Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

Volume 38, Issue 7, July 2011
E ISSN 0957-4174

ELSEVIER

Expert
Sysiems
with
Applications

An International
Journal

Editor-in-Chief
Jay Liebowitz

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright


http://www.elsevier.com/copyright

Expert Systems with Applications 38 (2011) 8403-8413

Contents lists available at ScienceDirect 3 a
W?I?ams
- ions ¥
Expert Systems with Applications e

journal homepage: www.elsevier.com/locate/eswa

A knowledge-based evolutionary assistant to software development
project scheduling

Virginia Yannibelli *, Analia Amandi

ISISTAN Research Institute, Fac. Cs. Exactas, UNCPBA, Campus Universitario, Paraje Arroyo Seco, Tandil (7000), Buenos Aires, Argentina
CONICET, Consejo Nacional de Investigaciones Cientificas y Técnicas, Argentina

ARTICLE INFO ABSTRACT

The scheduling of software development projects is a central, non-trivial and costly task for software
companies. This task is not exempt of erroneous decisions caused by human limitations inherent to pro-
ject managers. In this paper, we propose a knowledge-based evolutionary approach with the aim of
assisting to project managers at the early stage of scheduling software projects. Given a software project
to be scheduled, the approach automatically designs feasible schedules for the project, and evaluates each
designed schedule according to an optimization objective that is priority for managers at the mentioned
stage. Our objective is to assign the most effective set of employees to each project activity. For this rea-
son, the evaluation of designed schedules in our approach is developed based on available knowledge
about the competence of the employees involved in each schedule. This knowledge arises from historical
information about the participation of the employees in already executed projects. In order to evaluate
the performance of our evolutionary approach, we present computational experiments developed over
eight different sets of problem instances. The obtained results are promising since this approach has
reached an optimal level of effectivity on seven of the eight mentioned sets, and a high level of effectivity

Keywords:

Project scheduling

Software projects

Human resource assignment
Multi-skilled resources
Heterogeneous effectivities
Genetic algorithms

on the remaining set.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

A software development project is defined with the aim of cre-
ating a software product based on the requirements of a particular
client. This kind of projects consists of activities corresponding to
the analysis of the client requirements, and to the design, coding,
testing, installing, and maintaining of the software application.
These activities require human resources with different skills to
be developed.

The design of an initial schedule for a software development
project is a central, non-trivial and costly task for software compa-
nies. This task implies to define feasible start times (i.e., the prece-
dence relations between the activities must not be violated) and
feasible human resource assignments (i.e., the resource require-
ments must be satisfied) for project activities. In addition, to define
the mentioned resource assignments, it is necessary to estimate
the effectivity of the human resources in relation to different pro-
ject activities. This is because the development and the results of
an activity depend on the effectivity of the resources assigned to

* Corresponding author at: ISISTAN Research Institute, Fac. Cs. Exactas, UNCPBA,
Campus Universitario, Paraje Arroyo Seco, Tandil (7000), Buenos Aires, Argentina.
Tel.: +54 (02293) 439682x28; fax: +54 (02293) 439681x52.

E-mail addresses: vyannibe@exa.unicen.edu.ar (V. Yannibelli), amandi@exa.
unicen.edu.ar (A. Amandi).

0957-4174/$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2011.01.035

it. Then, to estimate the mentioned effectivity, it is indispensable
to have knowledge about the effectivity of the available human re-
sources in already executed projects (Heerkens, 2002).

In general, the initial scheduling of a given software project is a
task manually developed by project managers. This task requires a
considerable amount of time, effort, experience in scheduling, and
knowledge about the available human resources that can be con-
sidered to project activities. On the other hand, this task is not ex-
empt of erroneous decisions caused by human limitations inherent
to the managers (e.g., lack of knowledge about the organization
and their resources, decisions based on incorrect assumptions,
etc.). Taking into account the requirements and drawbacks of the
manually developed scheduling, it is considered valuable assisting
to managers at the early stage of designing project schedules. In
this sense, the knowledge-based automatic design has the aim of
providing initial schedules in efficient way (i.e., the time required
by the automatic design is lower than the time required by manag-
ers) and in effective way (i.e., erroneous decisions are minimized
when considering all the available knowledge arising from infor-
mation about already executed projects).

Since 30 years ago, many different kinds of algorithms (i.e., ex-
acts, heuristics and metaheuristics) have been proposed in litera-
ture to automatically solve project scheduling problems. In this
context, different works have considered specificities of human
resources (i.e., skills, efficiency, workload capacity, and cost per



8404 V. Yannibelli, A. Amandi/Expert Systems with Applications 38 (2011) 8403-8413

time unit). However, to the best of our knowledge, few works have
considered human resources with resource-specific effectivities
(Bellenguez & Néron, 2004b; Hanne & Nickel, 2005), a central as-
pect in software projects, although with a great number of simpli-
fications. In particular, the methods proposed in the said works to
estimate the effectivity of the human resources assigned to the
activities contain many simplifications. In these sense, the effectiv-
ity of a human resource in a particular activity is estimated only
considering the effectivity level of the resource in relation to one
of the skills required for the activity. Nevertheless, there are others
contextual factors that also determine the effectivity of a human
resource (i.e., the general characteristics of the activity to which
the resource is assigned, the other resources with which the re-
source in question must work, and the experiences and attributes
of the resource in question) (Barrick, Stewart, Neubert, & Mount,
1998; Heerkens, 2002). Therefore, the effectivity of a human re-
source in a particular activity needs to be estimated in relation to
all the mentioned factors.

In this paper, the problem of scheduling a software develop-
ment project is addressed with the aim of assisting to project man-
agers at the early stage of scheduling software projects. Thus, as
part of the problem, we consider an optimization objective priority
for managers at the mentioned stage. This objective is to assign the
most effective set of human resources to each project activity.

To solve the problem in question, we propose a knowledge-
based genetic algorithm. Considering a given software project, this
algorithm designs feasible schedules for the project, and evaluates
each designed schedule according to the mentioned optimization
objective. This evaluation is developed based on available knowl-
edge about the effectivity of the human resources involved in each
schedule. The mentioned knowledge arising from historical infor-
mation about the participation of the resources in already executed
projects.

We consider a genetic algorithm because of the following rea-
son. The problem addressed here is a special case of the RCPSP (Re-
source Constrained Project Scheduling Problem) (Blazewicz,
Lenstra, & Rinnooy Kan, 1983) and, therefore, is a NP-Hard prob-
lem. In this sense, the genetic algorithms have shown to be effec-
tive in the resolution of a wide variety of NP-Hard problems and,
in particular, in the resolution of the RCPSP (Kolisch & Hartmann,
2006).

