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Abstract-- Most real-world problems cannot be mathematically defined and/or structured 

modularly for peer researchers in the same community to facilitate their work. This is 

partially because there are no concrete defined methods that can help researchers clearly 

describe their problems and partially because one method fits one problem but does not apply 

to others. In order to apply someone’s research results to new domains and for researchers to 

collaborate with each other more efficiently, a well-defined architecture with self-adaptive 

evolution strategies is proposed. It can automatically find the best solutions from existing 

knowledge and previous research experiences. The proposed architecture is object-oriented 

that in turn become foundations of the community interaction evolution strategy and 

knowledge sharing mechanism. They make up an autonomous evolution mechanism using a 

progressive learning strategy and a common knowledge packaging definition. The 

architecture defines fourteen highly modular classes that allow users to enhance collaboration 

with others in the same or similar research community. The presented evolution strategies 

also integrate the merits of users’ predefined algorithms, group interaction and learning 

theory to approach the best solutions of specific problems. Finally, resource limitation 

problems are tackled to verify both the re-usability and flexibility of the proposed work. Our 

results show that even without using any specific tuning of the problems, optimal or 

near-optimal solutions are feasible. 

 

Keywords: Self Adaptation, Evolution Computation, Knowledge Sharing, Learning Strategy, 

Community Interaction. 

 

1. Introduction 

In recent year, many research results have been reported in the field of artificial 

intelligence. Most of these are inspired by natural ecological system, such as ant colony 

systems [1]. Some researchers use max-min ant system to enhance classification, reduce 

completion time and the use of computing resources [2-3]. Ecosystems are also the 

inspiration behind artificial immune system and cellular automata. Recent articles describe 

compact classifier system using simple artificial immune system [4] to model the simulation 

of computer network for evaluating connectivity and system reliability and computing the 

shortest package routing path [5]. 

Ecosystems are also the original inspiration behind genetic algorithm which was first 
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described by Prof. John Holland in 1975. Many researchers are continually enhancing the 

performance of genetic algorithm [6-12] and developing new applications [13]. Moreover, 

ecosystem ideas lead Dr. Eberhart and Dr. Kennedy to develop particle swarm optimization 

(PSO) in 1995, which is inspired by social behavior of bird flocking. PSO has been applied to 

many applications [14-17] and the architecture of PSO allows researchers to enhance the 

performance using different domain knowledge [18-20]. Inspired by biological evolution, 

genetic programming is an evolutionary methodology for generating computer programs that 

solve certain user-defined tasks [21-23], and many enhancements to the basic genetic 

programming paradigm have been proposed [24-28]. Based on the concept of adaptation and 

evolution, evolution strategy (ES) was proposed in the early 1960s and 1970s. Although ES 

has been around for some time, the application and enhancement are still being proposed 

[29-32]. 

Moreover, learning classifier systems that were first described by Prof. John Holland 

consist of computing rules which are composed of binary, real-valued, neural network, and 

other representations. Recently, researchers have proposed an enhancement using 

self-organized map (SOM) [33] and neural network [34] on supervised learning classifier 

systems (UCS). UCS is also used for the classification problem in data mining [35]. 

There is a vast body of research being published every year, which means that the 

research results in different kinds of fields are growing. Although Internet technology has 

shortened the distance between people, the amount of information that becomes available is 

growing. People only have limited time to absorb information. For example, there are various 

subjects in artificial intelligence, such as neural network, genetic algorithm, data mining and 

gray system, etc. For each of these categories a vast body of knowledge is developed for 

solving different problems. 

Current media technologies are unable to hide the information chaos, and the expanding 

information spreads unsystematically. Consequently, a gap emerges between research groups 

which prevent interactions. As a result, many experiences, results and algorithms will be lost 

or redundantly developed. 

Researchers usually search for existing solutions when confronted by a new problem. 

During the search, a solution is invented by knowledge combination with different process 

orders. Time and rigorous methods are needed to discover the appropriate solution, and 

researchers can also add new algorithms to the combination for gaining better solution. 

However, the progress is not easily shared with others because of the information gap. In 

general, it is often difficult to learn from previous mistakes and experiences to avoid 

repeating the same mistakes.  

