
An integrated scheduling problem of PCB components on sequential pick-and-place

machines: mathematical models and heuristic solutions

William Ho1,* and Ping Ji2
1Operations and Information Management Group

Aston Business School, Aston University

Birmingham B4 7ET, United Kingdom

E-mail: w.ho@aston.ac.uk; Tel: +44 (0)121 2043342

2Department of Industrial and Systems Engineering,

The Hong Kong Polytechnic University,

Hung Hom, Kowloon, Hong Kong

E-mail: mfpji@polyu.edu.hk; Tel: +852 27666631

Abstract

This paper formulates several mathematical models for determining the optimal

sequence of component placements and assignment of component types to feeders

simultaneously or the integrated scheduling problem for a type of surface mount technology

placement machines, called the sequential pick-and-place (PAP) machine. A PAP machine has

multiple stationary feeders storing components, a stationary working table holding a printed

circuit board (PCB), and a movable placement head to pick up components from feeders and

place them to a board. The objective of integrated problem is to minimize the total distance

traveled by the placement head. Two integer nonlinear programming models are formulated

first. Then, each of them is equivalently converted into an integer linear type. The models for

the integrated problem are verified by two commercial packages. In addition, a hybrid genetic

algorithm previously developed by the authors is adopted to solve the models. The algorithm

not only generates the optimal solutions quickly for small-sized problems, but also outperforms

the genetic algorithms developed by other researchers in terms of total traveling distance.

Keywords: Printed circuit board manufacturing; Surface mount technology; Component

sequencing; Feeder arrangement; Mathematical modeling; Genetic algorithm

* Corresponding author.

1. Introduction

The wide applicability of PCB has driven researchers and manufacturers to concentrate

on the PCB assembly process planning in order to improve efficiency and remain competitive.

Process planning consists of two closely related issues: setup management and process

optimization [1]. Setup management involves four sub-problems:

• Line assignment: assigning PCBs to different assembly lines;

• Machine grouping: grouping placement machines;

• PCB grouping: grouping PCBs into families;

• PCB sequencing: sequencing the production of PCBs.

On the other hand, process optimization includes three sub-problems:

• Component allocation: allocating component types to different placement machines;

• Feeder arrangement: arranging component types to different feeders at each machine;

• Component sequencing: determining the component placement sequence.

The focus of this paper is confined to integrating the second and third sub-problems of

process optimization for the sequential pick-and-place (PAP) machines. The performance of

PAP machine is dependent on both component sequencing (i.e., which component is placed

first, second, and so on) and feeder arrangement (i.e., which feeder stores which type of

components). If the arrangement of components to feeders is not made carefully, even the pick

and placement sequencing is solved for optimality, it can result in an extremely poor

performance [2]. So, certainly, the component sequencing and feeder arrangement problems

should be solved simultaneously.

2. Literature review

It is, however, observed that many researchers solved the component sequencing and

feeder arrangement problems for the PAP machine separately. Ball and Magazine [3] modeled

the component sequencing problem for the sequential PAP machine as the rural postman

problem. The assumption was that the feeder arrangement was given. A heuristic approach

was then used to solve the problem, which assured the solution to be optimal if the movement

of assembly head was rectilinear. Ji et al. [4] formulated the component sequencing and feeder

arrangement problems for the PAP machine as two individual linear assignment problems, each

of which was solved with the reduced matrix method. Foulds and Hamacher [5] determined

the sequence of component placements and feeder arrangement for the PAP machine

sequentially. The feeder arrangement problem, which was formulated as a number of

 2

one-facility location models, was solved first. Then, the component sequencing problem,

which was formulated as the traveling salesman problem (TSP), was solved after. Francis et al.

[6] formulated the component sequencing and feeder arrangement problems for the PAP

machine as the TSP with a special structure in order to minimize the total assembly time. A

heuristic method called the ‘clock sequence’ was developed to solve the problem. Once the

sequence of component placements was obtained, the feeder arrangement problem was also

known with reference to the placement sequence. Kumar and Li [7] determined the sequence

of component placements and feeder arrangement for the PAP machine. Although they

formulated the problems as an integer quadratic programming model, they did not solve it to

optimality because they found that the model was computationally intractable. The authors

solved the problems separately instead. First, the component sequencing problem was referred

as the TSP. The nearest neighbor, the nearest insertion, the furthest insertion, and the random

generation were used to generate an initial sequence. Then, the 2-optimality, the 3-optimality,

and the or-optimality heuristics were used to improve the initial sequence. Second, the feeder

arrangement problem was referred as the minimum weight matching problem (MWMP). They

used commercial package to obtain an optimal solution for the MWMP. Broad et al. [8]

formulated the component sequencing and feeder arrangement problems for the PAP machine

as an integer linear programming model. They adopted the solution procedure, which was

developed by other researchers, to solve the feeder arrangement problem first and then the

component sequencing problem. Magyar et al. [9] applied several search heuristics to solve

the component sequencing and feeder arrangement problems separately for the PAP machine.

They first determined the feeder arrangement, and then the order of component placements.

Only few researchers studied both component sequencing and feeder arrangement

problems simultaneously (i.e., the integrated problem) for the PAP machine. Surprisingly, all

of them applied genetic algorithms (GAs) to find near-optimal solution to the integrated

problem [10-12]. This is mainly due to the success of GAs in solving a wide variety of

complex optimization problems such as the TSP and quadratic assignment problem (QAP)

[13-14], and the advantages of GAs such as simplicity, easy operation, and great flexibility.

