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Abstract: In the semiconductor manufacturing industry, fluid dispensing is a very 

common process used for die-bonding and microchip encapsulation in electronics 

packaging. Understanding the process behaviour is important as it aids in determining 

appropriate settings of the process parameters for a high-yield, low cost and robust 

operation. In this paper, a genetic algorithm (GA) based knowledge discovery system 

is proposed to discover knowledge about the fluid dispensing process. This 

knowledge is expressed in the form of rules derived from experimental data sets. As a 

result, appropriate parameters can be set which will be more effective with respect to 

the required quality of encapsulation. Rules generated by the GA based knowledge 

discovery system have been validated using a computational system for process 

optimization of fluid dispensing. The results indicate that the rules generated are 

useful and promising in aiding optimization of the fluid dispensing process in terms of 

better optimization results and shorter computational time. 
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1 Introduction 

Fluid dispensing process is a popular way to perform microchip encapsulation for 

chip-on-board packages [15]. To study the process, it is common for engineers to 

conduct a large number of experiments and generate experimental data sets. 

Experimental data sets must first be processed and/or analyzed in order to extract 

patterns, useful information or knowledge. The development of effective and efficient 

methods for deriving knowledge from these data is important as the knowledge 

extracted from the data not only has a high predictive accuracy but also is 

comprehensible by users [11,12,13]. Recent developments of data mining algorithms, 

such as Bayesian networks [5], nonlinear regression and classification methods [9], 

example based methods [22], frequent patterns [34], decision or regression trees [30], 

relational learning models [7] and evolution algorithms [1,2] have drawn considerable 

attention from academics and from industry. 

 Rule induction is one of the common forms of data mining [25]. It is a method 

for discovering a set of “IF THEN” rules that can be used for converting 

uninformative data into either a knowledge base for decision support or an easily 

understood description of the system behavior so that knowledge that  humans can 

understand can be explored. It also features the capability to search for all possible 

interesting patterns from data sets. The neural network approach has been employed 

to extract rules for solving crisp and fuzzy classification problems [14,19,27]. 

However, neural networks do not supply any analytical guidance for determining the 

network configuration. A network may also be trapped into local optima in the 

learning process. This problem puts a limitation on the quality of rules generated from 

neural networks. Also traditional rule induction methods discover the rules only by 
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adopting local heuristic search techniques [11] that are also likely to be trapped into 

local optima. 

 Recently the approach of using genetic algorithms to induct rules from data 

bases has been found useful due to its simplicity and its capability as a powerful 

search mechanism that [20] evaluates the rule as a whole through the fitness function, 

rather than evaluating the impact of adding or removing one condition to or from a 

rule. Further extension of this can be found in [6,28]. Genetic algorithms use a 

population of individual solution structures called chromosomes. Theory shows that 

the knowledge about desirable solutions is advantageously stored in the population 

itself. Such knowledge is implicitly contained in the surviving chromosomes through 

evolution [16]. The principle of inducting rules, essentially using the genetic 

algorithm, can be taken as the core of the method. It can also be found from recent 

literature that genetic algorithms have been applied in mining rules from chemical 

data [32], financial data [33], manufacturing data [26], qualitative bankruptcy data 

[21], zoo data [7], nursery data [7], heart disease data [4]. 

 In this paper, a knowledge discovery system based on a genetic algorithm (GA) 

for mining rules from a number of experimental data sets concerned with the fluid 

dispensing process, is proposed. Currently, engineers determine the process 

parameters to select the settings in fluid dispensing, by using their experience and 

intuitive judgments. This leads to them spending a long time in determining the 

proper settings. With the use of the rules generated from the knowledge discovery 

system, it is hoped that the time of identifying proper process parameters setting can 

be significantly reduced. The organization of this paper is as follows: Section 2 

introduces the fluid dispensing for microchip encapsulation in electronic packaging. 

Section 3 presents the operations of the proposed GA based knowledge discovery 
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system for rule mining. In Section 4, validation of the rules generated by the GA 

based knowledge discovery system is performed with the aid of the developed 

computational system [24]. Numerical results and discussion are also given. Finally, a 

conclusion is drawn. 

