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Abstract

Conventional clinical decision support systems are generally based on a single classifier or a simple combination of these models,
showing moderate performance. In this paper, we propose a classifier ensemble-based method for supporting the diagnosis of cardiovas-
cular disease (CVD) based on aptamer chips. This AptaCDSS-E system overcomes conventional performance limitations by utilizing
ensembles of different classifiers. Recent surveys show that CVD is one of the leading causes of death and that significant life savings
can be achieved if precise diagnosis can be made. For CVD diagnosis, our system combines a set of four different classifiers with ensem-
bles. Support vector machines and neural networks are adopted as base classifiers. Decision trees and Bayesian networks are also
adopted to augment the system. Four aptamer-based biochip data sets including CVD data containing 66 samples were used to train
and test the system. Three other supplementary data sets are used to alleviate data insufficiency. We investigated the effectiveness of
the ensemble-based system with several different aggregation approaches by comparing the results with single classifier-based models.
The prediction performance of the AptaCDSS-E system was assessed with a cross-validation test. The experimental results show that
our system achieves high diagnosis accuracy (>94%) and comparably small prediction difference intervals (<6%), proving its usefulness
in the clinical decision process of disease diagnosis. Additionally, 10 possible biomarkers are found for further investigation.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. Background and motivation

Recent surveys show that cardiovascular disease (CVD),
which includes heart disease and stroke, is one of the lead-
ing causes of death regardless of sex in the United States
and all over the world (CDC’s Report 1). From the report,
CVD accounts for nearly 40% of all deaths in the US annu-
ally. While these largely preventable diseases are more pre-
valent among people aged more than 65, the number of
sudden deaths from heart disease among people aged 15–
34 has also increased substantially (CDC’s Report 2).
0957-4174/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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Therefore, significant life savings can be achieved if a pre-
cise diagnosis can be made to CVD patients. Correct diag-
nosis, however, is not easy to make and is often delayed
due to the many factors complicating disease diagnosis.
For example, clinical symptoms, functional, and patho-
logic manifestations of heart disease are often associated
with many other human organs besides the heart itself,
and often heart disease may show diverse syndromes. Fur-
thermore, different types of heart disease can have similar
symptoms, further complicating diagnosis (Yan, Jiang,
Zheng, Peng, & Li, 2006).

To reduce the time of intensive diagnosis and to improve
diagnosis accuracy, the development of reliable and power-
ful clinical decision support systems (CDSSs) that support
the aforementioned increasingly complicated diagnosis
decision processes in the medical diagnosis is crucial (Yan
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et al., 2006). Recently, many medical institutions are
increasingly adopting tools that offer decision support to
improve patient outcomes and reduce clinical diagnosis
errors and costs.

1.2. Related work

In the last two decades, the use of artificial intelligence
tools has become widely accepted in medical applications
to support patient diagnosis more effectively. Especially,
the application of various machine learning approaches
such as decision trees (DTs), artificial neural networks
(ANNs), Bayesian networks (BNs), and support vector
machines (SVMs) have been actively tried for meeting
clinical support requirements. Consequently, CDSS or
medical diagnosis systems using different machine learning
approaches have shown great potential, and many machine
learning methods have been tried for a wide variety of clin-
ical and medical applications. Here we briefly review some
part of the previous work in this area before presenting
our own machine-learning-based approach.

The use of decision trees is one of the most popularly
applied methods for CDSS due to its simplicity and capac-
ity for humanly understandable inductive rules. Many
researchers have employed DT to resolve various biological
problems, including diagnostic error analysis (Murphy,
2001), potential biomarker finding (Qu et al., 2002; Won
et al., 2003), and proteomic mass spectra classification
(Geurts et al., 2005).

Bayesian networks are a probability-based inference
model, increasingly used in the medical domain as a method
of knowledge representation for reasoning under uncer-
tainty for a wide range of applications, including disease
diagnosis (Balla, Iansek, & Elstein, 1985), genetic counsel-
ing (Harris, 1990), expert system development (Stockwell,
1993), gene network modeling (Liu, Sung, & Mittal,
2006), and emergency medical decision support system
(MDSS) design (Sadeghi, Barzi, Sadeghi, & King, 2006).

Neural networks have also been applied to the medical
and diagnosis fields, most actively as the basis of a soft
computing method to render the complex and fuzzy cogni-
tive process of diagnosis. Many applications, for example,
have shown the suitability of neural networks in CDSS
design and other biomedical application, including diagno-
sis of myocardial infarction (Baxt, 1990, 1995), differentia-
tion of assorted pathological data (Dybowski & Gant,
1995), MDSS for leukemia management (Chae, Park,
Park, & Bae, 1998) and surgical decision support (Li,
Liu, Chiu, & Jian, 2000), MDSS for cancer detection (West
& West, 2000), assessment of chest-pain patients (Ellenius
& Groth, 2000), decision making for birth mode (MacDo-
well et al., 2001), heart disease diagnosis (Türkoglu,
Arslan, & Ilkay, 2002), CDSS for pharmaceutical applica-
tions (Mendyk & Jachowicz, 2005), CDSS development for
gynecological diagnosis (Mangalampalli, Mangalampalli,
Chakravarthy, & Jain, 2006), and biological signal classifi-
cation (Güven & Kara, 2006). Recently, multilayer percep-
trons (MLP), one of the most popular ANN models, has
been applied to build an MDSS for five different heart
diseases diagnoses (Yan et al., 2006). The three-layered
MLP with 40 categorical input variables and modified
learning method achieved a diagnosis accuracy of over
90%.

Support vector machines are a new and promising classi-
fication and regression technique proposed by Vapnik and
his co-workers (Cortes & Vapnik, 1995; Vapnik, 1995).
SVMs, developed in statistical learning theory, are recently
of increasing interest to biomedical researchers. They are
not only theoretically well-founded, but are also superior
in practical applications. For medical, clinical decision sup-
port and biological domains, SVMs have been successfully
applied to a wide variety of application domains, including
MDSS for the diagnosis of tuberculosis infection (Veropo-
ulos, Cristianini, & Campbell, 1999), tumor classification
(Schubert, Müller, Fritz, Lichter, & Eils, 2003), myocardial
infarction detection (Conforti & Guido, 2005), biomarker
discovery (Prados et al., 2004), and cancer diagnosis
(Majumder, Ghosh, & Gupta, 2005).