Most results are simply improvements upon previous research. The improvements include 

adding, deleting, reordering or modifying steps and algorithms of previous studies. The 

improvement depends on which algorithms, modules or algorithms are selected.  

Past research provides the foundations for new inventions. Research is more valuable if it 

is understandable and reusable. Researchers can discover better solutions by combining past 

knowledge. Past records can help researchers avoid mistakes conducted in previous research.  

The probability of obtaining better solutions rises when the previous research progresses 

and results are better understood. This is the reason for acquiring knowledge and discussing 

problems with others. Irrespective of the types of knowledge, they always have chances to 

provide brilliant ideas for solutions. In order to gather the required knowledge, it is crucial 

that researchers interact.  

Researchers are restricted by limited time and space to find the optimal combination from 

a seemingly unlimited number of sources. It is also impossible to know if the combination is 

suitable for other problems or not.  

Based on the principles of object oriented programming (OOP), a common format can be 
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defined to package knowledge as basic components representing best solutions. Computers 

can then be used to assist researchers finding new solutions to problems.  

Even if two algorithms have similar architectures, they could use different knowledge. 

Take neural networks and genetic algorithms for example. Neural networks can be divided 

into three layers including input, hidden and output layers. The output layer sends 

unsupervised or supervised feedback back to the hidden layer for self-adaption. On the other 

hand, genetic algorithms can also be divided into four operations including initialization, 

mutation, crossover and selection operations. The selection and initialization also have a 

self-adaptive mechanism using performance filters and a competition strategy to generate 

new solutions. Clearly, both evolution algorithms present similar compositions using 

self-adaption feedback. In many studies, researchers also applied these two algorithms to 

various problems together for developing better solutions.  

The operations of the proposed strategy emulate the crossover operation of genetic 

algorithm. The operations use several evolution steps with independent modules to find better 

solutions. The highly modular knowledge definition allows researchers to both improve the 

final solutions using proposed evolution strategy and also efficiently share their research 

experiences with others.  

The proposed evolution strategy provides several means of knowledge exchange. Central 

to the strategy is the ability to find better knowledge combinations and solutions to various 

problems based on huge banks of knowledge using computing power. The basic concept of 

the proposed strategy and architecture is similar to independent research. Normally, 

researchers obtain independent research results or find reliable solutions and ideas by 

themselves before discussing, competing or cooperating with other researchers. In the 

proposed architecture, researchers from different regions can cooperate using the highly 

modular components. 

This paper is organized as follows. The definitions and the characteristics of the modules 

of the proposed strategy and architecture are introduced in Section 2. Three evolution 

strategies are presented for the proposed architecture. The components of the architecture 

which are called Community Knowledge Modules (CKM) are presented in Section 3. Section 

4 demonstrates the usability of the proposed strategy and architecture using the parameters 

optimization problem with two different functions as examples. Finally, future work is 

discussed in the conclusion section. 

 

2. The Architecture of Community Knowledge Evolution 

People usually learn from others in class, through discussions and by reading books. The 

proposed strategy mimics this human learning mechanism through 14 modules that are the 

evolution operating components.  

 

2.1 Architecture 

The proposed architecture is called the Community Knowledge Modules (CKM). These 

modules are used by the Community Interaction Strategy (CIS) for finding the optimal 

solution to problems. CKM has two primary parts, namely the Domain Definition (DD) and 

the Evolution Modules (EM). These are used for defining problems and evolution operations, 

respectively. The CKM both abstracts the evolution progress and avoids the rewriting of 

similar programs for solving different data formats. The CKM forces the user to focus on the 

algorithm rather than a particular data format. 

 

2.2 Domain Definition 

Irrespective of the problem that the researcher wants to solve, the researcher has to 
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determine the basic data format to be used in the program. The DD provides several common 

formats suitable for solving different classes of problems. The format employs object oriented 

ideas where the user has to override and to inherit the defined interfaces and abstract classes 

to get access to the basic operation classes which are used by the CIS.  

During the evolution, the CIS uses the defined interfaces to operate on the real data 

which are packaged in the basic operational class. The user must provide operations for 

translating real data into the defined format which follows the defined interfaces.  