 

2 Fluid dispensing for microchip encapsulation 

In fluid dispensing processes of microchip encapsulation, normally, silicon chips are  

covered with an epoxy encapsulant using an X-Y numerically controlled dispensing 

system that delivers the epoxy encapsulant through a needle. The material is 

commonly dispensed in a pattern, working from the center outwards. An epoxy dam 

around the die site and second wire bond points can be made to contain the flow of 

material and this produces a more uniform looking part as shown in Figure 1. Fluid 

dispensing is a highly nonlinear process and creates a highly coupled multi-variable 

system that involves complex inter-relationships between the epoxy properties, 

process conditions, needle design parameters and overall encapsulation quality. In 

semiconductor manufacturing, trial-and-error is still a common method used to 

identify appropriate process parameter settings. However, this method involves a long 

process development time and optimum encapsulation quality may not be obtained. A 

detailed description of fluid dispensing can be found in [15].  

To determine an optimal process condition of fluid dispensing, understanding 

the process behavior is necessary. With assistance from the supporting company of 

this research, three significant process parameters and their normal operating ranges 

were identified as follows:  

• The compressed air pressure (1 bar to 4 bar), 1x  

• The height between the substrate and the needle (250 to 2000 steps of a 
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stepping motor), 2x  

• The pump motor speed (400 rpm to 1000 rpm), 3x . 

Two quality characteristics were studied in this research which are the 

encapsulation weight (mg), y , and the encapsulation thickness (mm), z. 96 

experiments were carried out based on a full factorial design with 4 levels in 

compressed air pressure ( 1x ), 4 levels in the height between the substrate and the 

needle ( 2x ) and 6 levels in pump motor speed ( 3x ). 

 

3 GA based rule discovery system 

In this section, a genetic algorithm GA based knowledge discovery system of the fluid 

dispensing for microchip encapsulation, which is used to generate rules from the 

experimental data sets, is described. First, an experimental data set, involving process 

parameters and measures of encapsulation, are collected by carrying out experiments 

on the fluid dispensing process. Then a knowledge discovery system that consists of a 

conjunction of encapsulation requirements and the rules consequently recommended 

for searching domains of process parameters, is developed by the genetic algorithm. 

Based on the GA based rule discovery system, informative rules involving a small 

searching domain of process parameters can be recommended with respect to the 

required encapsulation. The rules generated can be represented as follows. 

ululul
ww RxRRxRRxRzzyy 333222111  and  and  then  and  if ≤≤≤≤≤≤==  

where wy  is the required encapsulation weight; wz  is the required encapsulation 

thickness; ul RxR 111 ≤≤  is the range of setting of the process parameter 1x ; 

ul RxR 222 ≤≤  is the range of setting of the process parameter 2x ; ul RxR 333 ≤≤  is the 

range of setting of the process parameter 3x . All the ranges are recommended by the 
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GA based knowledge discovery system. With a set of training data samples, Figure 2 

shows a schematic diagram of the GA based knowledge discovery system. 

 Details of the GA based knowledge discovery system are described below: 

3.1  Generation of random strings 

The first step of the GA based knowledge discovery system is to randomly generate a 

population of strings which represent the ranges of the process parameters. The strings 

can be expressed as [ ]ululul RRRRRR 332211 ,,,,, , where l
iR  and u

iR  are the lower and upper 

ranges of the thi  process parameter ix  with i=1, 2 and 3 respectively. 

Real and binary encoding are two commonly used approaches for string 

representation in GAs. In binary encoding representation, strings need to be encoded 

to real values for fitness evaluation and also they need to be decoded again for 

reproduction operations. However, in real encoding representation, there is no need 

for string encoding and decoding. Leaving out encoding and decoding can help to 

reduce the computational time. Since the ranges of process parameters are all real 

values, real encoding is chosen. 

