP here. In Section 2.1, the 
general architecture of the whole IDSS, with its major component, i.e., the IPCS, presented in 
a previous work (Pascual-Pañach et al., 2018), is described. Next subsections describe in 
detail the interoperation of both reasoning methods. In Section 2.2 the control workflow is 
presented. Section 2.3 describes the reasoning system. In Section 2.4 how both reasoning 
methods –CBR and RBR– are interoperating is detailed. 
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2.1 IDSS and IPCS design 
 
The main aim of the IDSS and the core IPCS component presented here is to generate the 
set-points for the local controllers to preserve the environmental quality of each environmental 
process installation (Figure 3), here a sanitation system. Figure 3 shows the integration of the 
IDSS and the IPCS in the current architecture of the system. This tool reads online sensor 
measurements from the plant and generates set-points for a lower control level Programmable 
Logic Controller (PLC). The standard control system available in most WWTPs consists of the 
combination of a Supervisory Control And Data Acquisition (SCADA) system and a PLC. The 
SCADA is a software system used to control, monitor and acquire data from the WWTP, while 
the PLC is a modular industrial computer that provides multiple inputs and outputs and 
contains the control loops programming. Traditionally, SCADA/PLC systems integrate 
classical control approaches, e.g. Proportional Integral Derivative (PID) controllers. The IPCS 
proposed here is based on AI techniques, with the aim of providing a scalable solution to 
different installations. Here both systems –i.e. SCADA/PLC and designed IPCS– are working 
together. The IPCS does not control all the processes in the plant –i.e. is focused on the 
secondary treatment– while the SCADA system is used as a backup solution in case of failure 
of the IPCS. This has been the design of choice since WWTPs are complex and critical 
installations that must be controlled and supervised 24 hours a day 7 days a week.  
 

 
Figure 3. Architecture of the proposed Intelligent Decision Support Methodology  

 

The IDSS, along with its IPCS core component proposal is based on a three-layer architecture 
(Figure 4). The data science flow layer (i.e. Layer 1) is used to generate models obtained from 
process data. It is an off-line procedure that takes historical available data from each system 
with the aim of generating valid data-driven models to supervise and control the process. The 
input of Layer 1 is a standardized and properly formatted raw database containing all available 
data for each system, namely: sensor measurements, equipment states and alarms, plant set-
points and further data derived from them. First, different data validation and reconstruction 
methods, such as the ones in (Cugueró-Escofet et al., 2016; Gibert et al., 2010, 2018; De 
Mulder et al.,2018), can be applied to obtain a new filtered and valid database. Then, some of 
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the proposed data mining methods can be applied to the complete dataset to find relations 
among variables, behavioural patterns or similar methods to obtain valid models to be used in 
Layer 3. These models can be e.g. rule models induced from decision trees or case bases. 
Both types of models interoperate in Layer 3 to supervise the system by discriminating 
abnormal situations from normal operation, and also to control the process by generating 
actuator set-points based on knowledge obtained from data gathered from the process. Rule 
models can also include human expert knowledge of the system (model-driven method), so a 
user-friendly interface to integrate such human-based knowledge is considered for this layer. 
In the Process Design flow layer (i.e. Layer 2), the layout of the plant is designed, including all 
processes to be supervised and controlled, and the corresponding signals. Finally, the 
Process Control workflow layer (i.e. Layer 3) is the application core: the plant defined in Layer 
2 is supervised and controlled using models generated in Layer 1, with the workflow designed 
in this Layer 3. Therefore, the online Layer 3 is directly connected with both previous offline 
layers.  

   

 
Figure 4 IDSS architecture 

 
Hence, the proposed approach is to interoperate CBR and RBR methods, obtaining 
redundancy in diagnosis and/or set-points generation. CBR and RBR modules inputs are 
correctly fed with online data gathered from the process and the corresponding models 
generated offline in Layer 1. Using both methods and different models, diagnosis results and 
set-points can be compared in order to provide a more reliable diagnosis and set-point 
generation. Hence, this diagnosis and set-point generation redundancy helps on relying on 

In
te

ro
pe

ra
bi

lit
y

La
ye

r 1
La

ye
r 2

La
ye

r 3

Data pre-
processing

Data-mining 
methods

Case 
Base 
(CB)

If-then 
rules set

Human in the loopHuman in the loop

If-then 
rules set

CBR

RBRData 
acquisition

RBR 
diagnosis 

& set-
points

RBR 
Model 
(Rules)

Data 
validation 

and 
reconciliation Combined 

diagnosis result & 
process set-points

Biologic reactorBiologic reactor

BlowersBlowers

End User interfaceEnd User interface

Historical
data

CBR 
Model
(CB)

Secondary 
clarifier

CBR 
diagnosis 

& set-
points

Human in the loop

Key Performance 
Indicators (KPIs)

Plant status



7 
 

the outcome of the tool presented. Also, the human expert knowledge –provided e.g. by the 
plant manager– is considered in order to validate the tool outcome and also to feed the 
database with human-based knowledge. In the next sections, the importance of the 
automation of the whole process, i.e. from data acquisition to diagnosis, is emphasized. 
However, some situations may require the user (i.e. human in the loop) to validate the tool 
outputs. 
 
In order to implement the proposed methodology and develop this tool, the use of a visual 
workflow is proposed. To this end, the use of graphical programming environments provides 
some advantages in relation to traditional languages like C or Java (Johnston et al., 2004), 
e.g. reusability and understandability of the code, modularity and flexibility, intrinsic 
parallelism, easy debugging or faster prototyping and development.  
To choose a valid developing environment is necessary to define the desired specifications. 
Methods and algorithms needed are all related to data mining. In Gibert et al. (2010), an 
overview of different data mining techniques and choosing criteria is presented. Most 
programming languages have available libraries for data science, for example Scikit-learn for 
Python, or JDMP (Java Data Mining Package) for Java. Although they are not designed for 
graphical programming, we can find the Flow-Based Programming (FBP) paradigm described 
in Morrison (2010), which allows the programmer to create applications as a set of black boxes 
–or interconnected processes–, or some programming environments like NoFlo for JavaScript, 
based on the FBP concept. On the other hand, there are some programming environments 
and languages that make the development process easier because are oriented to graphical 
programming, e.g. Matlab/Simulink (Champman, Stephen J., 2020) or LabVIEW (Johnson and 
Jennings, 2006), or further open source equivalent options like Scilab (Nagar, S., 2017) or 
MyOpenLab (Ruiz Gutierrez, J. M, 2017), respectively. These environments also have 
available data science libraries, as well as other specialized useful tools, e.g. database 
connection and reading, or data acquisition, among others, so they are a convenient choice 
for implementation. In addition, they can be complemented with libraries from other 
programming languages –like C or Java– by creating new user defined blocks or tools, or 
using developed ones, e.g. Drools (Salantino, M., et al., 2016), a rule inference engine 
developed in Java. 
At the current stage, the software used for prototyping the methodology and the tool presented 
here is Matlab-Simulink. This software provides all the necessary tools, a fourth-generation 
programming language (4GL) and a graphical programming environment that facilitates the 
standardization, allowing the tool to be easily reused in different installations. 
 

