
 1

A GA based knowledge discovery system for the design of

fluid dispensing processes for electronic packaging

K.Y. Chan and C.K. Kwong1

Department of Industrial and Systems Engineering,

The Hong Kong Polytechnic University,

Hung Hom, Kowloon,

Hong Kong

Abstract: In the semiconductor manufacturing industry, fluid dispensing is a very

common process used for die-bonding and microchip encapsulation in electronics

packaging. Understanding the process behaviour is important as it aids in determining

appropriate settings of the process parameters for a high-yield, low cost and robust

operation. In this paper, a genetic algorithm (GA) based knowledge discovery system

is proposed to discover knowledge about the fluid dispensing process. This

knowledge is expressed in the form of rules derived from experimental data sets. As a

result, appropriate parameters can be set which will be more effective with respect to

the required quality of encapsulation. Rules generated by the GA based knowledge

discovery system have been validated using a computational system for process

optimization of fluid dispensing. The results indicate that the rules generated are

useful and promising in aiding optimization of the fluid dispensing process in terms of

better optimization results and shorter computational time.

Keywords: Genetic algorithm, knowledge discovery system, fluid dispensing process,

electronics packaging

1 Email of the corresponding author: mfckkong@inet.polyu.edu.hk

 2

1 Introduction

Fluid dispensing process is a popular way to perform microchip encapsulation for

chip-on-board packages [15]. To study the process, it is common for engineers to

conduct a large number of experiments and generate experimental data sets.

Experimental data sets must first be processed and/or analyzed in order to extract

patterns, useful information or knowledge. The development of effective and efficient

methods for deriving knowledge from these data is important as the knowledge

extracted from the data not only has a high predictive accuracy but also is

comprehensible by users [11,12,13]. Recent developments of data mining algorithms,

such as Bayesian networks [5], nonlinear regression and classification methods [9],

example based methods [22], frequent patterns [34], decision or regression trees [30],

relational learning models [7] and evolution algorithms [1,2] have drawn considerable

attention from academics and from industry.

 Rule induction is one of the common forms of data mining [25]. It is a method

for discovering a set of “IF THEN” rules that can be used for converting

uninformative data into either a knowledge base for decision support or an easily

understood description of the system behavior so that knowledge that humans can

understand can be explored. It also features the capability to search for all possible

interesting patterns from data sets. The neural network approach has been employed

to extract rules for solving crisp and fuzzy classification problems [14,19,27].

However, neural networks do not supply any analytical guidance for determining the

network configuration. A network may also be trapped into local optima in the

learning process. This problem puts a limitation on the quality of rules generated from

neural networks. Also traditional rule induction methods discover the rules only by

 3

adopting local heuristic search techniques [11] that are also likely to be trapped into

local optima.

 Recently the approach of using genetic algorithms to induct rules from data

bases has been found useful due to its simplicity and its capability as a powerful

search mechanism that [20] evaluates the rule as a whole through the fitness function,

rather than evaluating the impact of adding or removing one condition to or from a

rule. Further extension of this can be found in [6,28]. Genetic algorithms use a

population of individual solution structures called chromosomes. Theory shows that

the knowledge about desirable solutions is advantageously stored in the population

itself. Such knowledge is implicitly contained in the surviving chromosomes through

evolution [16]. The principle of inducting rules, essentially using the genetic

algorithm, can be taken as the core of the method. It can also be found from recent

literature that genetic algorithms have been applied in mining rules from chemical

data [32], financial data [33], manufacturing data [26], qualitative bankruptcy data

[21], zoo data [7], nursery data [7], heart disease data [4].

 In this paper, a knowledge discovery system based on a genetic algorithm (GA)

for mining rules from a number of experimental data sets concerned with the fluid

dispensing process, is proposed. Currently, engineers determine the process

parameters to select the settings in fluid dispensing, by using their experience and

intuitive judgments. This leads to them spending a long time in determining the

proper settings. With the use of the rules generated from the knowledge discovery

system, it is hoped that the time of identifying proper process parameters setting can

be significantly reduced. The organization of this paper is as follows: Section 2

introduces the fluid dispensing for microchip encapsulation in electronic packaging.

Section 3 presents the operations of the proposed GA based knowledge discovery

 4

system for rule mining. In Section 4, validation of the rules generated by the GA

based knowledge discovery system is performed with the aid of the developed

computational system [24]. Numerical results and discussion are also given. Finally, a

conclusion is drawn.

2 Fluid dispensing for microchip encapsulation

In fluid dispensing processes of microchip encapsulation, normally, silicon chips are

covered with an epoxy encapsulant using an X-Y numerically controlled dispensing

system that delivers the epoxy encapsulant through a needle. The material is

commonly dispensed in a pattern, working from the center outwards. An epoxy dam

around the die site and second wire bond points can be made to contain the flow of

material and this produces a more uniform looking part as shown in Figure 1. Fluid

dispensing is a highly nonlinear process and creates a highly coupled multi-variable

system that involves complex inter-relationships between the epoxy properties,

process conditions, needle design parameters and overall encapsulation quality. In

semiconductor manufacturing, trial-and-error is still a common method used to

identify appropriate process parameter settings. However, this method involves a long

process development time and optimum encapsulation quality may not be obtained. A

detailed description of fluid dispensing can be found in [15].