Hybrid models. Besides single model-based approaches,
hybrid machine learning approaches have also been tried
to boost the performance of conventional single model
methods and to overcome the inherent weaknesses in any
single method. Many hybrid model approaches have been
proposed, including a hybrid expert system for epileptic cri-
sis decision using an ANN and a fuzzy method (Brasil, de
Azevedo, & Barreto, 2001), an ANN with a DT for the
development of an intelligent decision support system
(Tung, Huang, Chen, & Shih, 2005), and an SVM with
an ANN for electromyogram classification (Güler &
Koçer, 2005). Recently, a novel SVM method in combina-
tion with DT to generate human-understandable rules was
proposed to alleviate the difficulty of understanding that
arises from the black box characteristic of SVMs in trans-
membrane segments prediction (He, Hu, Harrison, Tai, &
Pan, 2006). Their approach achieved prediction accuracy
of 93% with understandable prediction rules and with con-
fidence values over 90%.

Ensemble models. To overcome the limited generaliza-
tion performance of single models and simple model com-
bination approaches, more precise model combination
methods, called ‘‘ensemble methods’’, have been suggested.
This multiple classifier combination is a technique that
combines the decisions of different classifiers that are
trained to solve the same problem but make different
errors. Ensembles can reduce the variance of estimation
errors and improve the overall classification accuracy.
Many ensemble-based approaches have been proposed in
recent research, including an ANN ensemble for decision
support system (Ohlsson, 2004), an ensemble of ANNs
for breast cancer and liver disorder prediction (Yang &
Browne, 2004), MDSS with an ensemble of several different
classifiers for breast diagnosis (West, Mangiameli, Rampal,
& West, 2005), and multiple classifier combinations with an
evolutionary approach (Kim, Min, & Han, 2006).
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1.3. Objective and scope of the present work

The majority of conventional CDSSs for disease diagno-
sis are generally based on the symptoms of the patient or
data from simple medical questionnaires. To our knowl-
edge, a CDSS for CVD diagnosis using an ensemble of
multiple classifiers for comprehensive diagnosis and possi-
ble biomarker mining does not currently exist. The aim of
this project is to develop a CDSS utilizing the expression
information of physiological functional proteins with clas-
sifier ensembles for patient diagnosis. The patient’s serum
microarray chip data are analyzed with several different
classifiers in the ensemble. The developed system, Apta-
CDSS-E (Aptamer biochip-based CDSS – ensemble ver-
sion), supports physicians by providing supplementary
diagnosis information and clinicians by providing a possi-
ble set of biomarker candidates which can be used effec-
tively for practical CVD diagnosis after some further
experimental verifications.

The rest of the paper is organized as follows: In Section
2 we outline the system architecture, describe several key
components of the system, and review the four basis classi-
fiers used in our proposed system for disease level classifi-
cation. In Section 3, the framework for constructing
classifier ensembles is presented. Experimental results are
reported in Section 4, including data description, prepro-
cessing and feature selection, quality analysis of data, the
possible marker proteins discovered by the system, and dis-
cussions of the results. Section 5 draws conclusions from
this study.
Fig. 1. The overall process flow of the AptaCDSS-E. The system has four m
configuration sever (ACS)’’, and ‘‘Diagnosis support client’’. The ACS includes
clinical decision making. The solid lines indicate the flow of data or system ev
information. The clinician’s analysis results can be delivered to the physician
2. The system architecture of AptaCDSS-E

The reviews of CDSS in literature show that very few
studies involve field tests of a CDSS and almost none use
a naturalistic design in routine clinical settings with real
patients. Moreover, the studies mostly concern physicians
rather than other clinicians (Kaplan, 2001). On this point,
in the development of AptaCDSS-E we considered both
clinicians and physicians equally by providing diagnosis
support information to physicians and by providing the
information about possible biomarker candidates of dis-
ease diagnosis to clinicians. The system can be used for
CVD diagnosis in various ways such as a supplementary
system for a periodic medical checkup or as a component
of a hospital information system.

In AptaCDSSS-E, the patient diagnosis process starts
from the doctor’s medical examination of a new patient
by collecting blood samples when they need these blood
analysis processes. Then, an aptamer biochip is created
with the serum separated from the patient blood and pro-
tein expression levels are scanned. Next, a new work list is
created by the scanner interface and analyzed by the deci-
sion engine of AptaCDSS-E trained with prior sample sets.
The system provides integrated analysis results to the phy-
sician, including clinical analysis facts. After the physi-
cian’s final decisions for a new patient, decision results
are saved into the system database as a feedback informa-
tion for future model updates and refinements.

The system was implemented on the Microsoft Windows
platform and has four major components. Fig. 1 shows the
ajor components: ‘‘Scanner interface’’, ‘‘Protocol manager’’, ‘‘AptaCDSS
four classifier ensembles of four different classification models for accurate
ents and the dotted lines specify the flow of diagnosis results or feedback
either directly or indirectly through the diagnosis support client.



Fig. 2. The screenshots of AptaCDSS-E components. The scanner interface (a) reads raw scanner data files generated by chip scanner and converts it to a
proper sample format. In the diagnosis support client (b), the Total tab combines the decision result of each classifier and provides a simplified description
of the current disease level of the patient. Each classifier tab provides more detailed classifier-specific or causal information to support the classifier’s
decisions. In the classifier model creation interface (c), basic model parameters can be set. In the ensemble configuration interface (d), the ensemble
aggregation approach for each model can be configured. For final decision aggregation, weighted voting of the ensemble’s output in terms of their
prediction accuracies is provided. In this figure, several fields of confidential patient information of scanner interface and diagnosis support client has been
blurred for privacy.
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overall process of diagnosis with the system and Fig. 2
shows the interface examples of several components of
the system.

2.1. Scanner interface

The scanner interface (SI) reads the original raw scanner
generated data, composes patient chip sample data for each
patient, and saves patient samples into the system database
creating a new work list. In the SI, one can select specific
fields of raw data to construct the patent sample. Users
can also check and compare the status of the current chip
expression image with standard sample images of cardio-
vascular patients. For the development of AptaCDSS-E,
the ‘‘ratio of median’’ field of the original scanner data
was selected to reduce negative effects of outlier data
points. Fig. 2a shows a screenshot of the SI.

2.2. Protocol manager

The protocol manager (PM), running in background,
controls and meditates overall communications among
the components by performing event scheduling and mes-
sage delivery. The communication part of the PM was
implemented as a component (i.e., ActiveX) and combined
with other elements of AptaCDSS-E. Each system compo-
nent communicates by sending appropriate events to the
server part of the PM. The server component also provides
several monitoring functions of the component’s activity
for system management.