2.2 Decision support workflow proposal 
 
This work proposes an IDS methodology based on the interoperation of RBR and CBR 
modules to tackle the supervision of environmental systems, and here particularly WWTPs 
processes, whilst avoiding the use of ad-hoc solutions for each particular system. In this 
section RBR and CBR modules are described, as well as how they are integrated in a unique 
tool combining both methods in order to obtain a more reliable solution. In addition, the 
operational conditions in real applications are seldom ideal, with e.g. missing information due 
to bad quality measurements or non-existing monitored data. Authors want to emphasize that 
the methodology and the tool presented here are being developed to satisfy the different 
environmental supervision and decision support needs. Although all these systems, in our 
case WWTPs plants, are based in the same processes, the operational conditions in each 
installation are quite different, ranging from high levels of automation to manual control 
approaches. The RBR module allows the implementation of this tool in systems where 
historical data is of poor-quality, or even non-existent, as well as to reuse generic rules 
outcomes in different systems, i.e. the CB obtained for a specific system can be reused in 
systems with similar configuration. The CBR component provides the IDS methodology with 
learning capabilities. Due to the dynamic nature of CBR, the IDSS can increase its 
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competence skills along time, because it can learn from relevant environmental situations 
experienced, solved and learned facing the environmental system supervision, day after day. 
 
The integration of both modules is shown in Figure 5. The grey part of the diagram 
corresponds to the classic CBR cycle, whilst in orange our proposal integrating the RBR 
module and the Decision module to the CBR is represented. The Decision module –after rules 
evaluation and case-based reasoning retrieval phase–, is used to decide which solutions are 
selected to be applied to the process. Then, at the revision stage, the plant Key Performance 
Indicators (KPIs) are evaluated for the model used –RBR or CBR– and checked within the 
allowed limits. Finally, in the retain phase, relevant information can be added to the case base.  
 

 
Figure 5 Interoperation of RBR, CBR and Decision modules scheme 

The retrieval, reuse, revision and retain phases, as well as the Decision module and the 
interoperation phase, are described in the next subsections.  
 

2.3 Reasoning system 
 
The reasoning system presented in Figure 5 is composed of the classical CBR cycle and a 
proposed integration of the RBR module. The RBR module is designed following the scheme 
presented in Figure 1. The knowledge base consists of a set of rules to generate the set-points 
to control the environmental process for which they were designed. Each rule is expressed as 
in (1) as follows: 
 

𝑰𝑰𝑰𝑰 < 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 > 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 < 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 > (1) 
 
The condition statement in (1) depends on any measured/calculated variable/parameter 
related with the process that can be modified by the user’s tool. It can be a simple statement 
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or a combination of different conditions, by means of logical {AND, OR} operations, as detailed 
in Table 1 and Table 2. 
 
Table 1 AND operator 

<condition1> <condition2> <condition1> AND <condition2> 
false false false 
false true false 
true false false 
true true true 

 

Table 2 OR operator 
<condition1> <condition2> <condition1> OR <condition2> 

false false false 
false true true 
true false true 
true true true 

 
The action statement in (1) is related to each set-point of the process control. An action can 
involve setting a set-point to a specific value, or to increase/decrease the current set-point.  
 
The set of rules of the form in (1) is designed together with the concrete system manager and 
experts on the process, i.e., in a participatory task. All the parameters involved in the rules can 
be modified online and in real time by the user, even the rules themselves. According to the 
RBR scheme in Figure 1, the application integrates the inference engine, but not the set of 
rules or the database. The knowledge base and the data base blocks are out of the tool, which 
simplifies the implementation in different systems. In Section 3.1, the application to the pilot 
WWTP is described.  
 
On the other hand, the CBR module consists of a CB obtained from historical operational data 
of the environmental process. First, the retrieval process is introduced in Algorithm 1, where 
𝑐𝑐0(𝑡𝑡) is the current case, 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 is the retrieved case (the most similar case) and 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 is the 
distance between 𝑐𝑐0(𝑡𝑡) and 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚. 
 

Algorithm 1 - Retrieval process 
function retrievalFcn(𝑐𝑐0(𝑡𝑡)) 

for i = 1 to l 
𝑑𝑑(𝑖𝑖) = computeDistances(𝑐𝑐0(𝑡𝑡), 𝑐𝑐𝑖𝑖) 

end for 
(𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚, 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚) = identMostSimilar (𝑑𝑑) 
return  𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚, 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚  

end function 
  
In the retrieval process, the current environmental situation is compared with stored cases in 
the CB. Each time new data is read by this process, they are formatted as a new case 𝑐𝑐0, 
following the format of cases in the CB as in (2),  
 

𝑐𝑐𝑖𝑖 = (𝑓𝑓𝑖𝑖1,𝑓𝑓𝑖𝑖2, …𝑓𝑓𝑖𝑖𝑖𝑖, 𝑠𝑠𝑖𝑖1, 𝑠𝑠𝑖𝑖2, … , 𝑠𝑠𝑖𝑖𝑖𝑖); 𝑖𝑖 = 1 … 𝐼𝐼 (2) 
 
where 𝑓𝑓 are the descriptive features, 𝑁𝑁 is the number of features, 𝑠𝑠 are solutions, 𝑀𝑀 is the 
number of solutions and I is the number of cases in the CB in (3),  
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⋮
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� (3) 

 
The retrieval process includes the normalization between 0 and 1, considering the range for 
each variable. 
To solve a new problem using past experiences, it is necessary to find similar situations that 
have been already solved. Thus, in order to find the most similar case in the CB, the Euclidean 
distance in (4) is used. This is a convenient measure of similarity here since all the variables 
are numeric, as pointed out in (Núñez et al., 2004): 
 

𝑑𝑑(𝑐𝑐𝑎𝑎, 𝑐𝑐𝑏𝑏) =  ��  𝑤𝑤𝑘𝑘(𝑓𝑓𝑎𝑎𝑎𝑎 − 𝑓𝑓𝑏𝑏𝑏𝑏)2
𝑁𝑁

𝑛𝑛=1

 (4) 

 
where 𝑁𝑁 is the number of features, 𝑐𝑐𝑎𝑎 and 𝑐𝑐𝑏𝑏 are two cases 𝑎𝑎 and 𝑏𝑏, respectively, and  𝑤𝑤𝑛𝑛 is 
the weight of the feature 𝑛𝑛. By default, 𝑤𝑤𝑛𝑛 is 1

𝑁𝑁
 for all 𝑛𝑛, thereby, all features have the same 

importance. 
At the current stage, the most similar case is picked, although other alternatives could be 
considered, e.g. the k most similar cases (with 𝑘𝑘 being a positive integer).  
 