Mathematical modeling is a powerful tool. Without applying it, the optimal solution to a

particular problem cannot be obtained. Although heuristic methods like GAs are alternative

tools for solving the problem, no one can guarantee that the solution generated is optimal or

even no one knows how good the solution is before the optimal solution has been found.

According to the literature review, only Kumar and Li [7] and Broad et al. [8] formulated

mathematical models for the integrated problem. Kumar and Li [7] presented a nonlinear

 3

programming model to the problem. They, however, did not consider the starting point or

home position of placement head. Besides, they did not verify and solve the model. Broad et

al. [8] did not incorporate sub-tour elimination constraint in their model. The solution to their

model may be infeasible. To overcome the inadequacies, this paper not only formulates

mathematical models for the integrated problem but also verifies them by two commercial

packages.

3. The sequential pick-and-place machine

This paper focuses on the sequential PAP machine. In this type of machines, the

components are stored in multiple stationary feeders. The placement head travels to pick up a

component from a feeder at a time, and then place it on the stationary board. The PAP machine

is able to achieve high accuracy, and suitable to operate with large components such as

integrated circuits (IC). The operation sequence of PAP machine is that the placement head

starts from its original location (starting point or home position), moves to a feeder that carries

components, picks up a component from the feeder, then moves to the desired placement

location on the stationary board, and places it there. After that, the head moves back to the

previous feeder if the next component is the same type with the previous one or moves to

another feeder to pick up the next component if it is different from the previous one and place it

on the board. The head repeats this operation procedure until all components are placed on the

board and returns to its starting point, waits for the next board, as illustrated in Fig. 1 for 10

components in a board.

Consider a PCB to be assembled by a PAP machine. The PCB has n components with µ

different types. Each component type can be stored in any feeder, and a feeder can only store a

unique type of components, so µ feeders are required. The objective of integrated problem is to

minimize the total traveling distance of placement head, which includes the distance from the

starting point to a feeder at the beginning (i.e., d0l), the distances from a feeder to a

component’s position on the PCB (i.e., dlj), the distances from a component’s position to a

feeder (i.e., dil), and the distance from the last component’s position to the starting point (i.e.,

di0). The notation used in both individual and integrated mathematical models is summarized

in Table 1.

 4

4. Individual mathematical models

4.1 A component sequencing model

Suppose the assignment of component types to feeders (i.e., the feeder arrangement

problem) is solved beforehand, the component sequencing model can then be formulated for

finding the optimal total traveling distance of placement head. In order to achieve this goal, a

decision variable is defined as:





=
otherwise.0

,component beforey immediatel placed is component if1 ji
xij

Actually, the component sequencing problem is somewhat similar to the TSP except the

objective function. For the PAP machine, the objective is not to minimize the distance between

component i and component j because the placement head is unable to place the next

component on the PCB immediately without picking up a component from a feeder first.

Therefore, the objective for the PAP machine should be to minimize the summation of different

distances including:

• The distance between the position of component i on the PCB and feeder l (if i = 0, it is

the distance between the starting point at the beginning and feeder l);

• The distance between feeder l and the position of the next component j;

• The distance between the position of the last component i and the starting point at the

end.

An individual mathematical model for the component sequencing problem can be

formulated as:

Minimize z = ()∑ ∑ ∑∑
=

≠
= ==

++
n

i

n

ij
j

n

i
iiij

μ

l
ljil xdxdd

0 1 1
00

1

 (1)

subject to

∑
=

=
n

i
ijx

0
1 for j = 0, 1, …, n; i≠j. (2)

∑
=

=
n

j
ijx

0
1 for i = 0, 1, …, n; i≠j. (3)

1−≤+− nnxuu ijji for i, j = 1, 2, …, n; i≠j. (4)

All xij = 0 or 1, All ui ≥ 0 and is a set of integers (M1)

In M1, the objective function (1) is to minimize the total traveling distance of placement

head. If the moving speed of placement head is incorporated, then the objective can be to

 5

minimize the total placement time for assembling all components on a PCB. Constraint set (2)

ensures that exactly one component must be placed immediately before component j.

Constraint set (3) ensures that exactly one component must be placed immediately after

component i. These two constraint sets, however, are not sufficient. Although the solution

drawn satisfies both constraint sets (2) and (3), it may still be infeasible due to the occurrence

of sub-tours. Constraint set (4) is, therefore, added in order to eliminate sub-tours. Since the

starting point must be visited first, it is redundant to include i and/or j = 0 in constraint set (4).