2.3. AptaCDSS configuration server

The AptaCDSS Configuration Server (ACS) is the key
part of AptaCDSS-E. The ACS performs diagnosis deci-
sion making with pretrained classifier ensembles of SVM,
ANN, DT, and BN models. It also generates visualization
information for the diagnosis support client. The ACS pro-
vides a preprocessing function of patient samples to nor-
malize an unprocessed initial sample dataset. Through
the ACS, one can create basic decision models by setting
model-specific parameters along with the proper configura-
tion of ensemble constitution (Fig. 2c and d), train classifier
models with particular chip samples, test classifier perfor-
mance with different data, and configure various settings
for diagnosis and system logging.
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2.4. Diagnosis support client

The diagnosis support client (DSC) provides integrated
information to both physician and clinician. The disease
progress levels of patient are classified into a total of four
classes: ‘‘normal (NM)’’, ‘‘stable angina (SA)’’, ‘‘unstable
angina (UA)’’, and 14 ‘‘myocardial infarction (MI)’’. By
using the DSC, clinicians can analyze and select a set of
possible biomarker candidates for further detailed experi-
mental validation, and physicians can make use of clini-
cally analyzed information as supplementary diagnosis
information. In addition to the supplementary information
provided by clinicians, physicians can aided by the predic-
tion results based on the set of prior patient samples. After
the final diagnosis is made by the physician, the physician
can create and reflect feedback information to the system
about unusual or exceptional cases for future reference
by summarizing their opinions.
2.5. Base classifiers

2.5.1. Decision tree

Decision tree induction is one of the most popular classi-
fication methods. It builds a decision tree and classifies the
given data and has been successfully applied to a broad
range of tasks. A decision tree is a tree in which each non-
leaf node denotes a test on an attribute of cases, each branch
corresponds to an outcome of the test, and each leaf node
denotes a class prediction (see Fig. 3). To improve human
readability, learned trees can also be re-represented as sets
of if–then rules.

Decision trees select the most discriminant features
based on the information gain at each stage when growing
the tree structure. Consequently, a set of ordered features
that make the largest contributions to successful classifica-
tion are obtained when classifier training is finished. The
Fig. 3. A decision tree example for cardiovascular disease diagnosis. In this DT
by testing the expression value of seven marker proteins. The DT structure a
initial random structured DT with given training set. The marker proteins, such
(in this example, the proteins are classified into one of the four expression lev
information gain is calculated with respect to entropy of
each attributes, which defined as

EntropyðSÞ �
Xc

i¼1

pilog2pi; ð1Þ

GainðS;AÞ ¼ EntropyðSÞ �
X

m2ValuesðAÞ

jSmj
jSj EntropyðSmÞ; ð2Þ

where pi is the proportion of outcomes belonging to class i,
Values(A) is the set of all possible values for attribute A,
and Sm is the subset of for which attribute A has value m
(i.e., Sm = {s 2 SjA(s) = m}). In AptaCDSS-E, expression
levels of proteins are discretized into one of four classes be-
fore entropy calculation by applying k-means clustering-
based preprocessing (k = 4) to generate comprehensible
decision trees.

In this project, AptaCDSS-E utilized the C4.5 (Quinlan,
1993) approach from among well-known decision tree
induction algorithms for classifying CVD levels of interest
and the values of protein expression as the attribute sets.
2.5.2. Neural network

An ANN is a mathematical model consisting of a num-
ber of highly interconnected processing elements organized
into layers, the geometry and functionality of which have
been inspired by that of the human brain. An ANN is
trained with the available data samples to explore the rela-
tion between inputs and outputs, so that one can reach the
proper and accurate outputs when new data are added
(Simpson, 1990). Multilayer perceptrons, a class of super-
vised neural networks, is one of the most popular neural
network models due to its clear architecture and compara-
bly simple learning algorithm, and it is frequently used in
MDSS (Bishop, 1995; Ripley, 1996; Yan et al., 2006).

For AptaCDSS-E, an MLP with a sigmoid function
for node activation and standard back-propagation (BP)
example, patient samples are classified into one of the four target classes
nd checking markers for classification of patient are obtained by training
as P1251, are tested in which expression level they belong at each tree level

els, 0, 1, 2, and 3) for patient diagnosis (classification).
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weight learning method were used. The BP algorithm is a
widely used training procedure that adjusts the connection
weights of the MLP (Rumelhart, Hilton, & Williams,
1986). In BP, the error terms dk for each network output
unit k, ok, and dh for each hidden unit h, oh, are calculated
by

dk  okð1� okÞðtk � okÞ and dh ohð1� ohÞ
X

k2outputs

wkhdk;

ð3Þ
where tk is the target value of unit k, wkh is the weight of
connection between the kth output unit and hth hidden
unit. The network weights are updated by

wij ¼ wij þ Dwij; ð4Þ
where Dwij = gdixij. The output layer of MLP comprises of
four nodes and each node corresponds to one cardiovascu-
lar disease level of interest for prediction. The number of
nodes in the input layer varies according to the size of input
feature vector determined by feature selection and the
number of nodes in hidden layer is determined by user in-
put (for AptaCDSS-E, we used 16 hidden nodes for three-
layered MLP). The architecture of the overall neural net-
work classifier is illustrated in Fig. 4.

2.5.3. Support vector machine

Support vector machines are an effective binary data
classification method (Vapnik, 1995). The key idea of
SVMs is the use of a mapping function which projects
the given input feature space into a high dimensional fea-
ture space to find an optimal hyperplane having the largest
margin of separation between different classes with mini-
mum error rate as shown in Fig. 5.

SVMs use a portion of the data to train the system and
find several support vectors that represent the training
data. These support vectors will be formed into a model
Fig. 4. The architecture of the three-layered MLP network as a base disease cla
expression values of selected proteins is fed into the input layer. Each node of o
output node with maximum value is selected as a final decision.
by the SVM, representing each category. For a linearly sep-
arable binary classification with an n-dimensional vector xi

and the label of the class that vector yi, i.e., fðxi; yiÞg
N
i¼1 and

yi = {+1,�1}, the SVM separates the two classes of points
using the classification decision function fw,b = sign
(w Æ x + b), where w is an input vector, x is an adaptive
weight vector, and b is a bias. SVM finds the parameters
w and b for the optimal hyperplane to maximize the geo-
metric margin,

2

kwk ; subject to min
wTw

2

� �
; yi w � xi þ bð ÞP þ1: ð5Þ

For the linearly non-separable case, the minimization
problem needs to be modified to allow for the misclassifi-
cation of data points. A soft margin classifier that allows
but penalizes errors by introducing slack variables nl

i¼1 as
the measurement of violation of the constraints is repre-
sented by

min
wTw

2

� �
þC

XN

i¼1

ni

 !k

; yiðw/ðxiÞþ bÞP 1� ni; ð6Þ

where C and k are used to weight the penalizing variables ni,
/(xi) is a non-linear function which maps the input space
into a higher dimensional space (i.e., into a Hilbert space).
This mapping can be represented as xi Æ xj! /(xi) Æ /
(xj) = K(xi,xj), where K(Æ) is a kernel function. Minimizing
the first term of Eq. (6) corresponds to minimizing the VC-
dimension of the learning machine and minimizing the sec-
ond term in Eq. (6) controls the empirical risk. The solution
of this minimization problem can be found through a Wolfe
dual problem with the Lagrangian method.