To determine an optimal process condition of fluid dispensing, understanding

the process behavior is necessary. With assistance from the supporting company of

this research, three significant process parameters and their normal operating ranges

were identified as follows:

• The compressed air pressure (1 bar to 4 bar), 1x

• The height between the substrate and the needle (250 to 2000 steps of a

 5

stepping motor), 2x

• The pump motor speed (400 rpm to 1000 rpm), 3x .

Two quality characteristics were studied in this research which are the

encapsulation weight (mg), y , and the encapsulation thickness (mm), z. 96

experiments were carried out based on a full factorial design with 4 levels in

compressed air pressure (1x), 4 levels in the height between the substrate and the

needle (2x) and 6 levels in pump motor speed (3x).

3 GA based rule discovery system

In this section, a genetic algorithm GA based knowledge discovery system of the fluid

dispensing for microchip encapsulation, which is used to generate rules from the

experimental data sets, is described. First, an experimental data set, involving process

parameters and measures of encapsulation, are collected by carrying out experiments

on the fluid dispensing process. Then a knowledge discovery system that consists of a

conjunction of encapsulation requirements and the rules consequently recommended

for searching domains of process parameters, is developed by the genetic algorithm.

Based on the GA based rule discovery system, informative rules involving a small

searching domain of process parameters can be recommended with respect to the

required encapsulation. The rules generated can be represented as follows.

ululul
ww RxRRxRRxRzzyy 333222111 and and then and if ≤≤≤≤≤≤==

where wy is the required encapsulation weight; wz is the required encapsulation

thickness; ul RxR 111 ≤≤ is the range of setting of the process parameter 1x ;

ul RxR 222 ≤≤ is the range of setting of the process parameter 2x ; ul RxR 333 ≤≤ is the

range of setting of the process parameter 3x . All the ranges are recommended by the

 6

GA based knowledge discovery system. With a set of training data samples, Figure 2

shows a schematic diagram of the GA based knowledge discovery system.

 Details of the GA based knowledge discovery system are described below:

3.1 Generation of random strings

The first step of the GA based knowledge discovery system is to randomly generate a

population of strings which represent the ranges of the process parameters. The strings

can be expressed as []ululul RRRRRR 332211 ,,,,, , where l
iR and u

iR are the lower and upper

ranges of the thi process parameter ix with i=1, 2 and 3 respectively.

Real and binary encoding are two commonly used approaches for string

representation in GAs. In binary encoding representation, strings need to be encoded

to real values for fitness evaluation and also they need to be decoded again for

reproduction operations. However, in real encoding representation, there is no need

for string encoding and decoding. Leaving out encoding and decoding can help to

reduce the computational time. Since the ranges of process parameters are all real

values, real encoding is chosen.

3.2 Fitness evaluation

The fitness function of the GA based knowledge discovery system is used to evaluate

how good a rule fits the data samples of the epoxy dispensing process. Due to the

limited number of data sets, the required conditions of encapsulation weight wy and

thickness wz are covered by the ranges u
ww

l
w YyY ≤≤ and u

ww
l
w ZzZ ≤≤ defined by the

following rule:

ululul

u
ww

l
w

u
ww

l
w

RxRRxRRxR
zzyy

333222111 and and

 then Z Zand Y Y if

≤≤≤≤≤≤

≤=≤≤=≤

 7

where the ranges u
ww

l
w YyY ≤≤ and u

ww
l
w ZzZ ≤≤ covers 10% of the whole operating

ranges of the encapsulation weight and encapsulation thickness respectively; and lR1 ,

uR1 , lR2 , uR2 lR3 and uR3 are the values of the string as discussed in Section 3.1 and

they determine the fitness of a rule.

 Rules need to be evaluated during the training process in order to establish

points of reference for the GA based knowledge discovery system. The fitness

function considers the data sets as: correctly classified, left to be classified, and the

wrongly classified ones. In the GA based rule discovery system, the fitness function

(1), which was suggested by Carvalho and Freitas [2] is used. The fitness function

evaluates the predictive accuracy of a rule based on both true positive rate and true

negative rate that considerably mitigates some pitfalls associated with the problems of

overfitting and lack of balance,

 ratenegativetrueratepositivetrueFitness ____ ×= (1)

where ()
() ()N of no. of no.

 of no.__
FTP

TPratepositivetrue
+

= (2)

and ()
() ()P of no. of no.

 of no.__
FTN

TNratenegativetrue
+

= (3)

with

• TP means True Positive which refers to the data sets covered by the rule

correctly classified;

• FP means False Positive which refers to the data sets covered by the rule

wrongly classified;

• TN means True Negatives which refers to the data sets not covered by the rule

but differing from the training target class;

 8

• FN means False Negatives which refers to the data sets not covered by the rule

but matching the training target class.

