
 1

An Adaptive Knowledge Evolution Strategy for Finding

Best Solutions of Specific Problems

Yo-Ping Huang
1
, Yueh-Tsun Chang

2
, Shang-Lin Hsieh

2
, and Frode Eika Sandnes

3

1
Dept. of Electrical Engineering, National Taipei University of Technology

Taipei, Taiwan 10608

yphuang@ntut.edu.tw
2
Dept. of Computer Science and Engineering, Tatung University

Taipei, Taiwan 10451

tennno@gmail.com; slhsieh@ttu.edu.tw
3
Faculty of Engineering, Oslo University College

Oslo, Norway

frodes@hio.no

Abstract-- Most real-world problems cannot be mathematically defined and/or structured

modularly for peer researchers in the same community to facilitate their work. This is

partially because there are no concrete defined methods that can help researchers clearly

describe their problems and partially because one method fits one problem but does not apply

to others. In order to apply someone’s research results to new domains and for researchers to

collaborate with each other more efficiently, a well-defined architecture with self-adaptive

evolution strategies is proposed. It can automatically find the best solutions from existing

knowledge and previous research experiences. The proposed architecture is object-oriented

that in turn become foundations of the community interaction evolution strategy and

knowledge sharing mechanism. They make up an autonomous evolution mechanism using a

progressive learning strategy and a common knowledge packaging definition. The

architecture defines fourteen highly modular classes that allow users to enhance collaboration

with others in the same or similar research community. The presented evolution strategies

also integrate the merits of users’ predefined algorithms, group interaction and learning

theory to approach the best solutions of specific problems. Finally, resource limitation

problems are tackled to verify both the re-usability and flexibility of the proposed work. Our

results show that even without using any specific tuning of the problems, optimal or

near-optimal solutions are feasible.

Keywords: Self Adaptation, Evolution Computation, Knowledge Sharing, Learning Strategy,

Community Interaction.

1. Introduction

In recent year, many research results have been reported in the field of artificial

intelligence. Most of these are inspired by natural ecological system, such as ant colony

systems [1]. Some researchers use max-min ant system to enhance classification, reduce

completion time and the use of computing resources [2-3]. Ecosystems are also the

inspiration behind artificial immune system and cellular automata. Recent articles describe

compact classifier system using simple artificial immune system [4] to model the simulation

of computer network for evaluating connectivity and system reliability and computing the

shortest package routing path [5].

Ecosystems are also the original inspiration behind genetic algorithm which was first

mailto:yphuang@ntut.edu.tw
mailto:tennno@gmail.com
mailto:frodes@hio.no

 2

described by Prof. John Holland in 1975. Many researchers are continually enhancing the

performance of genetic algorithm [6-12] and developing new applications [13]. Moreover,

ecosystem ideas lead Dr. Eberhart and Dr. Kennedy to develop particle swarm optimization

(PSO) in 1995, which is inspired by social behavior of bird flocking. PSO has been applied to

many applications [14-17] and the architecture of PSO allows researchers to enhance the

performance using different domain knowledge [18-20]. Inspired by biological evolution,

genetic programming is an evolutionary methodology for generating computer programs that

solve certain user-defined tasks [21-23], and many enhancements to the basic genetic

programming paradigm have been proposed [24-28]. Based on the concept of adaptation and

evolution, evolution strategy (ES) was proposed in the early 1960s and 1970s. Although ES

has been around for some time, the application and enhancement are still being proposed

[29-32].

Moreover, learning classifier systems that were first described by Prof. John Holland

consist of computing rules which are composed of binary, real-valued, neural network, and

other representations. Recently, researchers have proposed an enhancement using

self-organized map (SOM) [33] and neural network [34] on supervised learning classifier

systems (UCS). UCS is also used for the classification problem in data mining [35].

There is a vast body of research being published every year, which means that the

research results in different kinds of fields are growing. Although Internet technology has

shortened the distance between people, the amount of information that becomes available is

growing. People only have limited time to absorb information. For example, there are various

subjects in artificial intelligence, such as neural network, genetic algorithm, data mining and

gray system, etc. For each of these categories a vast body of knowledge is developed for

solving different problems.

Current media technologies are unable to hide the information chaos, and the expanding

information spreads unsystematically. Consequently, a gap emerges between research groups

which prevent interactions. As a result, many experiences, results and algorithms will be lost

or redundantly developed.

Researchers usually search for existing solutions when confronted by a new problem.

During the search, a solution is invented by knowledge combination with different process

orders. Time and rigorous methods are needed to discover the appropriate solution, and

researchers can also add new algorithms to the combination for gaining better solution.

However, the progress is not easily shared with others because of the information gap. In

general, it is often difficult to learn from previous mistakes and experiences to avoid

repeating the same mistakes.

Most results are simply improvements upon previous research. The improvements include

adding, deleting, reordering or modifying steps and algorithms of previous studies. The

improvement depends on which algorithms, modules or algorithms are selected.

Past research provides the foundations for new inventions. Research is more valuable if it

is understandable and reusable. Researchers can discover better solutions by combining past

knowledge. Past records can help researchers avoid mistakes conducted in previous research.

The probability of obtaining better solutions rises when the previous research progresses

and results are better understood. This is the reason for acquiring knowledge and discussing

problems with others. Irrespective of the types of knowledge, they always have chances to

provide brilliant ideas for solutions. In order to gather the required knowledge, it is crucial

that researchers interact.

Researchers are restricted by limited time and space to find the optimal combination from

a seemingly unlimited number of sources. It is also impossible to know if the combination is

suitable for other problems or not.