The SVM has several kernel functions that users can
apply to solve different problems. A proper inner product
kernel function K(xi Æ xj) can solve certain linear insepara-
ble problems without increasing the complexity of the
ssifier of AptaCDSS-E. For a given patient sample to diagnose, a vector of
utput layer corresponds to one target class of diagnosis and the class of the



Fig. 5. The hyperplane-based linear separation of binary class data of SVM by feature space mapping. The SVM maximizes its margin of hyperplane in
high dimensional feature space by finding the optimal hyperplane using support vectors. For one SVM, a total of six sub-SVMs are used in the manner of
‘‘1 to all’’ to perform four-class CVD patient classification.
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calculation and different kernel functions are suited to
different problem types. The kernel function can be any
function that satisfies Mercer’s theorem (Mercer, 1909);
however, the most popularly used kernel functions are
the linear, polynomial, and radial basis functions, and
sigmoid kernels. For AptaCDSS-E, we have chosen the
polynomial kernel.
2.5.4. Bayesian network

A Bayesian network (Cooper & Herskovits, 1992; Heck-
erman, Geiger, & Chickering, 1995) is a graphical model
that represents dependency relationships among variables
of interest. It is represented as an annotated directed acy-
clic graph (DAG) encoding probabilistic relationships
among distinctions of concern in an uncertain-reasoning
problem. The nodes or the vertices of the DAG represent
the random variables in the network while the edges con-
necting the vertices represent the causal influence of one
node on the other. Each node of graph has a probability
table representing probabilistic relations with other con-
nected nodes. By using the given network structure, prob-
ability table, and some observations of partial variables,
an inference for other unobserved variables can be made.
Formally, a BN for a given finite set U = {X1, . . . ,Xn} of
Fig. 6. The structure of a naı̈ve Bayes model as an initial BN and the examp
network structure learning from this naı̈ve Bayes model structure which has n ed
variable dependency for a given data set (a). After structure and parameter l
deciding one class of the target classes of target class variable (b). In the res
‘‘underexpression’’ (the expression value of a node < threshold t) or ‘‘overexp
discrete random variables where each Xi may take on val-
ues from a finite domain is the pair B = hG,Li. The G is
a DAG whose nodes correspond to the random variables
X1, . . . ,Xn, and whose edges represent direct dependencies
between the variables. The graph structure G encodes the
following set of independence statements: each variable
Xi is independent of its non-descendents, given its parent
in G. Standard arguments (Pearl, 1988) shows that any dis-
tribution P that satisfies the independence statements
encoded in the graph G can be factored as

P ðX 1; . . . ;X nÞ ¼
Yn

i¼1

P ðX ijPaiÞ; ð7Þ

where Pai denotes the parents of Xi in G.
The second component of the BN, L, is a set of condi-

tional probabilities between the variables in G. The prob-
lem of training a BN can be stated as a task of finding
an optimal network Bs that best matches the given training
set D = {u1, . . . ,uN} i.e., to find a network that maximizes
P(BsjD) = P(Bs,D)jP(D).

The learning processes of a BN include structure learn-
ing of G and parameter learning of L. The structure learn-
ing, the optimization problem in the space of the DAGs,
finds an appropriate graph structure for the given data
le structure result of BN structure learning. The BN of the system starts
ges connecting target class variable and feature (protein) variables to learn

earning, the learned BN model is used to diagnose given test samples by
ulting BN, each edge represents causality between nodes by representing
ression’’ (the expression value of a node P threshold t).
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from all possible graph constitutions. Since network struc-
ture finding is known to be an NP-hard problem (Hecker-
man et al., 1995), various heuristics have been applied in
structure learning such as greedy search, greedy search with
restart, best-first search, and simulated annealing, etc. In
our study, ‘‘greedy search with random restart’’ method
which is a simple but robust heuristic approach was used
to resolve the problem of local optimum convergence.
We used the naı̈ve Bayes classifier structure of Fig. 6a as
an initial network structure of network learning with this
search strategy. This approach modifies its initial simple
BN structure by adding, deleting, and switching the direc-
tions of the edge in consecutive order and selects a network
with highest score among networks obtained by several
repeated trials. The fitness of a network structure was eval-
uated by ‘‘Bayesian Dirichlet and likelihood equivalence’’
(BDe) score metric (Heckerman et al., 1995).

After the network structure learning, conditional proba-
bilities of each variable of the obtained network for given
parent nodes are calculated in the extended framework of
BDe by calculating sufficient statistics from given data with
fixed priors.

3. Ensemble of classifiers

3.1. Need for a classifier ensemble

The complexity and subtlety of microarray expression
patterns between CVD patients and normal samples may
increase the chance of misclassification when a single clas-
sifier is used because a single classifier tends to cover pat-
terns originating from only part of the sample space.
Therefore, it would be beneficial if multiple classifiers could
be trained in such a way that each of the classifiers covers a
different part of the sample space and their classification
results were integrated to produce the final classification.
Moreover, this combination can reduce the variance of
estimation errors and improve the overall classification
accuracy (Shin & Markey, 2006).

Ensemble algorithms such as bagging, boosting, or ran-
dom forests improve the classification performance by
associating multiple base classifiers to work as a ‘‘commit-
tee’’ for decision-making and any supervised learning algo-
rithm can be used as a base classifier of ensemble (Bauer &
Kohavi, 1999). Ensemble algorithms not only increase the
classification accuracy, but also reduce the chances of over-
training since the committee avoids a biased decision by
integrating the different predictions from the individual
base classifiers. The concept of combining classifiers into
ensembles first appeared in work by Nilson (1965) (further
described in Sharkey, 1999), and then extensive studies
started in the 1990s.

For this reason, AptaCDSS-E adopted the ensemble
approach to generate enhanced results by grouping a set
of classifiers of each SVM, ANN, DT, and BN. In this sec-
tion, we will describe the classifier combination approaches
adopted by AptaCDSS-E.
3.2. Why ensemble works better

An ensemble of classifiers is a set of classifiers whose
individual decisions are combined in some way (typically
weighted or unweighted voting) to classify new examples.
It is known that ensembles are often much more accurate
than the individual classifiers that make them up. An
ensemble can be more accurate than its component classi-
fiers only if individual classifiers disagree with one another
(Hansen & Salamon, 1990).