 

3.2  Fitness evaluation 

The fitness function of the GA based knowledge discovery system is used to evaluate 

how good a rule fits the data samples of the epoxy dispensing process. Due to the 

limited number of data sets, the required conditions of encapsulation weight wy  and 

thickness wz  are covered by the ranges u
ww

l
w YyY ≤≤   and u

ww
l
w ZzZ ≤≤   defined by the 

following rule: 

ululul

u
ww

l
w

u
ww

l
w

RxRRxRRxR
zzyy

333222111  and  and                                                         

 then Z Zand Y Y if

≤≤≤≤≤≤

≤=≤≤=≤
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where the ranges u
ww

l
w YyY ≤≤   and u

ww
l
w ZzZ ≤≤   covers 10% of the whole operating 

ranges of the encapsulation weight and encapsulation thickness respectively; and lR1 , 

uR1 , lR2 , uR2  lR3  and uR3  are the values of the string as discussed in Section 3.1 and 

they determine the fitness of a rule. 

 Rules need to be evaluated during the training process in order to establish 

points of reference for the GA based knowledge discovery system. The fitness 

function considers the data sets as: correctly classified, left to be classified, and the 

wrongly classified ones. In the GA based rule discovery system, the fitness function 

(1), which was suggested by Carvalho and Freitas [2] is used. The fitness function 

evaluates the predictive accuracy of a rule based on both true positive rate and true 

negative rate that considerably mitigates some pitfalls associated with the problems of 

overfitting and lack of balance, 

  ratenegativetrueratepositivetrueFitness ____ ×=   (1) 

where ( )
( ) ( )N of no. of no.

 of no.__
FTP

TPratepositivetrue
+

=     (2) 

and  ( )
( ) ( )P of no. of no.

 of no.__
FTN

TNratenegativetrue
+

=     (3) 

with 

• TP means True Positive which refers to the data sets covered by the rule  

correctly classified; 

• FP means False Positive which refers to the data sets covered by the rule 

wrongly classified; 

• TN means True Negatives which  refers to the data sets not covered by the rule 

but differing from the training target class; 
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• FN means False Negatives which refers to the data sets not covered by the rule 

but matching the training target class. 

 With the higher numbers of TP and TN, and the lower numbers of FP and FN, 

a better rule is generated. For a comprehensive discussion about rule-quality measures, 

the reader can refer to [18]. 

 The following shows a rule generated by the GA knowledge discovery system: 

004250 and 00650 and 21                                             
 then  62.00.590.55 and 1.686765.2 if

321 ≤≤≤≤≤≤
≤=≤≤=≤

xxx
zy

  (4) 

where 67=y  and 0.59=z  are the required values of the encapsulation weight and 

encapsulation thickness respectively; ( )11 =lR , ( )21 =uR , ( )502 =
lR , ( )6002 =uR , 

( )2503 =
lR  and ( )4003 =uR  are the values from the string of the GA based knowledge 

discovery system. To evaluate the fitness of the rule, the 4 training data sets as shown 

in Table 1 are used,  

Classifications of the training data sets are shown in the last column of Table 1. 

• The 1-st data set is classified as FN class, since y=70.1 is not within the 

range, 1.6865.2 ≤≤ y , and also both 8.01 =x  and 2003 =x are not within the 

ranges,  21  1 ≤≤ x and 004250 3 ≤≤ x . This means the sample is not covered 

by the rule but matches the rule. 

• The 2-nd data set is classified as FP class, as y=64.3 and z=0.51 are not within 

the ranges 1.6865.2 ≤≤ y  and 62.00.55 ≤≤ z  respectively, but all 2.11 =x , 

4002 =x  and 3503 =x are within the ranges,  21  1 ≤≤ x , 00650 2 ≤≤ x and 

004250 3 ≤≤ x . Therefore the data set is not covered by the rule but is 

wrongly classified as belonging to the target class. 
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• The 3-rd data set is classified as TP class, since y=66.9 and z=0.57 are all 

within the ranges 1.6865.2 ≤≤ y  and 62.00.55 ≤≤ z  respectively, and also 

all 8.11 =x , 3502 =x  and 3003 =x  are within the ranges 

 21  1 ≤≤ x , 00650 2 ≤≤ x and 004250 3 ≤≤ x  respectively. Therefore the data 

set is covered by the rule and is correctly classified. 

• The 4-th data set is classified as TN class, since y=65.5 and z=0.61 are all 

within the ranges 1.6865.2 ≤≤ y  and 62.00.55 ≤≤ z  respectively, and both 

402 =x  and 2203 =x  are not within the ranges 00650 2 ≤≤ x and 

004250 3 ≤≤ x  respectively. This means the data set is not covered by the rule 

but differs from the target class. 

