
Rasch-based high-dimensionality data reduction and

class prediction with applications to microarray gene

expression data

Andrej Kastrin∗, Borut Peterlin∗∗

Institute of Medical Genetics, University Medical Centre Ljubljana, Šlajmerjeva 3,
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Abstract

Class prediction is an important application of microarray gene expression
data analysis. The high-dimensionality of microarray data, where number
of genes (variables) is very large compared to the number of samples (obser-
vations), makes the application of many prediction techniques (e.g., logistic
regression, discriminant analysis) difficult. An efficient way to solve this prob-
lem is by using dimension reduction statistical techniques. Increasingly used
in psychology-related applications, Rasch model (RM) provides an appealing
framework for handling high-dimensional microarray data. In this paper, we
study the potential of RM-based modeling in dimensionality reduction with
binarized microarray gene expression data and investigate its prediction ac-
curacy in the context of class prediction using linear discriminant analysis.
Two different publicly available microarray data sets are used to illustrate
a general framework of the approach. Performance of the proposed method
is assessed by re-randomization scheme using principal component analysis
(PCA) as a benchmark method. Our results show that RM-based dimension
reduction is as effective as PCA-based dimension reduction. The method is
general and can be applied to the other high-dimensional data problems.
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1. Introduction

With decoding of the human genome and other eukaryotic organisms
molecular biology has entered into a new era. High-throughput technolo-
gies, such as genomic microarrays can be used to measure the expression
levels of essentially all the genes within an entire genome scale simultane-
ously in a single experiment and can provide information on gene functions
and transcriptional networks (Cordero, Botta, & Calogero, 2007). The major
challenge in microarray data analysis is due to their size, where the number of
genes or variables (p) far exceeds the number of samples or observations (n),
commonly known as the “large p, small n” problem. This takes it difficult or
even impossible to apply class prediction methods (e.g., logistic regression,
discriminant analysis) to the microarray data.

Class prediction is a crucial aspect of microarray studies and plays im-
portant role in the biological interpretation and clinical application of mi-
croarray data (Chen, 2007; Larrañaga et al., 2008). For the last few years,
microarray-based class prediction has been a major topic in applied statistics
(Slawski, Daumer, & Boulesteix, 2008). In a class prediction study, the task
is to induce a class predictor (classifier) using available learning samples (i.e.,
gene expression profiles) from different diagnostic classes. Given the learning
samples representing different classes, first the classifier is learned and then
the classifier is used to predict the class membership (i.e., diagnostic class)
of unseen samples (Asyali, Colak, Demirkaya, & Inan, 2006).

Generally, the performance of a classifier depends on three factors: the
sample size, number of variables, and classifier complexity (Jain, Duin, &
Mao, 2000; Raudys, 2006). It was shown that for the fixed sample size,
the prediction error of a designed classifier decreases and then increases as
the number of variables grows. This paradox is referred to as the peaking
phenomenon (Hughes, 1968). Moreover, some well known classifiers are even
inapplicable in the setting of high-dimensional data. For example, the pooled
within-class sample covariance in linear discriminant analysis (LDA) is sin-
gular if number of variables exceeds the number of samples. Similarly, in
logistic regression the Hessian matrix will not have full rank and statistical
packages will fail to produce reliable regression estimates (Zhang, Fu, Jiang,
& Yu, 2007). Therefore, the number of samples must be larger than the
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number of variables for good prediction performance and appropriate use of
classifiers. This naturally calls for the reduction of the ratio of sample size
to dimensionality.

There are two major ways to handle high-dimensional microarray data
in the class prediction framework. The first approach is to eliminate re-
dundant or irrelevant genes (a.k.a. feature selection). The idea is to find
genes with maximal discrimination performance and induce a classifier using
those genes only (Asyali et al., 2006). The most commonly used procedures
of feature selection are based on simple statistical tests (e.g., fold change, t-
test, ANOVA, etc.), which are calculated for all genes individually, and genes
with the best scores are selected for classifier construction (Dupuy & Simon,
2007; Jeffery, Higgins, & Culhane, 2006). The advantages of this approach
are its simplicity, low computational cost, and interpretability. An alterna-
tive approach to overcome the problem of high-dimensionality is application
of dimension reduction techniques (a.k.a. feature extraction). Generally,
the aim of dimension reduction procedures is to summarize the original p-
dimensional gene space in a form of a lower K-dimensional gene components
space (K < n) that account for most of the variation in the original data
(Jain et al., 2000). Most commonly used methods for feature extraction with
microarray gene expression data are principal component analysis (PCA)
(Alter, Brown, & Botstein, 2000; Chiaromonte & Martinelli, 2002; Holter
et al., 2000), partial least squares (PLS) (Boulesteix, 2004; Boulesteix &
Strimmer, 2007; Nguyen & Rocke, 2002, 2004), and sliced inverse regres-
sion (SIR) (Antoniadis, Lambert-Lacroix, & Leblanc, 2003; Bura & Pfeiffer,
2003; Chiaromonte & Martinelli, 2002). Although statistical analysis dealing
with microarray data has been one of the most investigated areas in the last
decade, there are only a few papers addressing the development and experi-
mental validation of new methods and techniques for microarray dimension
reduction. As Fan and Li (2006) claimed, the high-dimensional data analysis
will be one of the most important research topics in statistics in the nearest
future. Here, we fill this gap by proposing a latent variable approach for
handling high-dimensional microarray data and show its promising potential
for class prediction.