For example, for an ensemble of three classifiers:
{h1,h2,h3} and we consider a new case x. If the three clas-
sifiers are identical, then when h1(x) is wrong, h2(x) and
h3(x) are also wrong. However, if the errors made by the
classifiers are uncorrelated, then when h1(x) is wrong,
h2(x) and h3(x) might be correct, so that a majority vote
correctly classifies x. More precisely, if the error rates of
L hypotheses h‘ are all equal to p < 1/2 and if the errors
are independent, then the probability that the majority vote
is wrong is the area under the binomial distribution where
more than L/2 hypotheses are wrong. Of course, if the indi-
vidual hypotheses make uncorrelated errors at rates
exceeding 0.5, then the error rate of the voted ensemble
increases as a result of the voting. Hence, the key to suc-
cessful ensemble methods is to construct individual classifi-
ers with error rates below 0.5 whose errors are at least
somewhat uncorrelated.

3.3. Construction of classifier ensemble

Many approaches for constructing an ensemble of clas-
sifiers have been proposed. The most important thing in
constructing a classifier ensemble is to make each individ-
ual classifier different from the other classifiers as possible.
This requirement can be met by using different training sets
for different classifiers. In AptaDSS-E, one of the represen-
tative methods, bagging (Breiman, 1996), is used to satisfy
this requirement of classifier diversity.

In a bagging, classifiers are trained independently via a
bootstrap method and then they are aggregated by an
appropriate combination strategy. Bootstrapping gener-
ates K replicas {Tk(X) jk = 1, . . . ,K} of training data by
repeated random re-sampling with replacement from the
given training data T(X) = {(xi; yy) j i = 1, . . . ,N}. As a
result, each example in the given training set may appear
repeatedly or not at all in any particular replica training
set. Then, each replicated training set is used to train a
certain classifier of an ensemble.

To achieve maximal diversity of ensembles, we can con-
struct ensembles with different classification models. But in
this case, it is not easy to compare different classifier mod-
els because the difference comes from model-specific char-
acteristics of the models in the ensemble. Furthermore,
we need a well-defined objective measure to compare fairly
a set of different kind of models. Hence, we construct an
ensemble for each classification method with k homoge-
neous classifiers, but make them different as much as



′

Fig. 7. The overall architecture of the decision making part of AptaCDSS-E with multiple classifier ensembles (here we used a total of four ensembles of
four different classification models). Each ensemble is constituted with several classifier models of each classification method. The training data are
augmented by bagging and fed to each classifier member of ensembles. Final decision is decided by weighted majority vote of each ensemble’s decision with
respect to their training accuracies.

Fig. 8. Hierarchical combination of classifiers. The classifier’s decision
outputs in the lower layer are fed into aggregation classifier in the upper
layer and final decision of the ensemble is made by this classifier.
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possible by setting initial factors randomly such as weights,
structures, and probabilities.

3.4. Classifier aggregation

After training the classifiers of each model group, we
need to aggregate independently trained classifiers of each
group into an appropriate combination method. We con-
sidered two types of model combination approaches such
as linear (the majority voting and LSE-based weighting)
and non-linear (the double-layer hierarchical grouping)
combination method (Kim, Pang, Je, Kim, & Bang, 2003).

3.4.1. Majority voting

One simplest method of classifier combination is major-
ity voting. For fk (k = 1, . . . ,K), a decision function of the
kth classifier in the classifier ensemble, and cj (j = 1, . . . ,C),
a label of jth class, the final decision of an ensemble fvote(x)
for a given test data x with majority voting is decided by

fvoteðxÞ ¼ arg max
j

tj; ð8Þ

where tj is the number of classifiers whose decisions are
known to jth class and defined by tj =

P
c(k, j), where

c(k, j) is 1 if fk(x) = cj and 0, otherwise.
3.4.2. Least squared error (LSE)-based classifier

weighting

The LSE-based weighting of classifiers treats several
classifiers in the classifier ensemble with different weights.
The weights of different classifiers are assigned in propor-
tional to their classification accuracies. For fk(k = 1, . . . ,K),
a decision function of the kth classifier in the classifier
ensemble which trained with a replica of training data
T kðXÞ ¼ fðx0i; y0iÞji ¼ 1; . . . ;Ng, the weight vector w can be
obtained by wE = A�1y, where A = (fi(xj))K·N, and y =
(yj)1·N. Then, the final decision of the classifier ensemble



Fig. 9. The whole experimental steps of the aptamer chip-based disease level classification process.
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for a given test data vector x with LSE-based weighting is
decided by

fLSEðxÞ ¼ signðw � ½ðfiðxÞÞk�1�Þ: ð9Þ

This weight-based linear combination is also used to
combine the decision results of each classifier ensemble
with respect to their accuracy on the training data to make
the final decision as shown in Fig. 7.
3.4.3. Hierarchical combination

In hierarchical combination, an additional classifier is
used to aggregate the outputs of classifiers of the ensemble.
So, this combination consists of a double-layer of classifiers
where the outputs of several classifiers in the lower layer
feed into an aggregation classifier in the upper layer
(Fig. 8).

For fk(k = 1, . . . ,K), a decision function of the kth clas-
sifier in the classifier ensemble, and a decision function of
the aggregating classifier F, the final decision function
of the classifier ensemble fHC(x) for given test data x with
the double-layer hierarchical combination is given by

fHCðxÞ ¼ F ðf1ðxÞ; f2ðxÞ; . . . ; fkðxÞÞ; ð10Þ

where k is the number of classifiers in the ensemble.
Table 1
The statistics of four data sets

Disease Feature
dimension

Sample
size

Number of target
class

Cardiovascular disease
(CVD)

3000 66 4 (normal, SA,
UA, MI)

Pulmonary complaints
(PC)

3000 95 2 (normal,
complaints)

Tuberculosis disease
(TBD)

1000 27 2 (normal,
tuberculosis)

General cancer (GC) 1000 54 2 (normal, cancer)
3.5. Making the final decision

The final decision in Fig. 7 is decided by combining out-
puts of all ensembles taking accuracy-based weighted
majority vote (i.e., use their training accuracies as their
weights). Then, the final class cfinal among the possible tar-
get classes (C, C = 0: Normal, 1: SA, 2: UA, 3: MI) is
decided by

cfinal ¼ arg max
c2C

Xn

i¼1

I i;cðwi þ ciÞ; ð11Þ

where n is the number of classifier ensembles, wi is the
weight of ith ensemble, and Ii,c is the indicator of ith ensem-
ble, which has 1 if the output class of ensemble is equal to c
and 0, otherwise. The ci in Eq. (11) is an advantage vari-
able, predetermined variable by the user, preventing a draw
in the vote by giving some advantage to ensembles with re-
spect to the preference of each classification method.