The remainder of the paper is organized as follows. Section 2
defines the addressed problem. Section 3 describes the genetic ap-
proach proposed to solve the problem. In Section 4, the developed
computational experiments are presented and their results are
analyzed. Section 5 gives a brief review of approaches proposed
in literature for project scheduling problems in which the assign-
ment of human resources is considered. Finally, Section 6 points
out the conclusions of the present work.

2. Problem description

In this paper, we consider the problem of scheduling a software
development project with the aim of assisting to project managers
at the early stage of the scheduling projects.

A software development project contains a set A of N activities,
A={1,..., N}, that has to be scheduled (i.e., the starting time and
the human resources of each activity have to be defined). These
activities are deduced by the project manager considering the dif-
ferent stages of a software development process (i.e., the analysis
of the requirements of the client, the development of the software
application, the tests required to be sure that the application an-
swers the client’s request, etc.). In addition, the duration, prece-
dence relations and resource requirements of each activity also
are defined by the manager.

Thus, the duration of each activity j is known and notated as d;.
Moreover, it is considered that pre-emption of activities is not al-
lowed, that is to say, when an activity starts, it must be developed
period by period until it is completed (i.e., the d; periods of time
must be consecutive).

Among some project activities there are precedence relations
due to technological requirements. In general, each of the activities
consumes products generated by other activities (e.g., a testing
activity consumes the product of at least one coding activity). Thus,
the precedence relations establish that each activity j cannot start
until all its immediate predecessors, given by the set P;, have com-
pletely finished.

The project activities require human resources (employees)
skilled in different knowledge areas to be developed. Specifically,
to be developed, each activity requires one or several skills, and a
given number of employees for each skill. It is considered that a
skill is a specialization in a knowledge area (e.g., programmer, ana-
lyst of requirements, designer, tester, etc.).

A software company has qualified workforce to develop their
projects. This workforce is made up of a number of employees,
and each employee masters one or several skills.

Taking into consideration a given project, the set SK represent to
the K skills required to develop the project, SK={1, ..., K}, and the
set AR, represent to the available employees with skill k. Then, the
term rj, represents the number of employees with skill k required
for the activity j of the project. The values of the terms rj; are
known for each project activity.

It is considered that an employee cannot take over more than
one skill within a given activity. In addition, it is considered that
an employee cannot be assigned to more than one activity at the
same time.

Based on the previous assumptions, an employee can be as-
signed to different activities although not at the same time, can
take over of different skills required for an activity but not in a
simultaneous way, and can integrate different possible sets of
employees for each activity. Then, for each available employee, it
is possible to define different work contexts.

We consider the work context of an employee r, denoted as
C:jsg is composed for four main components. The first component
is the activity j to which r is assigned (i.e., the complexity of j, their
domain, their general characteristics, etc.). The second component
is a skill s required by j and that must be managed for r (i.e., the
tasks associated to s). The third component is the set of employees
g that has been assigned to j and that includes to r (i.e., r must work
in collaboration with the other employees assigned to j). The fourth
component refers to the attributes of r (i.e., their skills, their expe-
riences, the labor relations between r and the other employees of g,
their knowledge, their studies, etc.).

The four described components are considered as the main fac-
tors that determine the effectivity level of an employee (Barrick
et al,, 1998; Heerkens, 2002; Wysocki, 2003). For this reason, the
effectivity of an employee needs to be defined in relation to all
components of their work context. Then, for each employee, it is
possible to define different effectivity levels in relation to different
work contexts.

Given a employee r, in relation to each possible context G, for
r, an effectivity level, e.cjsg is defined describing how well r can
handle, within the activity j, the tasks associated to the skill s, con-
sidering that r must work in collaboration with the other employ-
ees of the set g. The effectivity level is represented as a real value
over the range [0, 1].

The problem of scheduling a software development project im-
plies to define feasible start times (i.e., the precedence relations be-
tween the activities must not be violated) and feasible human
resource assignments (i.e., the human resource requirements must
be satisfied) for project activities in such a way that an optimization



V. Yannibelli, A. Amandi/Expert Systems with Applications 38 (2011) 8403-8413 8405

objective is reached. In this sense, it is considered an objective pri-
ority for software project managers at the early stage of designing
project schedules. This objective is to assign the most effective set
of employees to each project activity. The mentioned objective is
modeled by Eqgs. (1) and (2)

N

(o0 - 3 !
R(i.s)|

2=t UCisinnin (2)

=T RGS)

Eq. (1) maximizes the effectivity of the sets of employees assigned

to the N activities of a given project. In this equation, the set S con-
tains all the feasible schedules for the project in question. Then,
R(i, s) is the set of employees assigned to the activity i in the sche-
dule s, and the term egs) represents the effectivity level corre-
sponding to R(i, s).

In Eq. (2), egis) is calculated as the mean effectivity level of the
employees belonging to R(i, s). It is considered that, in software
project activities, the effectivity level of a set of employees depends
on the effectivity level of each employee belonging to the set
(Barrick et al., 1998; Boon & Sierksma, 2003; Heerkens, 2002;
Wysocki, 2003). Moreover, it is considered that the individual lev-
els of effectivity are equally important in determining the effectiv-
ity of a set of employees. Based on the mentioned assumptions, the
more appropriate option to operationalize egs) is to calculate the
mean value of the individual levels of effectivity corresponding
to the employees of the set R(i, s) (Barrick et al., 1998). On the right
side of formula (2), the terms(, i, s) represents to the skill managed
for employee r within the activity i in the schedule s.

2.1. Problem example

In this section, a brief example of a software development pro-
ject scheduling problem is presented. The problem refers to the

Table 1
Activities of the project example.
Number  Activity Duration
of (in
activity weeks)
1 Analysis of client’s requirements 1
2 Design of the architecture of the web site 2
3 Design of the user interface of the web site 2
4 Design of the functional modules of the web site 2
5 Design of the data base of the web site 2
6 Programming of the architecture 2
7 Programming of the user interface 3
8 Programming of the functional modules 3
9 Programming of the data base 3
10 Integration of architecture/interface/modules/data 2
base
11 Testing of the web site 2

development of a web site. Then, a feasible and optimal schedule
for the project in question is detailed.

The project contains eleven activities deduced from the differ-
ent stages of a software development process. Table 1 presents
the mentioned activities and an estimated duration for each activ-
ity. Among some project activities there are precedence relations,
these relations are shown by the graph of Fig. 1.

The project activities require employees with different skills to
be developed. In this sense, Table 2 details the skills required for
each activity, and the number of employees required for each skill.

To develop the complete project, five employees with multiple
skills are available. Table 3 details the skills managed for each of
the five employees.