The Domain Definition has two parts, namely the Case Definition (CD) and the 

Knowledge Definition (KD). The CD defines five input data package definitions which 

represent different types of research problems. These definitions include Domain, Topic, Case, 

Unit Set and Particle classes. 

The Knowledge Definition contains a group of interfaces which satisfies the needs of 

different knowledge domains. Users can exploit the standard KD to implement Knowledge 

classes, such as, mutation and crossover operation of GA, back-propagation neural network 

or any algorithm for specific needs. For different missions, the modules can be divided into 

two types of modules, Generator type and Common type modules. Generator type modules 

generate initial solutions for Common type modules to process. 

After the required modules are implemented, the modules are managed by the Knowledge 

Map module for storing and managing the modules. The map preserves the entity of modules 

and manages the connection between relational Knowledge modules. The connection is 

decided by the module creator. Before the module is implemented, the creator has to decide 

the relation of the implementing and the published modules. 

Before the evolution progress is run, the Knowledge Map creates a Start Point 

Knowledge module which is designed as the entry to the progress. The Start Point Knowledge 

module can only be hooked to Generator type modules. Common type modules can hook to 

multiple modules except from Start Point Knowledge modules. The final processing order 

will be recommended by Memes which memorizes the process histories and results as a 

human brain. The details of the evolution process are discussed in Section 3. 

 

2.3 Evolution Modules 

Evolution Modules contain a group of modules which are designed for the proposed 

strategy. These modules are Community, Member Group, Knowledge Map, Member, Memes, 

Solution, Evolution Path and Particle Unit. These modules provide various operations and 

running histories for the evolution process. For different problems, the restrictions and the 

data format of the specific case are provided by the Case classes which are created by the 

users. Some operations are supported by the implemented CD classes. Since real data are 

packaged into the Particle module, the EM can handle different data formats rather than 

having to rewrite the experiment programs. 

 

2.4 The Relation between Domain Definition and Evolution Modules 

The relation between the EM and DD modules is similar to the relation of operating 

components and problem definition. These modules support the initial conception for 

providing the idea of Community Interaction Evolution (CIE). As shown in Fig. 2.1, a 

research community usually focuses on a specific research domain. A community also 

contains independent member groups which focus on one or multiple topics of the research 

domain. A topic also is studied by one or multiple member groups. 
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Fig. 2.1. The relation between the community module and the domain definition. 

 

The role of the Community module is to serve as an association which has many 

research groups. Each group in the Community module has their specific research interests. 

The Community module provides both operating interfaces and controls the life cycle of the 

Member Groups entities and the Community Interaction operation. The Member Group 

module can be seen as a research group who focuses on a specific case. The Member Group 

module uses the Knowledge Map module to manage the implemented Knowledge entities.  

After the Member Evolution has finished, the Group Interaction operation is launched. 

In the Group Interaction operation, the Member entities of the same Member Group entity 

exchange their personal best solutions with each other to find the best solution of the Member 

Group entity.  

The evolution which is evolved inside the Member entity is called Member Evolution. 

This is similar to the situation where researchers independently investigate the problem 

before discussing it with others. Although the investigations are independent, researchers 

usually have the same elementary knowledge of the research field. Each Member entity of the 

Member Group entity can retrieve suitable Knowledge entities from the Knowledge Map 

entity of the Member Group entity and then, launch the Member Evolution operation for 

producing solutions. These solutions are stored in the Memes entity of the Member entity. The 

relations of Case, Knowledge Map, Member and Memes are shown in Fig. 2.2.  

 
Fig. 2.2. The relations of Case, Knowledge Map, Member and Memes. 

 

As shown in Fig. 2.3, each Member module has only one Memes module. The Memes 

module is both responsible for recommending appropriate Knowledge entity and Activity 

operations, and store Solution entities which record evolution history and the personal best 

solution of the Member entity. In order to store the process history and the personal best 

solutions, the Solution module is composed of two modules, namely the Evolution Path and 

the Unit Set modules.  
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The Evolution Path module records the global unique identification (GUID) and the 

processing order of operated Knowledge entities which have been used during the Member 

Evolution. The Unit Set module contains the Particle Unit module which represents the basic 

operating unit in the Member Evolution. Each Particle Unit module has one to multiple 

Particle modules. The relation between the Particle Unit and the Particle modules is very 

similar to the coordinates and its values. The user has to implement the Particle module 

following the definition of the CD to provide the basic operating unit. According to the need 

of the processing problem, the user must implement the appropriate Particle module to 

package the data, and then, use the Particle Unit entity to manage Particle entities. 