 With the higher numbers of TP and TN, and the lower numbers of FP and FN,

a better rule is generated. For a comprehensive discussion about rule-quality measures,

the reader can refer to [18].

 The following shows a rule generated by the GA knowledge discovery system:

004250 and 00650 and 21
 then 62.00.590.55 and 1.686765.2 if

321 ≤≤≤≤≤≤
≤=≤≤=≤

xxx
zy

 (4)

where 67=y and 0.59=z are the required values of the encapsulation weight and

encapsulation thickness respectively; ()11 =lR , ()21 =uR , ()502 =
lR , ()6002 =uR ,

()2503 =
lR and ()4003 =uR are the values from the string of the GA based knowledge

discovery system. To evaluate the fitness of the rule, the 4 training data sets as shown

in Table 1 are used,

Classifications of the training data sets are shown in the last column of Table 1.

• The 1-st data set is classified as FN class, since y=70.1 is not within the

range, 1.6865.2 ≤≤ y , and also both 8.01 =x and 2003 =x are not within the

ranges, 21 1 ≤≤ x and 004250 3 ≤≤ x . This means the sample is not covered

by the rule but matches the rule.

• The 2-nd data set is classified as FP class, as y=64.3 and z=0.51 are not within

the ranges 1.6865.2 ≤≤ y and 62.00.55 ≤≤ z respectively, but all 2.11 =x ,

4002 =x and 3503 =x are within the ranges, 21 1 ≤≤ x , 00650 2 ≤≤ x and

004250 3 ≤≤ x . Therefore the data set is not covered by the rule but is

wrongly classified as belonging to the target class.

 9

• The 3-rd data set is classified as TP class, since y=66.9 and z=0.57 are all

within the ranges 1.6865.2 ≤≤ y and 62.00.55 ≤≤ z respectively, and also

all 8.11 =x , 3502 =x and 3003 =x are within the ranges

 21 1 ≤≤ x , 00650 2 ≤≤ x and 004250 3 ≤≤ x respectively. Therefore the data

set is covered by the rule and is correctly classified.

• The 4-th data set is classified as TN class, since y=65.5 and z=0.61 are all

within the ranges 1.6865.2 ≤≤ y and 62.00.55 ≤≤ z respectively, and both

402 =x and 2203 =x are not within the ranges 00650 2 ≤≤ x and

004250 3 ≤≤ x respectively. This means the data set is not covered by the rule

but differs from the target class.

 In this example, the number of data sets in all FN, FP, TP and TN classes is 1.

Thus based on the fitness function (1), the fitness of rule (4) can be calculated as:

25.0
11

1
11

1

=
+

×
+

=
+

×
+

=

×=

FPTP
TN

FNTP
TP

ratenegativetrueratepositivetrueFitness

3.3 Convergence and Selection

The population is evolved and improved in each generation until a stopping condition

is met. In genetic algorithms, there are quite a few stopping conditions. In this

research, the stopping criterion is fulfilled when the number of generations is equal to

a pre-defined number of generations or one of the solutions in the population of the

genetic algorithm achieves a full fitness score of 1. Otherwise the GA based

knowledge discovery system performs the selection operation for the next

evolutionary generation.

 10

 For the selection of strings, the approach of the roulette-wheel is used, which

is one of the most common selection methods used for selecting strings to perform

reproduction operations [16]. This is unlike other selection approaches such as rank

based selection [35], tournament selection [17], where their selective pressures need

to be controlled by adjusting their inbuilt parameters. The selection of strings

produced by the roulette-wheel selection algorithm is completely based on the fitness

of the strings. Therefore it can provide a zero bias to strings in the population.

 This selection method imitates the roulette-wheel game, where the dice thrown

would most probably end up by being in the slot with the largest area. Following this,

one can conclude that the string with the largest fitness value is most likely to be

chosen because it has the largest slot size. The fitness value of the thj string in a

population is jfit . The fitness values are used to calculate the probability of selection,

jprob , to the thj string. The probability of selection jprob is defined as:

∑
=

= Popsize

j
j

j
j

fit

fit
prob

1

 (5)

where Popsize is the population size of the GA based knowledge discovery system.

3.4 Crossover and mutation

Discrete Crossover Operation [29] is the most common crossover operation and is

performed by exchanging variable values between parent strings. However, it can

only generate corners of the hypercube defined by the parent strings. Furthermore,

experimental results have indicated that the combination of biases is far from optimal

and has undesirable side-effects on the exploratory power of crossover [10]. Another

common crossover operation for real encoding representation is Intermediate

 11

Crossover [29]. It is capable of producing any point within a hypercube which is

larger than that defined by the parent strings. Therefore it can be adapted to sustain a

higher explorative search in the searching domain than when using Discrete Crossover

Operation.