Considering the skill requirements of each project activity, and
the skills of the available employees, it is possible to define more
than one feasible set of employees for the activities 2, 6, 10, 7, 8
and 9. For example, it is possible to define three feasible sets of
employees for the activity 6 (i.e., the sets (E2, E4), (E2, E5) and
(E4, E5)).

Then, taking into account the optimization objective of the
problem, i.e, to maximize the effectivity level of the sets of
employees assigned to the activities, it is necessary to define the
effectivity level of all the possible sets for each of the previously
mentioned activities. Subsequently, to define the effectivity level
of the mentioned sets, it is necessary to know the effectivity level
of the employees included in the sets. In this sense, Tables 4-6
show the effectivity level of each of employees that can be assigned
to the activities 6, 10 and 2, respectively. In each of these tables, for
each employee that can be assigned to the activity corresponding
to the table, all the possible work contexts inherent to the activity
are presented, and an effectivity level in relation to each men-
tioned context is presented. For example, in Table 4, the first col-
umn indicates that the employee E2 can be assigned to the
activity 6. Then, the two rows corresponding to E2 present two
possible work contexts for E2: E2 can be assigned as programmer
to activity 6 working in collaboration with the employee E4 or
can be assigned as programmer to activity 6 working in collabora-
tion with the employee E5. Then, the fourth column of the table
indicates that, in relation to the first mentioned work context,
the effectivity level of E2 is equal to 1 and, in relation to the second
mentioned work context, the effectivity level of E2 is equal to 0.9.

Based on the content of Tables 4-6, and considering the way in
which the effectivity of a set of employees is calculated (Formula
(2)), it is possible to say that the employees E2 and E4 form the
most effective set of programmers to develop the activity 6, the
employees E2 and E4 also form the most effective set of program-
mers to develop the activity 10, and the employees E2 and E1 form
the most effective set of designers to develop the activity 2.

In addition to the content of Tables 4-6, it is considered that the
employee E2 is the most effective programmer to develop the
activity 7, the employee E4 is the most effective programmer to de-
velop the activity 8, and the employee E5 is the most effective pro-
grammer to develop the activity 9.

Fig. 1. Precedence graph of the project example.



8406 V. Yannibelli, A. Amandi/Expert Systems with Applications 38 (2011) 8403-8413

Table 2
Skills required for each activity of the project example.

Number of Analyst of Designer of Designer of user Designer of functional Designer of data Programmer Tester
activity requirements architectures interfaces modules base
1 1
2 2
3 1
4 1
5 1
6 2
7 1
8 1
9 1
10 2
11 2
Table 3

Skills managed for each one of the five available employees for the project example.

Employee Analyst of Designer of Designer of user Designer of functional Designer of data Programmer Tester
requirements architectures interfaces modules base
E1 v v v
E2 v v v v
E3 v v v
E4 v
E5 v
Table 4 Table 6

Effectivity levels of each employee that can be assigned to activity 6. For each
mentioned employee, different effectivity levels are defined in relation to different
work contexts.

Effectivity levels of each employee that can be assigned to activity 2. For each
mentioned employee, different effectivity levels are defined in relation to different
work contexts.

Employee  Activity  Skill Set of employees  Effectivity level
E2 6 Programmer  (E2, E4) 1
6 Programmer  (E2,E5) 0.9
E4 6 Programmer  (E4, E2) 1
6 Programmer  (E4, E5) 0.7
E5 6 Programmer  (E5, E2) 0.7
6 Programmer  (E5, E4) 0.5
Table 5

Effectivity levels of each employee that can be assigned to activity 10. For each
mentioned employee, different effectivity levels are defined in relation to different
work contexts.

Employee  Activity  Skill Set of employees  Effectivity level
E2 10 Programmer  (E2, E4) 1
10 Programmer  (E2,E5) 0.9
E4 10 Programmer  (E4,E2) 1
10 Programmer  (E4,E5) 0.8
E5 10 Programmer  (E5,E2) 0.7
10 Programmer  (E5, E4) 0.6

It is considered that the previously presented knowledge about
the effectivity of the employees in different contexts arises from
available historical information about the mentioned employees.

Fig. 2 shows a feasible and optimal schedule for the previously
described project, i.e., this schedule assigns the most effective set
of employees to each project activity. The mentioned schedule de-
tails the starting time defined for each activity and the employees
assigned to each activity.

3. A knowledge-based genetic algorithm

To solve the problem addressed in this paper, we propose a
knowledge-based genetic algorithm. Genetic algorithms are

Employee Activity Skill Set of Effectivity
employees level
E1l 2 Designer of (E1,E2) 1
architectures
2 Designer of (E1,E3) 0.8
architectures
E2 2 Designer of (E2,E1) 1
architectures
2 Designer of (E2,E3) 0.9
architectures
E3 2 Designer of (E3,E1) 0.8
architectures
2 Designer of (E3,E2) 0.9

architectures

adaptive heuristic methods of search and optimization inspired
on Darwin’s theory of evolution (Darwin, 1859; Eiben & Smith,
2007; Goldberg, 2007). According to these algorithms, an initial
population of candidate solutions to a problem evolves towards
the optimal solutions based on the natural principles of natural
selection, crossover, and mutation.

The general behavior of the algorithm proposed here is de-
scribed below. This behavior is based on the general structure of
a genetic algorithm which was developed by Holland (1975).

Considering a given software project, the algorithm starts the
evolution from an initial population of solutions in which each
solution codifies a feasible project schedule. Then, each solution
of the population is decoded, i.e., the related schedule is built,
and evaluated according to the optimization objective of the prob-
lem by a fitness function. The mentioned objective is to maximize
the effectivity of the sets of employees assigned to project activi-
ties. Thus, the said fitness function evaluates each solution based
on available knowledge about the effectivity of the employees in-
volved in the solution. Then, a selection process is used to select
a number of solutions from the current population according to



V. Yannibelli, A. Amandi/Expert Systems with Applications 38 (2011) 8403-8413 8407
El 4
.......... 2 11
E2 3 6 7 10
Employees E3 | 1 5
E4 6 8 10
E5 9
1 i 234551678 9:i10i11i12:13 14

Fig. 2. Optimal sched

some selection strategy. In general, the solutions with the greatest
values of fitness will have more chances of being selected. The se-
lected solutions are paired, and a crossover process is applied to
each pair of solutions to generate new feasible ones. Then, a muta-
tion process is applied to modify the components of the solutions
generated by the crossover. The purpose of using the mutation pro-
cess is to promote diversity in the current population of solutions.
Finally, a deterministic crowding strategy (Goldberg, 2007) is used
to determine a new population by selecting between the solutions
of the current population and the new solutions generated. The de-
scribed process is repeated until some stopping criterion is
reached.