4.2 A feeder arrangement model

If the component placement sequence or xij in M1 is known, we need to arrange a

component type to a feeder, and this is the second problem to be studied in this paper, called the

feeder arrangement problem. It is to assign the component types to feeders in such a way that

the total distance traveled by the placement head is minimized. In order to achieve this goal, a

decision variable is defined as:





=
otherwise.0

,feeder in stored is component of typecomponent if1 ljt
y lt j

 An individual mathematical model for the feeder arrangement problem can be

formulated as:

Minimize z = ()∑ ∑ ∑ ∑
=

≠
= = =

++
n

i

n

ij
j

μ

t
ilt

μ

l
ljil dydd

j
0 1 1

0
1

 (5)

subject to

∑
=

=
μ

t
tly

1
1 for l = 1, 2, …, µ. (6)

∑
=

=
μ

l
tly

1
1 for t = 1, 2, …, µ. (7)

All ytl = 0 or 1 (M2)

In M2, the objective function (5) is to calculate the total distance traveled by the

placement head for assembling all components. Constraint set (6) ensures that exactly one

component type is stored in one feeder. Constraint set (7) ensures that exactly one feeder is

used to store one component type. The mathematical model for the feeder arrangement

problem is somewhat similar to the QAP except the objective function.

 6

5. Integrated mathematical models

5.1 Formulation 1

Before solving M1, it is essential to obtain the solution of feeder arrangement problem or

M2 first. On the other hand, M2 cannot be solved until the solution of component sequencing

problem or M1 is known. It is no doubt that the component sequencing and feeder arrangement

problems are inter-related. Moreover, the objective function in M1 and M2 is to minimize the

total distance traveled by the placement head. It can be noticed that the amount of distance

traveled is dependent on the position of the next component to place together with which feeder

stores the next component to pick up. In order to obtain the optimal solution, both problems

should, therefore, be considered and solved simultaneously. Otherwise, it can result in poor

performance [2].

 A pure integer nonlinear programming model for the integrated problem can be

formulated as:

Minimize z = ()∑ ∑ ∑ ∑∑
=

≠
= = ==

++
n

i

n

ij
j

μ

t

n

i
iiltij

μ

l
ljil xdyxdd

j
0 1 1 1

00
1

 (8)

subject to

∑
=

=
n

i
ijx

0
1 for j = 0, 1, …, n; i≠j. (9)

∑
=

=
n

j
ijx

0
1 for i = 0, 1, …, n; i≠j. (10)

1−≤+− nnxuu ijji for i, j = 1, 2, …, n; i≠j. (11)

∑
=

=
μ

t
tly

1
1 for l = 1, 2, …, µ. (12)

∑
=

=
μ

l
tly

1
1 for t = 1, 2, …, µ. (13)

All xij and ytl = 0 or 1, All ui ≥ 0 and is a set of integers (M3)

Since there is nonlinear term xij lt j
y in the objective function and the model contains both

binary variables (i.e., xij and lt j
y) and integer variables (i.e., ui and uj), M3 can be regarded as a

pure integer nonlinear programming model. The objective function (8) calculates the total

traveling distance of placement head, whereas the interpretation of constraint sets (9) to (13)

was mentioned in M1 and M2.

 7

Since M3 only contains nonlinear function in the form of products of binary variables, it

can be reformulated as a linear programming model by implementing the following steps:

• Introduce a new binary variable w to replace the product term xy;

• Make use of the extra constraints: w ≤ x, w ≤ y, and w ≥ x + y – 1 to reflect the logical

condition: w = 1 if and only if x = 1 and y = 1.

The nonlinear term in the objective function is in the form of products of two binary

variables. It can, therefore, be rewritten as a linear one by introducing an extra binary variable

wijl as well as three extra constraint sets. The interpretation of decision variable wijl is:








=

otherwise.0
,feeder in stored is component of typethe

and component after just placed is component if1
lj

ij
wijl

 M3 can be converted into a pure integer linear programming model as follows:

Minimize z = ()∑ ∑ ∑∑
=

≠
= ==

++
n

i

n

ij
j

n

i
iiijl

μ

l
ljil xdwdd

0 1 1
00

1

 (14)

subject to

∑
=

=
n

i
ijx

0
1 for j = 0, 1, …, n; i≠j. (15)

∑
=

=
n

j
ijx

0
1 for i = 0, 1, …, n; i≠j. (16)

1−≤+− nnxuu ijji for i, j = 1, 2, …, n; i≠j. (17)

∑
=

=
μ

t
tly

1
1 for l = 1, 2, …, µ. (18)

∑
=

=
μ

l
tly

1
1 for t = 1, 2, …, µ. (19)

ijijl xw ≤ for i = 0, 1, …, n; for j = 1, 2, …, n; i≠j;

for l = 1, 2, …, µ. (20)

ltijl j
yw ≤ for i = 0, 1, …, n; for j = 1, 2, …, n; i≠j;

for l, t = 1, 2, …, µ. (21)

1−+≥ ltijijl j
yxw for i = 0, 1, …, n; for j = 1, 2, …, n; i≠j;

for l, t = 1, 2, …, µ. (22)

All xij, ytl, and wijl = 0 or 1, All ui ≥ 0 and is a set of integers (M4)

 8

In M4, the objective function (14), and the constraint sets (20) to (22) are the linear

expression of objective function (8) in M3. The interpretation of constraint sets (15) to (19) in

M4 is the same as that of constraint sets (9) to (13) in M3.

5.2 Formulation 2

Although the constraint sets (11) and (17) are able to guarantee that the solution

generated is feasible, they increase the complexity of models as there are n(n – 1) constraints in

this sub-tour elimination constraint. In order to reduce the burden of models, it is essential to

find a way to replace the bulky constraint. In this paper, M3 is re-modeled or the constraint set

(11) in M3 is omitted using another decision variable xip instead of xij. The interpretation of xip

is that:





=
otherwise.0

position,th in the placed is component if1 pi
xip

The idea is to assign n components to n positions or placement orders, which means that

there are totally n2 decision variables in which only n variables are 1 while all others are 0.