Based on the principles of object oriented programming (OOP), a common format can be

 3

defined to package knowledge as basic components representing best solutions. Computers

can then be used to assist researchers finding new solutions to problems.

Even if two algorithms have similar architectures, they could use different knowledge.

Take neural networks and genetic algorithms for example. Neural networks can be divided

into three layers including input, hidden and output layers. The output layer sends

unsupervised or supervised feedback back to the hidden layer for self-adaption. On the other

hand, genetic algorithms can also be divided into four operations including initialization,

mutation, crossover and selection operations. The selection and initialization also have a

self-adaptive mechanism using performance filters and a competition strategy to generate

new solutions. Clearly, both evolution algorithms present similar compositions using

self-adaption feedback. In many studies, researchers also applied these two algorithms to

various problems together for developing better solutions.

The operations of the proposed strategy emulate the crossover operation of genetic

algorithm. The operations use several evolution steps with independent modules to find better

solutions. The highly modular knowledge definition allows researchers to both improve the

final solutions using proposed evolution strategy and also efficiently share their research

experiences with others.

The proposed evolution strategy provides several means of knowledge exchange. Central

to the strategy is the ability to find better knowledge combinations and solutions to various

problems based on huge banks of knowledge using computing power. The basic concept of

the proposed strategy and architecture is similar to independent research. Normally,

researchers obtain independent research results or find reliable solutions and ideas by

themselves before discussing, competing or cooperating with other researchers. In the

proposed architecture, researchers from different regions can cooperate using the highly

modular components.

This paper is organized as follows. The definitions and the characteristics of the modules

of the proposed strategy and architecture are introduced in Section 2. Three evolution

strategies are presented for the proposed architecture. The components of the architecture

which are called Community Knowledge Modules (CKM) are presented in Section 3. Section

4 demonstrates the usability of the proposed strategy and architecture using the parameters

optimization problem with two different functions as examples. Finally, future work is

discussed in the conclusion section.

2. The Architecture of Community Knowledge Evolution

People usually learn from others in class, through discussions and by reading books. The

proposed strategy mimics this human learning mechanism through 14 modules that are the

evolution operating components.

2.1 Architecture

The proposed architecture is called the Community Knowledge Modules (CKM). These

modules are used by the Community Interaction Strategy (CIS) for finding the optimal

solution to problems. CKM has two primary parts, namely the Domain Definition (DD) and

the Evolution Modules (EM). These are used for defining problems and evolution operations,

respectively. The CKM both abstracts the evolution progress and avoids the rewriting of

similar programs for solving different data formats. The CKM forces the user to focus on the

algorithm rather than a particular data format.

2.2 Domain Definition

Irrespective of the problem that the researcher wants to solve, the researcher has to

 4

determine the basic data format to be used in the program. The DD provides several common

formats suitable for solving different classes of problems. The format employs object oriented

ideas where the user has to override and to inherit the defined interfaces and abstract classes

to get access to the basic operation classes which are used by the CIS.

During the evolution, the CIS uses the defined interfaces to operate on the real data

which are packaged in the basic operational class. The user must provide operations for

translating real data into the defined format which follows the defined interfaces.

The Domain Definition has two parts, namely the Case Definition (CD) and the

Knowledge Definition (KD). The CD defines five input data package definitions which

represent different types of research problems. These definitions include Domain, Topic, Case,

Unit Set and Particle classes.

The Knowledge Definition contains a group of interfaces which satisfies the needs of

different knowledge domains. Users can exploit the standard KD to implement Knowledge

classes, such as, mutation and crossover operation of GA, back-propagation neural network

or any algorithm for specific needs. For different missions, the modules can be divided into

two types of modules, Generator type and Common type modules. Generator type modules

generate initial solutions for Common type modules to process.

After the required modules are implemented, the modules are managed by the Knowledge

Map module for storing and managing the modules. The map preserves the entity of modules

and manages the connection between relational Knowledge modules. The connection is

decided by the module creator. Before the module is implemented, the creator has to decide

the relation of the implementing and the published modules.

Before the evolution progress is run, the Knowledge Map creates a Start Point

Knowledge module which is designed as the entry to the progress. The Start Point Knowledge

module can only be hooked to Generator type modules. Common type modules can hook to

multiple modules except from Start Point Knowledge modules. The final processing order

will be recommended by Memes which memorizes the process histories and results as a

human brain. The details of the evolution process are discussed in Section 3.

2.3 Evolution Modules

Evolution Modules contain a group of modules which are designed for the proposed

strategy. These modules are Community, Member Group, Knowledge Map, Member, Memes,

Solution, Evolution Path and Particle Unit. These modules provide various operations and

running histories for the evolution process. For different problems, the restrictions and the

data format of the specific case are provided by the Case classes which are created by the

users. Some operations are supported by the implemented CD classes. Since real data are

packaged into the Particle module, the EM can handle different data formats rather than

having to rewrite the experiment programs.

2.4 The Relation between Domain Definition and Evolution Modules

The relation between the EM and DD modules is similar to the relation of operating

components and problem definition. These modules support the initial conception for

providing the idea of Community Interaction Evolution (CIE). As shown in Fig. 2.1, a

research community usually focuses on a specific research domain. A community also

contains independent member groups which focus on one or multiple topics of the research

domain. A topic also is studied by one or multiple member groups.

 5

Fig. 2.1. The relation between the community module and the domain definition.