Details about each of the different components of the proposed
algorithm will be presented in the next sections. The main compo-
nents of the algorithm are the representation of solutions, the gen-
eration of the initial population, the fitness function, and the
selection, crossover, and mutation processes.

3.1. Representation or encoding of solutions

In the algorithm, each solution in a population represents a par-
ticular project schedule. The solutions must be represented or en-
coded in such a way that the application of different crossover and
mutation operators generates new feasible solutions. Therefore, it
is necessary to define an appropriate encoding to project schedules.

Time (in weeks)

ule for the project example.

We propose a representation based on the standard activity list
representation (Hartmann, 1998; Kolisch & Hartmann, 1999,
2006). Details about the proposed representation are presented
below.

Each solution is represented by two lists having as many posi-
tions as activities in the project. Fig. 3 shows the proposed repre-
sentation for a project with N activities.

The first list is a standard activity list. This list is a feasible pre-
cedence list of the activities involved in the project, i.e., each activ-
ity j can appear on the list in any position higher than the positions
of all its predecessors. Moreover, each activity j in the list contains
information about its development, i.e., activity duration and
requirement of employees of each skill k.

The second list is an assigned resources list. This list contains
information about the employees of every skill k assigned to each
activity of the project. Specifically, the position j on this list details
the employees of every skill k assigned to the activity j. The de-
tailed information about the employees assigned to each activity
is not considered in the standard activity list representation.

3.1.1. Decoding of solutions

In order to build the schedule related to the representation, the
serial method proposed by Kelley is considered (Kelley, 1963;
Kolisch & Hartmann, 1999). The previously mentioned method
schedules the activities, one by one, in the order given by the

N = Number of activities

k=1,...K
K = Number of skills

Number of employees with skill k required by j

list_ry = List of employees with skill k assigned to

(a) 1 i N
Activity list J
J
(dj,< Fips Figs <oon ij» d; = Duration of activity j
Tje =
(b) 1 j N
Assigned J
resources list
J
(« ]istjj,, listirjz, listJf/,( ) {

Fig. 3. Representation p:

activity j

roposed for project schedules.



8408

activity list (forward scheduling). In Fig. 3a, the activity j represents
the ith activity that must be inserted in the schedule. When activ-
ity j is chosen to be inserted in the schedule, all its predecessors,
which appear in some position [1, (i — 1)] in the activity list, will
have already been scheduled. Then, the activity j obtains the earli-
est feasible starting time, i.e., the activity can start its development
after all its predecessors have been completed, and when all the
employees assigned to the activity are available (in Fig. 3b, the
position j details the employees, of every skill k, assigned to the
activity j). Thus, the related schedule is always a feasible schedule.

It is important to note that when the serial method is applied,
one and only one schedule can be deduced from a given encoded
solution, but different encoded solutions could be transformed in
the same schedule. In addition, it is worth pointing out that the
parallel method cannot be directly applied to an activity list in or-
der to transform the solution into its corresponding schedule
(Kolisch & Hartmann, 1999).

Fig. 4 shows one feasible encoded solution to the project exam-
ple described in Section 2.1, and Fig. 5 presents the schedule built
from this solution by the described serial method. The schedule
indicates the specific employees assigned to each activity and the
starting time defined for each activity.

3.2. Initial population

The initial population contains a specific number of feasible
solutions to the project to be scheduled, i.e., each solution of this
population represents a feasible schedule to the project in
question.

Each solution of the initial population is randomly generated. It
has been decided to use a random approach to generate these solu-
tions because a random approach guarantees a good level of genet-
ic diversity in the initial population (Goldberg, 2007). By means of
such diversity, it is attempted to prevent the premature conver-
gence of the algorithm.

In order to obtain each solution, we use a process which is di-
vided into two stages. The first stage determines the positions of
the project activities on the activity list. The second stage defines
the employees that are assigned to each activity based on the hu-
man resource requirements of such activities, i.e., the second stage
defines the assigned resources list.

V. Yannibelli, A. Amandi/Expert Systems with Applications 38 (2011) 8403-8413

The first stage is developed as follows. It begins with an empty
activity list. The next activity for the list is randomly taken from
the activities not yet inserted on the list while all its predecessors
have already been inserted in it. Thus, on the list, each activity ap-
pears in a random position following all its predecessors.

The second stage assigns employees to each project activity.
Each activity j requires rj, employees with skill k. For each activity
J, ik employees with skill k are randomly selected from the group
of available employees with skill k, ARy, and the selected employ-
ees are assigned to the activity j (i.e., are assigned to the position
j of the assigned resources list).

The described random process guarantees that the precedence
relationships between the activities and the human resource
requirements of each of the activities are respected during the con-
struction of each solution.

3.3. Fitness function

The fitness function evaluates the level of fitness of each solu-
tion in relation to the predefined optimization objective. In this
case, the objective is to maximize the effectivity level of the sets
of employees assigned to the project activities.

Given a solution for a project p, the fitness function decodes the
schedule s related to the solution by using the method described in
Section 3.1.1. Then, the function calculates the value of the term
e(s) corresponding to s (Formulas (1) and (2)). Thus, this function
gives a real value over [0, ..., N] to s. This value represents the
effectivity level of the sets of employees assigned to project activ-
ities by the schedule s.

To calculate the term e(s), the function needs know the value of
the terms e, jsg inherent to s (Formula (2)). We consider that each
project p has an associated knowledge base, and that this base con-
tains the value corresponding to each of the mentioned terms.
Then, the base is queried by the fitness function to obtain the value
of the said terms.

Moreover, we consider the value of each term eq,g arises
mainly from historical information about the participation of the
employee r in projects already executed. The estimation of the
effectivity of a set of employees, in relation to a particular activity,
based on knowledge about the employees included in the set is a
usual process used by project managers (Heerkens, 2002).

Activity list

o 2] a3 ] s ] e[ o] s 7] w]n]

Assigned
resources list

| E3 |E2,E3| E2 | El | E3 |E4,E5| E5 | E2 | E5 |E2,E5|E1,E2|

6 7 8 9 10 11

1 2 3 4
|>—> The positions of the assigned resources list refer to the activities of project

Fig. 4. Feasible solution for the project example.

El 4
Ez 3 BE
2
Employees g3 | 5
E4
ES 9
1 i2:3i4:5:6:i7:8 9

C10P11 12 130 14115016 171 181 19

Time (in weeks)

Fig. 5. Schedule decoded from the solution shown in Fig. 4.



V. Yannibelli, A. Amandi/Expert Systems with Applications 38 (2011) 8403-8413

3.4. Selection

The selection process selects the best solutions in the current
population to conform pairs of solutions (parent solutions) which
will be used to generate new solutions (offspring solutions) by
the crossover and mutation processes.