 
Fig. 2.3. The relation of evolution modules. 

 

3. The Implementation and Evolution Strategy of CKE 

Before the modules are implemented, the creator should understand the properties and 

restrictions of the processing problem. The creator overrides, inherits or implements the 

modules of Domain Definition. 

 

3.1 The Implementation of Domain Definition Modules 

The creator must inherit and implement the IDomain, ITopic and ICase interfaces 

respectively. The IDomain interface definition defines basic information and the domain 

definition, and manages all registered Topic modules which are implemented from ITopic. 

Moreover, the ITopic interface contains the definition of basic information, and responses for 

the management of all registered Case entities which follows the ICase interface. The ICase 

interface contains definitions of solution region setting and constraints.  

The definitions include the configurations of basic information, solution region, optimal 

and worst results, the length of Unit Set, the composition of Particle Unit and the accuracy of 

final results. The user can inherits original interfaces or add new functions for the specific 

case. After the Case module has been implemented, ICase endows with Evolution Modules 

the ability to create Solution, Unit Set, Particle Unit and Particle entities. 

Except for the ICase interface, the user must inherit IUnitSet and IParticle too. Because 

problems use different data formats and compositions, user has to provide appropriate data 

format and composition for dealing with the problem through the implementation of IUnitSet 

and IParticle interfaces. 

As shown in Fig. 3.1 the left part presents the modules which must be inherited or 

overridden, the right part are the example of implemented entities. The example in Fig. 3.1 

shows that three sensors need to be allocated the position in 2D coordinates. At the beginning, 

the user must use Unit Set module to form the composition of the three sensors respectively, 
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and then, package up the location of the sensor using the Particle Unit module which holds 

two Particle modules to represent the coordinates of position X and Y, respectively. 

 

 
Fig. 3.1. The relations between Unit Set, Particle Unit and Particle modules. 

 

For the sake of calculation, comparison and evaluation operations, the CIS has to know 

the discrimination of different solutions. Therefore, the interface uses the “double” format to 

represent the performance score, because “double” can be translated into most other types of 

data formats.  

Beside of the Case Definition described above, the Knowledge Map module is 

responsible for providing the Knowledge module during the Member Evolution. The user can 

follows the IKnowledge interface to implement new Knowledge modules and adds the 

module into a Knowledge Map entity.  

There are five interfaces defined in the IKnowledge definition which are the interfaces 

for starting, executing and hooking Knowledge module, the interface of providing Knowledge 

Map to gather the children Knowledge and the interface of storing the processed Knowledge 

information into the Evolution Path entity. The user can implement the IKnowledge interface 

to create new Knowledge modules and use the existing Knowledge modules. If user wants, 

the new module can be used by CIS, the module needs to set the relations with other 

implemented Knowledge modules and registers itself into the Knowledge Map entity. Only 

after the relations have been built, the CIS will be able to retrieve the appropriate entity from 

the Knowledge Map entity during the evolution. 
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Fig. 3.2. The operations of genetic algorithm to knowledge definition. 

 

Fig. 3.2 provides an example that transforms the conventional operations of genetic 

algorithm (GA) into Knowledge Definition modules. At the bottom of the figure are the GA 

operations which include Initialization, Crossover, Mutation, Selection operations and the 

Stop Term validation. Because the first four operations represent different evolution strategies, 

the user can transform these operations into Knowledge modules respectively. However, the 

Stop Term validation is an examining method rather than an evolution strategy. The 

validation should be transformed into a Case module as an evaluation operation of the 

processing problem.  

 

3.2 The Evolution Strategy of the CKE 

 
Fig. 3.3. The evolution strategy of community knowledge evolution. 

 

In the Community Interaction Strategy, the evolution strategy has been divided into 

three steps, namely Member Evolution, Group Interaction and Community Interaction. The 

Member Evolution step involves self-adaptive evolution using the Knowledge modules. The 

Member entity uses the supported Knowledge entities which are recommended by its Memes 

entity to evolve new solutions. Every Member entity of the same Group entity generates 

independent solutions to the same problem. After each Member of every Group entities entity 
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finished Member Evolution, Group Interaction will use the best Solution entity of each 

Member entity to evolve better solutions.  