2. Background

The conceptual framework on latent variable modeling originates from
psychometrics, starting at the beginning of the 20th century (Fischer & Mole-
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naar, 1995). Utility of these models in biomedical research has only quite
recently been recognized (Li & Hong, 2001; Rabe-Hesketh & Skrondal, 2008).
By latent variable model we mean any statistical model that relates a set of
observed variables to set of latent variables (De Boeck & Wilson, 2004). A
latent variable is a variable that is not directly observable but does have a
measurable impact on observable variables. Latent variables describe fea-
tures that underlie the data. For example, a child’s intelligence (i.e., latent
variable) is typically assessed by measuring their answers to solving problems
or items (i.e., observed variables) on intelligence test. The more items we
ask of the child and the wider the breadth of items is included in the assess-
ment, the more our understanding of that child’s intellectual ability will be
accurate.

The Rasch model (RM), originally proposed by Rasch (1966), is the sim-
plest latent variable model. The idea behind the RM is that the probability
of getting an item correct is a function of a latent trait or ability. For exam-
ple, a child with higher intellectual ability would be more likely to correctly
respond to a given item on an intelligence test. In psychological applica-
tions, data are usually given in a matrix, with rows being participants and
columns being responses to a set of items. Microarray gene expression data
can be represented in a similar way: columns are used to represent genes and
rows are used to represent expression levels in biological samples. The RM
can therefore be used to explain the observed gene expression patterns over
different samples.

We assume that gene expression levels vary under the influence of K la-
tent gene factors. The idea behind our approach is to partition p genes into
K functional subgroups and that covariations between genes with similar
expression (i.e., genes in the same partition) could be described with a single
gene factor. The factors in the model are latent, unobserved variables that
account for the covariation among genes. It is assumed that genes with sim-
ilar expression patterns might share biological function or might be under
common regulatory control (Do & Choi, 2008). Moreover, it is particularly
interesting to model a large set of genes as functions of fewer gene factors,
because biologist believe the changes of mRNA levels are due to some reg-
ulatory factors (Orlando et al., 2008). Specifically, regulatory factors are
proteins that bind certain DNA elements to regulate gene transcription to
mRNA. Therefore, the gene factors obtained from latent modeling of gene
expression could be interpreted as latent measurements of common regula-
tory factors of related genes. The number of gene factors is considered to
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be a meta-parameter and must be estimated or directly supplied based on
researcher’s prior knowledge. RM can then be used to estimate the magni-
tude of gene factors. Class prediction using standard prediction methods can
then be carried out in the reduced space by using constructed gene factors
as predictor variables.

The main objective of this paper is to evaluate the potential of RM-
based dimensionality reduction with microarray gene expression data and
investigate its prediction accuracy in the context of class prediction using
LDA. To validate the proposed approach we apply a parallel PCA-based
dimension reduction.

3. Methods

We propose a framework for dimension reduction and class prediction
with application to gene expression data as illustrated in Figure 1. Our pro-
cedure consists of two basic steps: the first step is dimension reduction, in
which data are reduced from high p-dimensional gene space to a lower K-
dimensional gene factor space; the second step is class prediction, in which
response classes are predicted using a class prediction method on the ex-
tracted gene factors.

[Figure 1 about here.]

3.1. Data sets and preprocessing

We apply our algorithms to two publicly available microarray data sets
which have been considered before by several authors. The Leukemia data
set (Golub et al., 1999) contains n = 72 tissue samples with p = 7129 genes:
47 samples of acute lymphoblastic leukemia (ALL) and 25 samples of acute
myeloid leukemia (AML). The Prostate data set (Singh et al., 2002) contains
n = 102 tissue samples with p = 12 600 genes: 52 prostate tumor samples
and 50 non-tumor prostate samples. Both data sets are from Affymetrix
high-density oligonucleotide microarrays and are publicly available (Dettling,
2004).