This process considers the fitness values of the solutions at mo-
ment of selecting a solution and, moreover, is generally biased by a
random factor. Thus, the solutions with the highest fitness values
will have more chances of being selected.

There are several schemes to develop the selection process. One
of the most applied schemes in literature to be used in this paper is
the 2-tournament selection (Eiben & Smith, 2007; Goldberg, 2007).

In the 2-tournament selection, two solutions are randomly cho-
sen from the current population and compete for survival. The best
of them (i.e., the solution with the best fitness value) is selected
and considered as the first member of the pair. The worst of them
is returned to the population. This operation is repeated to obtain
the second member of the pair.

The process previously described is repeated until a number M/
2 of pairs is obtained, considering to M as the population size.

3.5. Crossover

The selection process determines the pairs of solutions in the
current population that should be recombined, and each pair
undergoes the crossover operation with a probability of P.. The
crossover developed in a pair of solutions (parent solutions) gener-
ates two new solutions (offspring solutions).

The crossover operator is one of the most important genetic
operators because it preserves and combines the best characteris-
tics of the parent solutions so as to define new best solutions
(Goldberg, 2007).

The crossover operators are directly applied to pairs of encoded
solutions. Thus, the crossover must be designed based on the rep-
resentation defined for the solutions. In this case, the proposed
representation consists of two lists: an activity list and an assigned
resources list. Therefore, we propose a crossover operator that con-
tains a feasible crossover operation for each of the mentioned lists.

3.5.1. Crossover operation for activity lists

This operation is applied to the activity lists of two parent solu-
tions that must be recombined. The result of this operation consists
of two new activity lists. The first new list is assigned to the first
offspring and the second new list is assigned to the second
offspring.

The behavior of this operation is described below. Firstly, the
operation defines a random crossover-point k, considering k be-
tween 1 and N. Then, the first k activities in the list of parent 1
are positioned in the first k positions of the list of offspring 1, in
the same order. The remaining activities are positioned in the
empty positions of the list of offspring 1 considering the relative

8409

order of said activities in the list of parent 2. In this way, the activ-
ity list generated for offspring 1 is a precedence feasible list.

The generation of the activity list for offspring 2 is similar to the
generation of the list for offspring 1. However, the list of offspring 2
inherits the first k activities directly from the list of parent 2, and
the order of the remaining activities from the list of parent 1.

Fig. 6 shows an example of described crossover operation for
activity lists. In this example, the operation is applied to the activ-
ity lists corresponding to two parent solutions defined for the pro-
ject example presented in Section 2.1.

It is necessary to mention that the described operation corre-
spond to the one-point crossover developed by Hartmann (1998).

3.5.2. Crossover operation for assigned resources lists

This operation is applied to the assigned resources lists of two
parent solutions that must be recombined. The result of this oper-
ation consists of two new assigned resources lists. The first new list
is assigned to the first offspring and the second new list is assigned
to the second offspring.

The behavior of this operation is described below. For each
activity j of the project, the operation chooses a random value r
over [0, 1], if r < 0.5, the resource assignment for j in the list of off-
spring 1 (in the list of offspring 2) is inherited from parent 1 (from
parent 2). On the other hand, if r > 0.5, the resource assignment for
jin the list of offspring 1 (in the list of offspring 2) is inherited from
parent 2 (from parent 1). This operation always leads to new feasi-
ble lists.

Fig. 7 shows an example of the described crossover operation
for assigned resources lists. In this example, the operation is ap-
plied to the assigned resources lists corresponding to two parent
solutions defined for the project example presented in Section 2.1.

3.6. Mutation

This process randomly alters one or more characteristics of
some solutions obtained after the crossover process. The mutation
operator has the aim of introducing genetic diversity in the popu-
lation (Goldberg, 2007).

The mutation operators are directly applied to encoded solu-
tions. Thus, the mutation must be designed based on the represen-
tation defined for the solutions. Therefore, in this section, we
propose a mutation operator that contains a feasible mutation
operation for activity lists and a feasible mutation operation for as-
signed resources lists.

3.6.1. Mutation operation for activity lists

This operation is applied to the activity list of a solution that
must be mutated. The result of this operation consists of a new
activity list for the said solution.

The behavior of this operation is described below. For each
activity on the activity list, a new position is randomly chosen. In
particular, the new position must be higher than the position

Random crossover point «l

Penct | 1 | 2 [ a4 [ 3] s e [ o] s [ 7 [w]u]
prent2 | 1 | 2 [ 3 ] a4 ] s [ e [ 7 [ s ] o] ]
ofpring 1 | 1 | 2 [ 4 [ 3 | s [ 6 [ 7 [ s | o [ 0] 1|
ofpring2 | 1 | 2 [ 3 [ 4 | s [ e [ o [ s | 7 [ 1w0] |

Fig. 6. Example of the crossover operation considered for activity lists.



8410 V. Yannibelli, A. Amandi/Expert Systems with Applications 38 (2011) 8403-8413

B i !

pwenct | B3 |E2E3| B2 | Bl | B3 |EaEs| Bs | B2 | Bs [E2Es|ELE2|
1 2 3 4 5 6 7 8 9 10 11

peen2 | B3 |ELE2| B2 | B | B3 |E2Ea| B2 | B4 | B |E2 B4 ELE2|

The positions of the list refer to the activities of project

ompring1 | E3 |E2E3| B2 | E1 | B3 |E2E4| Es | B4 | Bs [E2.ES|ELE2|
1 2 3 4 5 6 7 8 9 10 11

ompring2 | B3 |ELE2] B2 | B | B3 |EaBs| B2 | B2 | Bs |E2 B4 ELE2|

Fig. 7. Example of the crossover operation considered for assigned resources lists.

corresponding to any of the activity’s predecessors, and lower than
the position corresponding to any of the activity’s successors. The
activity is inserted in the new position with a probability of P,
By this procedure, only precedence feasible lists are generated.

Fig. 8 shows an example of this mutation operation. In this
example, the operation is applied to the activity list corresponding
to a solution defined for the project example presented in Section
2.1.

This mutation operation is an adaptation of the procedure pro-
posed by Boctor (1996) in his simulated annealing algorithm to
generate a neighbor.

3.6.2. Mutation operation for assigned resources lists

This operation is applied to the assigned resources list of a given
solution. The result of this operation consists of a new assigned re-
sources list for the said solution.

The behavior of this operation is described below. For each
activity of the project, the operator defines a new resource

assignment with a probability of P, If a new resource assignment
must be defined for a given activity, the second stage of the mech-
anism used to create the random solutions of the initial population
is considered (Section 3.2). This operation always leads to new
feasible lists.