The role of the Community module is to serve as an association which has many

research groups. Each group in the Community module has their specific research interests.

The Community module provides both operating interfaces and controls the life cycle of the

Member Groups entities and the Community Interaction operation. The Member Group

module can be seen as a research group who focuses on a specific case. The Member Group

module uses the Knowledge Map module to manage the implemented Knowledge entities.

After the Member Evolution has finished, the Group Interaction operation is launched.

In the Group Interaction operation, the Member entities of the same Member Group entity

exchange their personal best solutions with each other to find the best solution of the Member

Group entity.

The evolution which is evolved inside the Member entity is called Member Evolution.

This is similar to the situation where researchers independently investigate the problem

before discussing it with others. Although the investigations are independent, researchers

usually have the same elementary knowledge of the research field. Each Member entity of the

Member Group entity can retrieve suitable Knowledge entities from the Knowledge Map

entity of the Member Group entity and then, launch the Member Evolution operation for

producing solutions. These solutions are stored in the Memes entity of the Member entity. The

relations of Case, Knowledge Map, Member and Memes are shown in Fig. 2.2.

Fig. 2.2. The relations of Case, Knowledge Map, Member and Memes.

As shown in Fig. 2.3, each Member module has only one Memes module. The Memes

module is both responsible for recommending appropriate Knowledge entity and Activity

operations, and store Solution entities which record evolution history and the personal best

solution of the Member entity. In order to store the process history and the personal best

solutions, the Solution module is composed of two modules, namely the Evolution Path and

the Unit Set modules.

 6

The Evolution Path module records the global unique identification (GUID) and the

processing order of operated Knowledge entities which have been used during the Member

Evolution. The Unit Set module contains the Particle Unit module which represents the basic

operating unit in the Member Evolution. Each Particle Unit module has one to multiple

Particle modules. The relation between the Particle Unit and the Particle modules is very

similar to the coordinates and its values. The user has to implement the Particle module

following the definition of the CD to provide the basic operating unit. According to the need

of the processing problem, the user must implement the appropriate Particle module to

package the data, and then, use the Particle Unit entity to manage Particle entities.

Fig. 2.3. The relation of evolution modules.

3. The Implementation and Evolution Strategy of CKE

Before the modules are implemented, the creator should understand the properties and

restrictions of the processing problem. The creator overrides, inherits or implements the

modules of Domain Definition.

3.1 The Implementation of Domain Definition Modules

The creator must inherit and implement the IDomain, ITopic and ICase interfaces

respectively. The IDomain interface definition defines basic information and the domain

definition, and manages all registered Topic modules which are implemented from ITopic.

Moreover, the ITopic interface contains the definition of basic information, and responses for

the management of all registered Case entities which follows the ICase interface. The ICase

interface contains definitions of solution region setting and constraints.

The definitions include the configurations of basic information, solution region, optimal

and worst results, the length of Unit Set, the composition of Particle Unit and the accuracy of

final results. The user can inherits original interfaces or add new functions for the specific

case. After the Case module has been implemented, ICase endows with Evolution Modules

the ability to create Solution, Unit Set, Particle Unit and Particle entities.

Except for the ICase interface, the user must inherit IUnitSet and IParticle too. Because

problems use different data formats and compositions, user has to provide appropriate data

format and composition for dealing with the problem through the implementation of IUnitSet

and IParticle interfaces.

As shown in Fig. 3.1 the left part presents the modules which must be inherited or

overridden, the right part are the example of implemented entities. The example in Fig. 3.1

shows that three sensors need to be allocated the position in 2D coordinates. At the beginning,

the user must use Unit Set module to form the composition of the three sensors respectively,

 7

and then, package up the location of the sensor using the Particle Unit module which holds

two Particle modules to represent the coordinates of position X and Y, respectively.

Fig. 3.1. The relations between Unit Set, Particle Unit and Particle modules.

For the sake of calculation, comparison and evaluation operations, the CIS has to know

the discrimination of different solutions. Therefore, the interface uses the “double” format to

represent the performance score, because “double” can be translated into most other types of

data formats.

Beside of the Case Definition described above, the Knowledge Map module is

responsible for providing the Knowledge module during the Member Evolution. The user can

follows the IKnowledge interface to implement new Knowledge modules and adds the

module into a Knowledge Map entity.

There are five interfaces defined in the IKnowledge definition which are the interfaces

for starting, executing and hooking Knowledge module, the interface of providing Knowledge

Map to gather the children Knowledge and the interface of storing the processed Knowledge

information into the Evolution Path entity. The user can implement the IKnowledge interface

to create new Knowledge modules and use the existing Knowledge modules. If user wants,

the new module can be used by CIS, the module needs to set the relations with other

implemented Knowledge modules and registers itself into the Knowledge Map entity. Only

after the relations have been built, the CIS will be able to retrieve the appropriate entity from

the Knowledge Map entity during the evolution.

 8

Fig. 3.2. The operations of genetic algorithm to knowledge definition.

Fig. 3.2 provides an example that transforms the conventional operations of genetic

algorithm (GA) into Knowledge Definition modules. At the bottom of the figure are the GA

operations which include Initialization, Crossover, Mutation, Selection operations and the

Stop Term validation. Because the first four operations represent different evolution strategies,

the user can transform these operations into Knowledge modules respectively. However, the

Stop Term validation is an examining method rather than an evolution strategy. The

validation should be transformed into a Case module as an evaluation operation of the

processing problem.

3.2 The Evolution Strategy of the CKE

Fig. 3.3. The evolution strategy of community knowledge evolution.