As the Member entity uses the Knowledge entity, Group and Community Interactions 

use four Activity operations to generate better solutions. The Activity operations are applied to 

exchange the best solutions of Member entities which are produced from Member Evolution. 

In order to preserve the individualism and avoid local optimal, CIS simulates human learning 

interactive behaviors. Member entities computes local optimal independently during Member 

Evolution, and then, preserves a suitable diversity for final optimal solutions in Group 

Interaction and Community Interaction. The working flow is shown in Fig. 3.3. 

 

3.3 Member Evolution using Knowledge Modules 

 Fig. 3.4 shows the workflow of the Member Evolution operation. The operation starts 

from the registration of Topic and Case entities. After the Member entity loads the processing 

Case entity, the Memes entity provides the recommended Knowledge entities. When the 

Knowledge Map entity decides to stop the evolution, one or more Solution entities are 

generated. Totally, each Member entity has at least three Solution entities. When all of the 

Solution entities are generated, the Member entity ranks all Solution entities into Best, 

Normal and Worse categories. The CIS uses Best and Worse Solution entities in the operations 

of comparison and convergence verification and preserves the diversity of solutions using 

Normal Solution entities. After CIS has finished the Member Evolution operation of all the 

Member entities of all Group entities which process the same problem, the Group Interaction 

operation will be launched to find the group-level optimal solutions. 

 
Fig. 3.4. The workflow of the member evolution operation. 

 

3.4 Knowledge Map 

 The circle key point of the Member Evolution is the Knowledge Map module which is 

responsible for the management of Knowledge entities. The Knowledge Map entity loads and 

registers all Knowledge entities which are listed in the configuration setting. After all the 

entities are loaded, the Knowledge Map creates the Start Point Knowledge entity as the entry 

of the evolution. After the entity is created, the Knowledge Map entity continually loads 

Registered Knowledge entities and builds the relations to other Registered Knowledge entities 

according to the pre-decided configuration of loaded Knowledge entity. After all of the 
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Registered Knowledge entities are loaded and the relations are built, the Knowledge Map 

entity is created. 

After the Knowledge Map entity is created, the Member entity is able to execute the 

selected Knowledge entities which are recommended by the Memes entity based on the needs 

for processing the problem and the running history of processed Knowledge entities. 

In the recommendation procedure shown in Fig. 3.4, the Knowledge Map entity delivers 

the processing Case entity and the previously processed Knowledge entity to Member entity’s 

Memes entity. The Memes will randomly select a Knowledge entity from the relation list of 

the processed Knowledge entity when the running history has not any records of the 

processing Case and the processed Knowledge. Otherwise, Memes will select an appropriate 

Knowledge entity as the recommended Knowledge entity according to the Reference 

Probability which is generated from the processed history. For example, two processed 

records of Knowledge entity A and B are 40 and 60, the selected probability of the entities are 

0.4 and 0.6, respectively. 

 

 
Fig. 3.5. The workflow for getting recommended knowledge entities. 

 

After the Knowledge Map entity gets the recommended Knowledge entity, the 

Knowledge Map entity will deliver the Solution entity to the recommended Knowledge entity 

and launch the recommended Knowledge entity procedure. When the procedure has finished, 

the Memes entity will update the running history of the recommended Knowledge and switch 

to other status after the updating. If the processed Knowledge entity is recommended by 

random selection, the Memes entity will check the Stopping Threshold. If the Knowledge is 

not selected by random, the Memes will load the relation list from the recommended 

Knowledge to retrieve the next recommendation. The Memes uses the processed result from 

the recommended Knowledge to generate the Stopping Threshold. When the result approaches 

the optimal solution, the Stopping Threshold is flagged. For example, when the optimal 

solution is 100 and the process result is 90 then the Stopping Threshold will be ten. After the 

Stopping Threshold is generated, the Knowledge Map entity generates a random value in the 

interval 0 to 100. If the random value is less than ten, the Memes continues to find the next 

recommended Knowledge entity. Otherwise, the evolution is considered converged. 