 In this example, the number of data sets in all FN, FP, TP and TN classes is 1. 

Thus based on the fitness function (1), the fitness of rule (4) can be calculated as: 

25.0
11

1
11

1            

____

=
+

×
+

=
+

×
+

=

×=

FPTP
TN

FNTP
TP

ratenegativetrueratepositivetrueFitness
 

 

3.3  Convergence and Selection 

The population is evolved and improved in each generation until a stopping condition 

is met. In genetic algorithms, there are quite a few stopping conditions. In this 

research, the stopping criterion is fulfilled when the number of generations is equal to 

a pre-defined number of generations or one of the solutions in the population of the 

genetic algorithm achieves a full fitness score of 1. Otherwise the GA based 

knowledge discovery system performs the selection operation for the next 

evolutionary generation. 
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 For the selection of strings, the approach of the roulette-wheel is used, which 

is one of the most common selection methods used for selecting strings to perform 

reproduction operations [16]. This is unlike other selection approaches such as rank 

based selection [35], tournament selection [17], where their selective pressures need 

to be controlled by adjusting their inbuilt parameters. The selection of strings 

produced by the roulette-wheel selection algorithm is completely based on the fitness 

of the strings. Therefore it can provide a zero bias to strings in the population. 

 This selection method imitates the roulette-wheel game, where the dice thrown  

would most probably end up by being in the slot with the largest area. Following this, 

one can conclude that the string with the largest fitness value is most likely to be 

chosen because it has the largest slot size. The fitness value of the thj  string in a 

population is jfit . The fitness values are used to calculate the probability of selection, 

jprob , to the thj  string. The probability of selection jprob  is defined as: 

  

∑
=

= Popsize

j
j

j
j

fit

fit
prob

1

       (5) 

where Popsize is the population size of the GA based knowledge discovery system. 

 

3.4   Crossover and mutation 

Discrete Crossover Operation [29] is the most common crossover operation and is 

performed by exchanging variable values between parent strings. However, it can 

only generate corners of the hypercube defined by the parent strings. Furthermore, 

experimental results have indicated that the combination of biases is far from optimal 

and has undesirable side-effects on the exploratory power of crossover [10]. Another 

common crossover operation for real encoding representation is Intermediate 
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Crossover [29]. It is capable of producing any point within a hypercube which is 

larger than that defined by the parent strings. Therefore it can be adapted to sustain a 

higher explorative search in the searching domain than when using Discrete Crossover 

Operation. 

 In the development of the GA based knowledge discovery system, 

intermediate crossover, which can produce a new string around and between the 

variables of the two selected parent strings, is used. Referring to the representation of 

the genetic algorithm, a new string [ ]ululul RRRRRR 332211 ,,,,,  is produced according to 

the following rule: 

  
[ ] [ ]
[ ] [ ]{ }ulululululul

ulululululul

RRRRRRRRRRRR

RRRRRRRRRRRR

3
2

3
2

2
2

2
2

1
2

1
2

3
1

3
1

2
1

2
1

1
1

1
1

3
1

3
1

2
1

2
1

1
1

1
1

332211

,,,,,,,,,,

,,,,,,,,,,

−

+=

α
 (6) 

where α  is a scaling factor chosen uniformly at random over an interval [ ]25.1 ,25.0− , 

and [ ]ululul RRRRRR 3
1

3
1

2
1

2
1

1
1

1
1 ,,,,,  and [ ]ululul RRRRRR 3

2
3

2
2

2
2

2
1

2
1

2 ,,,,,  are the two selected 

parent strings. Ranges of process parameters in the new string are the result of 

combining the values of the parent strings according to (6) with a scaling factor α  

chosen for each range of process parameter. In geometric terms, intermediate 

crossover is capable of producing new parameter values within a slightly larger 

hypercube than that defined by the parent strings, but these values are constrained by 

a range of scaling factor α . 

 Mutation is carried out by randomly changing one or more values of a selected 

string between the operating ranges of process parameters. During mutation, the value 

of each range of process parameter in a rule has a finite probability of changing. 