 In the development of the GA based knowledge discovery system,

intermediate crossover, which can produce a new string around and between the

variables of the two selected parent strings, is used. Referring to the representation of

the genetic algorithm, a new string []ululul RRRRRR 332211 ,,,,, is produced according to

the following rule:

[] []
[] []{ }ulululululul

ulululululul

RRRRRRRRRRRR

RRRRRRRRRRRR

3
2

3
2

2
2

2
2

1
2

1
2

3
1

3
1

2
1

2
1

1
1

1
1

3
1

3
1

2
1

2
1

1
1

1
1

332211

,,,,,,,,,,

,,,,,,,,,,

−

+=

α
 (6)

where α is a scaling factor chosen uniformly at random over an interval []25.1 ,25.0− ,

and []ululul RRRRRR 3
1

3
1

2
1

2
1

1
1

1
1 ,,,,, and []ululul RRRRRR 3

2
3

2
2

2
2

2
1

2
1

2 ,,,,, are the two selected

parent strings. Ranges of process parameters in the new string are the result of

combining the values of the parent strings according to (6) with a scaling factor α

chosen for each range of process parameter. In geometric terms, intermediate

crossover is capable of producing new parameter values within a slightly larger

hypercube than that defined by the parent strings, but these values are constrained by

a range of scaling factor α .

 Mutation is carried out by randomly changing one or more values of a selected

string between the operating ranges of process parameters. During mutation, the value

of each range of process parameter in a rule has a finite probability of changing.

Therefore the probability of searching within the operating ranges of process

parameters is never zero. This prevents complete loss of genetic material through

selection and elimination.

 12

 The mutation operator of Gaussian perturbation [29] of individual variables

was used in the GA based knowledge discovery system. For example, the variable jR

is selected to be mutated. After performing the mutation, its value becomes:

 δ××+= jjj DRR MutMx' (7)

where MutMx = +1 or -1 with equal probability; jD = 0.5 × operating range of the j-

th process parameter; δ = a value in the range [0,1] for shrinking the mutation range

based on Gaussian perturbation.

 After being generated the newly produced strings are put into the old

population to generate a new population. This can be done by replacing the least fit

strings in the old population with the newly produced strings. Such replacement can

also be produced by randomly replacing the strings in the old population with the

newly produced strings. In this research, a random reinserting approach was used.

3.4 Rule Induction

96 experiments were carried out based on a full factorial design with 4 levels in

compressed air pressure (1x), 6 levels in pump motor speed (2x) and 4 levels in the

height between the substrate and the needle (3x). 88 out of the 96 experimental data

sets were used to train the GA based knowledge discovery system, and the remaining

8 experimental data sets were used for system validation.

The GA based knowledge discovery system was implemented using Matlab

programming software. The parameter settings, Crossover rate = 0.8 and Mutation

rate = n/1 , where n is the number of variables of the string, suggested by [31] were

adopted. Since the number of variables of the string is 6 (i.e. n=6), mutation rate was

 13

set at 6/1 . The number of generations and population size were set at 500 and 100

respectively.

If the required encapsulation weight y is 50 mg and the required encapsulation

thickness z is 0.5 mm, Figure 3 shows a rule recommended by the GA based

knowledge discovery system. From Figure 3, it can be found that the numbers of TP =

6, FP = 1, FN = 4, TN =77, and the fitness value of the recommended rule is 0.5923.

From the rule, more specified ranges of parameter settings can be obtained.

4 Results Verification

To validate the effectiveness of the rules generated by the GA based knowledge

discovery system the computational system for fluid dispensing developed by Kwong

et al [24] was employed.

Given operating ranges of process parameters (1x , 2x , 3x), and the required

encapsulation weight β and thickness γ, the computational system determines the

setting of the three process parameters, compressed air pressure (1x), pump motor

speed (2x), and the distance between the substrate and needle (3x), based on the

requirements of encapsulation weight β and thickness γ. The system consists of a

neural network (NN) based prediction model, and a GA based optimization unit as

shown in Figure 4. Here we call it a pure computational system.

In the GA based optimization unit, the following objective function is used:

 Objective Function:

 −
+

−

γ
γ

λ
β
β

λ
zy

Min 21 (8)

subject to: 41 1 ≤≤ x , 1000400 2 ≤≤ x , 2000250 3 ≤≤ x ,

where 1λ and 2λ are the weights of the two quality characteristics, encapsulation

weight and encapsulation thickness respectively.

 14

 To validate the effectiveness of the GA based knowledge discovery system,

the system was integrated with the pure computation system developed by Kwong et

al [24] as shown in Figure 5. In the enhanced computational system, recommended

ranges of parameter settings are generated by the GA based knowledge discovery

system and input to the GA based optimization unit. It is hoped that the parameter

settings recommended by the enhanced computational system will lead to better

results of the two quality characteristics than the pure computational system.