The second stage –reuse process in Figure 5– is introduced in Algorithm 2. In the reuse 
process, the solution obtained in the retrieval process can be adapted to the new problem 
requirements. Since a new case may not be exactly the same as a retrieved case, the 
appropriate solution may not be the same either. Hence, a method must be used to adapt the 
retrieved case 𝒄𝒄𝒎𝒎𝒎𝒎𝒎𝒎. At the current stage, the method used to adapt the solution is the null 
adaptation, i.e. no action is performed to the retrieved case and this actual retrieved solution 
is used. However, in real systems it is necessary to consider situations where actuators used 
to reach these set-points may be unavailable, or its operation range limited, e.g. a valve which 
cannot be opened or closed, a certain blowing power is not available from the installed blower 
and the addition of further elements is needed. Thus, solutions ‒set-points in our case‒ 
obtained from CBR retrieval phase can be adapted to these abnormal situations.  
 

Algorithm 2 - Reuse process 
function reuseFcn(𝑐𝑐0(𝑡𝑡), 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑆𝑆𝑟𝑟) 

for  m = 1 : M       
      if  𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡,𝑚𝑚) ∈  𝑆𝑆𝑟𝑟(𝑘𝑘) then   

      𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡,𝑚𝑚) = 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡,𝑚𝑚)  
else 
       𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡,𝑚𝑚)  ← 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜 [𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚] 
end if 

end for  
return  𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡) 

end function 
 
𝑆𝑆𝑟𝑟 is the matrix in (5) with the range of valid values for each solution, where �𝑠𝑠𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚, 𝑠𝑠𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚� are 
the minimum and the maximum values for the solution 𝑀𝑀, 
 

𝑆𝑆𝑟𝑟 =  �(𝑠𝑠1
𝑚𝑚𝑚𝑚𝑚𝑚, 𝑠𝑠1

𝑚𝑚𝑚𝑚𝑚𝑚), (𝑠𝑠2
𝑚𝑚𝑚𝑚𝑚𝑚, 𝑠𝑠2

𝑚𝑚𝑚𝑚𝑚𝑚), … (𝑠𝑠𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚, 𝑠𝑠𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚)� (5) 
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𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡,𝑚𝑚) is the adapted solution obtained in the reuse process at time step 𝑡𝑡 for the solution 
variable 𝑚𝑚, while 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡,𝑚𝑚) is the solution of the most similar case, i.e. before the reuse 
process.  
 
The revision process is detailed in Algorithm 3 and executed after the decision process and 
the reuse process.  
 

Algorithm 3 - Revision process 
function revisionFcn(𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡)) 
      if t = 0 then 
            [nuses, okuse, nokuse] = InitializeUtilityMeasures  
      endif 
      kpi(t) = CalculateKpiValues 
      𝜃𝜃(t) = ObtainRevision(𝑘𝑘𝑘𝑘𝑘𝑘1..𝑄𝑄(𝑡𝑡), 𝛿𝛿1..𝑄𝑄) 
      if  𝜃𝜃(t) is 1 then  
            IncreaseOkuse(msc) 
      else  
            expert is notified and requiered for validation → 𝜑𝜑(t) = 1 
      end if 
      If 𝜑𝜑(t) = 1 // Revision  𝜃𝜃(t) is 0 
            When 𝜃𝜃(t) is available then //Reviewed by the user 
                  If  𝜃𝜃(t) is 0 then  
                       increase nokuses(msc) 
                  elseif  𝜃𝜃(t) is 1 then  
                       increase okuses(msc) 
                  end if 
                  𝜑𝜑(t) = 0 
            end when 
      return 𝜃𝜃(t), 𝜑𝜑(t) 
end function 

 
This process is based on a set of KPIs that can be defined depending on the environmental 
application and on the environmental issues to be preserved. In the case of sanitation systems 
KPIs are related to the water quality and the treatment cost, mainly due to electrical 
consumption and reagents consumption. In Section 3.2 the KPIs used in the revision process 
for the case study described in Section 3.1 are detailed. In Algorithm 3 KPIs are evaluated in 
the function CalculateKpiValues.  Also, different performance measures can be used for 
assessment and CB maintenance purposes, namely: the total number of usages per case 
(nuses), the number of incorrect usages per case (nokuse) and the number of correct uses per 
case (okuse).  
The evaluation of the revision 𝜃𝜃 at each time step 𝑡𝑡 is done in function ObtainRevision as 
described in equation (6),  
 

𝜃𝜃(𝑡𝑡) = �1, 𝑖𝑖𝑖𝑖 �𝑘𝑘𝑘𝑘𝑘𝑘𝑞𝑞(𝑡𝑡) ≤ 𝛿𝛿𝑞𝑞

𝑄𝑄

𝑘𝑘=1
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (6) 

 
where 𝑄𝑄 is the number of KPIs, 𝑘𝑘𝑘𝑘𝑘𝑘𝑞𝑞(𝑡𝑡) is the value of the 𝑞𝑞𝑡𝑡ℎ KPI at time step t and 𝛿𝛿𝑞𝑞 is the 
threshold corresponding to the 𝑞𝑞𝑡𝑡ℎ KPI. The 𝛿𝛿𝑞𝑞 threshold is fixed depending on the nature of 
the KPI, e.g. the stablished limits in the corresponding waste water treatment directive when 
it is related to effluent quality.  
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The effects of a certain actuation depend on the process dynamics and on different boundary 
conditions like for instance, the waste water charge, e.g. same actuations with different influent 
characterization have different effects on the process. At this stage, the KPIs designed for 
each environmental process are considered to detect when the system is not working as it is 
expected, and hence the revision process is not passed. In the latter case, i.e. 𝜃𝜃(t) = 0, the 
expert can verify whether the last actuations –e.g. the last few hours– are correct or not and 
update the revision result 𝜃𝜃(𝑡𝑡). If the non-fulfillment of the KPIs is caused by an exceptional 
situation, e.g. contaminant discharge over allowed limits, the expert can modify some 
parameters of the process to be adapted to that environmental situation, or just be aware that 
the environmental situation is happening, e.g. if there is already the best actuation applied to 
the system. On the other hand, if an incorrect actuation is detected, rules can be reviewed 
(when the solution is provided by the RBR module) or the CB analysed (when the solution is 
provided by the CBR module).  
 