For both data sets, the pre-processing steps are applied as follows (Dudoit,
Fridlyand, & Speed, 2002): (a) thresholding, floor of 100 and ceiling of 16 000;
(b) filtering, exclusion of genes with max /min ≤ 5 and (max−min) ≤ 500,
where max and min refer to the maximum and minimum intensities for a
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particular gene across all samples; and (c) log10 transformation and stan-
dardization to zero mean and unit variance. The data were then summa-
rized by a matrix X = (xij), where xij denotes the expression level for gene
j in sample i. The data for each sample consist of a gene expression pro-
file xi = (x1i, . . . , xpi)

T and a class label yi. After data preprocessing the
dimension of the matrix X was 72× 3571 and 102× 6033 for Leukemia and
Prostate data set, respectively.

3.2. Feature selection

Although the procedure described here can handle a large number (thou-
sands) of genes, the number of genes may still be too large for practical use.
The model assessment procedure is very CPU-expensive and therefore time-
consuming process, because it requires fitting the data many times due to
cross-validation and re-randomization. Furthermore, a considerable percent-
age of the genes do not show differential expression across groups and only
a subset of genes is of interest.

We used two different methods for feature selection in this study. First we
performed an unsupervised random subset selection, consisting of p∗ (p∗ < p)
genes from the set of all genes, as described by Dai, Lieu, and Rocke (2006).
We selected p∗ genes with p∗ = {50, 100, 200} from both experimental data
sets.

As the supervised alternative, we applied Welch’s t-test (Jeffery et al.,
2006) to embed the class information in feature selection process and thus
improved prediction accuracy. Welch’s t-test provides the measure of the
statistical significance of changes in gene expression between classes. Welch’s
t-test defines the statistic t by

t =
x1 − x2√

s21/n1 + s22/n2

,

where xg, s
2
g, and ng are the mean, sample variance, and sample size of the

class g (g = 1, 2) for each gene, respectively. Feature selection was carried
out based on absolute value of the t-statistic and the top p∗ genes with
p∗ = {50, 100, 200} were used for further processing.

3.3. Feature extraction

Here we describe the core of feature extraction based on the RMs and
then briefly outline the PCA method, which we used as a benchmark.
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3.3.1. Rasch model

In this subsection we first give a short overview of the RM theory in its
original form, and then present its application to gene expression data.

The RM is a simple latent factor model, primarily used for analyzing data
from assessments to measure psychological constructs such as personality
traits, abilities, and attitudes (Fischer & Molenaar, 1995). Assume that we
have I persons and J items. Let yij be the response of person i to the item
j, where the yij is ‘1’ if person i answered item j correctly and ‘0’ otherwise.
In the RM, the probability of the outcome yij = 1 is given by

P (yij = 1|ηi) =
exp (βj + ηi)

1 + exp (βj + ηi)
,

for i = 1, . . . , I and j = 1, . . . , J . ηi is the person parameter that denotes the
latent factor of the ith person that is measured by the item j and βj is the
item parameter, which denotes the difficulty of the item j. Difficulty of the
item describes the region of the latent trait distribution where the probability
of producing a specific response changes from low to high. Probability of the
response is monotonous in both person and item parameters. Figure 2 plots
the Rasch probabilities as a function of the value of the latent factor (η)
for three different items. It can be seen that for a given item, persons with
larger η value tend to have greater probability of expressing high scores on the
latent factor, and for a given person, the response probabilities are different
for items with different β values.

[Figure 2 about here.]

The final step of the RM-based modeling is to derive latent scores from the
item responses. Latent score is the total score of person i over J items. The
most common approach to calculate latent scores is to use the expectation of
the posterior distribution of ηi given yi with parameter estimates plugged in
(Rabe-Hesketh & Skrondal, 2008). Details on the calculation can be found
in Fischer and Molenaar (1995).

Application of Rasch model to gene expression data. In terminology of RM,
we denote each gene as an “item” and each sample as a “person”. The
expression level xij of gene j in sample i is the response of a given sample
to a given gene. Our main assumption is, that one-dimensional latent model
may not hold for the complete set of p∗ genes selected in the gene filtering step
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(see Subsection 3.2). Based on the assumption that expressional similarity
implies functional similarity of the genes (and vice versa), we assume that
genes with similar expression patterns determine one latent factor (Do &
Choi, 2008).

To identify coexpressed genes we used k-means clustering (Gan, Ma, &
Wu, 2007) to partition p∗ genes into K partitions (k = 1, . . . , K) based
on their gene expression profiles over n samples. K-means clustering is a
simple and widely used partitioning algorithm. Its helpfulness in discovering
groups of coexpressed genes has been demonstrated (Richards, Holmans,
O’Donovan, Owen, & Jones, 2008). The optimal number of K is estimated
following the procedure described in Subsection 3.5.