Fig. 9 shows an example of this mutation operation. In this
example, the operation is applied to the assigned resources list cor-
responding to a solution defined for the project example presented
in Section 2.1.

4. Computational experiments

In this section, we describe the computational experiments
developed to evaluate the performance of the proposed genetic
algorithm. Then, the results obtained by the experiments are pre-
sented and analyzed.

We have generated different instances of project scheduling
problems by ProGen (Kolisch & Sprecher, 1997; Kolisch, Sprecher,

, Predecessor of activity 3 closest to their

Mutate position of —
activity 3

position

Sucessor of activity 3 closest to their position

mcwvitiss: [ 1 [ 2 [ 4 [ 3 [ s | 6 [ o[ s [ 7 [w]u]
1 2 3 4 5 6 7 8 9 10 11
- v
Y » Possible new positions in the list for the activity 3
i Lt | 2 [ ¢4 [ s [ el ofs ] [w[u]
|—> New position for activity 3
Fig. 8. Example of the mutation operation considered for activity lists.
Mutate the resource assignments of these activities
|
Asigmed [ g3 [ppE3| B2 | Bl | B3 |E4Bs| Bs | B2 | Bs |E2,Es|ELE2]
1 2 3 4 5 6 7 8 9 10 11—
Mutated list ’ E3 IE],E3‘ E2 I El I E3 |E4,E5‘ E5 I E4 I E2 |E2,E5‘E],E2‘

The positions of the assigned resources list refer to the activities of project ——

Fig. 9. Example of the mutation operation considered for assigned resources lists.



V. Yannibelli, A. Amandi/Expert Systems with Applications 38 (2011) 8403-8413 8411

& Drexl, 1995), and then we have extended the content of the gen-
erated instances with the aim of adapting these instances to the
characteristics of the proposed algorithm. Table 7 shows the char-
acteristics of each generated set of instances. The first column
specifies the name of each set, the second column details the num-
ber of activities of the instances of each set, the third column de-
tails the number of possible set of employees for activities
corresponding to the instances of each set, and the fourth column
details the number of instances in each set.

Each instance generated by ProGen specifies information about
a precise number of activities. For each activity, the instance details
the duration, the precedence relations, and the number of required
resources for each possible type of resources. Moreover, each in-
stance specifies information about the available resources. Specif-
ically, each instance defines four types of available resources, and
a number of available resources for every type. We have consid-
ered that each type of resources is a different skill, and that the
number of available resources for each type corresponds to the
number of available employees for each skill. Moreover, we have
considered that each employee only manages one of the four pos-
sible skills.

For each instance generated by ProGen, we have created a
knowledge base. As was mentioned in Section 3.3, the knowledge
base associated to a given instance is queried by the fitness func-
tion of the algorithm to evaluate any solution designed for the in-
stance. Considering the mentioned assumption, for each generated
instance, we have created a base that contains all the terms e,cjsg¢
inherent to each employee r of the instance - these terms are de-
fined considering each of the possible work contexts for r in the in-
stance - and a value over [0, 1] for each of the mentioned terms.

Then, for each extended instance, we have defined an optimal
solution with a fitness value equal to N, considering that N is the
maximum fitness value for the solutions of an instance with N
activities. Specifically, for each extended instance, we have de-
signed a feasible solution s. The solution s was designed by the
mechanism used to create the solutions of the initial population
of the genetic algorithm (Section 3.2). Then, considering the objec-
tive of assigning a fitness value N to s and considering the way in
which the fitness value of a given solution is calculated (Section
3.3), we have defined all existing terms ecjs, in the solution s,
we have assumed a value equal to 1 for each of the mentioned
terms, and we have added the mentioned terms with the assumed
values to the knowledge base of the instance. Thus, we have de-
fined a feasible solution s with a fitness value equal to N for the in-
stance in question. Considering that all possible solutions for the
mentioned instance have a value lower than or equal to N, the solu-
tion s can be considered as an optimal solution for the instance.

The proposed genetic algorithm has been tested 20 times on
each of the extended instances. We denote Aval to the average va-
lue of the 20 solutions obtained for each instance. Table 8 gives the
parameter values used for these experiments. The parameters have
been fixed thanks to preliminary experiments that have shown
that these values lead to the best and the most stable results.

Table 7

Characteristics of instance sets.
Instance  Number of Number of sets of Number of
set activities to plan employees for activity instances
c20_5 20 1-5 30
c20_10 20 1-10 30
c30_5 30 1-5 30
c30_10 30 1-10 30
c40_5 40 1-5 30
c40_10 40 1-10 30
c50_5 50 1-5 30
c50_10 50 1-10 30

Table 8

Values of parameters of the genetic algorithm.
Parameter Value
Crossover probability P, 0.8
Mutation probability Py, 0.05
Population size 50
Number of generations 400

We have considered two measures to evaluate the performance
of the algorithm in relation to each of the instance sets. The first
measure is the average percentage of deviation from the optimal
solution (Av. Dev. (%)). For each set of instances, we compute the
average percentage of deviation of the average value (Aval) of the
20 solutions generated from the value of the optimal solution of
each instance, taken over the set of instances. The second measure
is the number of instances where the value of the optimal solution
is achieved (Optimal (%)). For each set of instances, we compute the
percentage of instances where the value of the optimal solution is
achieved at least once among the 20 solutions generated.

Table 9 reports the results obtained by the experiments. The
second column of the table reports the Av. Dev. (%) for each in-
stance set, and the third column reports the Optimal (%) for each in-
stance set.

The Av. Dev. (%) obtained by the genetic algorithm for c20_5,
€20_10, ¢30_5, c30_10, c40_5, c40_10 and c50_5 is 0%. These re-
sults indicate that the algorithm has found optimal solutions for
each instance in each mentioned set.

The Optimal (%) obtained by the genetic algorithm for ¢20_5,
€20_10, c30_5, ¢30_10, c40_5, c40_10 and c50_5 is 100%. Consider-
ing that the algorithm was run 20 times on each instance, these re-
sults indicate that the algorithm has found an optimal solution in
at least once of the 20 runs carried out on each instance pertaining
to the mentioned sets. If these results are observer together with
the values of Av. Dev. (%) obtained for the said sets, it is possible
to say that the algorithm has found an optimal solution in each
of the 20 runs carried out on each instance pertaining to the men-
tioned sets.

The Av. Dev. (%) obtained by the genetic algorithm for ¢50_10 is
0.4%. Considering that each instance of ¢50_10 has a known opti-
mal solution with a fitness value equal to 50, an average deviation
equal to 0.4% indicates that the average value of the solutions ob-
tained by the algorithm is 49.8. An average value equal to 49.8 is
very close to the value of the known optimal solutions. Therefore,
we consider that a deviation of 0.4% is a very low deviation value.
Thus, it is possible to say that the algorithm has obtained high
quality solutions for the instances of c50_10.