In the retain process (Algorithm 4), relevant environmental situations that are not represented 
in the CB can be learned and aggregated to the CB to be used in the future increasing the 
competence of the IDSS along time.  
 

Algorithm 4 – Retain process 
function retainFcn(𝑐𝑐0(𝑡𝑡), 𝑆𝑆(𝑡𝑡), 𝛾𝛾(𝑡𝑡),𝜃𝜃(𝑡𝑡),𝜑𝜑(𝑡𝑡)) 
      if  𝛾𝛾(t) is 1 then //RBR is considered, 𝑐𝑐0(𝑡𝑡) is candidate 

if  𝜃𝜃(t) is 1 then  
      𝐶𝐶𝐶𝐶(𝑙𝑙 + 1) =  𝑐𝑐0(𝑡𝑡) ; l = l+1; 
elseif  𝜃𝜃(t) is not 1 and  𝜑𝜑(t) = 1 then  
      wait for revision 
else  
      𝑐𝑐0(𝑡𝑡) is not retained 
end if 

      elseif  𝛾𝛾(t) is not 1 then  
            𝑐𝑐0(𝑡𝑡) is not a candidate 

end if 
return CB 

end function 
 
The identification of a candidate is based on the Decision module (Algorithm 5): when the 
Decision module outcome –RBR vs. CBR– is that the CBR module cannot solve the 
environmental problem –hence, RBR is considered–, the decision flag 𝛾𝛾(𝑡𝑡) is set to 1 and the 
new case is a candidate to be added in the CB. When the revision result 𝜃𝜃(𝑡𝑡) is pending (flag 
 𝜑𝜑(𝑡𝑡) = 1) because expert’s validation is required, the retain process have to be postponed.  
Additional details on the Decision module are given in Section 2.4. 
 
It is worth noting that a case already validated and stored in the CB can provide incorrect 
solutions to a given situation, i.e. the solution provided for that case is not the one needed to 
tackle the actual situation occurring. Thus, it is necessary to consider a methodology to 
remove or update existing cases in the CB. Hence, the tool provides the possibility to remove 
or modify a case solution if it is proved wrong at the revision stage.  
At this stage, special attention should be given to the cases retention to avoid an information 
overload. The information contained in the CB should represent all the possible situations 
involving the process, while storing the minimum number of cases (i.e. rows in the CB). A 
large CB involves more resources in terms of physical memory to allocate it and computation 
time in the retrieval stage. Therefore, the maintenance of the CB is another important point to 
be considered. Performance measures in Algorithm 3 can be useful for this purpose, e.g. 
unused cases during a certain period can be deleted. 
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. 

2.4 Interoperation of RBR and CBR reasoning modules 
 
The RBR and CBR modules are interoperating through the Decision module. The CBR 
approach provides more specific knowledge and learning capacity in comparison to the RBR 
approach. For this reason, the CBR module is more reliable when the computed dissimilarity 
measure for a new case is below a threshold. In spite of this decision can be automated, the 
critical nature of this application makes it essential to involve the participation of the user in 
different decisions along the management of the environmental process, like the revision and 
retain stages of the CBR cycle or the validation of the Decision module. At each time step the 
solutions (set-points to control the process in our case) are generated. The dissimilarity 
measure (𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚) of the retrieved case is used to determine the solution reliability. Here, the 
dissimilarity (𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚) of the current case to the retrieved one is compared to 𝑑𝑑𝑡𝑡ℎ𝑟𝑟 calculated in 
(7) and (9) to make a decision on the solution to be used. The distance threshold is statistically 
obtained: assuming a case base 𝐶𝐶𝐶𝐶, a set of 𝑃𝑃 experiences or cases that can be solved with 
𝐶𝐶𝐶𝐶 and taking the minimum distance of each case to the most similar one, the distance 
threshold 𝑑𝑑𝑡𝑡ℎ𝑟𝑟 is obtained in (9) as follows. First, the average 𝜇𝜇𝑑𝑑 of all minimum distances is 
calculated in (7) 
 

𝜇𝜇𝑑𝑑 =
∑ 𝑑𝑑(𝑐𝑐𝑝𝑝,𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚)𝑃𝑃
𝑝𝑝=1

𝑃𝑃
  (7) 

 
where 𝑑𝑑(𝑐𝑐𝑝𝑝, 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚) is the distance of the case 𝑐𝑐𝑝𝑝 to its most similar case in the 𝐶𝐶𝐶𝐶, i.e. the 
minimum distance, and 𝑃𝑃  is the total number of solved cases. Then, the standard deviation 
of all minimum distances is calculated in (8): 
 

𝜎𝜎𝑑𝑑 =  �
1
𝑃𝑃
��𝑑𝑑𝑝𝑝 − 𝜇𝜇𝑑𝑑�

2
𝑃𝑃

𝑝𝑝=1

  (8) 

 
 
where 𝑑𝑑𝑝𝑝 is  𝑑𝑑(𝑐𝑐𝑝𝑝, 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚). Finally, the distance threshold is calculated in (9) and used as shown 
in Algorithm 5 to determine which solution has to be used (𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡) or 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡)), 
 

𝑑𝑑𝑡𝑡ℎ𝑟𝑟 = 𝜇𝜇𝑑𝑑 + 3 · 𝜎𝜎𝑑𝑑 (9) 
 