To apply the RM to the gene expression data, we need to discretize the
gene expression data matrix X into binary form. We use the median as a
cut-off point for discretization. The intensity of every gene expression value
is compared with the median gene expression data of the X and assigned a
‘1’ if it is above and ‘0’ otherwise. Note that gene partitioning is done before
discretization step.

We fit a RM for genes in each of the K partitions respectively and cal-
culate gene factor scores. Specifically, we construct K latent gene factors on
which each gene in the k partition is located. The measure for each sample
for each gene factor is then estimated. To fit the RM for genes in the kth
partition, let i be the sample index, and j be the gene index, for i = 1, . . . , n,
and j = 1, . . . , pk, and let ηi = ηik be the latent gene factor for the ith sample
which is determined by the genes in the kth partition, and βj be the gene
specific parameter for the jth gene. Class prediction is then carried out in
the reduced space by using the gene factors.

3.3.2. Principal component analysis

PCA is the most commonly used technique for dimension reduction in mi-
croarray data analysis (Alter et al., 2000). The main idea behind the PCA is
to reduce the dimensionality of a data set, while retaining as much as possible
the variation in the original variables (Hastie, Tibshirani, & Friedman, 2001).
This is achieved by transforming the p∗ original variables X = [x1, . . . ,xp] to
a new set of K predictor variables T = [t1, . . . , tK ], which are linear combi-
nations of the original variables. More formally, PCA sequentially maximizes
the variance of a linear combination of the original variables,

aK = arg max
aT a=1

Var (Xa)
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subject to the constraint aT
i SXaj, for all 1 ≤ i < j, where SX is covariance

matrix of the original data. The orthogonal constraint ensures that the linear
combinations are uncorrelated. Linear combinations ti = Xai are known as
the principal components. These linear combinations represent the selection
of a new coordinate system obtained by rotating the original system. The
new axes represent the directions with maximum variability and are ordered
in terms of the amount of variation of the original data they account for.
The first principal component accounts for as much of the variability in the
original data as possible, and each succeeding component accounts for as
much of the remaining variability as possible. Computations of the weighting
vectors a involves the calculation of the eigenvalue decomposition of a data
covariance matrix SX,

SXai = λiai

where λi is the ith eigenvalue in the descending order for i = 1, . . . , K and ai

is the corresponding eigenvector. The eigenvalue λi measures the variance of
the ith principal component and the eigenvector ai provides the loadings for
the linear transformation. The number of components K is specified on the
basis of researcher’s prior knowledge or determined using dedicated proce-
dures (e.g., Kaiser-Guttman rule, Cattell’s scree test, etc.). Class prediction
using standard methods can then be carried out in the reduced space by
using the constructed principal components.

3.4. Class prediction

After dimension reduction, the high dimension of p∗ is now reduced to a
lower dimension. The original data matrix is approximated by matrix of gene
factors (n×K, where K < n), constructed by RMs or PCA, as described in
the previous section. To avoid confusion, we use the term “factor” to refer
to both latent factor obtained from RM analysis and principal component
derived from PCA. Once the K gene factors are constructed we consider
prediction of the response classes.

To describe the class prediction problem formally, let we have a learning
set L consisting of samples whose class is known and a test set T consisting of
samples whose class has to be predicted. Denote the data matrix correspond-
ing to L as the learning data matrix XL, and the data matrix corresponding
to T as the test data matrix XT . The vector containing the classes of the
samples from L is denoted as yL. The goal is to build a rule implementing
the information from XL and yL in order to predict the class g of the ith
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sample from the test set given the gene expression profile xnew,i:

δ (.,XL,yL) : RK → {1, . . . , G}
xnew,i 7→ δ (xnew,i,XL,yL) .

Because our focus here is on dimension reduction, we fixed the class pre-
diction step with LDA, although other methodologies can be used (Bellazzi
& Zupan, 2008; Dudoit et al., 2002). A short description of the LDA method
is given in the following (Boulesteix, 2004). Suppose we have K predictor
variables. The random vector x = (X1, . . . , XK)T is assumed to a multivari-
ate normal distribution within class g = 1, . . . , G (in our procedure G = 2)
with mean µg and covariance matrix Σg. In LDA, Σg is assumed to be the

same for all classes: for all g, Σg = Σ. Using estimates µ̂g and Σ̂ in place of
µg and Σ, the discriminant rule assign the ith new observation xnew,i to the
class

δ (xnew,i) = arg max
g

(
xnew,i − µ̂g

)
Σ̂

−1
(xnew,i − µ̂g)

T .