The Optimal (%) obtained by the genetic algorithm for ¢50_10 is
100%. This result indicates that the algorithm has found an optimal
solution in at least once of the 20 runs carried out on each instance
pertaining to the mentioned set.

Based on the values of Av. Dev. (%) and Optimal (%) obtained by
the algorithm for each of the eight sets, it is possible to establish

Table 9

Results obtained by the computational experiments.
Instance set Av. Dev. (%) Optimal (%)
€20_5 0 100
c20_10 0 100
c30_5 0 100
c30_10 0 100
c40_5 0 100
c40_10 0 100
c50_5 0 100
c50_10 0.4 100




8412 V. Yannibelli, A. Amandi/Expert Systems with Applications 38 (2011) 8403-8413

that the algorithm has reached an optimal level of effectivity on the
sets c20_5, c20_10, c30_5, c30_10, c40_5, c40_10 and c50_5, and
that the algorithm has reached a high level of effectivity on the
set ¢50_10.

5. Related works

In literature, different works have considered specificities of hu-
man resources (i.e., multiple skills, heterogeneous efficiencies,
workload capacity and cost per time unit) in the context of project
scheduling problems. However, to the best of our knowledge, few
works have considered human resources with resource-specific
effectivities (Bellenguez & Néron, 2004b; Hanne & Nickel, 2005),
a central aspect in software projects scheduling, although with a
great number of simplifications.

Bellenguez (2008), Bellenguez and Néron (2004a, 2007), Néron
(2002) and Néron, Bellenguez, and Heurtebise (2006) address the
Multi-Skill Project Scheduling Problem (MSPSP). In this problem,
to be developed, each project activity requires specific skills and
a given number of human resources (employees) for each required
skill. Each available employee masters one or several skills, and all
the employees that manage a given skill have the same effectivity
level in relation to the mentioned skill (homogeneous and static
effectivities). Bellenguez and Néron (2004b) consider the MSPSP
with hierarchical levels of skills. In this case, given a skill, for each
employee that manages the skill, an effectivity level is defined in
relation to the mentioned skill (heterogeneous effectivities in rela-
tion to the skills). Then, each project activity requires one or sev-
eral skills, a minimum effectivity level for each skill, and a
number of resources for each pair skill-level.

Li and Womer (2009) address the MSPSP with the aim of mini-
mizing the total staffing cost, and consider a specific workload
capacity (i.e., weeks in a project) and a specific salary for each em-
ployee. In Drezet and Billaut (2008) the objective in the MSPSP is to
minimize the maximal lateness of the project, and consider a spe-
cific workload capacity (i.e., duration of work per day, etc.) for each
employee. In both works, homogeneous effectivities in relation to
each skill are considered.

In the previously mentioned works, it is considered that all sets
of employees that can be assigned to a particular activity have the
same effectivity on the development of the activity. Specifically,
with respect to the effectivity, the said sets are merely treated as
unary resources with homogeneous effectivities.

Hanne and Nickel (2005) address the MSPSP with three differ-
ent optimization objectives (i.e., time, quality and cost). In this
work, most activities require only one employee with a particular
skill, and each employee manages different skills. In this case, het-
erogeneous effectivities in relation to each skill are considered.
Then, the effectivity of an employee in a given activity is defined
only considering the effectivity level of the employee in relation
to the skill required for the activity.

It is necessary to mention that MSPSP can be seen as a particular
case of the MM-RCPCP (Multi-Mode Resource Constrained Project
Scheduling Problem). However, in the MSPSP the number of modes
for each activity can be exponential with the number of employees
having at least one of the required skills, which is too large for a full
enumeration (Bellenguez & Néron, 2004b).

Valls, Gomez-Cabrero, Pérez, and Quintanilla (2007), Valls,
Pérez, and Quintanilla (2009), Aickelin, Burke, and Li (2009) and
Focacci, Laborie, and Nuijten (2000) address the Skilled Workforce
Project Scheduling Problem (SWPSP) considering different optimi-
zation objectives. In this problem, each project activity requires
just one worker with a particular skill to be developed, and each
worker has different skills. In Valls et al. (2007, 2009), given a skill,
for each resource that manage the skill, an efficiency level is

defined (heterogeneous efficiencies in relation to each skill). In
Aickelin et al. (2009) and Focacci et al. (2000), homogeneous effi-
ciencies in relation to each skill are considered. In the four men-
tioned works, homogeneous effectivities in relation to each skill
are considered. The SWPSP can be seen as a case of a MM-RCPSP.
However, the SWPSP consider other optimization objectives and
consider the worker timetables (Valls et al., 2007).

Heimerl and Kolisch (2010) and Gutjahr, Katzensteiner,
Reiter, Stummer, and Denk (2008) address the problem of
scheduling multiple projects taking into account different opti-
mization objectives. In Heimerl and Kolisch (2010), human re-
sources with homogeneous effectivities and heterogeneous
efficiencies in relation to each skill are considered. Moreover,
a specific workload capacity and cost per time unit for each
resource is considered. Gutjahr et al. (2008) consider human
resources with heterogeneous effectivities and efficiencies in
relation to each skill.

6. Conclusions

We have addressed the problem of scheduling a software devel-
opment project with the aim of assisting to project managers at the
early stage of designing project schedules. Consequently, as part of
the problem, we have considered an optimization objective prior-
ity for managers at the mentioned stage. This objective is to assign
the most effective set of employees to each project activity. In rela-
tion to this objective, we have considered that the effectivity of a
set of employees depends on the effectivity of each one of the
employees belonging to the set. On the other hand, we have estab-
lished that the effectivity level of an employee is determined by
their work context. Therefore, for each employee, it is possible to
define different effectivity levels in relation to different work con-
texts. To the best of our knowledge, the work context influence on
effectivity of the employees has not been considered in previous
related works.

To solve the problem in question, we have proposed a knowl-
edge-based genetic algorithm. Considering a given software pro-
ject, this algorithm designs feasible schedules for the project, and
evaluates each designed schedule according to the previously men-
tioned optimization objective. This evaluation is developed based
on available knowledge about the effectivity of employees in-
volved in each schedule. Specifically, for each designed schedule,
the algorithm estimates the effectivity level of the sets of employ-
ees assigned to the project activities. The effectivity of a set as-
signed to a particular activity is estimated based on the
effectivity level of the employees included in the set. Then, the
effectivity level of an employee, in relation to a given work context,
is defined based on available knowledge arising from historical
information about the participation of the employee in already
executed projects.