In the Community Interaction Strategy, the evolution strategy has been divided into

three steps, namely Member Evolution, Group Interaction and Community Interaction. The

Member Evolution step involves self-adaptive evolution using the Knowledge modules. The

Member entity uses the supported Knowledge entities which are recommended by its Memes

entity to evolve new solutions. Every Member entity of the same Group entity generates

independent solutions to the same problem. After each Member of every Group entities entity

 9

finished Member Evolution, Group Interaction will use the best Solution entity of each

Member entity to evolve better solutions.

As the Member entity uses the Knowledge entity, Group and Community Interactions

use four Activity operations to generate better solutions. The Activity operations are applied to

exchange the best solutions of Member entities which are produced from Member Evolution.

In order to preserve the individualism and avoid local optimal, CIS simulates human learning

interactive behaviors. Member entities computes local optimal independently during Member

Evolution, and then, preserves a suitable diversity for final optimal solutions in Group

Interaction and Community Interaction. The working flow is shown in Fig. 3.3.

3.3 Member Evolution using Knowledge Modules

 Fig. 3.4 shows the workflow of the Member Evolution operation. The operation starts

from the registration of Topic and Case entities. After the Member entity loads the processing

Case entity, the Memes entity provides the recommended Knowledge entities. When the

Knowledge Map entity decides to stop the evolution, one or more Solution entities are

generated. Totally, each Member entity has at least three Solution entities. When all of the

Solution entities are generated, the Member entity ranks all Solution entities into Best,

Normal and Worse categories. The CIS uses Best and Worse Solution entities in the operations

of comparison and convergence verification and preserves the diversity of solutions using

Normal Solution entities. After CIS has finished the Member Evolution operation of all the

Member entities of all Group entities which process the same problem, the Group Interaction

operation will be launched to find the group-level optimal solutions.

Fig. 3.4. The workflow of the member evolution operation.

3.4 Knowledge Map

 The circle key point of the Member Evolution is the Knowledge Map module which is

responsible for the management of Knowledge entities. The Knowledge Map entity loads and

registers all Knowledge entities which are listed in the configuration setting. After all the

entities are loaded, the Knowledge Map creates the Start Point Knowledge entity as the entry

of the evolution. After the entity is created, the Knowledge Map entity continually loads

Registered Knowledge entities and builds the relations to other Registered Knowledge entities

according to the pre-decided configuration of loaded Knowledge entity. After all of the

 10

Registered Knowledge entities are loaded and the relations are built, the Knowledge Map

entity is created.

After the Knowledge Map entity is created, the Member entity is able to execute the

selected Knowledge entities which are recommended by the Memes entity based on the needs

for processing the problem and the running history of processed Knowledge entities.

In the recommendation procedure shown in Fig. 3.4, the Knowledge Map entity delivers

the processing Case entity and the previously processed Knowledge entity to Member entity’s

Memes entity. The Memes will randomly select a Knowledge entity from the relation list of

the processed Knowledge entity when the running history has not any records of the

processing Case and the processed Knowledge. Otherwise, Memes will select an appropriate

Knowledge entity as the recommended Knowledge entity according to the Reference

Probability which is generated from the processed history. For example, two processed

records of Knowledge entity A and B are 40 and 60, the selected probability of the entities are

0.4 and 0.6, respectively.

Fig. 3.5. The workflow for getting recommended knowledge entities.

After the Knowledge Map entity gets the recommended Knowledge entity, the

Knowledge Map entity will deliver the Solution entity to the recommended Knowledge entity

and launch the recommended Knowledge entity procedure. When the procedure has finished,

the Memes entity will update the running history of the recommended Knowledge and switch

to other status after the updating. If the processed Knowledge entity is recommended by

random selection, the Memes entity will check the Stopping Threshold. If the Knowledge is

not selected by random, the Memes will load the relation list from the recommended

Knowledge to retrieve the next recommendation. The Memes uses the processed result from

the recommended Knowledge to generate the Stopping Threshold. When the result approaches

the optimal solution, the Stopping Threshold is flagged. For example, when the optimal

solution is 100 and the process result is 90 then the Stopping Threshold will be ten. After the

Stopping Threshold is generated, the Knowledge Map entity generates a random value in the

interval 0 to 100. If the random value is less than ten, the Memes continues to find the next

recommended Knowledge entity. Otherwise, the evolution is considered converged.

After the recommended Knowledge finishes, the Knowledge Map stores the GUID of

 11

the Knowledge and the score of Superior solution into the Memes entity for updating the

running history which is used for recommendation.

3.5 The Running History of the Memes Module

In biology, the memes represents thoughts, symbols and activity patterns of the culture.

The memes affects the evolution of culture such as gene evolution using selection, mutation,

crossover and recombination. During human learning and researching, a nerve conduction

pattern of the human’s brain will be built into the memes for the specific problem. In the

proposed architecture, the Memes module stores the running history of the Knowledge entities

which records the information of each processed Case entity with used symbols and the

running history of processed Knowledge entities.

The history records helps the Member entity to shorten the searching time for evolving

the solution and maintain the diversity of solutions provided by different Member entities

during Group Interaction and Community Interaction.

The Memes module manages the running history using “Symbol” which means the basic

data format character. For example, Symbols includes 0 to 9 and the decimal point in digital

format and 0 to 9 and A to Z are valid string characters. More examples are listed in Table 3.1.

Because different problems use different symbols, the user must provide the specific symbols

for CIS as the basic unit for recording the evolution history in the Symbol Frequency Set (SFS)

during Member Evolution.