LDA has been well studied and widely used for class prediction problems.
LDA relies on a hypothesis of multinormality, and assumes that the classes
have the same covariance matrix. Although these hypotheses are rarely sat-
isfied with real data sets, LDA generally gives good results. Studies have
demonstrated favorable prediction performances of LDA models when com-
pared with more complicated and computationally intensive algorithms such
as neural networks and tree method (Dudoit et al., 2002; Tibshirani, Hastie,
Narasimhan, & Chu, 2002). For the details of the calculation we refer the
reader to Ripley (1996).

3.5. Model selection

The number of gene factors K is a meta-parameter in the procedure.
We estimate K on the learning set L using leave-one-out cross-validation
(LOOCV). LOOCV has been shown to give an almost unbiased estimator
of the prediction error (Hastie et al., 2001), and therefore provide a sensible
criterion for our purposes. In a nutshell, a subset of p∗ genes is selected
(p∗ < p) from L, and one of the samples is left-out. The feature extraction
models are fitted to all but the left-out sample (see Subsection 3.3). The
fitted models are then used to predict the class of the left-out sample (see
Subsection 3.4). This is repeated for all samples in the learning data set nL

10



with K taking successively different values. The mean error rate (MER) over
the nL runs is computed for each value of K by

MER =
1

nL

nL∑
i=1

I(ŷi 6= yi),

where ŷi is the predicted response class and yi is the observed response class.
I is the indicator function (I(A) = 1 if A is true, I(A) = 0 otherwise). The
value of K minimizing the MER is selected and denoted as K∗. We select
K = {1, 2, 3, 4, 5} in our experiments.

3.6. Performance evaluation

To assess the performance of the RM- and PCA-based dimension re-
duction methods in the framework of class prediction we perform a re-
randomization study. This evaluation approach was first used by Dudoit
et al. (2002). The reader may refer to the review of Boulesteix, Strobl, Au-
gustin, and Daumer (2008) on this subject. The procedure consists of the
six steps as follows.

Step 1. For each data set, create R = 100 random partitions into learning
data set L with nL samples and a test set T with nT samples (nL +
nT = n). Denote XL as the learning data matrix of size nL × p, and
XT as the test data matrix of size nT × p.

Step 2. Select a subset of p∗ genes from the set of all genes p from matrix
XL using one of the gene selection methods, resulting in X∗

L matrix
of size nL × p∗ and X∗

T matrix of size nT × p∗ (see Subsection 3.2).

Step 3. Use the learning data matrix X∗
L to determine the number of latent

factors K∗, by LOOCV (see Subsection 3.5).

Step 4. Perform dimension reduction using RM- or PCA-based dimension
reduction (see Subsection 3.3). Let W denote the matrix containing
the factor loadings of size p∗ ×K∗. Compute the matrix ZL of gene
factors for the learning data set (ZL = X∗

L×W), and the matrix ZT

of gene factors for the test data set (ZT = X∗
T ×W).1

Step 5. Fit the class prediction model to the learning gene factors ZL. Pre-
dict the classes of samples in the test set using the fitted classifier
and the test gene factors, ZT (see Subsection 3.4).

1Note that matrix W refers to component loadings, and matrix Z to gene components
when PCA is performed.
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Step 6. Repeat all above steps R times with re-randomization of the whole
data set. The mean error rate (MER) for each method is given by

MER =
1

R

R∑
r=1

1

nT

nT∑
i=1

I(ŷi 6= yi),

where ŷi is the predicted response class and yi is the observed re-
sponse class. I is the indicator function (I(A) = 1 if A is true,
I(A) = 0 otherwise).

Although the MER is the most widely used metric for measuring the per-
formance of the prediction systems, it considers all mispredictions as equally
damaging (Boulesteix et al., 2008). It has been demonstrated (Huang &
Ling, 2005) that, when the prior class probabilities are different, this mea-
sure is not appropriate because it does not consider misprediction cost, is
strongly biased to favor the majority class, and is sensitive to class skewness.
To overcome these problems the performance evaluation was also carried out
via receiver operator characteristic (ROC) analysis. For comprehensive in-
troduction to ROC analysis we refer the reader to Fawcett (2006). The ROC
analysis was performed by plotting true positive rate (sensitivity) versus the
false positive rate (1−specificity) at various threshold values, and the result-
ing curve was integrated to give an area under the curve (AUC ) value. AUC
is a measure of the discriminative power of the classes using the given features
and classifier, and varies from AUC = 0.5 for non-distinguishable classes to
AUC = 1.0 for perfectly distinguishable classes (Huang & Ling, 2005). The
AUC can be interpreted as the probability that two random samples from
the two classes will be predicted correctly, and is invariant to changes in class
proportions (unlike MER). An AUC ≥ 0.7 is generally considered acceptable,
AUC ≥ 0.8 as good, and AUC ≥ 0.9 as excellent prediction performance.