After the recommended Knowledge finishes, the Knowledge Map stores the GUID of 



 11 

the Knowledge and the score of Superior solution into the Memes entity for updating the 

running history which is used for recommendation. 

 

3.5 The Running History of the Memes Module 

In biology, the memes represents thoughts, symbols and activity patterns of the culture. 

The memes affects the evolution of culture such as gene evolution using selection, mutation, 

crossover and recombination. During human learning and researching, a nerve conduction 

pattern of the human’s brain will be built into the memes for the specific problem. In the 

proposed architecture, the Memes module stores the running history of the Knowledge entities 

which records the information of each processed Case entity with used symbols and the 

running history of processed Knowledge entities. 

The history records helps the Member entity to shorten the searching time for evolving 

the solution and maintain the diversity of solutions provided by different Member entities 

during Group Interaction and Community Interaction. 

The Memes module manages the running history using “Symbol” which means the basic 

data format character. For example, Symbols includes 0 to 9 and the decimal point in digital 

format and 0 to 9 and A to Z are valid string characters. More examples are listed in Table 3.1. 

Because different problems use different symbols, the user must provide the specific symbols 

for CIS as the basic unit for recording the evolution history in the Symbol Frequency Set (SFS) 

during Member Evolution. 

 

Table 3.1. Symbol examples. 

Type Example Symbols 

Binary 010110 {0, 1} 

Hexadecimal E9 {0, 1, 2, 3, …, 8, 9}, {A, B, C, D, E, F} 

Integer -10 {0, 1, 2, 3, …, 8, 9}, { “+”, “-“} 

Float 33.143 {0, 1, 2, 3, …, 8, 9}, { “+”, “-“, “.”} 

String Hello {0, 1, 2, 3, …, 8, 9}, {A, B, C, …, Y, Z}, { … } 

 

The Symbol management of the Memes module recommends the best symbols of the 

solution for CIS and manages the SFS. The purpose of the SFS is to record the symbol usage 

frequency of symbols which appears in different positions. As the example in Fig. 3.6 shows, 

the first coordinate of the second group in Set A is ten. The value can be divided into two 

symbols which are 1 and 0. Therefore, the usage frequencies of used symbols in different 

positions will become the recommendation reference for the Memes entity to generate the 

Reference Probability for recommending an appropriate symbol to the Member entity. In Fig. 

3.6, the probabilities of the first positions of the first coordinate in the second group can be 

translated into 3.3% (“0”), 34.8% (“1”), 22.3% (“2”) and 38.6% (“3”). Therefore, the higher 

recommended symbols of the first position are “1” and “3”. 

 

 
Fig. 3.6. An example of symbol frequency set. 
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3.6 Activity Operations 

Activity operations are the interaction methods between Member entities in the Group 

Interaction and the Community Interaction. The purpose of the Activity operations is to 

preserve a suitable diversity of solutions. Default Activity operations of the proposed strategy 

are Teach_To, Learn_From, Collaboration and Competition operations. In Fig. 3.7, Member 

entity A uses the Teach_To operation as the interactive Activity operation. Member B 

automatically uses the Learn_From operation as the interaction operation. These Activity 

operations simulate the human learning procedure. This is analogous to teachers who provide 

the best solutions to students, which students accept without questions. 

The Member entity uses the Teach_To operation to retrieve the best Solution entity from 

its Memes and deliver the entity to the opposite Member entity. After the entity has received 

by Learn_From, the opposite Member entity unconditionally stores the received Solution 

entity to its Memes entity.  

 
Fig. 3.7. Teach_To activity and Learn_From activity operations. 

 

In the real world, the relationship between teacher and students is not only teaching and 

learning, but also discussion, collaboration and competition. In order to simulate these 

situations, a Collaboration operation is created to provide a cooperation activity for Member 

entities. As the procedure in Fig. 3.8 shows, Member A and B propose the best Solution 

entities and generate a new Unit Set entity by comparing the difference parts of their Unit Set 

entities.  