To validate the GA based knowledge discovery system, eight validation tests

were carried out. First, eight sets of required encapsulation weights and thicknesses as

shown in Table 2 were inputted to the GA based knowledge discovery system.

 The corresponding eight rules were generated as shown below:

1 IF y=72.3 and z =0.58

 THEN 1.6124<x1<2.4414 AND 403<x2<1682.7 AND 493.99<x3<687.3

2 IF y=43.2 and z =0.48

 THEN 2.5476<x1<3.268 AND 250<x2<2000 AND 850<x3<1000

3 IF y=87.4 and z =0.67

 THEN 1.0561<x1<2.718 AND 644.34<x2<1862.7 AND 400<x3<541.85

4 IF y=37.2 and z =0.46

 THEN 1<x1<1.4294 AND 1665.5<x2<2000 AND 819.61<x3<1000

5 IF y=75.1 and z =0.62

 THEN 1<x1<2.5259 AND 960.94<x2<1497.2 AND 400<x3<537.3

6 IF y=59.3 and z =0.57

 THEN 1.8869<x1<2.8044 AND 250<x2<465.58 AND 548.05<x3<745.13

7 IF y=62.4 and z =0.53

 THEN 1.2048<x1<3.9475 AND 250<x2<897.88 AND 773.09<x3<834.33

8 IF y=53.1 and z =0.53

 THEN 1.103<x1<2.3456 AND 250<x2<2000 AND 764.92<x3<849.78

 15

Those recommended ranges of parameters setting were then input to the GA

based optimization unit in order to reduce the searching space. Because both the pure

computational system and the enhanced computational system involve the stochastic

algorithm GA, 50 runs were carried out in the eight validations. Then we evaluated

the effectiveness and robustness of both systems by analyzing the statistical results of

the 50 runs.

The search results of optimizing the relative errors of both encapsulation

weight and encapsulation thickness of the pure computational system and the

enhanced computational system are shown in Figure 6 – Figure 21. In the figures, the

x-axis and the y-axis show the generation numbers and the relative error of the

encapsulation respectively. It can be observed clearly from all the figures that in

general, the convergence speeds of the enhanced computational system are faster than

those based on the pure computational system. Also the relative errors of prediction of

the enhanced computational system are all smaller than those of the pure

computational systems in all the validation tests.

To investigate the quality and the robustness of solutions found in both the

pure computational system and the enhanced computational system, the means and

the variances of the relative errors found in both systems for the 8 validations were

analysed. Table 3 and Table 4 show the means and variances of the relative errors of

both systems respectively. It can be seen clearly from the tables that the enhanced

computational system can yield better solutions in terms of mean errors and variance

of relative errors compared with the pure computational system in the 8 validations.

The t-test was introduced to evaluate the significance between the pure

computational system and the enhanced computational system. Table 5 shows two

sets of all t-values between the pure computational system and the enhanced

 16

computational system for the validation tests for both encapsulation weight and

encapsulation thickness. It can be found that all the t-values are higher than 2.15,

which indicates that the significance is 98% level of confidence. Therefore the

performance of the enhanced computational system is significantly better than the

pure computational system with 98% confidence, in terms of prediction accuracy.

5 Conclusion

In this paper, a GA based knowledge discovery system was proposed and developed

to generate rules from experimental data sets of the fluid dispensing process in which

three process parameters, compressed air pressure, the height between the substrate

and the needle and pump motor speed, and two quality requirement, encapsulation

weight and thickness, are involved. Based on rules generated from the GA based

knowledge discovery system, more specified ranges of process parameter settings can

be obtained. Engineers could make use of the specified ranges to shorten their time in

determining the appropriate setting of process parameters for fluid dispensing

compared with the time they spent on their conventional practice. To validate the

effectiveness of the rules generated from the GA based knowledge discovery system,

the system was integrated with a computational system for fluid dispensing developed

by Kwong et al. [24]. Eight validation tests were carried out. Results of the tests

indicate that the enhanced computational system can recommend process parameter

settings which lead to smaller prediction errors as well as variance of errors in

comparison with the Kwong’s computational system [24]. Actual experiments will be

performed to further verify and validate the effectiveness of the GA based knowledge

discovery system.

 17

 Further study will involve improving the accuracy and on shortening the

computational time of the GA based knowledge discovery system by incorporating a

statistical method, orthogonal design, into the GA. The resulting system will be

applied on mining useful rules on the survey data sets for car door design.

Acknowledgements

The work described in this paper was supported substantially by a grant from the

Hong Kong Polytechnic University.

References

1. Bojarczuk C.E., Lopes H.K. and Freitas A.A. (1999). A hybrid genetic

algorithm/decision tree approach for coping with unbalanced classes. Proceedings

of the 3rd International Conference Practical Applications of Knowledge

Discovery and Data Mining (pp. 61-70).