4. Experimental results and discussion

The experimental steps of aptamer chip-based disease
level classification with multiple classifiers are summarized
in Fig. 9. The steps in category A were performed by the
data supplier, and in this research we performed the steps
with solid border in category B and C with the Apta-
CDSS-E. The final experimental verification of discovered
possible biomarkers will be conducted in future work.
4.1. Data sets

The AptaCDSS-E performs clinical decision support
task of cardiovascular disease by analyzing aptamer chip
data, which were produced from the patient’s blood sam-
ples. The advantages of using blood samples include: blood
is readily accessible and less expensive to obtain than many
other procedures. The disease analysis of AptaCDSS-E is
performed on blood-derived products, particularly on
serum which is the fluid that remains after clothing proteins
are removed from plasma.

Besides the CVD data, we used three additional disease
data sets, which include pulmonary complaints, tuberculo-
sis disease, and general cancer collections to overcome the
data insufficiency problem and evaluate the generalized
classification accuracy of the system for other diseases.
Table 1 shows the statistics of CVD and other disease sam-
ples used in this study.
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4.2. Preprocessing

We constructed chip data using the ‘‘ratio of median’’
field of the original scanner generated file to minimize the
negative properties of outlier data points. Also, the set of
Fig. 10. The quality of the four data sets with respect to their correlation and
matrix, the red dots indicate ‘‘positive correlation’’, the green dots indicate ‘‘ne
samples. The samples of each data set are clustered moderately by hierarchica
cancer samples of liver, lung, intestine, breast, stomach, and nine normal
comparison). a: Cardiovascular disease, b: Pulmonary disease, c: Tuberculosis
control spots for each chip sample were removed and the
missing values are filled with the median value of the sam-
ple. Next, the data were transformed by applying logarithm
base 2 and a ratio-based normalization method is applied
to adjust the means of the samples to zero. By applying this
hierarchical clustering results without feature selection. In the correlation
gative correlation’’, and the black ones indicate ‘‘no-correlation’’ between
l clustering with average linkage. The ‘‘general cancer’’ data set includes
CVD samples for binary class classification (for ‘‘normal vs. cancer’’
, d: General cancer.
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ratio-based normalization we removed the laser channel
difference which may occur in chip scanning process.

4.3. Feature selection

For the feature selection, the dimension of each disease
data set is reduced by applying analysis of variance
(ANOVA) and we selected the top 250 proteins according
to their significance score (p-value) to build a final classifier
inputs. Fig. 10 shows the quality of four disease data sets
with respect to their correlation analysis (Pearson correla-
tion) and hierarchical sample clustering results with their
full features. The quality of these data sets is refined by dis-
carding non-informative features according to their signif-
icance (p-value). By applying this feature selection, we
could also reduce the complexities of data processing in
each classification model.

4.4. Results

Table 2 shows the classification accuracy of each classi-
fier and of each classifier ensemble for different ensemble
constitution methods for each data set. The classification
(prediction) performance was measured by k-fold cross-val-
idation with k = 10 to alleviate the insufficiency of samples.
For ensemble-based model, each ensemble is trained with
the data set augmented by bagging described in Section 3.3.

In the case of the single classifier-based prediction, the
SVM performed best for all data sets and the ANN ranked
second among the four different classifiers. The prediction
intervals of the classifiers were about 6.8% at least and
12.2% at most. Presumably, the prediction accuracy for
‘‘Tuberculosis disease’’ data was relatively low due to the
small sample size and poor quality of data.

For the ensemble classifier-based prediction, the SVM
and ANN performed very well for all data sets similar to
Table 2
The classification accuracy of single and ensemble-based classifiers with differ

Classifier composition Classifier aggregation Classifier

Single classifier – SVM
ANN
DT
BN

Ensemble-based classifier Majority voting SVM
ANN
DT
BN

LSE-based weighting SVM
ANN
DT
BN

Hierarchical combination SVM
ANN
DT
BN

Accuracies in bold indicate maximum values of each configuration.
the single classifier case. Especially, the ANN achieved
the best prediction accuracy for ‘‘Pulmonary complaints’’
data for all ensemble aggregations and SVM achieved the
best prediction accuracy for ‘‘General cancer’’ data. Inter-
estingly, the BN ensemble with LSE-based weighting
aggregation method was the best classifier for ‘‘Tuberculo-
sis diseases’’. The maximum prediction interval of overall
ensemble method was about 7% ([86.39, 93.42], for the
ensemble with LSE-based weighing for ‘‘GC’’ data) and
the minimum was about 2.1% ([89.53, 91.64], for the
ensemble with majority vote for ‘‘TBD’’ data). The hierar-
chical classifier combination showed the best performance
among the three aggregation methods showing prediction
accuracy intervals between about 5.5% ([90.36, 95.87],
for ‘‘CVD’’ data) and 2.4% ([90.97, 93.38], for ‘‘TBD’’
data).

By utilizing DT and BN, we obtained decision support
information, including causalities among sample features,
which can be represented in a human readable and easy
to understand structure such as rules or causality networks.
Fig. 11 shows a simple BN example with 10 nodes for car-
diovascular disease diagnosis trained with CVD data of
Table 1.

In Fig. 11, the final decision probabilities of four classes
in the class node (four classes; 0, 1, 2, and 3 for NM, SA,
UA, and MI, respectively) are decided by setting the pro-
tein node’s expression value to a binary value according
to whether the measures expression is greater or less than
the sample’s median. For the given sample data (i.e., each
protein’s binary expression level), the example BN diagno-
ses the current sample as ‘‘Normal (NM)’’ class (see the
probability bar chart of class node in Fig. 11).

In the BN of Fig. 11, the final diagnosis decision is made
by choosing the class of maximum probability value in the
class node. The probabilities of each target class in the class
node are calculated by multiplying the highest conditional
ent classifier aggregation method for four different data sets

Accuracies for each data set

CVD PC TBD GC

84.31 ± 1.2 82.92 ± 1.5 76.32 ± 1.3 81.64 ± 1.6

80.82 ± 1.1 81.64 ± 0.9 73.94 ± 1.2 80.21 ± 1.4
72.69 ± 1.6 70.68 ± 1.3 69.54 ± 1.7 70.01 ± 1.1
78.95 ± 2.1 77.51 ± 1.2 71.43 ± 2.6 70.39 ± 1.5

92.82 ± 1.0 94.31 ± 0.0 91.64 ± 1.3 93.11 ± 1.1

93.49 ± 0.9 94.55 ± 0.9 90.21 ± 0.5 91.01 ± 0.7
91.03 ± 1.0 90.66 ± 0.7 89.53 ± 1.4 87.41 ± 1.1
92.01 ± 0.7 92.34 ± 1.1 90.08 ± 0.9 89.96 ± 0.8
93.08 ± 0.7 94.66 ± 0.8 90.62 ± 0.9 93.42 ± 0.8