3.7. Software

All computations were carried out in the R software environment for sta-
tistical computing and graphics (R Development Core Team, 2008). K-
means clustering was performed using generic kmeans function. Binarization
of continuous gene expression values was performed by binarize function
in the minet package. The function generate.split of the WilcoxCV pack-
age was used to generate random splitting into learning and test data sets.
RM analysis was performed using ltm package. PCA was conducted using
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generic prcomp function. LDA was carried out using lda function in the
MASS package. ROC analysis was performed using the caret package. The
procedures described here can be reproduced using the R scripts available
from http://www2.arnes.si/~akastr1/rasch/

4. Results

We illustrate the interest of RM-based dimension reduction by considering
applications for the class prediction of microarray data. We compare the
results from our procedure with the performance of the PCA-based approach.
We will consider in turn the Leukemia and Prostate data sets, as described
previously in Subsection 3.1

4.1. Application to Leukemia data set

After data preprocessing, we applied the proposed performance evaluation
procedure on the Leukemia data set. First, we consider p∗ = {50, 100, 200}
randomly selected genes and used R = 100 random subsets. We randomly
split each subset of genes into two data sets: a learning set with nL = 36
samples and a test set with nT = 36 samples. We used LOOCV procedure
on the learning set to determine the number of gene factors (components in
the case of PCA), and the test set for evaluating prediction performances.
In total, 3600 class predictions were calculated using each of the dimension
reduction method based on 100 randomization trials.

Table 1 gives the estimated mean error rates (MER), average values of the
estimated meta-parameters (K∗), corresponding standard deviations, and ar-
eas under the ROC curves (AUC ) with the considering methods, for different
number of variables. A ROC curve analysis is depicted in Figure 3(a). It
can be seen from Table 1 that MER decreases with the increase of the size of
gene subsets p∗. Inversely, the AUC increases when more predictor genes are
included in model building. At any of the subsets size, the MERs of PCA-
based class prediction are lower that that of RM-based procedure. AUC
scores suggest acceptable prediction performance for RM-based dimension
reduction model and excellent performance for the PCA-based model.

[Table 1 about here.]

[Figure 3 about here.]
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Next, we present the results of performance evaluations using subsets
of genes selected based on Welch’s t-test. As described in Subsection 3.2,
genes were ranked according to absolute value of the t-statistic and the top
p∗ genes with p∗ = {50, 100, 200} were used for extraction of gene factors.
The analysis design was the same as for the randomly selected subset of
genes described previously. The performance results on both methods are
given in Table 2. Corresponding ROC curves are presented in Figure 3(b).
Comparing the results in Table 2 with the results given in Table 1, one can
see that the accuracy of class prediction has been improved significantly.
MERs of all two methods are reduced. Regarding AUC scores both models
achieved excellent prediction performances. This is in agreement with the
hypothesis that supervised gene selection should improve the classification
accuracy. Moreover, the relative performance of the methods is basically the
same: RM and PCA method have similar performances. The average value
of meta-parameter (K∗) is lower when supervised gene selection is used.

[Table 2 about here.]

4.2. Application to Prostate data set

The second data set used in this study is the Prostate tumor data. The
experimental design was the same as for the Leukemia data set described pre-
viously (see Subsection 4.1). For both, random and supervised gene selection
approaches, a learning set consists of nL = 36 samples and a test set consists
of nT = 66 samples. In total 6600 class predictions were generated by each
of the dimension reduction method based on 100 randomization trials.

Performance statistics of the RM- and PCA-based prediction models us-
ing random gene selection approach are summarized in Table 3. ROC analysis
is visualized in Figure 4(a). Although the pattern of performances between
methods on the Prostate data set is similar to that on Leukemia data set,
the results suggest that the classes are less well predicted. AUC scores indi-
cate that RM-based prediction performances are close to random prediction,
while PCA-based approach is generally acceptable.

[Table 3 about here.]

[Figure 4 about here.]

Application of supervised gene selection using Welch’s t-test yielded much
better prediction performances (Table 4 and Figure 4(b)). MERs and AUC s
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increase substantially. Moreover, the differences between both methods are
minimal. Regarding ROC analysis both model performs excellent, although
the AUC scores for the RM-based model are slightly lower.

[Table 4 about here.]

5. Discussion

In this paper we explored the possibility of RMs to solve the course of
dimensionality problem arising in the context of microarray gene expression
data, and evaluated its performance in class prediction framework using LDA.
To our knowledge, this is the first extensive validation study addressing RMs
for microarray data analysis. In terms of using RM-based dimension reduc-
tion of microarray data, the evaluated approach appears to be as effective as
widely used PCA-based dimension reduction.