Algorithm 5 – Decision module 
function decision(𝑐𝑐𝑖𝑖(𝑡𝑡), 𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡), 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡), 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚, 𝑑𝑑𝑡𝑡ℎ𝑟𝑟) 

if 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑑𝑑𝑡𝑡ℎ𝑟𝑟 then  
𝐶𝐶𝐶𝐶𝐶𝐶 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 → 𝑆𝑆(𝑡𝑡) = 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡) 
𝛾𝛾(𝑡𝑡) = 0 

else 
S(t) =  𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡) 
𝛾𝛾(t) = 1 

end if  
return 𝛾𝛾(t), S(t) 

end function 
 
Within a distance smaller than 𝑑𝑑𝑡𝑡ℎ𝑟𝑟, it is assumed that the solution given by the CBR module 
can be used because the current situation is enough similar to a situation occurred in the past 
in the environmental system and already stored in the CB. On the other hand, a distance value 
over 𝑑𝑑𝑡𝑡ℎ𝑟𝑟  means that the current environmental situation is not similar enough to any stored 
case in the CB. 𝑑𝑑𝑡𝑡ℎ𝑟𝑟 can also be changed by the user. This value can be increased or 
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decreased depending on the confidence on the CBR module. Using the extreme values, it is 
possible to cancel one of both modules. With 𝑑𝑑𝑡𝑡ℎ𝑟𝑟 = 0 RBR module is used, while with 𝑑𝑑𝑡𝑡ℎ𝑟𝑟 =
1  CBR module is employed.  

3 EXPERIMENTAL WORK 

3.1 Case study 
 
The current study, as a particular instance of an environmental system where the proposed 
IDS methodology can be applied, is developed in the framework of a real sanitation system 
regional network in Catalonia. Such system is managed by Consorci Besòs Tordera (CBT), a 
local water administration composed of 69 municipalities in four different regions of Catalonia 
with a population of about 470000 inhabitants. CBT is responsible for the sanitation facilities 
from the very beginning in project and building stages to the final facilities operation and 
maintenance –including 300 km of sewers and 27 WWTPs–, with the main objective of 
preserving and improving the good health of the rivers in its area. All WWTPs within the CBT 
ambit are based on the activated sludge process. Plants capacity ranges from 1000 m3/day to 
40000 m3/day, including water and sludge lines, and in some cases, a biogas line. Despite the 
similar layout among CBT WWTPs, there are some particularities that imply a custom-made 
control system, e.g. number and type of actuators and sensors or influent characteristics. The 
data-driven strategy component presented in this work may provide a convenient approach to 
solve these particular characteristics.  
 
One of the most important processes to be controlled and supervised in a WWTP, in order to 
preserve the good quality of water with a reliable treatment system, is the aeration of the 
biological reactor in the activated sludge treatment, since is the most critical water quality 
preservation and resource consuming process in these facilities, accounting for about the 50 
% of the overall treatment process energy use of the WWTP (L. Feng et al., 2012; R. Oulebsir 
et al., 2019). The aim of this process is to supply oxygen to remove organic matter and 
nutrients, mainly nitrogen, from the sewage water. Nitrogen removal requires aerobic 
conditions for the nitrification stage –where autotrophic bacteria provide biological oxidation of 
ammonia to nitrate–, and anoxic conditions for the denitrification stage –where heterotrophic 
bacteria provide biological reduction of nitrates to produce free contaminant gaseous 
nitrogen–. The oxygen required for the nitrification stage is provided by means of aeration 
blowers.  
The pilot plant considered in this work is focused on the control and supervision of the 
biological process of Santa Maria de Palautordera WWTP, in the area of the Tordera River. 
Its design capacity is 3225 m3/day. The pollution load comes mainly from urban wastewater 
and it is of about 18000 population equivalent. The water line is composed of a primary 
treatment, two biological reactors and two secondary clarifiers. The sludge line includes 
thickening and dewatering processes. Currently, the plant is operated with the primary 
treatment, one biological reactor and two secondary clarifiers, and it is treating an input flow 
of about 85 m3/hour with the characterization described in Table 3, obtained from operational 
data of period 2019. 
 
Table 3. Influent characterization for the pilot WWTP 
Parameter Units Concentration 
Suspended Solids (SS) mg/l 136 
Chemical Oxygen Demand (COD) mg/l 528 
Biological Oxygen Demand  (BOD) mg/l 294 
Nitrogen (N) mg/l 58 
Ammonia (NH4) mg/l 42 
Nitrate (NO3) mg/l 0.7 
Phosphorus (P) mg/l 6.3 
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Conductivity µS/cm 829 
pH - 8 

 
The aeration system consists of three blowers: the main blower and two additional backups. 
With the current configuration, the main blower can be combined with one backup blower to 
reach the desired oxygen concentration in the biological reactor. Backup blowers’ operation is 
combined in order to balance operating hours of each element. Each blower has an integrated 
frequency converter, so the air flow introduced in the biological reactor can be controlled using 
this element. The air is introduced in the reactor in two different opposite points. Each air inlet 
is equipped with a solenoid-controlled valve, which is currently used as an on-off valve. At the 
current stage, these specifications are considered. Thus, the IDSS through the IPCS proposed 
commands the nitrification (i.e. turning on the blowers and opening both valves) and 
denitrification stages (i.e. turning off the blowers and closing the valves), as well as the oxygen 
and pressure set-points. These set-points are used by a Proportional Integral Derivative (PID) 
controller for blowers’ speed regulation. Figure 6 shows the basin in the area of study. Figure 
7 and Table 4 show all the available measured variables in the pilot plant.  
 

 
Figure 6 Basin of study 

 
Figure 7 Pilot WWTP layout 

Table 4. Available sensors for the pilot WWTP 
Sensor Units Sensor Id. 
Plant input flow m3/h Qbio 
Plant output flow m3/h Qout 
Sludge recirculation flow m3/h QR1, QR2 
Purge flow m3/h QP1, QP2 
Ammonia concentration mg/l NH4 
Nitrate concentration mg/l NO3 
Dissolved oxygen mg/l O2 
Redox mV Rx 
Air pressure sensor mbar P 
Air valves position % V% 

 
The former control system operating in the pilot WWTP (i.e. before the integration of the IDSS 
presented here) was based on the redox measurement to regulate nitrification and 
denitrification phases, combined with open-loop fixed timers for nitrification and denitrification, 
set by the operator experience. The latter approach does not make use of all the available 
monitored information contained in the historical data and may be inefficient in terms of 
resources (especially energy) use, whereas the interoperation of RBR and CBR techniques 
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allow considering experts’ knowledge –embedded in the RBR rules–, together with further 
knowledge that can be also retrieved from historical operational records.  
 