2. Carvalho D.R. and Freitas A.A. (2000). A hybrid decision tree/genetic algorithm

for coping with the problem of small disjoints in data mining. Proceeding of the

Conference of Genetic and Evolutionary Computation (pp. 1061-1068).

3. Chipperfield A.J. and Fleming P.J. (1995). The MATLAB genetic algorithm

toolbox. Proceedings of the IEE Colloquium on Applied Control Techniques using

MATLAB (pp. 10/1-10/4).

4. Chiu C. and Hsu P.L. (2005). A constraint-based genetic algorithm approach for

mining classification rules. IEEE Transactions on Systems, Man, and Cybernetics

–Part C: Applications and Reviews, 35(2), 205-220.

 18

5. Cooper G.F. and Herskovits E. (1991). A Bayesian method for constructing

Bayesian belief networks from databases. Proceedings of the 7th Annul

Conference of Uncertainty in Artificial Intelligence (pp. 86-94).

6. Davis L. (1991). Handbook of Genetic Algorithms. Van Nostrand Reinhold, New

York.

7. Dehuri S. and Mall R. (2006). Predictive and comprehensible rule discovery using a

multi-objective genetic algorithm. Knowledge-based Systems, 19, 413-421.

8. Dzeroski S. (1996). Inductive logic programming and knowledge discovery in

databases. Advances in Knowledge Discovery and Data Mining, AAAI Press (pp.

117-152), Menol Park, CA.

9. Elder J. and Pregibon D. (1996). A statistical perspective on knowledge discovery

in database. Advances in Knowledge Discovery and Data Mining, AAAI Press (pp.

83-113) Menlo Park, Calif.

10. Eshelmann L.J. (1991). The CHC Adaptive Algorithm: How to have safe search

when engaging in non-traditional genetic recombination. Foundations of Genetic

Algorithms 1 (pp. 265-283).

11. Fayyad U., Piatetsky-Shapiro G., and Smyth P. (1996). From data mining to

knowledge discovery: An overview, Advances in Knowledge Discovery and Data

Mining (pp. 1-36).

12. Freitas A.A. (1997). A genetic programming framework for two data mining tasks:

classification and generalized rule induction. Proceedings of 2nd Annual

Conference on Genetic Programming (pp. 96-101).

13. Freitas A.A. (1999). On rule interestingness measures. Knowledge-Based Systems,

12, 309-315.

 19

14. Giles C., Lee C., Lawrence S. and Tsoi A.C. (1997). Rule inference for financial

prediction using recurrent neural networks. IEEE Proceedings of Conference on

Computational Intelligence for Financial Engineering (pp. 253–259).

15. Gilleo, K. (2004). Area array packaging processes. NewYork:McGraw-Hill.

16. Goldberg D.E. (1989). Genetic Algorithms in Search, Optimization and Machine

Learning. Addison Wesley.

17. Goldberg D.E. and Deb K. (1991). A comparative analysis of selection schemes

used in genetic algorithms. Foundations of Genetic Algorithms (pp. 69-93).

18. Hand D.J. (2001), Principles of Data Mining, MIT Press.

19. Hayashi Y. and Imura A. (1990). Fuzzy neural expert system with automated

extraction of fuzzy if–then rules from a trained neural network. The First

International Symposium on Uncertainty Modeling and Analysis (pp. 489–494).

20. Holland J.H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, MI:

Univ. Michigan Press.

21. Kim M.J. and Han I. (2003). The discovery of experts’ decision rules from

qualitative bankruptcy data using genetic algorithms. Expert Systems with

Applications, 25, 637-646.

22. Kolodner J. (1993). Case-Based Reasoning. Morgan Kaufman, San Francisco.

23. Kwong C.K., Chan K.Y. and Wong H (2007). Empirical approach to modeling

fluid dispensing for electronic packaging. International Journal of Advanced

Manufacturing Technology, in print.

24. Kwong C.K., Chan. K.Y. and Wong H. (2007). A computational system of

process optimization of fluid dispensing for electronic package. (Reviewing)

25. Langlery P. and Simon H. (1995). Application of machine learning and rule

induction. Communication of ACM, 38(11) 54-64.

 20

26. Lee, R. and Sikora, M.S. (1995). A genetic algorithm based approach to flexible

flow-line scheduling with variable lot sizes. IEEE Transactions on Systems, Man,

and Cybernetics – Part B, 27(1) 36–54.

27. Lin, C. T., and Lee, C. S. G. (1991). Neural network-based fuzzy logic control and

decision system. IEEE Transactions on Computer, 12, 1320–1336.

28. Michalewicz Z. (1994). Genetic Algorithms + Data Structure = Evolution

Programs. Springer-Verlag, Berlin.

29. Muhlenbein H and Voosen D.S. (1993). Predictive models for the breeder genetic

algorithm: I. Continuous parameter optimization. Evolutionary Computation. 1(1),

25-49.

30. Quinlan J. (1992). C4.5: Programs for machine learning. Morgan Kaufmann, San

Francisco.