The new Unit Set entity employs two steps. First, the new Unit Set entity stores the 

same Particle Unit entity parts which are selected from the Unit Set A and B entities, and then 

retrieves the remaining Particle Unit entities randomly from Unit Set A and B entities. After a 

new Unit Set entity has been created, the new entity is compared with Unit Set A and B 

entities. If the score of the new Unit Set entity is better than the best score of Unit Set A and B 

entities, the Memes entities of Member A and B entities will store the new Unit Set entity. 

Otherwise, the new entity is abandoned. 
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Fig. 3.8. Collaboration operation. 

 

Competition is also an important facet of human learning. The Competition operation 

retrieves the best Solution entity of the processing Case entity from the Member A and B 

entities, and then each Memes entity unconditionally stores the better Solution entity. In Fig. 

3.9, the Memes entity of Member A or B stores Solution B or A entity when the score of 

Solution B or A is better than the Best Solution of itself. 

 
Fig. 3.9. Competition operation. 

 

3.7 Group Interaction using Activity 

In the Group Interaction, the major responsibility of the Group module is to manage the 

interaction of the Member entities. The Member entity uses its Meme entity and opposite 

Member entity’s Memes to decide which Activity operations should be applied. After the 

independent procedure of Member Evolution and Group Interaction, Member entity can find 

the best solution for the processing problem. 
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Fig. 3.10. The workflow of activity recommendation operation. 

 

As shown in Fig. 3.10, all Member entities of the same Group entity will be set as 

alternate Active and Passive characters. The recommended Activity operation is selected 

according to the running history of the interacting Member entities. The running history 

records the result of all operated Activity operations which have been applied to the 

interaction with other Member entities. The selected probability of the recommended Activity 

operation is calculated using the records.  

 
Fig. 3.11. Group interaction operation. 

 

All modules in the Group Interaction operation are shown in Fig. 3.11. The Group 

module loads the default Activity operations for the Member entity to generate new solutions 

until all the solutions of every Member entity are identical. The Group entity selects a pair of 

Member entities randomly, and then, the pair selects an appropriate Activity operation for the 
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processing problem and generates new solutions after the interaction. After all the Member 

entities finished the interactions, the Group entity checks all solutions of each Member 

entities. If all solutions’ score of the Member entity are the same, the Member entity is treated 

as a convergent entity. When all Member entities in each Group entities are convergent, the 

Community Interaction operation is launched. 

 

 
Fig. 3.12. Community interaction operation. 

 

3.8 Community Interaction using Activity 

The Community Interaction uses the same Activity operations as the Group Interaction. 

The recommended Activity operation is also selected by the Member pair which comprises 

the best Member entities from two different Group entities. 

Fig. 3.12 describes the concept of Community Interaction. When all the Member entities 

have converged, the Group entity is treated as convergent. The interaction continues until all 

the Group entities are convergent. To ensure that the process finishes, the Community entity 

calculates the difference between the best solution and optimal solution to produce a Stopping 

Threshold which is used by the Member Evolution. 

 

4. Simulation Results 

In order to demonstrate the practicality of the proposed architecture, 11 operations from 

past research results have been implemented into 11 Knowledge modules which are two 

Generator and nine Common Knowledge modules. Only two Generator modules connect to 

the Start Point module as its parent, and then connect other 11 modules that every module are 

connected each other. 

 

4.1 Function Parameters Optimization 

a. Curve-fitting Problem 
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Fig. 4.1. Curve-fitting problem. 

 
In the first experiment, assuming there are four points, (-1,8), (0,8), (1,4), and (2,16), in 

the plane shown in Fig. 4.1. The problem is to find a quadratic function that fits those data 

points. Equations 4.1 to 4.5 illustrate how to apply the linear algebra for solving the problem. 

By plugging the four data points into Eq.(4.5), the least mean-squared value is 20. Denote the 

quadratic function by:  
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By using the least mean-squared method, we then get the following solution:  
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It means that the quadratic equation is:  

 .35)( 2tttf   (4.5) 

 

b. Generalized Rastrigin’s Function 
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Fig. 4.2. Generalized Rastrigin’s function [36]. 

 

 Rastrigin function was first proposed by Rastrigin [36] and has been generalized by 

Muhlenbein etc [38]. Due to the large search space and its large number of local minima, it 

has been seen as a difficult problem. The optimal value of generalized Rastrigin’s function is 

zero. 