Therefore the probability of searching within the operating ranges of process 

parameters is never zero. This prevents complete loss of genetic material through 

selection and elimination. 
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 The mutation operator of Gaussian perturbation [29] of individual variables 

was used in the GA based knowledge discovery system. For example, the variable jR  

is selected to be mutated. After performing the mutation, its value becomes: 

    δ××+= jjj DRR MutMx'     (7) 

where MutMx = +1 or -1 with equal probability; jD  = 0.5 × operating range of the j-

th process parameter; δ = a value in the range [0,1] for shrinking the mutation range 

based on Gaussian perturbation. 

 After being generated the newly produced strings are put into the old 

population to generate a new population. This can be done by replacing the least fit 

strings in the old population with the newly produced strings. Such replacement can 

also be produced by randomly replacing the strings in the old population with the 

newly produced strings. In this research, a random reinserting approach was used. 

 

3.4  Rule Induction 

96 experiments were carried out based on a full factorial design with 4 levels in 

compressed air pressure ( 1x ), 6 levels in pump motor speed ( 2x ) and 4 levels in the 

height between the substrate and the needle ( 3x ). 88 out of the 96 experimental data 

sets were used to train the GA based knowledge discovery system, and the remaining 

8 experimental data sets were used for system validation. 

The GA based knowledge discovery system was implemented using Matlab 

programming software. The parameter settings, Crossover rate = 0.8 and Mutation 

rate = n/1 , where n  is the number of variables of the string, suggested by [31] were 

adopted. Since the number of variables of the string is 6 (i.e. n=6), mutation rate was 
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set at 6/1 . The number of generations and population size were set at 500 and 100 

respectively.  

If the required encapsulation weight y is 50 mg and the required encapsulation 

thickness z is 0.5 mm, Figure 3 shows a rule recommended by the GA based 

knowledge discovery system. From Figure 3, it can be found that the numbers of TP = 

6, FP = 1, FN = 4, TN =77, and the fitness value of the recommended rule is 0.5923. 

From the rule, more specified ranges of parameter settings can be obtained. 

  

4 Results Verification 

To validate the effectiveness of the rules generated by the GA based knowledge 

discovery system the computational system for fluid dispensing developed by Kwong 

et al [24] was employed. 

Given operating ranges of process parameters ( 1x , 2x , 3x ), and the required 

encapsulation weight β and thickness γ, the computational system determines the 

setting of the three process parameters, compressed air pressure ( 1x ), pump motor 

speed ( 2x ), and the distance between the substrate and needle ( 3x ), based on the 

requirements of encapsulation weight β and thickness γ. The system consists of a 

neural network (NN) based prediction model, and a GA based optimization unit as 

shown in Figure 4. Here we call it a pure computational system. 

In the GA based optimization unit, the following objective function is used: 

 Objective Function: 






 −
+

−

γ
γ

λ
β
β

λ
zy

Min 21     (8) 

subject to: 41 1 ≤≤ x , 1000400 2 ≤≤ x , 2000250 3 ≤≤ x , 

where 1λ and 2λ  are the weights of the two quality characteristics, encapsulation 

weight and encapsulation thickness respectively. 
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 To validate the effectiveness of the GA based knowledge discovery system, 

the system was integrated with the pure computation system developed by Kwong et 

al [24] as shown in Figure 5. In the enhanced computational system, recommended 

ranges of parameter settings are generated by the GA based knowledge discovery 

system and input to the GA based optimization unit. It is hoped that the parameter 

settings recommended by the enhanced computational system will lead to better 

results of the two quality characteristics than the pure computational system. 

To validate the GA based knowledge discovery system, eight validation tests 

were carried out. First, eight sets of required encapsulation weights and thicknesses as 

shown in Table 2 were inputted to the GA based knowledge discovery system. 