31. Schaffer J., Caruana R., Eshelman L. and Das R. (1989). A study of control

parameters affecting online performance of genetic algorithms for function

optimization. Proceedings of the 3rd International Conference on Genetic

Algorithms (pp. 51-60).

32. Sikora R. (1992). Learning control strategies for a chemical process: A distributed

approach. IEEE Expert, 35-43.

33. Sikora R. and Shaw M. (1994). A double-layered learning approach to acquiring

rules for classification: Integrating genetic algorithms with similarity-based

learning. ORSA Journal on Computing, 6(2), 174–187.

34. Srikant R. and Agrawal R. (1996). Mining sequential patterns: generalizations and

performance improvements. Proceedings of the 5th International Conference on

Extending Database Technologies (pp. 3-17).

 21

35. Whitley D. (1989). The GENITOR Algorithm and Selection Pressure: Why Rank-

Based Allocation of Reproductive Trials is Best. Proceedings of the Third

International Conference on Genetic Algorithms (pp. 116-121).

Figure 1 Encapsulation of COB packages

Epoxy Dam

Encapsulation

Substrate IC Chip

Bond Wire

 22

Figure 2 GA based knowledge discovery system

R1
l, R1

u, R2
l,

R2
u, R3

l and R3
u

Required
encapsulation
weight and
thickness

Crossover

No
Yes

Selection

Mutation

GA based knowledge discovery system

Fitness
evaluation

Recommended ranges of process
parameters R1

l, R1
u, R2

l, R2
u, R3

l and R3
u

Converge?

Updated
population

Generation of
random strings

Fitness value

Yes

Training
data sets

U
ser interface

 23

Figure 3 The user interface of the GA based knowledge discovery system

Figure 4 Pure computational system

Recommended process
parameters of x1, x2 and x3

Relative errors (y- β)/β and
 (z- γ)/γ

Required
encapsulation β and γ

Operating parameter
ranges of x1, x2 and x3

Pr
oc

es
s p

ar
am

et
er

s x
1,

x 2
 a

nd
 x

3

Predicted
encapsulation y and z

Pure computational system

NN based
prediction

model

GA based

optimization
unit

 24

Figure 5 Enhanced computational system

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Encapsulation weight error in the 1st validation (percentage)

er
ro

r

generation numbers

Pure computational system

Enhanced computational system

0 500 1000 1500 2000 2500 3000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Encapsulation thickness error in the 1st validation (percentage)

er
ro

r

generation numbers

Pure computational system

Enhanced computational system

Figure 6 Search results of Validation test

1 for encapsulation weight

Figure 7 Search results of Validation test

1 for encapsulation thickness

Recommended
process parameters
of x1, x2 and x3

Relative errors (y-
β)/β and (z- γ)/γ

Required
encapsulation β and γ

Recommended
parameter
ranges of x1, x2
and x3

Pr
oc

es
s p

ar
am

et
er

s x
1,

x 2
 a

nd
 x

3

Predicted
encapsulation β and γ

Pure computational system

NN based
prediction

model

GA based

optimization
unit

GA based
knowledge
discovery

system

 25

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

3.5

4
Encapsulation weight error in the 2nd validation (percentage)

er
ro

r

generation numbers

Pure computational system

Enhanced computational system

0 500 1000 1500 2000 2500 3000

0

1

2

3

4

5

6
Encapsulation thickness error in the 2nd validation (percentage)

er
ro

r

generation numbers

Pure computational system

Enhanced computational system

Figure 8 Search results of Validation test

2 for encapsulation weight

Figure 9 Search results of Validation test

2 for encapsulation thickness

0 500 1000 1500 2000 2500 3000
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5
Encapsulation weight error in the 3rd validation (percentage)

er
ro

r

generation numbers

Pure computational system

Enhanced computational system

0 500 1000 1500 2000 2500 3000

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2
Encapsulation thickness error in the 3rd validation (percentage)

er
ro

r

generation numbers

Pure computational system

Enhanced computational system

Figure 10 Search results of Validation

test 3 for encapsulation weight

Figure 11 Search results of Validation

test 3 for encapsulation thickness

 26

0 500 1000 1500 2000 2500 3000
0

2

4

6

8

10

12

14
Encapsulation weight error in the 4th validation (percentage)

e
rr

o
r

generation numbers

Pure computational system

Enhanced computational system

0 500 1000 1500 2000 2500 3000

0

1

2

3

4

5

6
Encapsulation thickness error in the 4th validation (percentage)

er
ro

r

generation numbers

Pure computational system

Enhanced computational system

Figure 12 Search results of Validation

test 4 for encapsulation weight

Figure 13 Search results of Validation

test 4 for encapsulation thickness

0 500 1000 1500 2000 2500 3000
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
Encapsulation weight error in the 5th validation (percentage)

er
ro

r

generation numbers

Pure computational system

Enhanced computational system

0 500 1000 1500 2000 2500 3000

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34
Encapsulation thickness error in the 5th validation (percentage)