Since each component must be placed in exactly one position, no sub-tour will be appeared in

this situation. Referring to Fig. 1, x21 and x32 are both 1 because component 2 and component 3

are placed first and second, respectively. A binary integer nonlinear programming model for

the integrated problem can be formulated as follows:

Minimize z = ()∑∑∑
= = =

+
n

j

μ

t

μ

l
ltjljl j

yxdd
1 1 1

10

() ltpjip

n

i

n

ij
j

n

p

μ

t

μ

l
ljil j

yxxdd 1,
1 1

1

1 1 1
+

=
≠
=

−

= = =
∑∑∑∑∑ ++ ∑

=

+
n

i
ini xd

1
0 (23)

subject to

∑
=

=
n

i
ipx

1
1 for p = 1, 2, …, n. (24)

∑
=

=
n

p
ipx

1
1 for i = 1, 2, …, n. (25)

∑
=

=
μ

t
tly

1
1 for l = 1, 2, …, µ. (26)

∑
=

=
μ

l
tly

1
1 for t = 1, 2, …, µ. (27)

All xip and ytl = 0 or 1 (M5)

 9

In M5, the objective function (23) calculates the total distance traveled by the placement

head. Constraint set (24) ensures that exactly one component is placed in one position.

Constraint set (25) ensures that one position has exactly one component placed. Constraint set

(26) ensures that exactly one component type is stored in one feeder. Constraint set (27)

ensures that exactly one feeder is used to store one component type.

Similarly, M5 can be reformulated to a linear programming model. In the objective

function (23) of M5, the first nonlinear term (i.e., ltj j
yx 1) is in the form of products of two

binary variables. It can, therefore, be rewritten as a linear term by introducing an extra binary

variable wj1l as well as three extra constraint sets. The interpretation of decision variable wj1l is:








=

otherwise.0
,feeder in stored is component of typethe

andfirst placed is component if1

1 lj
j

w lj

In the objective function (23) of M5, the second nonlinear term (i.e., ltpjip j
yxx 1, +) is in

the form of products of three binary variables. So, the steps for converting it into linear type

need to be modified in this case. The major difference is that four instead of three extra

constraints are introduced. Similarly, a decision variable wij(p+1)l is introduced. The decision

variable wij(p+1)l is defined as:








+=+

otherwise.0
,feeder in stored isposition 1)th (in the placed component of typethe

and component after just placed is component if1

)1(lpj
ij

w lpij

M5 can be converted into a binary integer linear programming model as follows:

Minimize z = ()∑∑∑
= = =

+
n

j

μ

t

μ

l
ljljl wdd

1 1 1
10

() lpij

n

i

n

ij
j

n

p

μ

t

μ

l
ljil wdd)1(

1 1

1

1 1 1
+

=
≠
=

−

= = =
∑∑∑∑∑ ++ ∑

=

+
n

i
ini xd

1
0 (28)

subject to

∑
=

=
n

i
ipx

1
1 for p = 1, 2, …, n. (29)

∑
=

=
n

p
ipx

1
1 for i = 1, 2, …, n. (30)

 10

∑
=

=
μ

t
tly

1
1 for l = 1, 2, …, µ. (31)

∑
=

=
μ

l
tly

1
1 for t = 1, 2, …, µ. (32)

11 jlj xw ≤ for j = 1, 2, …, n;

for l = 1, 2, …, µ. (33)

ltlj j
yw ≤1 for j = 1, 2, …, n;

for l, t = 1, 2, …, µ. (34)

111 −+≥ ltjlj j
yxw for j = 1, 2, …, n;

for l, t = 1, 2, …, µ. (35)

iplpij xw ≤+)1(for i, j = 1, 2, …, n; i≠j;

for p = 1, 2, …, n – 1;

for l = 1, 2, …, µ. (36)

1,)1(++ ≤ pjlpij xw for i, j = 1, 2, …, n; i≠j;

for p = 1, 2, …, n – 1;

for l = 1, 2, …, µ. (37)

ltlpij j
yw ≤+)1(for i, j = 1, 2, …, n; i≠j;

for p = 1, 2, …, n – 1;

for l, t = 1, 2, …, µ. (38)

21,)1(−++≥ ++ ltpjiplpij j
yxxw for i, j = 1, 2, …, n; i≠j;

for p = 1, 2, …, n – 1;

for l, t = 1, 2, …, µ. (39)

All xip, ytl, wj1l, and wij(p+1)l = 0 or 1 (M6)

In M6, the constraint sets (33) to (35), and the first term in the objective function (28) are

the linear expression of the first term in the objective function (23) of M5. Besides, the

constraint sets (36) to (39), and the second term in the objective function (28) are the linear

expression of the second term in the objective function (23) of M5. The interpretation of

constraint sets (29) to (32) in M6 is the same as that of constraint sets (24) to (27) in M5.

 11

6. Computational analysis

In this section, the complexity of four integrated mathematical models (i.e., M3 to M6) is

discussed and compared first. Then, the models with less variables and constraints are solved

to optimality.