Table 3.1. Symbol examples.

Type Example Symbols

Binary 010110 {0, 1}

Hexadecimal E9 {0, 1, 2, 3, …, 8, 9}, {A, B, C, D, E, F}

Integer -10 {0, 1, 2, 3, …, 8, 9}, { “+”, “-“}

Float 33.143 {0, 1, 2, 3, …, 8, 9}, { “+”, “-“, “.”}

String Hello {0, 1, 2, 3, …, 8, 9}, {A, B, C, …, Y, Z}, { … }

The Symbol management of the Memes module recommends the best symbols of the

solution for CIS and manages the SFS. The purpose of the SFS is to record the symbol usage

frequency of symbols which appears in different positions. As the example in Fig. 3.6 shows,

the first coordinate of the second group in Set A is ten. The value can be divided into two

symbols which are 1 and 0. Therefore, the usage frequencies of used symbols in different

positions will become the recommendation reference for the Memes entity to generate the

Reference Probability for recommending an appropriate symbol to the Member entity. In Fig.

3.6, the probabilities of the first positions of the first coordinate in the second group can be

translated into 3.3% (“0”), 34.8% (“1”), 22.3% (“2”) and 38.6% (“3”). Therefore, the higher

recommended symbols of the first position are “1” and “3”.

Fig. 3.6. An example of symbol frequency set.

 12

3.6 Activity Operations

Activity operations are the interaction methods between Member entities in the Group

Interaction and the Community Interaction. The purpose of the Activity operations is to

preserve a suitable diversity of solutions. Default Activity operations of the proposed strategy

are Teach_To, Learn_From, Collaboration and Competition operations. In Fig. 3.7, Member

entity A uses the Teach_To operation as the interactive Activity operation. Member B

automatically uses the Learn_From operation as the interaction operation. These Activity

operations simulate the human learning procedure. This is analogous to teachers who provide

the best solutions to students, which students accept without questions.

The Member entity uses the Teach_To operation to retrieve the best Solution entity from

its Memes and deliver the entity to the opposite Member entity. After the entity has received

by Learn_From, the opposite Member entity unconditionally stores the received Solution

entity to its Memes entity.

Fig. 3.7. Teach_To activity and Learn_From activity operations.

In the real world, the relationship between teacher and students is not only teaching and

learning, but also discussion, collaboration and competition. In order to simulate these

situations, a Collaboration operation is created to provide a cooperation activity for Member

entities. As the procedure in Fig. 3.8 shows, Member A and B propose the best Solution

entities and generate a new Unit Set entity by comparing the difference parts of their Unit Set

entities.

The new Unit Set entity employs two steps. First, the new Unit Set entity stores the

same Particle Unit entity parts which are selected from the Unit Set A and B entities, and then

retrieves the remaining Particle Unit entities randomly from Unit Set A and B entities. After a

new Unit Set entity has been created, the new entity is compared with Unit Set A and B

entities. If the score of the new Unit Set entity is better than the best score of Unit Set A and B

entities, the Memes entities of Member A and B entities will store the new Unit Set entity.

Otherwise, the new entity is abandoned.

 13

Fig. 3.8. Collaboration operation.

Competition is also an important facet of human learning. The Competition operation

retrieves the best Solution entity of the processing Case entity from the Member A and B

entities, and then each Memes entity unconditionally stores the better Solution entity. In Fig.

3.9, the Memes entity of Member A or B stores Solution B or A entity when the score of

Solution B or A is better than the Best Solution of itself.

Fig. 3.9. Competition operation.

3.7 Group Interaction using Activity

In the Group Interaction, the major responsibility of the Group module is to manage the

interaction of the Member entities. The Member entity uses its Meme entity and opposite

Member entity’s Memes to decide which Activity operations should be applied. After the

independent procedure of Member Evolution and Group Interaction, Member entity can find

the best solution for the processing problem.

 14

Fig. 3.10. The workflow of activity recommendation operation.

As shown in Fig. 3.10, all Member entities of the same Group entity will be set as

alternate Active and Passive characters. The recommended Activity operation is selected

according to the running history of the interacting Member entities. The running history

records the result of all operated Activity operations which have been applied to the

interaction with other Member entities. The selected probability of the recommended Activity

operation is calculated using the records.

Fig. 3.11. Group interaction operation.

All modules in the Group Interaction operation are shown in Fig. 3.11. The Group

module loads the default Activity operations for the Member entity to generate new solutions

until all the solutions of every Member entity are identical. The Group entity selects a pair of

Member entities randomly, and then, the pair selects an appropriate Activity operation for the

 15

processing problem and generates new solutions after the interaction. After all the Member

entities finished the interactions, the Group entity checks all solutions of each Member

entities. If all solutions’ score of the Member entity are the same, the Member entity is treated

as a convergent entity. When all Member entities in each Group entities are convergent, the

Community Interaction operation is launched.

Fig. 3.12. Community interaction operation.

3.8 Community Interaction using Activity

The Community Interaction uses the same Activity operations as the Group Interaction.

The recommended Activity operation is also selected by the Member pair which comprises

the best Member entities from two different Group entities.

Fig. 3.12 describes the concept of Community Interaction. When all the Member entities

have converged, the Group entity is treated as convergent. The interaction continues until all

the Group entities are convergent. To ensure that the process finishes, the Community entity

calculates the difference between the best solution and optimal solution to produce a Stopping

Threshold which is used by the Member Evolution.