Different experiments have been carried out to evaluate the
performance of the algorithm proposed. The experiments consisted
in the solving of instances corresponding to eight different sets:
€20_5, c20_10, c30_5, c30_10, c40_5, c40_10, c50_5 and c50_10.
The instances belonging to different sets have different complexity,
i.e., have a different search space. Thus, the utilization of the men-
tioned sets has allowed evaluating the genetic algorithm perfor-
mance over instances that have a different complexity.

In the experiments, we have measured the average percentage
deviation from the optimal solution (Av. Dev. (%)) for each instance
set, and the percentage of problems for which an optimal solution
(Optimal (%)) was found for each instance set.

Based on the values of Av. Dev. (%) and Optimal (%) obtained by
the algorithm for each of the eight sets, it has been possible to
establish that the algorithm has reached an optimal level of



V. Yannibelli, A. Amandi/Expert Systems with Applications 38 (2011) 8403-8413 8413

effectivity on the sets c20_5, c20_10, c30_5, ¢30_10, c40_5, c40_10
and c50_5, and that the algorithm has reached a high level of effec-
tivity on the set ¢50_10. Therefore, we conclude that the results
reached by the proposed algorithm are actually promising.

References

Aickelin, U., Burke, E., & Li, J. (2009). An evolutionary squeaky wheel optimization
approach to personnel scheduling. [EEE Transactions on Evolutionary
Computation, 13(2).

Barrick, M. R,, Stewart, G. L., Neubert, M. ., & Mount, M. K. (1998). Relating member
ability and personality to work-team processes and team effectiveness. Journal
of Applied Psychology, 83, 377-391.

Bellenguez, O. (2008). A reactive approach for the multi-skill project scheduling
problem. In PATAT 2008 proceedings of the 7th international conference on the
practice and theory of automated timetabling.

Bellenguez, O., & Néron, E. (2004a). Methods for the multi-skill project scheduling
problem. In 9th International workshop on project management and scheduling
(PMS’2004), Nancy (pp. 66-69).

Bellenguez, O., & Néron, E. (2004b). Lower bounds for the multi-skill project scheduling
problem with hierarchical levels of skills. In PATAT 2004. Lecture notes in computer
science (3616, pp. 229-243). Springer.

Bellenguez, O., & Néron, E. (2007). A branch-and-bound method for solving multi-
skill project scheduling problem. RAIRO - Operations Research, 41(2), 155-170.

Blazewicz, ]., Lenstra, ]., & Rinnooy Kan, A. (1983). Scheduling subject to resource
constraints: Classification and complexity. Discrete Applied Mathematics, 5,
11-24.

Boctor, F. F. (1996). An adaptation of the simulated annealing algorithm for solving
resource constrained project scheduling problems. International Journal of
Production Research, 34, 2335-2351.

Boon, B. H., & Sierksma, G. (2003). Team formation: Matching quality supply and
quality demand. European Journal of Operational Research, 48, 277-292.

Darwin, C. (1859). The Origin of Species. London: John Murray.

Drezet, L. E., & Billaut, J. C. (2008). A project scheduling problem with labour
constraints and time-dependent activities requirements. International Journal of
Production Economics, 112, 217-225.

Eiben, A. E., & Smith, ]. E. (2007). Introduction to evolutionary computing (2nd ed.).
978-3-540-40184-1. Springer.

Focacci, F., Laborie, P., & Nuijten, W. (2000). Solving scheduling problems with setup
times and alternative resources. In Proceedings of the fifth international
conference on artificial intelligence planning and scheduling.

Goldberg, D. E. (2007). Genetic algorithms in search, optimization, and machine
learning. Addison-Wesley Publishing Company, Inc..

Gutjahr, W. ]., Katzensteiner, S., Reiter, P., Stummer, Ch., & Denk, M. (2008).
Competence-driven project portfolio selection, scheduling and staff assignment.
Central European Journal of Operations Research, 16(3), 281-306.

Hanne, T., & Nickel, S. (2005). A multiobjective evolutionary algorithm for
scheduling and inspection planning in software development projects.
European Journal of Operational Research, 167, 663-678.

Hartmann, S. (1998). A competitive genetic algorithm for resource-constrained
project scheduling. Naval Research Logistics, 45, 733-750.

Heerkens, G. R. (2002). Project management. Ed. McGraw-Hill.

Heimerl, C., & Kolisch, R. (2010). Scheduling and staffing multiple projects with a
multi-skilled workforce. OR spectrum (Vol. 32, pp. 343-368). Springer.

Holland, J. (1975). Adaptation in natural and artificial systems. Ann Arbor, Michigan:
University of Michigan Press.

Kelley, J. E. (1963). The critical-path method: Resources planning and scheduling. In
J. F. Muth & G. L. Thompson (Eds.), Industrial scheduling (pp. 347-365). Prentice-
Hall.

Kolisch, R., & Hartmann, S. (1999). Heuristic algorithms for solving the resource-
constrained project scheduling problem: Classification and computational
analysis. In J. Weglarz (Ed.), Project scheduling: Recent models, algorithms and
applications (pp. 147-178). Kluwer Academic.

Kolisch, R., & Hartmann, S. (2006). Experimental investigation of heuristics for
resource-constrained project scheduling: An update. European Journal of
Operational Research, 174, 23-37.

Kolisch, R., & Sprecher, A. (1997). PSPLIB - A project scheduling library. European
Journal of Operational Research, 96, 205-216.

Kolisch, R., Sprecher, A., & Drexl, A. (1995). Characterization and generation of a
general class of resource-constrained project scheduling problems. Management
Science, 41, 1693-1703.

Li, H., & Womer, K. (2009). Scheduling projects with multi-skilled personnel by a
hybrid MILP/CP benders decomposition algorithm. Journal of Scheduling, 12,
281-298.

Néron, E. (2002). Lower bounds for the multi-skill project scheduling problem. In
Eighth international workshop on project management and scheduling, Valencia,
Spain.

Néron, E., Bellenguez, O., & Heurtebise, M. (2006). Decomposition method for
solving multi-skill project scheduling problem. In Proceedings of the tenth
international workshop on project management and scheduling, Poznan.

Valls, V., Gomez-Cabrero, D., Pérez, M. A. & Quintanilla, S. (2007). Project
scheduling optimization in service centre management. In Tijdschrift voor
Economie en Management (pp. 341-366). Belgium: Katholieke universiteit te
Leuven. 3.

Valls, V., Pérez, A., & Quintanilla, S. (2009). Skilled workforce scheduling in service
centers. European Journal of Operational Research, 193(3), 791-804.

Wysocki, R. K. (2003). Effective project management (3rd ed.). 0-471-43221-0. Wiley
Publishing.