In order to examine the complexity of models, it is essential to find out the numbers of

variables and constraints in each model. According to M3, it can be seen that the model is very

sophisticated and hard to solve. Not only the objective function is nonlinear, but also its

possible enumeration is huge. M3 has (n2 + n + µ2) binary variables, n integer variables, and

(n2 + n + 2µ + 2) constraints. In the objective function (8), the possible terms are nµ + nµ(n – 1)

+ n or n2µ + n. For M4, although the model becomes linear, both numbers of variables and

constraints increase greatly at the same time. Both numbers in M4 are much greater than that in

M3. For the number of variables, n2µ of wijl are introduced in M4 besides (n2 + n + µ2) binary

variables and n integer variables. For the number of constraints, besides (n2 + n + 2µ + 2)

constraints, M4 has 3n2µ constraints more for the constraint sets (20) to (22).

After adopting another decision variable in M5, the bulky sub-tour elimination constraint

is omitted. The complexity of M5 is lower than that of M3 as both numbers of variables and

constraints reduce significantly. M5 has only (n2 + µ2) binary variables, and (2n + 2µ)

constraints. Since there are two nonlinear terms in the objective function (23) in M5, two

additional decision variables and seven extra constraints are necessary to be incorporated in the

equivalent linear programming model or M6. As a result, M6 becomes enormous and very

complex. Both numbers of variables and constraints are even much greater than that in M4.

For the number of binary variables, nµ of wj1l and n(n – 1)2µ of wij(p+1)l are introduced in M6

besides (n2 + µ2) binary variables. For the number of constraints, besides (2n + 2µ) constraints,

M6 has 3nµ + 4n(n – 1)2µ constraints more in which there are 3nµ constraints for the constraint

sets (33) to (35) and 4n(n – 1)2µ constraints for the constraint sets (36) to (39). The numbers of

variables and constraints of four models are listed in Table 2.

For a realistically sized problem of 100 components and 10 component types, M3 has

10,300 variables and 10,122 constraints. Comparatively, M5 is a better nonlinear

programming formulation because it consists of 10,100 variables together with 220 constraints

merely. For the linear programming formulation, M4 is much more desirable than M6. M4 has

110,300 variables and 310,122 constraints. Both numbers of variables and constraints in M6,

however, are much greater. It has 9,812,100 variables as well as 39,207,220 constraints! So,

the model may not be solved to optimality in a reasonable amount of time.

 12

Due to the fact that M4 and M5 are the better linear and nonlinear formulations in terms

of complexity, respectively, these two models are solved to global optimality. To solve the

models, two commercial packages are used. First, CPLEX is a well-known powerful integer

linear programming solver. It is, therefore, applied to solve M4. Second, BARON is a

computational system for solving non-convex optimization problems including binary integer

nonlinear programming models to global optimality. So, it is adopted to solve M5. By these

two commercial packages, the models are tested by several small examples, and both have the

same solutions to the same examples.

According to Table 3, it is found that the pure integer linear programming model (i.e., M4)

is more desirable than the binary integer nonlinear programming model (i.e., M5) in terms of

amount of computational time spent. For instance, it spends 10 and a half hours by CPLEX to

solve M4 with 8 components and 8 types to optimality. But, it takes more than 15 days by

BARON to solve M5 with the same problem size to optimality. Since the optimal solutions of

M4 can be obtained more quickly, an integrated problem with 10 components and 6 types is

formulated as the pure integer linear programming model or M4 for getting the optimal

solution. The data of problem is listed in Table 4. The optimal assembly sequence of

placement head is: starting point → f3 → c2 → f3 → c3 → f2 → c4 → f1 → c5 → f1 → c10 → f2 →

c9 → f6 → c6 → f5 → c7 → f5 → c8 → f4 → c1 → starting point, whereas the total distance

traveled by the placement head is 566.02 mm.

Although the global optimum of both models can be obtained, they are not efficient

approaches since the computational time grows exponentially with the problem size. In

addition, the number of components on a PCB in the real-world situations is quite large,

normally several hundreds. It is unacceptable to spend several days or even hours to solve the

integrated problem. To solve the problem efficiently, a heuristic method should be adopted.

7. A hybrid genetic algorithm

GA, developed by John Holland in the 1960s, is a stochastic optimization technique.

Similar to simulated annealing (SA) and tabu search (TS), GA can avoid getting trapped in a

local optimum by the aid of mutation operation. Actually, the basic idea of GA is to maintain a

population of candidate solutions that evolves under a selective pressure. Hence, it can be

viewed as a class of local search based on a solution-generation mechanism operating on

attributes of a set of solutions rather than attributes of a single solution by the move-generation

mechanism of the local search methods, like SA and TS [15].

 13

Since the component sequencing and feeder arrangement problems are considered

simultaneously, a simple GA may not perform well in this situation. It was proved that the

individual problems are already very hard to solve [16]. The GA adopted here is, therefore,

hybridized with several heuristics in order to improve the solution further. It is, however, found

that none of the previous researchers used the hybrid GA or HGA to solve the integrated

problem for the PAP machine.