94.12 ± 0.6 94.98 ± 0.7 89.08 ± 0.7 90.71 ± 1.1
90.03 ± 0.5 89.83 ± 0.9 90.57 ± 0.9 86.39 ± 0.8
90.17 ± 0.4 90.09 ± 0.7 92.37 ± 0.5 88.95 ± 1.2
95.87 ± 0.3 95.67 ± 0.2 92.68 ± 0.6 94.31 ± 0.3

94.32 ± 0.5 95.72 ± 0.2 93.38 ± 0.4 93.18 ± 0.7
90.36 ± 0.9 92.19 ± 0.5 91.04 ± 0.8 88.83 ± 0.7
92.51 ± 0.4 93.11 ± 0.2 90.97 ± 0.5 91.53 ± 0.4



Fig. 11. The 10-node BN for CVD diagnosis generated by the BN model of AptaCDSS-E. Each node represents one protein selected from 3000 input
protein features (250 proteins after preprocessing), and class node represents the final decision of this BN. The probability bar chart of each node
represents its cumulative probability quantified by BN training with training samples (DT results are not shown in this paper).
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probabilities of all nodes for a given sample of data. Fig. 12
shows the conditional probability tables for each node of
BN in Fig. 11. The probability values of each conditional
probability table are calculated by BN learning with the
CVD data in Table 1.

4.5. Discussion

The results of the experiment (Table 2) show that
an improvement in prediction accuracy of more than
Fig. 12. The conditional probability tables of the BN in Fig. 11. For each n
about 10% has been achieved by applying the ensemble
method. In particular, hierarchical combination of classifi-
ers showed great accuracy improvements, implying that it
is one of the desirable classifier combination methods in
ensemble construction. Generally, SVMs, the current
state-of-the-art classifier, and ANNs, the most widely
adopted model for clinical diagnosis application, achieved
relatively higher accuracies than other classifiers.

Although SVMs and ANNs achieved the best perfor-
mance for most data sets, it is not easy to understand how
ode, the size of table increases as the number of parent nodes increase.
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they produced diagnosis results because they use non-linear
feature mappings and weight compositions. For this reason,
they are often referred to as ‘‘black box’’ models. Conse-
quently, these models are not appropriate for generating
diagnosis support information that can be used by physi-
cians and clinicians to help in their decision making.

In AptaCDSS-E, we adopted DTs and BNs to resolve
this difficulty and generate decision support supplementary
information displayed by DSC. Generally, DTs generate
human readable decision rules and BNs generate causality
networks, which can be easily understood by humans. The
BN of Fig. 11 shows the causalities of the major 10 proteins
selected from the total of 3000 proteins (250 proteins after
preprocessing) for the diagnosis of cardiovascular disease.
These selected proteins can be regarded as a set of possible
biomarkers for CVD diagnosis and can be confirmed as
‘‘real’’ biomarkers after further experimental verification.
Moreover, this information can be used by clinicians to
design new clinical trials by utilizing those proposed possi-
ble biomarkers for disease diagnosis.

To summarize, the advantage of using the proposed sys-
tem is such that physicians can have practical aids in their
daily diagnosis with relatively high accuracy and clinicians
can find meaningful ‘‘real’’ biomarkers by investigating the
results produced by AptaCDSS-E.

However, even though we adopted an ensemble-based
classifier approach and bagging as a data augmentation
strategy to boost prediction accuracies, data sampling tech-
niques cannot overcome coverage limitations inherent to
the data set from which the samples are drawn. If the data
set does not represent the underlying probability distribu-
tion of the population of interest, then even the most
sophisticated feature selection based on sampling tech-
niques will end up with an extremely biased subset of fea-
tures. In case of TBD data, the size of samples was too
small, and it seems that the sample data sets did not con-
tain the sample characteristics appropriate for classifying
their classes. Consequently, the poor quality of samples
led to degradation of overall prediction accuracy for this
data set for all classifiers. Therefore, securing more micro-
array chip samples with relatively good quality and reflect-
ing the underlying characteristics of a disease of concern is
one of the most important issues in achieving improved
and generalized classification accuracy.

5. Conclusions

We have presented a classifier ensemble-based clinical
decision support system called AptaCDSS-E for disease
level prediction with aptamer biochip data. The system
employs four different machine learning classifiers, com-
bines the prediction results of each classifier in an ensemble
machine, and generates supplementary information for dis-
ease diagnosis. The system was trained with four different
disease data sets consisting of 242 cases including cardiovas-
cular disease and the data sets were augmented by bagging
for classifier ensemble training. The experimental result
with cross-validation shows that the proposed system pre-
dicts the level of diseases with relatively high accuracy
(>94%) and small prediction difference intervals (<6%),
showing its usefulness in support of clinical decision making
for diagnosis. In particular, causality information among
the major 10 proteins for cardiovascular disease diagnosis
was found by the system as a candidate set of possible bio-
markers, which now require further clinical verification.
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Güven, A., & Kara, S. (2006). Classification of electro-oculogram signals

using artificial neural network. Expert Systems with Applications,

31(1), 199–205.
Hansen, L. K., & Salamon, P. (1990). Neural network ensembles. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 12,
993–1001.

Harris, N. L. (1990). Probabilistic belief networks for genetic counseling.
Computer Methods and Programs in Biomedicine, 32(1), 37–44.

He, J., Hu, H. J., Harrison, R., Tai, P. C., & Pan, Y. (2006).
Transmembrane segments prediction and understanding using support
vector machine and decision tree. Expert Systems with Applications,

30(1), 64–72.
Heckerman, D., Geiger, D., & Chickering, D. (1995). Learning Bayesian

networks: The combination of knowledge and statistical data. Machine

Learning, 20(3), 197–243.
Kaplan, B. (2001). Evaluating informatics applications-clinical decision

support systems literature review. International Journal of Medical

Informatics, 64(1), 15–37.
Kim, H.-C., Pang, S., Je, H.-M., Kim, D., & Bang, S. Y. (2003).

Constructing support vector machine ensemble. Pattern Recognition,

36(12), 2757–2767.
Kim, M.-J., Min, S.-H., & Han, I. (2006). An evolutionary approach to

the combination of multiple classifiers to predict a stock price index.
Expert Systems with Applications, 31(2), 241–247.

Li, Y. C., Liu, L., Chiu, W. T., & Jian, W. S. (2000). Neural network
modeling for surgical decisions on traumatic brain injury patients.
International Journal of Medical Informatics, 57(1), 1–9.