 The corresponding eight rules were generated as shown below: 

1 IF y=72.3 and z =0.58 

   THEN 1.6124<x1<2.4414 AND 403<x2<1682.7 AND 493.99<x3<687.3 

2 IF y=43.2 and z =0.48 

   THEN 2.5476<x1<3.268 AND 250<x2<2000 AND 850<x3<1000 

3 IF y=87.4 and z =0.67 

   THEN 1.0561<x1<2.718 AND 644.34<x2<1862.7 AND 400<x3<541.85 

4 IF y=37.2 and z =0.46 

   THEN 1<x1<1.4294 AND 1665.5<x2<2000 AND 819.61<x3<1000 

5 IF y=75.1 and z =0.62 

   THEN 1<x1<2.5259 AND 960.94<x2<1497.2 AND 400<x3<537.3 

6 IF y=59.3 and z =0.57 

   THEN 1.8869<x1<2.8044 AND 250<x2<465.58 AND 548.05<x3<745.13 

7 IF y=62.4 and z =0.53 

   THEN 1.2048<x1<3.9475 AND 250<x2<897.88 AND 773.09<x3<834.33 

8 IF y=53.1 and z =0.53 

   THEN 1.103<x1<2.3456 AND 250<x2<2000 AND 764.92<x3<849.78 
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Those recommended ranges of parameters setting were then input to the GA 

based optimization unit in order to reduce the searching space. Because both the pure 

computational system and the enhanced computational system involve the stochastic 

algorithm GA, 50 runs were carried out in the eight validations. Then we evaluated 

the effectiveness and robustness of both systems by analyzing the statistical results of 

the 50 runs. 

The search results of optimizing the relative errors of both encapsulation 

weight and encapsulation thickness of the pure computational system and the 

enhanced computational system are shown in Figure 6 – Figure 21. In the figures, the 

x-axis and the y-axis show the generation numbers and the relative error of the 

encapsulation respectively. It can be observed clearly from all the figures that in 

general, the convergence speeds of the enhanced computational system are faster than 

those based on the pure computational system. Also the relative errors of prediction of 

the enhanced computational system are all smaller than those of the pure 

computational systems in all the validation tests. 

To investigate the quality and the robustness of solutions found in both the 

pure computational system and the enhanced computational system, the means and 

the variances of the relative errors found in both systems for the 8 validations were 

analysed. Table 3 and Table 4 show the means and variances of the relative errors of 

both systems respectively. It can be seen clearly from the tables that the enhanced 

computational system can yield better solutions in terms of mean errors and variance 

of relative errors compared with the pure computational system in the 8 validations. 

The t-test was introduced to evaluate the significance between the pure 

computational system and the enhanced computational system. Table 5 shows two 

sets of all t-values between the pure computational system and the enhanced 
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computational system for the validation tests for both encapsulation weight and 

encapsulation thickness. It can be found that all the t-values are higher than 2.15, 

which indicates that the significance is 98% level of confidence. Therefore the 

performance of the enhanced computational system is significantly better than the 

pure computational system with 98% confidence, in terms of prediction accuracy. 

 

5 Conclusion  

In this paper, a GA based knowledge discovery system was proposed and developed 

to generate rules from experimental data sets of the fluid dispensing process in which 

three process parameters, compressed air pressure, the height between the substrate 

and the needle and pump motor speed, and two quality requirement, encapsulation 

weight and thickness, are involved. Based on rules generated from the GA based 

knowledge discovery system, more specified ranges of process parameter settings can 

be obtained. Engineers could make use of the specified ranges to shorten their time in 

determining the appropriate setting of process parameters for fluid dispensing 

compared with the time they spent on their conventional practice. To validate the 

effectiveness of the rules generated from the GA based knowledge discovery system, 

the system was integrated with a computational system for fluid dispensing developed 

by Kwong et al. [24]. Eight validation tests were carried out. Results of the tests 

indicate that the enhanced computational system can recommend process parameter 

settings which lead to smaller prediction errors as well as variance of errors in 

comparison with the Kwong’s computational system [24]. Actual experiments will be 

performed to further verify and validate the effectiveness of the GA based knowledge 

discovery system. 
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 Further study will involve improving the accuracy and on shortening the 

computational time of the GA based knowledge discovery system by incorporating a 

statistical method, orthogonal design, into the GA. The resulting system will be 

applied on mining useful rules on the survey data sets for car door design. 
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Figure 2 GA based knowledge discovery system 
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Figure 3 The user interface of the GA based knowledge discovery system 
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Figure 5 Enhanced computational system 
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Figure 6 Search results of Validation test 

1 for encapsulation weight 

 

Figure 7 Search results of Validation test 

1 for encapsulation thickness 
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Figure 8 Search results of Validation test 

2 for encapsulation weight 

 