The flowchart of HGA for the integrated problem is shown in Fig. 2. Since both

problems are considered simultaneously, each chromosome or solution includes two path

representations or links (Fig. 3). The first link denotes the component sequencing, whereas the

second link represents the feeder arrangement. After the parameters (i.e., the population size,

iteration number, crossover rate, and mutation rate) have been set up, the HGA generates an

initial population in which the first links are generated from the nearest neighbor heuristic

while the second links are generated randomly. During this initialization step, each

chromosome is improved as follows: the iterated swap procedure (ISP) (Fig. 4) is performed on

the first link while the 2-opt local search heuristic is applied to the second link. Actually, the

principle of ISP is very similar to that of the 2-opt local search heuristic, except that some

instead of all two swaps are examined to generate offspring. It can definitely reduce the

computational time because the number of components is quite large, normally several

hundreds. Each chromosome is then measured by an evaluation function, which was described

thoroughly in Section 5. The roulette wheel selection operation [13] is performed to select

some chromosomes for the genetic operations including the modified order crossover (Fig. 5),

the heuristic mutation (Fig. 6), and the inversion mutation (Fig. 7). After an offspring is

produced, the first link is improved by the ISP while the second link is improved by the 2-opt

local search heuristic. The fitness of offspring will be measured and may become a member of

population if it possesses a relatively good quality. These steps form an iteration, and then the

roulette wheel selection is performed again to start the next iteration. The HGA will not stop

unless the predetermined number of iterations is conducted.

8. Performance analysis

In this section, the performance of HGA is evaluated by comparing it to the optimal

solutions of several problems mentioned in Section 6 first. Then, the comparison between the

HGA and the GAs developed by Leu et al. [10] and Ong and Khoo [11] is carried out. It is

unable to compare with the GA proposed by Loh et al. [12] because there is no data provided.

 14

8.1 Comparison to optimal solutions

The same problems as mentioned in Section 6 are solved by the HGA. It is found that the

HGA achieves the optimal solutions to all problems quickly. Furthermore, the longest

computational time spent is only 9 seconds for the 8-component problem. Compared with the

time spent on finding the optimal solution for the 8-component problem, the HGA is much

more efficient. It saves more than 10 hours when compared with CPLEX, and saves about 15

days when compared with BARON.

8.2 Comparison to other approaches

The performance of HGA is evaluated using the PCB example (refer to Leu et al. [10]) in

which there are 200 components and 10 component types. The HGA parameters are set as:

population size = 25, iteration number = 3000, crossover rate = 0.4, and mutation rate = 0.2.

According to Table 5, it is found that the performance of HGA is superior to that of GAs [10- 11]

in three aspects. Firstly, the HGA can obtain a better solution with a smaller population size, 25

only, while the other two used 100. Secondly, the HGA can obtain a better solution not only

with a smaller population size, but also with a fewer iterations, 3,000 vs. 6,150. Finally, and

most importantly, the HGA obtained a better solution than any previous methods, 5,660.5 cm

vs. 5,673.7 cm or 6,129 cm. If the traveling speed of placement head is assumed to be 60 mm/s,

the improvement is 2.2 seconds when compared with Ong and Khoo [11]. Since the

component placement is the bottleneck of PCB assembly line [17-18], a minor reduction in the

cycle time will save a significant production time. For example, to produce 100,000 boards, a

reduction of 2.2 seconds in the cycle time will save 3,667 minutes or 61 working hours. The

productivity of a PCB manufacturing company can, therefore, be enhanced if our HGA is

adopted.

In the above experiment, it is assumed that the number of feeders provided is exactly the

same as the number of component types (i.e., 10). Each component type can only be stored in

exactly one feeder. Herein, the 200-component problem is solved again using the HGA in

which three additional feeders are available or there are totally 13 feeders. In this case, three

types of components can be assigned to two feeders. In the 200-component problem,

component types 2, 6, and 8 are the most frequently used, these three types of components can,

therefore, be stored in two feeders. According to Table 5, it is noticed that the solution is much

better (4855.5 cm) if there are additional feeders. Since the three most frequently used

component types are assigned to more than one feeder, they can be retrieved from a closer

feeder. So, the total distance traveled by the placement head can be reduced.

 15

9. Conclusions

Mathematical modeling is a powerful tool in today’s life. This paper presented several

nonlinear and linear programming models for an integrated scheduling problem in a sequential

pick-and-place machine. After the mathematical models for the individual component

sequencing and feeder arrangement problems had been formulated, it was found that the

problems are inter-related. One cannot be solved unless the solution of the other is obtained

beforehand. Due to their close relationship, we formulated two integer nonlinear programming

models and two integer linear programming models for solving the integrated problem for the

sequential pick-and-place machine. In terms of amount of computational time spent, the model

of linear type is more desirable.

Although the optimal solution can be found using the commercial packages, it was

noticed that the computational time grows exponentially with the problem size. In order to

solve the problem efficiently, a HGA was adopted. The algorithm is so called because the

nearest neighbor heuristic, the iterated swap procedure, and the 2-opt local search heuristic are

incorporated to improve the solution. It was shown that the performance of HGAs was

superior to that of GAs proposed by previous researchers in terms of total traveling distance.

Furthermore, the solution was even much better when component types could be stored in more

than one feeder.

Acknowledgements

The work described in this paper was partially supported by a grant from the Research

Grants Council of Hong Kong Special Administrative Region, China (Project No. PolyU

5259/04E).

 16

References

[1] Ellis KP, Vittes FJ, Kobza JE. Optimizing the performance of a surface mount placement

machine. IEEE Transactions on Electronics Packaging Manufacturing 2001; 24:

160-170.