Theoretically RMs can handle a large number of genes. However, as
many other multivariate methods it is challenged by large computational
time and danger of over-fitting. Therefore, we have used unsupervised ran-
dom selection of small subset of genes and supervised Welch’s t-test gene se-
lection procedure. Applying random selection and using the MER and AUC
scores as class prediction performances, overall average values of MER = 0.29
(AUC = 0.72) and MER = 0.45 (AUC = 0.57) have been reached for
Leukemia and Prostate data sets, respectively. We demonstrated that sim-
ple t-test improve the prediction performance significantly. Considering su-
pervised gene selection procedure, overall average values of MER = 0.04
(AUC = 0.99) and MER = 0.19 (AUC = 0.87) have been reached for
Leukemia and Prostate data sets, respectively. The patterns of performance
measures between RM- and PCA-based procedures were similar, although
the results suggested that RMs benefit more from preliminary gene selec-
tion. Compared to other studies aimed at class prediction, such as ones by
Boulesteix (2004), Dai et al. (2006), or Nguyen and Rocke (2004), our perfor-
mance values are comparable. Slightly better prediction performances in the
case of Leukemia data set confirm the fact that the biological separation be-
tween the two classes is more pronounced in Leukemia data set (Antoniadis
et al., 2003; De Smet et al., 2004).

We have developed our approach for discretized microarray data because
RM scaling assumes a binary response of a gene expression level. Although
our results indicate that the loss of information due to discretization step
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in our procedure is minimal, it is still the issue, if it is reasonable to con-
sider gene expression discretely. Referring to the work of Sheng, Moreau,
and De Moor (2003), who demonstrated the effectiveness of the Gibbs sam-
pling to the biclustering of discretized microarray data, we argue that dis-
cretization may improve the robustness and generalizability of the prediction
algorithm with regard to the high noise level in the microarray data. Fol-
lowing Hartemink (2001) the discretization of continuous gene expression
levels is preferred for three reasons: (i) gene transcription occurs in one of a
small number of states (low–high, off–low–high, low–medium–high, off–low–
medium–high, etc.); (ii) the mechanisms of cellular regulatory networks can
be reasonably approximated by primarily qualitative statements describing
the relationships between states of genes; (iii) discretization, as a general
rule, introduces a measure of robustness against error. It is a worthwhile
future project to study the performance of our method on different levels
of dicretization, using polytomous latent variable models (e.g., partial credit
model) that could model more than two states of gene expression.

The major dilemma coupled with class prediction studies is the measure-
ment of the performance of the classifier. The classifier cannot be evaluated
accurately when sample size is very low. Moreover, feature selection and
feature extraction steps should be an integral part of the classifier, and as
such they must be a part of the evaluation procedure that is used to esti-
mate the prediction performance (Asyali et al., 2006). Simon (2003) reported
several studies published in high impact factor journals where this issue is
overlooked, and biased prediction performances are reported. To address
these issues we applied LOOCV scheme to estimate the appropriate num-
ber of gene factors and re-randomization experimental design to stabilize
performance measures. It seems that LOOCV is appropriate, but a more so-
phisticated design (e.g., subsampling, bootstrap sampling, 0.632 estimator,
etc.) to determine the number of gene factors could improve the prediction
performance of the RM-based approach.

The vast amounts of gene expression data generated in the last decade
have significantly reshaped statistical thinking and data analysis. The ap-
proach presented here can be also applied to many other problems in com-
putational biology (e.g., single nucleotide polymorphism (SNP) array data
analysis) and could be generalized to the other fields of sciences and hu-
manities (e.g., health studies, risk management, financial engineering, etc.).
Hence, innovative statistical methods like the one presented in this paper are
of great relevance.
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6. Conclusions

We have proposed a RM-based dimension reduction approach for the class
prediction on microarray gene expression data. Our method is designed to
address the course of dimensionality and overcome the problem of “large
p, small n” so common in microarray data analysis. Experimental results
showed that our procedure appears to be as effective as widely used PCA-
based dimension reduction method. We demonstrated that binarization of
continuous gene expression levels does not affect prediction performance of
the classifier. We showed that appropriate gene selection is crucial before
dimension reduction is performed. We restricted our approach to the binary
prediction problem, but the methodology can be extended to cover multiclass
prediction. The application of our method to other prediction problems (e.g.,
regression, survival analysis) is straightforward. We are currently working
on extending this work on other latent variable models (e.g., partial credit
model, Rasch-Andrich model, etc.).
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Table 1: Prediction performances of the RM- and PCA-based prediction models using
random gene selection on the Leukemia data set with 36/36 split of samples over 100
randomization trials.