Figure 9 Search results of Validation test 

2 for encapsulation thickness 
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Figure 10 Search results of Validation 

test 3 for encapsulation weight 

 

Figure 11 Search results of Validation 

test 3 for encapsulation thickness 
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Figure 12 Search results of Validation 

test 4 for encapsulation weight 

 

Figure 13 Search results of Validation 

test 4 for encapsulation thickness 
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Figure 14 Search results of Validation 

test 5 for encapsulation weight 

 

Figure 15 Search results of Validation 

test 5 for encapsulation thickness 
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Figure 16 Search results of Validation 

test 6 for encapsulation weight 

 

Figure 17 Search results of Validation 

test 6 for encapsulation thickness 
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Figure 18 Search results of Validation 

test 7 for encapsulation weight 

 

Figure 19 Search results of Validation 

test 7 for encapsulation thickness 
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Figure 20 Search results of Validation 

test 8 for encapsulation weight 

Figure 21 Search results of Validation 

test 8 for encapsulation thickness 
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Table 1 Training data sets for rule (4) 

Data sets y z x1 x2 x3 Class 

1-st 70.1 0.53 0.8 100 200 FN 

2-nd 64.3 0.51 1.2 400 350 FP 

3-rd 66.9 0.57 1.8 350 300 TP 

4-th 65.5 0.61 1.6 40 220 TN 

 

 Table 2 Eight sets of required encapsulation weights and thickness 

 Weight 

Y 

Thickness 

z 

1 72.3 0.58 

2 43.2 0.48 

3 87.4 0.67 

4 37.2 0.46 

5 75.1 0.62 

6 59.3 0.57 

7 62.4 0.53 

8 53.1 0.53 
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Table 3 Means of the relative errors 

 Mean errors of encapsulation 

weight 

Mean errors of encapsulation 

thickness 

Validation Pure 

computational 

system 

(%) 

Enhanced 

computational 

system 

(%) 

Pure 

computational 

system 

(%) 

Enhanced 

computational 

system 

(%) 

1 0.1847 0.0289 0.2377 0.0534 

2 0.1796 0.0132 0.0886 0.0147 

3 2.9548 2.5588 1.3575 1.2588 

4 1.2272 0.3691 0.5150 0.1594 

5 0.5632 0.4533 0.2360 0.2031 

6 0.1345 0.1338 0.084 0.0064 

7 0.8581 0.5141 0.4547 0.3945 

8 0.9710 0.7174 0.4358 0.3527 
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Table 4 Variances of the relative errors 

 Variances of errors of 

encapsulation weight 

Variances of errors of 

encapsulation thickness 

Validation Pure 

computational 

system 

(%) 

Enhanced 

computational 

system 

(%) 

Pure 

computational 

system 

(%) 

Enhanced 

computational 

system 

(%) 

1 0.6589×10-5 0.0000×10-5 0.1246×10-5 0.0000×10-5 

2 0.7143×10-5 0.0000×10-5 0.1351×10-5 0.0000×10-5 

3 0.3722×10-4 0.0010×10-4 0.3171×10-4 0.0002×10-4 

4 0.9816×10-5 0.0016×10-5 0.3736×10-5 0.0002×10-5 

5 0.2512×10-3 0.0004×10-3 0.2565×10-3 0.0001×10-3 

6 0.8252×10-5 0.0009×10-5 0.3451×10-4 0.0002×10-4 

7 0.1001×10-4 0.0396×10-4 0.0007×10-4 0.0001×10-4 

8 0.2136×10-4 0.1283×10-4 0.0001×10-4 0.0000×10-4 
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Table 5 t-values between pure computational system and enhanced computational 

system for the relative errors of encapsulation weight and encapsulation thickness 

Validation T-values of  encapsulation 

weight between pure and 

enhanced computational 

systems 

T-values of  encapsulation 

thickness between pure and 

enhanced computational 

systems 

1 4.2918×102 1.1674×103 

2 4.4024×102 4.4957×102 

3 4.5836×102 1.2390×102 

4 1.9351×103 1.3006×103 

5 48.9922 14.5229 

6 5.4459 93.3788 

7 6.5079×102 1.5050×103 

8 3.0667×102 5.8761×103 

 

 
 

 