4.2  CKE+ Fuzzy Adaptive Genetic Algorithm  

 Fuzzy adaptive genetic algorithm (FAGA) has been proposed in [39]. FAGA not only 

uses fuzzy membership functions and an elite strategy to preserve the diversity of the 

population and to enhance the performance, but also modified the mutation and crossover 

operations using a sequence frequency set which is the predecessor of the proposed symbol 

frequency set. In order to adapt the different situation automatically, FAGA has abandoned 

mutation and crossover rates, and recurrence. The population size is also adaptively adjusted 

during the processing according to the situation. In the experiment, FAGA uses the evolution 

results of CKE as its initial population to enhance the performance. The flowchart of FAGA 

is shown in Fig. 4.3. 

 

Fig. 4.3. The flowchart of FAGA. 
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4.3  Results with TGA, FAGA and CKE+FAGA 

The experiment ran on a laptop with an Intel Centrino 2 and 2G DDRII RAM. In the 

experiment, each value shown in Fig. 4.4 to 4.7 are the average from 30 independent 

repetitions. The results in Table 4.1 and 4.2 are the average value of Fig. 4.4 to 4.7. The 

necessary parameters used in the traditional genetic algorithm are summarized as follows: 

Recurrence Population Size Mutation Rate Crossover Rate 

500 50 0.05 0.8 

 

As can be seen from Table 4.1 TGA spent the most time to approach the optimal 

unsuccessfully rather than FAGA and CKE+FAGA. Although, the average result of 

CKE+FAGA only shows little improvement, its processing time is half that of FAGA. The 

result confirms the efficiency of CKE and demonstrates that CKE can help shorten the 

processing time without any penalties. 

Table 4.1. Results of curve-fitting problem. 

 Traditional GA FAGA CKE+FAGA 

Average Time (s) 18.0322908 13.3131773 6.1632032067 

Average Value 23.45417767 20.45089747 20.39634233 

 

 

Fig. 4.4. Processing time for the curve-fitting problem. 

 

 

Fig. 4.5. Simulation results for the curve-fitting problem. 

The average results of generalized Rastrigin’s function show that the performance of 

TGA is too far away from the result of FAGA and CKE+FAGA. As a result, Fig. 4.7 only 
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shows the values of FAGA and CKE+FAGA. The results show that CKE+FAGA only needs 

half the time to find the optimal value which is also better than the average value for FAGA 

and TGA.  

Table 4.2. Results for the generalized Rastrigin’s function. 

 Traditional GA FAGA CKE+FAGA 

Average Time (s) 16.81403913 3.222696367 1.469646367 

Average Value 3.265926667 1.17667E-05 1.333E-07 

 

 

Fig. 4.6. Processing time for the generalized Rastrigin’s function. 

 

 

Fig. 4.7. Simulation results for the generalized Rastrigin’s function. 

 

5. Conclusion 

In this paper, we proposed a strategy and an architecture which can find new algorithms 

and solutions automatically. The proposed evolution strategy uses the proposed architecture 

to deal with problems. The user can propose new knowledge and solutions following the 

definitions which are described as Knowledge Definitions and Case Definitions. The 

Knowledge module can package up the domain knowledge which is generated by various 

researchers. Although the proposed strategy can recombine various Knowledge processing 

compositions, the implementation of the Knowledge modules still need to be manually 

created and hence needs human intervention. Human can use the strategy and architecture to 

save time. As a result, the strategy and architecture are proposed as a framework to assist 

researchers in finding optimal knowledge processing compositions from vast collections of 

existing knowledge. Moreover, the framework also provides common definitions for 
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convenient information exchange.  

Based on the strategies from the Member Evolution operation to the Group Interaction 

and the Community Interaction, different Community entities could exchange their solutions 

as the reference to each other. Future work includes building a Community Network to 

provide an interaction environment for Community modules and their research results to be 

easily shared with other researchers. 

In the proposed strategy, the default Activity operations are very simple and not sufficient 

to represent all the interactivity of human beings. Hence, in future work, the Activity 

operations will be separated from the management of Member module and be designed as an 

interface similar to IKnowledge. Through the interface, researcher can implement various 

Activity modules to simulate the activity of human beings, organizations and communities. 

Researchers can exchange their Activity modules.  
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