er
ro

r

generation numbers

Pure computational system

Enhanced computational system

Figure 14 Search results of Validation

test 5 for encapsulation weight

Figure 15 Search results of Validation

test 5 for encapsulation thickness

 27

0 500 1000 1500 2000 2500 3000
0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22
Encapsulation weight error in the 6th validation (percentage)

er
ro

r

generation numbers

Pure computational system

Enhanced computational system

0 500 1000 1500 2000 2500 3000

0.06

0.07

0.08

0.09

0.1

0.11

0.12
Encapsulation thickness error in the 6th validation (percentage)

er
ro

r

generation numbers

Pure computational system

Enhanced computational system

Figure 16 Search results of Validation

test 6 for encapsulation weight

Figure 17 Search results of Validation

test 6 for encapsulation thickness

0 500 1000 1500 2000 2500 3000
0.5

1

1.5

2

2.5

3

3.5

4

4.5
Encapsulation weight error in the 7th validation (percentage)

er
ro

r

generation numbers

Pure computational system

Enhanced computational system

0 500 1000 1500 2000 2500 3000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
Encapsulation thickness error in the 7th validation (percentage)

er
ro

r

generation numbers

Pure computational system

Enhanced computational system

Figure 18 Search results of Validation

test 7 for encapsulation weight

Figure 19 Search results of Validation

test 7 for encapsulation thickness

 28

0 500 1000 1500 2000 2500 3000
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
Encapsulation weight error in the 8th validation (percentage)

er
ro

r

generation numbers

Pure computational system

Enhanced computational system

0 500 1000 1500 2000 2500 3000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Encapsulation thickness error in the 8th validation (percentage)

er
ro

r

generation numbers

Pure computational system

Enhanced computational system

Figure 20 Search results of Validation

test 8 for encapsulation weight

Figure 21 Search results of Validation

test 8 for encapsulation thickness

 29

Table 1 Training data sets for rule (4)

Data sets y z x1 x2 x3 Class

1-st 70.1 0.53 0.8 100 200 FN

2-nd 64.3 0.51 1.2 400 350 FP

3-rd 66.9 0.57 1.8 350 300 TP

4-th 65.5 0.61 1.6 40 220 TN

 Table 2 Eight sets of required encapsulation weights and thickness

 Weight

Y

Thickness

z

1 72.3 0.58

2 43.2 0.48

3 87.4 0.67

4 37.2 0.46

5 75.1 0.62

6 59.3 0.57

7 62.4 0.53

8 53.1 0.53

 30

Table 3 Means of the relative errors

 Mean errors of encapsulation

weight

Mean errors of encapsulation

thickness

Validation Pure

computational

system

(%)

Enhanced

computational

system

(%)

Pure

computational

system

(%)

Enhanced

computational

system

(%)

1 0.1847 0.0289 0.2377 0.0534

2 0.1796 0.0132 0.0886 0.0147

3 2.9548 2.5588 1.3575 1.2588

4 1.2272 0.3691 0.5150 0.1594

5 0.5632 0.4533 0.2360 0.2031

6 0.1345 0.1338 0.084 0.0064

7 0.8581 0.5141 0.4547 0.3945

8 0.9710 0.7174 0.4358 0.3527

 31

Table 4 Variances of the relative errors

 Variances of errors of

encapsulation weight

Variances of errors of

encapsulation thickness

Validation Pure

computational

system

(%)

Enhanced

computational

system

(%)

Pure

computational

system

(%)

Enhanced

computational

system

(%)

1 0.6589×10-5 0.0000×10-5 0.1246×10-5 0.0000×10-5

2 0.7143×10-5 0.0000×10-5 0.1351×10-5 0.0000×10-5

3 0.3722×10-4 0.0010×10-4 0.3171×10-4 0.0002×10-4

4 0.9816×10-5 0.0016×10-5 0.3736×10-5 0.0002×10-5

5 0.2512×10-3 0.0004×10-3 0.2565×10-3 0.0001×10-3

6 0.8252×10-5 0.0009×10-5 0.3451×10-4 0.0002×10-4

7 0.1001×10-4 0.0396×10-4 0.0007×10-4 0.0001×10-4

8 0.2136×10-4 0.1283×10-4 0.0001×10-4 0.0000×10-4

 32

Table 5 t-values between pure computational system and enhanced computational

system for the relative errors of encapsulation weight and encapsulation thickness

Validation T-values of encapsulation

weight between pure and

enhanced computational

systems

T-values of encapsulation

thickness between pure and

enhanced computational

systems

1 4.2918×102 1.1674×103

2 4.4024×102 4.4957×102

3 4.5836×102 1.2390×102

4 1.9351×103 1.3006×103

5 48.9922 14.5229

6 5.4459 93.3788

7 6.5079×102 1.5050×103

8 3.0667×102 5.8761×103