[2] Altinkemer K, Kazaz B, Köksalan M, Moskowitz H. Optimization of printed circuit

board manufacturing: integrated modeling and algorithms. European Journal of

Operational Research 2000; 124: 409-421.

[3] Ball MO, Magazine MJ. Sequencing of insertions in printed circuit board assembly.

Operations Research 1988; 36: 192-201.

[4] Ji Z, Leu MC, Wong H. Application of linear assignment model for planning of robotic

printed circuit board assembly. Journal of Electronic Packaging 1992; 114: 455-460.

[5] Foulds LR, Hamacher HW. Optimal bin location and sequencing in printed circuit board

assembly. European Journal of Operational Research 1993; 66: 279-290.

[6] Francis RL, Hamacher HW, Lee CY, Yeralan S. Finding placement sequences and bin

locations for cartesian robots. IIE Transactions 1994; 26: 47-59.

[7] Kumar R, Li H. Integer programming approach to printed circuit board assembly time

optimization. IEEE Transactions on Components, Packaging, and Manufacturing

Technology – Part B 1995; 18: 720-727.

[8] Broad K, Mason A, Rönnqvist M, Frater M. Optimal robotic component placement.

Journal of the Operational Research Society 1996; 47: 1343-1354.

[9] Magyar G, Johnsson M, Nevalainen O. On solving single machine optimization problems

in electronics assembly. Journal of Electronics Manufacturing 1999; 9: 249-267.

[10] Leu MC, Wong H, Ji Z. Planning of component placement/insertion sequence and feeder

setup in PCB assembly using genetic algorithm. Journal of Electronic Packaging 1993;

115: 424-432.

[11] Ong NS, Khoo LP. Genetic algorithm approach in PCB assembly. Integrated

Manufacturing Systems 1999; 10: 256-265.

[12] Loh TS, Bukkapatnam STS, Medeiros D, Kwon H. A genetic algorithm for sequential

part assignment for PCB assembly. Computers & Industrial Engineering 2001; 40:

293-307.

[13] Goldberg DE. Genetic algorithms in search, optimization and machine learning. New

York: Addison-Wesley; 1989.

[14] Gen M, Cheng R. Genetic algorithms and engineering design. New York: Wiley; 1997.

 17

[15] Osman IH, Kelly JP. Meta-heuristics: theory & applications. Boston: Kluwer Academic

Publishers; 1996.

[16] Crama Y, Flippo OE, Klundert JVD, Spieksma FCR. The assembly of printed circuit

boards: a case with multiple machines and multiple board types. European Journal of

Operational Research 1997; 98: 457-472.

[17] Ong NS, Tan WC. Sequence placement planning for high-speed PCB assembly machine.

Integrated Manufacturing Systems 2002; 13: 35-46.

[18] Wilhelm WE, Tarmy PK. Circuit card assembly on tandem turret-type placement

machines. IIE Transactions 2003; 35: 627-645.

 18

Fig. 1. The assembly sequence of placement head.

Head Movement
Sequence Number

Component
Number

Component
Type

Feeder Number 4 5 6

(6) (2) (3)

Starting
Point

(1)

1

2

3

4

5

(5)

(4)

(1)

(6)

1

2

3

(4)

(5)

(1)

(3)

6

7

8

9

10

(5)

(4)

(3)

(2)

1

2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

18

19

20

21

 19

Fig. 2. The flowchart of hybrid genetic algorithm.

- Improve Link 1 by Iterated
Swap Procedure

- Improve Link 2 by 2-Opt

Local Search Heuristic

Improvement

Input GA Parameters

Evaluation

- Roulette Wheel Method

Selection

1. Modified Order Crossover
2. Heuristic Mutation
3. Inversion Mutation

Genetic
Operations

Improve New Chromosomes
(Offspring):

- Improve Link 1 by Iterated
Swap Procedure

- Improve Link 2 by 2-Opt

Local Search Heuristic

- Measure Fitness of Offspring
and Compare with That of

Parents

- Retain the Best Population of
Chromosomes

- Minimization of Distance
Traveled by Placement Head

Two-Link Representation:
- Generate Link 1 or Component

Sequencing Using Nearest
Neighbor Heuristic

- Generate Link 2 or Feeder

Arrangement Randomly

Initialization

Terminate?

Output the Best Solution

Yes

No

 20

Assembly Sequence 1 2 3 4 5 6 7 8 9 10

Component Number 2 3 9 4 5 10 8 7 6 1

 Link 1

Component Type 4 5 1 6 2 3

Feeder 1 2 3 4 5 6

 Link 2

Fig. 3. The two-link representation for a chromosome.

 21

 Select 2 genes randomly

Parent: 2 3 9 4 5 10 8 7 6 1

Offspring 1: 2 3 7 4 5 10 8 9 6 1

 Swap the neighbors of 2 genes to form 4 more offspring

Offspring 2: 2 7 3 4 5 10 8 9 6 1

Offspring 3: 2 3 4 7 5 10 8 9 6 1

Offspring 4: 2 3 7 4 5 10 9 8 6 1

Offspring 5: 2 3 7 4 5 10 8 6 9 1

Fig. 4. The iterated swap procedure.