4. Simulation Results

In order to demonstrate the practicality of the proposed architecture, 11 operations from

past research results have been implemented into 11 Knowledge modules which are two

Generator and nine Common Knowledge modules. Only two Generator modules connect to

the Start Point module as its parent, and then connect other 11 modules that every module are

connected each other.

4.1 Function Parameters Optimization

a. Curve-fitting Problem

 16

Fig. 4.1. Curve-fitting problem.

In the first experiment, assuming there are four points, (-1,8), (0,8), (1,4), and (2,16), in

the plane shown in Fig. 4.1. The problem is to find a quadratic function that fits those data

points. Equations 4.1 to 4.5 illustrate how to apply the linear algebra for solving the problem.

By plugging the four data points into Eq.(4.5), the least mean-squared value is 20. Denote the

quadratic function by:

2

210)(tctcctf  , (4.1)

where C0, C1, and C2 are coefficients for the polynomial. Fitting the data into the above

equation, we get the following form:

 ,

2

1

0

B

C

C

C

A 

















 (4.2)

where

















 



421

111

001

111

A

,






































2

1

0

,

16

4

8

8

C

C

C

CB

 (4.3)

By using the least mean-squared method, we then get the following solution:

 .

3

1

5

)(1

*
2

*
1

*
0



































  BAAA

C

C

C

C TT (4.4)

It means that the quadratic equation is:

 .35)(2tttf  (4.5)

b. Generalized Rastrigin’s Function

 17

 ; ;

Fig. 4.2. Generalized Rastrigin’s function [36].

 Rastrigin function was first proposed by Rastrigin [36] and has been generalized by

Muhlenbein etc [38]. Due to the large search space and its large number of local minima, it

has been seen as a difficult problem. The optimal value of generalized Rastrigin’s function is

zero.

4.2 CKE+ Fuzzy Adaptive Genetic Algorithm

 Fuzzy adaptive genetic algorithm (FAGA) has been proposed in [39]. FAGA not only

uses fuzzy membership functions and an elite strategy to preserve the diversity of the

population and to enhance the performance, but also modified the mutation and crossover

operations using a sequence frequency set which is the predecessor of the proposed symbol

frequency set. In order to adapt the different situation automatically, FAGA has abandoned

mutation and crossover rates, and recurrence. The population size is also adaptively adjusted

during the processing according to the situation. In the experiment, FAGA uses the evolution

results of CKE as its initial population to enhance the performance. The flowchart of FAGA

is shown in Fig. 4.3.

Fig. 4.3. The flowchart of FAGA.

 18

4.3 Results with TGA, FAGA and CKE+FAGA

The experiment ran on a laptop with an Intel Centrino 2 and 2G DDRII RAM. In the

experiment, each value shown in Fig. 4.4 to 4.7 are the average from 30 independent

repetitions. The results in Table 4.1 and 4.2 are the average value of Fig. 4.4 to 4.7. The

necessary parameters used in the traditional genetic algorithm are summarized as follows:

Recurrence Population Size Mutation Rate Crossover Rate

500 50 0.05 0.8

As can be seen from Table 4.1 TGA spent the most time to approach the optimal

unsuccessfully rather than FAGA and CKE+FAGA. Although, the average result of

CKE+FAGA only shows little improvement, its processing time is half that of FAGA. The

result confirms the efficiency of CKE and demonstrates that CKE can help shorten the

processing time without any penalties.

Table 4.1. Results of curve-fitting problem.

 Traditional GA FAGA CKE+FAGA

Average Time (s) 18.0322908 13.3131773 6.1632032067

Average Value 23.45417767 20.45089747 20.39634233

Fig. 4.4. Processing time for the curve-fitting problem.

Fig. 4.5. Simulation results for the curve-fitting problem.

The average results of generalized Rastrigin’s function show that the performance of

TGA is too far away from the result of FAGA and CKE+FAGA. As a result, Fig. 4.7 only

 19

shows the values of FAGA and CKE+FAGA. The results show that CKE+FAGA only needs

half the time to find the optimal value which is also better than the average value for FAGA

and TGA.

Table 4.2. Results for the generalized Rastrigin’s function.

 Traditional GA FAGA CKE+FAGA

Average Time (s) 16.81403913 3.222696367 1.469646367

Average Value 3.265926667 1.17667E-05 1.333E-07

Fig. 4.6. Processing time for the generalized Rastrigin’s function.

Fig. 4.7. Simulation results for the generalized Rastrigin’s function.

5. Conclusion

In this paper, we proposed a strategy and an architecture which can find new algorithms

and solutions automatically. The proposed evolution strategy uses the proposed architecture

to deal with problems. The user can propose new knowledge and solutions following the

definitions which are described as Knowledge Definitions and Case Definitions. The

Knowledge module can package up the domain knowledge which is generated by various

researchers. Although the proposed strategy can recombine various Knowledge processing

compositions, the implementation of the Knowledge modules still need to be manually

created and hence needs human intervention. Human can use the strategy and architecture to

save time. As a result, the strategy and architecture are proposed as a framework to assist

researchers in finding optimal knowledge processing compositions from vast collections of

existing knowledge. Moreover, the framework also provides common definitions for

 20

convenient information exchange.

Based on the strategies from the Member Evolution operation to the Group Interaction

and the Community Interaction, different Community entities could exchange their solutions

as the reference to each other. Future work includes building a Community Network to

provide an interaction environment for Community modules and their research results to be

easily shared with other researchers.