3.2 Experimental evaluation 
 
The IDS approach presented in Section 2 is tested in the WWTP described in Section 3.1. 
The previous control system was based on a combined open-loop and closed-loop scheme 
using redox measurements. The plant sensorization was improved with ammonia and nitrate 
sensors in the biological reactor for a better control of the nitrification and denitrification 
phases. Thus, the IDSS deployed in this WWTP can include data from these new sensors. 
Historical available data from the process is not valid because it does not contain ammonia 
and nitrate measurements. The steps taken to test the methodology presented in Section 2 
are: 
 

1- Initialization of the reasoning scheme with the RBR module. In situations where the 
historical data is inexistent or not valid, the reasoning system can be initialized with the 
RBR module and an empty CB. A set of expert rules is designed with the plant manager 
to determine the control of the nitrification and denitrification process. 

2- The CBR module is initialized with an empty CB and cases are learned following the 
Algorithm 4. The distance threshold (𝑑𝑑𝑡𝑡ℎ𝑟𝑟) defined in (7) should be initialized to a value 
between 0 and 1. The higher the threshold, the greater can be the difference between 
the cases added to the case base, i.e. the more heterogeneous they can be. In the 
particular case explained here, the use of the RBR module is forced during some 
weeks to validate the control of the process using the new available sensors – i.e. the 
threshold 𝑑𝑑𝑡𝑡ℎ𝑟𝑟 is set to 0 and all cases are learned. 

3- Finally, after the validation of the RBR performance by the plant manager, the tool is 
reinitialized with both modules, RBR and CBR. The distance threshold is recalculated 
as explained in Section 2.4. At this stage, the IDSS is working with the complete 
reasoning scheme in Figure 5. The distance threshold (𝑑𝑑𝑡𝑡ℎ𝑟𝑟)  is used to decide 
between RBR and CBR solutions. The amount of cases learned is analysed and a 
valid CB is obtained after a clustering process of the learned cases, using a selection 
of some representative cases of each cluster. 

The knowledge base of the RBR module consists on a set of rules designed considering the 
expertise of the environmental system manager ‒plant manager in this case‒ in the process. 
In this particular case two rules with several statements are considered, following the (1). The 
first rule is activated when any of the conditions for the nitrification stage are satisfied. 
Therefore, if any of the conditions of the second rule are satisfied, the process is in the 
denitrification stage. The variables considered are the ammonia concentration (𝑁𝑁𝑁𝑁4 [mg/l]), 
the nitrate concentration (𝑁𝑁𝑁𝑁3 [mg/l]) and the 24h moving average (MA) of the ammonia 
(𝑁𝑁𝑁𝑁424ℎ [mg/l]). The RBR module is executed every minute to generate the corresponding 
setpoint. In a lower control layer pressure and oxygen set-points determine the operation 
velocity of the blowers. The plant has been operated for a long time with constant pressure 
and oxygen set-points. During the test phase of the RBR module it has been observed that 
the margin of optimisation of these set-points is quite limited because of the process 
requirements, which force blowers to operate at maximum power most of the time. In the future 
work section some improvements to this situation are proposed to be considered in further 
steps.  
At each time step, data from the process in Table 4, as well as the set-points generated, are 
saved in a postgreSQL database (Hans-Jürgen Schönig, 2018). The postgreSQL database is 
also used to store the configuration of the IDSS, e.g. rules, the CB and the process 
parameters.  
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After two weeks of operation with the RBR module, the plant operation is validated by experts 
and the data stored used to generate a valid case base for the CBR module. It is known that 
the biological process behaviour depends on different boundary conditions, e.g. temperature. 
Thus, to obtain a CB including all the possible operation situations, one year of data is needed 
in order to consider at least a complete season of operation. Considering this dataset, data is 
validated, e.g. values within the limits, missing values are omitted. Then, a clustering method 
is used to find patterns and identifying different situations. The aim of this process is to create 
classes by grouping similar cases. These classes can be labelled by an expert and used to 
select some representative cases to reduce the size of the case base in order to avoid 
redundant information. Figure 8 shows a graphical representation of the clustering result 
obtained with real data from the biological process. In this latter case, four different classes 
are identified, namely: the nitrification stage; the denitrification stage; the end of nitrification 
stage —i.e. when it is considered completed—and; the end of denitrification stage.  
 

 
Figure 8 Clustering result obtained with real WWTP data 

  
To evaluate the performance of the CB created from these data, a selection of cases from 
each class is proposed. From about twenty thousand cases obtained in two weeks operation, 
ten cases from each class are selected randomly. So, the initial CB consists of 40 cases.  
 
The KPIs defined and used to supervise the performance of the biological process are related 
to the outflow quality and the WWTP efficiency. They are standard indicators that can be used 
in any WWTP to supervise the performance of the nitrification-denitrification process. At the 
current stage these indicators, designed together with the plant manager, are: 
 

• 24h moving average (MA) of ammonia concentration (24MA-AC): The 24h MA of 
ammonia concentration in the effluent is stablished by applicable regulations to a 
maximum value of 4 mg/l.  

• Blower electrical consumption (BEC): The daily average consumption is calculated 
with historical data and used as a threshold to be compared with the current daily 
average consumption.  

• Total nitrogen concentration (TNC): Total nitrogen in the influent and in the effluent of 
the WWTP is not an online measure, but an offline analytic measure obtained three 
times per week. The total nitrogen concentration in the effluent is stablished by 
applicable regulations to a maximum value of 10 mg/l. In terms of nitrogen removal, an 
efficiency around 80% is considered a good performance. 

To simplify the evaluation of the CBR module’s performance, the RBR module is deactivated 
during a few weeks, as well as the retain stage. The results generated during this period are 
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used to calculate the distance threshold (𝑑𝑑𝑡𝑡ℎ𝑟𝑟)  in (7). Then, the RBR module is activated and 
the Decision module selects which solution to use – RBR or CBR – as detailed in the Algorithm 
5, as well as the retain stage (Algorithm 4).  
 
The tool has been running in the plant from January 2020 to July 2020. In Section 4, obtained 
results are presented and discussed. First, results are evaluated from the point of view of the 
KPIs presented in this section. Then, the competence of the proposed reasoning system is 
quantified.  

4 RESULTS AND DISCUSSION 
 
For the implementation and validation of the IDSS methodology described in this work a GUI 
has been built. This tool includes all the necessary processes for the integration with the 
environmental system ‒a WWTP in this case‒, namely: communication via OLE for Process 
Control (OPC) standard with the plant Programmable Logic Controller (PLC); connection with 
a local database and; the required configuration options for the user. In Figure 9, a screenshot 
of the main window of the developed IDSS and the IPCS is presented. In this window, all the 
process’ data available in the database is displayed, including the KPI values. Figure 10 shows 
the configuration window for the reasoning cycle —i.e. interoperation of the RBR, CBR and 
Decision modules. From this window, rules can be modified in real time, as well as the 
variables included in the CB – i.e. variables can be included or excluded from the descriptive 
part of a case.  
 