 22

 Selected sub-string

Parent 1: 2 3 9 4 5 10 8 7 6 1

Parent 2: 1 2 3 4 5 6 7 8 9 10

Proto-child: 4 5 10 8

 Find the gene right prior to the first gene of sub-string from

the second parent, and place it in front of the sub-string in

the proto-child.

Proto-child: 3 4 5 10 8

 Find the gene right behind the last gene of sub-string from

the second parent, and place it just after the sub-string in

the proto-child.

Proto-child: 3 4 5 10 8 9

 The remaining genes, that is, the genes not in the

proto-child yet, form a sequence. Place the genes into the

unfilled positions of proto-child from the left to the right

according to the sequence in the second parent.

Offspring: 1 2 3 4 5 10 8 9 6 7

 Repeat the steps above to produce the second offspring by

exchanging the two parents

Fig. 5. The modified order crossover operator.

 23

 Select 3 genes at random

Parent: 2 3 9 4 5 10 8 7 6 1

 Generate neighbors for all possible permutations of the

selected genes, and all neighbors generated are regarded as

the offspring.

Offspring 1: 2 3 9 4 5 7 8 10 6 1

Offspring 2: 2 3 10 4 5 9 8 7 6 1

Offspring 3: 2 3 10 4 5 7 8 9 6 1

Offspring 4: 2 3 7 4 5 9 8 10 6 1

Offspring 5: 2 3 7 4 5 10 8 9 6 1

Fig. 6. The heuristic mutation operator.

 24

 Selected sub-string

Parent: 2 3 9 4 5 10 8 7 6 1

 Flip the selected sub-string to form an offspring.

Offspring: 2 3 9 8 10 5 4 7 6 1

Fig. 7. The inversion mutation operator.

 25

Table 1

Notation

Indices:

 i, j: components (i, j = 0, 1, …, n).

 t: component types (t = 1, 2, …, µ).

 l: feeders (l = 1, 2, …, µ).

 p: placement order or placement position (p = 1, 2, …, n).

Distances:

 d0l: distance traveled from starting point to feeder l.

 dlj: distance traveled from feeder l to the position of component j on the PCB.

 dil: distance traveled from the position of component i to feeder l.

 di0: distance traveled from the position of component i to starting point.

Sub-tour elimination constraint:

 ui: placement order of component i.

Decision variables:

 ijx = 1 if component i is placed immediately before component j; 0 otherwise.

 ipx = 1 if component i is placed in the pth position; 0 otherwise.

 lt j
y = 1 if component j with component type t is stored in feeder l; 0 otherwise.

 26

Table 2

Numbers of variables and constraints in M3 to M6

 Number of variables Number of constraints

M3 n2 + 2n + µ2 n2 + n + 2µ + 2

M4 (n2 + 2n + µ2) + n2µ (n2 + n + 2µ + 2) + 3n2µ

M5 n2 + µ2 2n + 2µ

M6 (n2 + µ2) + nµ + n(n – 1)2µ (2n + 2µ) + 3nµ + 4n(n – 1)2µ

 27

Table 3

Computational time spent for solving M4 and M5

Numbers of

components

and types

Optimal solution CPU time

(hh:mm:ss)

by CPLEX for M4

Optimal solution CPU time

(hh:mm:ss)

by BARON for M5

4 × 4 0.16 seconds 0.31 seconds

5 × 5 00:00:01 00:00:04

6 × 6 00:00:41 00:01:52

7 × 7 00:02:26 01:21:39

8 × 8 10:30:51 379:02:50

 28

Table 4

The data of integrated problem with 10 components and 6 types

Components Types Coordinates (mm) Feeders Coordinates (mm)

 x y x y

1 6 30 20 1 10 50

2 1 30 30 2 10 35

3 1 30 40 3 10 20

4 5 30 50 4 30 10

5 4 30 60 5 50 10

6 2 50 20 6 70 10

7 3 50 30

8 3 50 40

9 5 50 50

10 4 50 60

 29

Table 5

A comparison of experimental results

 Leu et al.

[10]

Ong and Khoo

[11]

HGA HGA

Number of extra feeders N/A N/A N/A 3

Population size 100 100 25 25

Iteration number 6150 6150 3000 1000

Final best solution (cm) about 6129 5673.7 5660.5 4855.5

 30

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Ho, W;Ji, P

Title:
An integrated scheduling problem of PCB components on sequential pick-and-place
machines: Mathematical models and heuristic solutions

Date:
2009-04

Citation:
Ho, W. & Ji, P. (2009). An integrated scheduling problem of PCB components on sequential
pick-and-place machines: Mathematical models and heuristic solutions. EXPERT SYSTEMS
WITH APPLICATIONS, 36 (3), pp.7002-7010. https://doi.org/10.1016/j.eswa.2008.08.025.

Persistent Link:
http://hdl.handle.net/11343/118670

http://hdl.handle.net/11343/118670

	Abstract
	1. Introduction
	4.1 A component sequencing model
	4.2 A feeder arrangement model
	5.1 Formulation 1

	8. Performance analysis
	9. Conclusions

	Link 1
	Link 2
	Select 2 genes randomly
	Selected sub-string
	Select 3 genes at random
	Selected sub-string

	Number of variables
	Number of constraints
	M3
	M4
	M5
	M6
	Components
	Types
	Feeders