In the proposed strategy, the default Activity operations are very simple and not sufficient

to represent all the interactivity of human beings. Hence, in future work, the Activity

operations will be separated from the management of Member module and be designed as an

interface similar to IKnowledge. Through the interface, researcher can implement various

Activity modules to simulate the activity of human beings, organizations and communities.

Researchers can exchange their Activity modules.

References

[1] Birattari, M., Pellegrini, P. and Dorigo, M., “On the Invariance of Ant Colony

Optimization,” IEEE Transactions on Evolutionary Computation, vol. 11, no. 6,

pp.732-742, Dec. 2007.

[2] Gang Wang, Wenrui Gong, DeRenzi, B. and Kastner, R., ”Ant Colony Optimizations for

Resource- and Timing-Constrained Operation Scheduling,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 6,

pp.1010-1029, June 2007.

[3] Martens, D., De Backer, M., Haesen, R., Vanthienen, J., Snoeck, M. and Baesens, B.,

“Classification With Ant Colony Optimization,” IEEE Transactions on Evolutionary

Computation, vol. 11, no. 5, pp.651-665, Oct. 2007.

[4] Leung, K., Cheong, F. and Cheong, C., “Generating Compact Classifier Systems Using a

Simple Artificial Immune System,” IEEE Transactions on Systems, Man, and

Cybernetics, Part B, vol. 37, no. 5, pp.1344-1356, Oct. 2007.

[5] Mardiris, V., Sirakoulis, G.Ch., Mizas, C., Karafyllidis, I. and Thanailakis, A. “A CAD

System for Modeling and Simulation of Computer Networks Using Cellular Automata,”

IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and

Reviews, vol. 38, no. 2, pp.253-264, March 2008.

[6] Mattiussi, C. and Floreano, D., “Analog Genetic Encoding for the Evolution of Circuits

and Networks,” IEEE Transactions on Evolutionary Computation, vol. 11, no. 5,

pp.596-607, Oct. 2007.

[7] Sanchez, L.and Couso, I., “Advocating the Use of Imprecisely Observed Data in Genetic

Fuzzy Systems,” IEEE Transactions on Fuzzy Systems, vol. 15, no. 4, pp.551-562, Aug.

2007.

[8] Lymperopoulos, D.G., Tsitsas, N.L. and Kaklamani, D.I., “A Distributed Intelligent

Agent Platform for Genetic Optimization in CEM-Applications in a Quasi-Point

Matching Method,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 3,

Part 1, pp.619-628, March 2007.

[9] Aguilar-Ruiz, J.S., Giraldez, R. and Riquelme, J.C., “Natural Encoding for Evolutionary

Supervised Learning,” IEEE Transactions on Evolutionary Computation, Vol. 11, no. 4,

pp.466-479, Aug. 2007.

[10] Shiu Yin Yuen and Chi Kin Chow, “A Genetic Algorithm That Adaptively Mutates and

Never Revisits,” IEEE Transactions on Evolutionary Computation, vol. 13, no. 2,

pp.454-472, April 2009.

[11] Ali, H., Doucet, A. and Amshah, D. I., “GSR-A New Genetic Algorithm for Improving

Source and Channel Estimates,” IEEE Transactions on Circuits and Systems I: Regular

 21

Papers, vol. 54, no. 5, pp.1088-1098, May 2007.

[12] Malossini, A., Blanzieri, E. and Calarco, T., “Quantum Genetic Optimization,” IEEE

Transactions on Evolutionary Computation, vol. 12, no. 2, pp.231-241, April 2008.

[13] Perales-Gravan, C. and Lahoz-Beltra, R., “An AM Radio Receiver Designed With a

Genetic Algorithm Based on a Bacterial Conjugation Genetic Operator,” IEEE

Transactions on Evolutionary Computation, vol. 12, no. 2, pp.129-142, April 2008.

[14] Hua-Liang Wei, Billings, S.A., Yifan Zhao and Lingzhong Guo, “Lattice Dynamical

Wavelet Neural Networks Implemented Using Particle Swarm Optimization for

Spatio–Temporal System Identification,” IEEE Transactions on Neural Networks, vol.

20, no. 1, pp.181-185, Jan. 2009.

[15] Faa-Jeng Lin, Li-Tao Teng, Jeng-Wen Lin and Syuan-Yi Chen, “Recurrent

Functional-Link-Based Fuzzy-Neural-Network-Controlled Induction-Generator System

Using Improved Particle Swarm Optimization,” IEEE Transactions on Industrial

Electronics, vol. 56, no. 5, pp.1557-1577, May 2009.

[16] Goudos, S.K., Zaharis, Z.D., Kampitaki, D.G., Rekanos, I.T. and Hilas, C.S., “Pareto

Optimal Design of Dual-Band Base Station Antenna Arrays Using Multi-Objective

Particle Swarm Optimization With Fitness Sharing,” IEEE Transactions on Magnetics,

vol. 45, no. 3, pp.1522-1525, March 2009.

[17] [Zielinski, K., Weitkemper, P., Laur, R. and Kammeyer, K.-D., “Optimization of Power

Allocation for Interference Cancellation with Particle Swarm Optimization,” IEEE

Transactions on Evolutionary Computation, vol. 13, no. 1, pp.128-150, Feb. 2009.

[18] Ramezani, M., Haghifam, M.-R., Singh, C., Seifi, H. and Moghaddam, M.P.,

“Determination of Capacity Benefit Margin in Multiarea Power Systems Using Particle

Swarm Optimization,” IEEE Transactions on Power Systems, vol. 24, no. 2, pp.631-641,

May 2009.