RM-LDA PCA-LDA
p∗ MER K∗ AUC MER K∗ AUC
50 0.31 (0.10) 2.05 (1.23) 0.66 0.17 (0.09) 3.20 (1.29) 0.90

100 0.29 (0.10) 3.06 (1.42) 0.73 0.12 (0.07) 3.26 (1.14) 0.94
200 0.27 (0.10) 3.44 (1.44) 0.77 0.09 (0.06) 3.23 (1.17) 0.96

Legend: RM-LDA – RM-based class prediction; PCA-LDA – PCA-based class predic-
tion; p∗ – number of selected genes; MER – mean error rate; K∗ – estimated number
of gene factors (components); AUC – area under the ROC curve.
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Table 2: Prediction performances of the RM- and PCA-based prediction models using
supervised gene selection on the leukemia data set with 36/36 split of samples over 100
randomization trials.

RM-LDA PCA-LDA
p∗ MER K∗ AUC MER K∗ AUC
50 0.04 (0.03) 2.27 (0.65) 0.99 0.03 (0.02) 1.07 (0.33) 1.00

100 0.04 (0.03) 2.55 (0.83) 0.99 0.03 (0.02) 1.11 (0.63) 0.99
200 0.05 (0.04) 3.07 (0.96) 0.99 0.03 (0.02) 1.11 (0.40) 0.99

Legend: RM-LDA – RM-based class prediction; PCA-LDA – PCA-based class predic-
tion; p∗ – number of selected genes; MER – mean error rate; K∗ – estimated number
of gene factors (components); AUC – area under the ROC curve.
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Table 3: Prediction performances of the RM- and PCA-based prediction models using
random gene selection on the Prostate data set with 36/66 split of samples over 100
randomization trials.

RM-LDA PCA-LDA
p∗ MER K∗ AUC MER K∗ AUC
50 0.46 (0.08) 2.01 (1.19) 0.58 0.34 (0.10) 3.48 (1.46) 0.73

100 0.45 (0.08) 2.27 (1.29) 0.57 0.32 (0.10) 3.71 (1.23) 0.75
200 0.45 (0.08) 2.33 (1.26) 0.57 0.30 (0.11) 3.48 (1.37) 0.77

Legend: RM-LDA – RM-based class prediction; PCA-LDA – PCA-based class predic-
tion; p∗ – number of selected genes; MER – mean error rate; K∗ – estimated number
of gene factors (components); AUC – area under the ROC curve.
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Table 4: Prediction performances of the RM- and PCA-based prediction models using
supervised gene selection on the Prostate data set with 36/66 split of samples over 100
randomization trials.

RM-LDA PCA-LDA
p∗ MER K∗ AUC MER K∗ AUC
50 0.18 (0.08) 2.91 (1.23) 0.88 0.14 (0.06) 2.06 (1.25) 0.91

100 0.19 (0.07) 3.35 (1.19) 0.88 0.15 (0.06) 2.41 (1.29) 0.91
200 0.21 (0.08) 3.55 (1.28) 0.86 0.15 (0.07) 2.72 (1.30) 0.91

Legend: RM-LDA – RM-based class prediction; PCA-LDA – PCA-based class predic-
tion; p∗ – number of selected genes; MER – mean error rate; K∗ – estimated number
of gene factors (components); AUC – area under the ROC curve.
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Figure 1: The framework of dimension reduction.
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Figure 2: Rasch probabilities as a function of the value of the latent factor for three
different items. The person is likely to respond correctly to the Item 1 and unlikely to
respond correctly to Item 3. Item parameters are β1 = −3.62, β2 = −1.32, and β3 = −0.32,
respectively.
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Figure 3: Receiver operating characteristic curves (ROC) for RM- and PCA-based predic-
tion models using random (a) and supervised (b) gene selection on the Leukemia data set
with 36/36 split of samples over 100 randomization trials.
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Figure 4: Receiver operating characteristic curves (ROC) for RM- and PCA-based predic-
tion models using random (a) and supervised (b) gene selection on the Prostate data set
with 36/66 split of samples over 100 randomization trials.

29


	1 Introduction
	2 Background
	3 Methods
	3.1 Data sets and preprocessing
	3.2 Feature selection
	3.3 Feature extraction
	3.3.1 Rasch model
	3.3.2 Principal component analysis

	3.4 Class prediction
	3.5 Model selection
	3.6 Performance evaluation
	3.7 Software

	4 Results
	4.1 Application to Leukemia data set
	4.2 Application to Prostate data set

	5 Discussion
	6 Conclusions