Liu, T.-F., Sung, W.-K., & Mittal, A. (2006). Model gene network by
semi-fixed Bayesian network. Expert Systems with Applications, 30(1),
42–49.

MacDowell, M., Somoza, E., Rothe, K., Fry, R., Brady, K., & Bocklet,
A. (2001). Understanding birthing mode decision making using
artificial neural networks. Medical Decision Making, 21(6), 433–443.

Majumder, S. K., Ghosh, N., & Gupta, P. K. (2005). Support vector
machine for optical diagnosis of cancer. Journal of Biomedical Optics,

10(2), 24–34.
Mangalampalli, A., Mangalampalli, S. M., Chakravarthy, R., & Jain, A.

K. (2006). A neural network based clinical decision-support system for
efficient diagnosis and fuzzy-based prescription of gynecological
diseases using homoeopathic medicinal system. Expert Systems with

Applications, 30(1), 109–116.
Mendyk, A., & Jachowicz, R. (2005). Neural network as a decision

support system in the development of pharmaceutical formulation –
focus on solid dispersions. Expert Systems with Applications, 28(2),
285–294.

Mercer, T. (1909). Functions of positive and negative type and their
connection with the theory of integral equations. Transaction of

London Philosophy Society (A), 209, 415–446.
Murphy, C. K. (2001). Identifying diagnostic errors with induced decision

trees. Medical Decision Making, 21(5), 368–375.
Nilson, N. J. (1965). Learning machines: Foundations of trainable pattern

classifiers. New York: McGraw-Hill.
Ohlsson, M. (2004). WeAidU – A decision support system for myocardial

perfusion images using artificial neural networks. Artificial Intelligence

in Medicine, 30(1), 49–60.
Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of

plausible inference. San Mateo, CA: Morgan Kaufmann Publishers.
Prados, J., Kalousis, A., Sanchez, J. C., Allard, L., Carrette, O., & Hilario,
M. (2004). Mining mass spectra for diagnosis and biomarker discovery
of cerebral accidents. Proteomics, 4(8), 2320–2332.

Qu, Y., Adam, B.-L., Yasui, Y., Ward, M. D., Cazares, L. H.,
Schellhammer, P. F., et al. (2002). Boosted decision tree analysis of
surface-enhanced laser desorption/ionization mass spectral serum
profiles discriminates prostate cancer from noncancer patients. Clinical

Chemistry, 48(10), 1835–1843.
Quinlan, J. R. (1993). C4.5: Programs for machine learning. Los Altos,

CA: Morgan Kaufmann Publishers.
Ripley, B. D. (1996). Pattern recognition and neural networks. Cambridge:

Cambridge University Press.
Rumelhart, D. E., Hilton, G. E., & Williams, R. J. (1986). Learning

representations by back-propagating errors. Nature, 323, 533–536.
Sadeghi, S., Barzi, A., Sadeghi, N., & King, B. (2006). A Bayesian model

for triage decision support. International Journal of Medical Informat-

ics, 75(5), 403–411.
Schubert, F., Müller, J., Fritz, B., Lichter, P., & Eils, R. (2003).

Understanding the classification of tumors with a support vector
machine: A case-based explanation scheme. Proceedings of the German

conference on bioinformatics (GCB 2003), Neuherberg/Garching, 12–
14 October (pp. 123–127).

Sharkey, A. (1999). Multi-net systems. In A. J. C. Sharkey (Ed.),
Combining artificial neural nets – Ensemble and modular multi-net

systems (pp. 1–30). Berlin: Springer-Verlag.
Shin, H., & Markey, M. K. (2006). A machine learning perspective on the

development of clinical decision support systems utilizing mass spectra
of blood samples. Journal of Biomedical Informatics, 39(2), 227–
248.

Simpson, P. K. (1990). Artificial neural systems: Foundations paradigms

applications and implementations. Elmsford, NY: Pergamon Press.
Stockwell, D. R. B. (1993). LBS: Bayesian learning system for rapid expert

system development. Expert Systems with Applications, 6(2), 137–
147.

Tung, K.-Y., Huang, I.-C., Chen, S.-L., & Shih, C.-T. (2005). Mining the
generation xers’ job attitudes by artificial neural network and decision
tree – Empirical evidence in Taiwan. Expert Systems with Applications,

29(4), 783–794.
Türkoglu, I., Arslan, A., & Ilkay, E. (2002). An expert system for

diagnosis of the heart valve diseases. Expert Systems with Applications,

23(3), 229–236.
Vapnik, V. (1995). The nature of statistical learning theory. New York:

Springer-Verlag.
Veropoulos, K., Cristianini, N., & Campbell, C. (1999). The application of

support vector machines to medical decision support: A Case Study. In
Proceedings of the ECCAI advanced course on artificial intelligence

(ACAI 1999), 5–16 July 1999, Chania, Greece.
West, D., Mangiameli, P., Rampal, R., & West, V. (2005). Ensemble

strategies for a medical diagnostic decision support system: A breast
cancer diagnosis application. European Journal of Operational

Research, 162(2), 532–551.
West, D., & West, V. (2000). Model selection for a medical diagnostic

decision support system: A breast cancer detection case. Artificial

Intelligence in Medicine, 20(3), 183–204.
Won, Y., Song, H., Kang, T. W., Kim, J., Han, B., & Lee, S. (2003).

Pattern analysis of serum proteome distinguishes renal cell carcinoma
from other urologic diseases and healthy persons. Proteomics, 3(12),
2310–2316.

Yan, H.-M., Jiang, Y.-T., Zheng, J., Peng, C.-L., & Li, Q.-H. (2006). A
multilayer perceptron-based medical decision support system for heart
disease diagnosis. Expert Systems with Applications, 30(2), 272–281.

Yang, S., & Browne, A. (2004). Neural network ensembles: Combining
multiple models for enhanced performance using a multistage
approach. Expert Systems, 21(5), 279–288.


	AptaCDSS-E: A classifier ensemble-based clinical decision support system for cardiovascular disease level prediction
	Introduction
	Background and motivation
	Related work
	Objective and scope of the present work

	The system architecture of AptaCDSS-E
	Scanner interface
	Protocol manager
	AptaCDSS configuration server
	Diagnosis support client
	Base classifiers
	Decision tree
	Neural network
	Support vector machine
	Bayesian network


	Ensemble of classifiers
	Need for a classifier ensemble
	Why ensemble works better
	Construction of classifier ensemble
	Classifier aggregation
	Majority voting
	Least squared error (LSE)-based classifierweighting
	Hierarchical combination

	Making the final decision

	Experimental results and discussion
	Data sets
	Preprocessing
	Feature selection
	Results
	Discussion

	Conclusions
	Acknowledgements
	References