 
Figure 9 GUI for the IPCS – main screen 
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Figure 10 GUI for the IPCS – RBR and CBR configuration 

 
In Figure 11, the distances obtained with real data for one-month period are represented. The 
distance threshold is calculated as explained in Section 2.4, using the first 15 days. The 
obtained value is 𝑑𝑑𝑡𝑡ℎ𝑟𝑟 = 0.192. Thus, all new cases with 𝑑𝑑𝑡𝑡ℎ𝑟𝑟 > 0.192 are candidates to be 
added to the case base, if the KPI values are within the specified limits. The second part of 
the month is used to validate the distance threshold and the retain phase. It can be seen that 
two new cases are added to the case base and how the distance values are changing. The 
distance threshold 𝑑𝑑𝑡𝑡ℎ𝑟𝑟  is recalculated each time a new case is added to the case base. 

 
Figure 11 Distance threshold calculation example and case retain 

 
In Figure 12, Figure 13 and Figure 14 the evolution of the proposed KPIs is shown. In Figure 
12, the 24h mean average calculated by the NH4 sensor (24MA_AC) is compared with the 
analytical results obtained in the laboratory from samples not in the biological reactor but in 
the effluent, where the limit of four mg/l has to be achieved. The effluent is analysed about 
three times per week. It can be observed that almost all analysed samples are below the limit, 
i.e. the operation is correct. From February to mid-May it can be noted that the NH4 sensor 
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measurements are well above the limit due to a calibration problem in the sensor. Data in this 
period are not considered to obtain the CB. 
 

 
Figure 12 NH4 24h average (24MA_AC) KPI 

In Figure 13, the electrical consumption (BEC) of the studied period is compared with the 
mean electrical consumption of the same period in 2019. In addition, the ratio of this electrical 
consumption related to the volume of treated water is shown. The electrical consumption is 
similar to the one before the deployment of the IPCS tool. The ratio between treated water 
and consumption is 0.3 kwh/m3, below the 0.4 kwh/m3 during the same period in 2019. Redox 
is an indirect measure of the nitrification and denitrification process progression whilst the 
ammonia and nitrate are direct measures. Thus, the control is expected to be more precise 
using ammonia and nitrate sensors, and therefore the electrical consumption could be reduced 
if some constraints imposed by the operator are relaxed. 

 

Figure 13 Electrical Consumption (BEC) KPI 

Finally, Figure 14 shows the total nitrogen (TNC) in the effluent compared to the allowed limit. 
Some values over the limit can be observed in the last days of January 2020. These results 
are due to an intense rainy period that caused a high increase of the nitrate concentration in 
the WWTP influent. The European Union directive 91/271/CEE on urban waste water 
treatment stablishes the maximum nitrogen concentration in the effluent or the minimum 
nitrogen removal efficiency depending on the WWTP influent load expressed in population 
equivalent (PE) units. In terms of nitrogen removal efficiency, it can be pointed out that the 
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mean removal efficiency is about 80%. The European directive stablishes a minimum value 
between 70 and 80%. So, in terms of nitrogen removal results are also within the limits. 
 

 
Figure 14 Total Nitrogen (TNC) KPI and Nitrogen removal 

The KPIs evaluates the performance of the tool from the point of view of the process efficiency. 
In Table 5 the competence of the system is quantified. With this purpose different indexes are 
defined: 
 

• Solved cases (SC): Percentage of solved cases. This index indicates the period when 
the tool is operating. The tool may not be operating during maintenance tasks, 
regarding the application itself or the WWTP. 

• CBR index (CBRi): Percentage of cases solved by CBR module. 
• RBR index (RBRi): Percentage of cases solved by RBR module.  
• Expert index (Ei): Percentage of cases that are not solved by the reasoning cycle, i.e. 

the given solution is not the one used due to maintenance tasks in the WWTP or open-
loop fixed timers set-points.  

• Retain index (Ri): Number of retained cases. This index considers the new learned 
cases to the original case base of 40 cases described in Section 3.2. 

• Correctly solved cases (CSC): Percentage of correctly solved cases by the whole 
reasoning system – i.e. CBR and RBR – considering the expert assessment. 

 

4.1 Discussion 
 
The KPIs designed to evaluate the performance of the tool provide useful information to the 
operators on the efficiency of the plant operation and the effluent quality, particularly in terms 
of nitrogen removal. The 24MA_AC KPI in Figure 12 shows that the amonia concentration in 
the effluent (lab value) is predominantly below the allowed limit (only two samples out of 88 
obtained from laboratory analitycal tests are over this limit). The online measure obtained from 
the ammonia sensor in the biological reactor (NH4) is used to control the process and gives a 
good aproximation of the concentration of this parameter in the effluent. It is assumed that a 
value within the limits in the biological reactor results in a value within the limits in the effluent. 
In terms of total nitrogen (TNC KPI, Figure 14), most analytical results obtained in the 
laboratory are below the maximum allowed concentration. Only four samples out of 91 
obtained from laboratory analitycal tests are out of bounds. These values over the allowed 
limit can be explained by the exceptional weather conditions in that period. From 19th to 25th 
of January 2020 a storm named Gloria was moving across Spain. The abundance of rainfall 
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produced floods and the increase of influent flow in the plant. Rain water has a high 
concentration of dissolved oxygen, which supposes an increase of the nitrate’s concentration 
and consequently, an increase of the total nitrogen. The electrical consumption needed to 
achieve a good performance in nitrogen removal is compared to the consumption in the same 
period a year before the implementation of the tool presented in this work (Figure 13). The 
average values are quite similar, around 700 kWh/day, but it is necessary to consider some 
facts in the analysis of this result. The effluent quality is generally better than required by the 
current legislation, i.e. if the ammonia limit is 4 mg/l a lower concentration in the effluent is not 
required, largely due to some restrictions imposed by the operator. Hence, the operation in 
terms of electrical consumption may be improved by the relaxation of these restrictions, i.e. 
reducing temporized nitrification and denitrification cycles. Finally, in the period from May 2020 
to August 2020 (Figure 13), it can be observed an increase in the consumption as a 
consequence of an increase of the contamination in the influent, producing higher 
requirements for the aeration. One blower cannot provide enough oxygen to reach the set-
point; therefore, one backup blower is activated. Up until then the plant was operated using 
only one blower. Taking into account these results and remarks, it should be noted that the 
nitrogen removal target is achieved. From the point of view of the electrical consumption it is 
difficult to compare the results obtained with previous historical data because of several 
changes in the process, e.g. the control is based on different sensors or the increase of oxygen 
demand. But despite all of that, electrical consumption is similar to the historical one and can 
be reduced addressing two points, namely: a) the adjustment of the nitrogen removal to the 
allowed limit; b) the reduction or removal of the restrictions that avoid the use of the solutions 
proposed by the reasoning cycle.  
 