[19] Zhan, Z.-H., Zhang, J., Li, Y. and Chung, H. S.-H., “Adaptive Particle Swarm

Optimization,” IEEE Transactions on Systems, Man, and Cybernetics, Part B:

Cybernetics, 2009.

[20] Sharma, K.D., Chatterjee, A. and Rakshit, A., “A Hybrid Approach for Design of Stable

Adaptive Fuzzy Controllers Employing Lyapunov Theory and Particle Swarm

Optimization,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 2, pp.329-342, April

2009.

[21] Yang Zhang and Rockett, P.I., “Application of Multiobjective Genetic Programming to

the Design of Robot Failure Recognition Systems,” IEEE Transactions on Automation

Science and Engineering, vol. 6, no. 2, pp.372-376, April 2009.

[22] Shintemirov, A., Tang, W. and Wu, Q.H., “Power Transformer Fault Classification Based

on Dissolved Gas Analysis by Implementing Bootstrap and Genetic Programming,”

IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and

Reviews, vol. 39, no. 1, pp.69-79, Jan. 2009.

[23] Darren Doherty and Colm O’Riordan, “Effects of Shared Perception on the Evolution of

Squad Behaviors,” IEEE Transactions on Computational Intelligence and AI in Games,

vol. 1, no. 1, pp. 50-62, March 2009.

[24] Walker, J.A. and Miller, J.F., “The Automatic Acquisition, Evolution and Reuse of

Modules in Cartesian Genetic Programming,” IEEE Transactions on Evolutionary

Computation, vol. 12, no. 4, pp.397-417, Aug. 2008.

[25] Chion, C., Landry, J.-A. and Da Costa, L., “A Genetic-Programming-Based Method for

Hyperspectral Data Information Extraction: Agricultural Applications,” IEEE

Transactions on Geoscience and Remote Sensing, vol. 46, no. 8, pp. 2446-2457, Aug.

2008.

[26] Sobester, A., Nair, P. B. and Keane, A. J., “Genetic Programming Approaches for

 22

Solving Elliptic Partial Differential Equations,” IEEE Transactions on Evolutionary

Computation, vol. 12, no. 4, pp.469-478, Aug. 2008.

[27] Hasegawa, Y. and Iba, H., “A Bayesian Network Approach to Program Generation,”

IEEE Transactions on Evolutionary Computation, vol. 12, no. 6, pp.750-764, Dec. 2008.

[28] Day, P. and Nandi, A.K., “Binary String Fitness Characterization and Comparative

Partner Selection in Genetic Programming,” IEEE Transactions on Evolutionary

Computation, vol. 12, no. 6, pp.724-735, Dec. 2008.

[29] Alcala, R., Ducange, P., Herrera, F., Lazzerini, B. and Marcelloni, F., “A

Multi-Objective Evolutionary Approach to Concurrently Learn Rule and Data Bases of

Linguistic Fuzzy Rule-Based Systems,” IEEE Transactions on Fuzzy Systems, 2009.

[30] Hansen, N., Niederberger, A.S.P., Guzzella, L. and Koumoutsakos, P., “A Method for

Handling Uncertainty in Evolutionary Optimization With an Application to Feedback

Control of Combustion,” IEEE Transactions on Evolutionary Computation, vol. 13, no.

1, pp.180-197, Feb. 2009.

[31] Yasakethu, S.L.P., Fernando, W.A.C. and Kondoz, A., “Evolution strategy based rate

controlling for off-line video coding,” Electronics Letters, vol. 45, no. 4, pp.204-205,

Feb. 2009.

[32] Yasakethu, S.L.P., Fernando, W.A.C. and Kondoz, A.M., “Rate controlling in off line 3D

video coding using evolution strategy,” IEEE Transactions on Consumer Electronics,

vol. 55, no. 1, pp.150-157, Feb. 2009.

[33] Rojanavasu, P., Hai Huong Dam, Abbass, H.A., Lokan, C. and Pinngern, O., “A

Self-Organized, Distributed, and Adaptive Rule-Based Induction System,” IEEE

Transactions on Neural Networks, vol. 20, no. 3, pp.446-459, March 2009.

[34] Dam, H.H., Abbass, H.A., Lokan, C. and Xin Yao, “Neural-Based Learning Classifier

Systems,” IEEE Transactions on Knowledge and Data Engineering, vol. 20, no. 1,

pp.26-39, Jan. 2008.

[35] Bernado-Mansilla, E. and Garrell-Guiu, J.M., “Accuracy-Based Learning Classifier

Systems: Models, Analysis, and Applications to Classification Tasks,” Evolutionary

Computation, vol. 11, no. 3, pp.209-238, 2003.

[36] The Generalized Rastrigin Function -

http://tracer.lcc.uma.es/problems/rastrigin/rastrigin.html

[37] A. Törn and A. Zilinskas. “Global Optimization,” Lecture Notes in Computer

Science, Springer-Verlag, Berlin, 1989.

[38] Mühlenbein, H., Schomisch, D., and Born, J., “The Parallel Genetic Algorithm as

Function Optimizer,” Parallel Computing, vol. 17, pp. 619-632, 1991.

[39] Chang, Y.-T., Huang, Y.-P., and Sandnes, F.E., “Efficient Layout of Multisensors using

Fuzzy Adaptive Genetic Algorithm,” in Proc. NAFIPS, San Diego, CA, USA,

pp.216-221, June 2007.

http://tracer.lcc.uma.es/problems/rastrigin/rastrigin.html