Table 5 Competence of the reasoning system 

Period SC [%] CBRi [%] RBRi [%] Ei [%] Ri CSC [%] 
Januaryº 71.0 0 100 nd nd nd 
Februaryº 99.5 0 100 nd nd nd 
Marchº 88.5 nd nd 16.0 nd nd 
April 94.7 100 0 15.6 1 85.04 
May 84.6 99.98 0.02 9.2 9 92.00 
June 99.3 100 0 4.4 0 96.56 
July 71.4 99.92 0.08 9.1 24 91.08 
August 97.2 99.94 0.06 7.4 25 94.01 
Total# 89.4 99.97 0.03 9.1 59 91.74 

nd: not determined 
º results during this period are approximate values 
# period from April to August is considered 
 
The competence of the reasoning system is summarized in the Table 5. During the first three 
months most indexes cannot be determined. From January 2020 to the end of February 2020 
only the RBR module is working. In March 2020 the CBR module is activated, but CBRi and 
RBRi indexes are not determined due to the detection and solution of several bugs during 
these first weeks. From April 2020 to August 2020 the application operation is considered 
stable and only minor bugs are detected and solved. Considering the values shown in Table 
5, it can be observed a wide scope of the case base, i.e. most of the situations occuring are 
included in the CB, with a 99.97% of cases solved using the case-based reasoning module. It 
can be also noted that the Ei index is reduced from May 2020 due to increased user confidence 
on the application. This fact has allowed reducing the restrictions imposed by the open-loop 
fixed timers, which ideally should be removed completely in the future since they correspond 
to an open-loop operation of the facility. It has also been shown how the RBR module may be 
used to solve the first cases when historical records are scarce or unexistent to inicialize the 
CBR module with a CB. The CBR module has been partially activated after the validation of 
the RBR module with the retrieval, reuse and revision phases, in the period ranging from 
March to April. In April, after validation of the good performance of the initial case base, the 
retain phase is activated, together with the Decision module. Finally, the CSC index 
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determines the percentage of correct solved cases by the whole reasoning system (i.e. RBR 
and CBR modules), taking into account the expert feedback, i.e. whether the reasoning system 
response is correct considering the expert criteria. For the period from April 2020 to August 
2020 the percentage of correct solved cases is 91.74%, which is assumed to be a good 
performance from the practitioner point of view. Additionaly, in light of the water quality in the 
effluent and the high percentage of correct solved cases, the results may be considered 
enviromentally satisfactory.  

5 CONCLUSIONS 
 
This work proposes a generic and hybrid IDS methodology using the interoperation of RBR 
and CBR techniques for the automated development of intelligent environmental decision 
support systems. The aim of this proposal is to solve a common problem of this type of 
decision support and control systems, which is the ad-hoc design for different installations, as 
well as the lack of adaptability to dynamic changes on the environmental systems. To this end, 
the approach presented here has been designed in a general fashion and integrated in an 
environmental software tool for the sake of scalability to different types of environmental 
systems —without loss of generality, WWTPs here—, but also to further types of systems 
beyond the environmental framework.  The RBR module presented here is configured with a 
collection of rules designed with the participation of environmental experts on the process 
under study. Some of these rules are generic enough to be used in any environmental system, 
whereas others can be used in a particular system. On the other hand, the CBR module 
presented here is based on historical data obtained from a particular environmental process. 
Therefore, using a valid case base allows the methodology to be deployed in any particular 
environmental system instance. The suitability of this approach has been satisfactorily tested 
with the experimental evaluation in a real WWTP facility.  
The performance of the proposed tool is analysed using a set of designed KPIs. For the 
particular system under study, it has been shown how the performance achieved is within the 
desired values in terms of nitrogen removal and electrical consumption, compared with the 
same parameters calculated during the same period before the IDSS deployment. Hence, the 
solution presented here proposes a novel way of supervising and helping in the decision 
making of the processes in the system, which is robust against real-world situations —e.g. low 
quality measurements gathered from the system—, and provides good performance in a real 
case scenario. In the future work section, some guidelines to improve the performance of the 
methodology proposed and the tool deployed are detailed. 
 

5.1 Future work 
 
Further work includes the deployment of the tool proposed here in other WWTPs, with the aim 
of further demonstrating the scalability of the method. The case study presented in this work 
is complex enough to validate the methodology proposed and to deal with the challenges 
posed by the implementation of a novel intelligent environmental decision support software 
tool in a real system. The next steps will consider further systems with additional 
environmental preserving strategies and optimisation possibilities. The results obtained with 
the system studied here can be improved considering, for example, different prices of 
electricity depending on the day time or adjusting the quality of the effluent to the maximum 
values allowed.  
On the other hand, the performance of the tool deployed is heavily reliant on the data quality, 
as shown in Section 4. Consequently, the integration of data validation and reconciliation 
methods should be in the scope of future steps (Cugueró et. al., 2016). In a similar way, the 
dynamic nature of this domain suggest temporary dependencies between cases. To deal with 
this problem the use of a temporal case-based reasoning approach could be useful (Sànchez-
Marrè et al., 2005). 
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The efficiency of the biological processes like the one addressed here depends on different 
boundary conditions —e.g. temperature—, so its behaviour in different seasons – e.g. winter 
vs summer – is different. For this reason, it is necessary to consider longer datasets, hence 
testing this methodology for longer periods in order to enrich the CB with all possible situations. 
At the same time, the maintenance of the CB will grow in importance, so techniques to deal 
with the information increase will be used, e.g. discriminant trees or k-d trees to index the CB 
through a hierarchical structure improving the retrieval time. 
Finally, in further steps the GUI will be improved in order to facilitate the integration of the 
environmental experts knowledge in different situations, e.g. validation of solutions proposed 
by the tool when KPIs are out of bounds. This point is important to take advantage of the 
experience of the user and to provide practitioners with more confidence on the data-based 
approaches, which are quite different than the traditional ones used in system operation.  
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