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TOPSIS is one of the major techniques in dealing with multiple criteria decision making (MCDM) prob-
lems, and Belief Structure (BS) model and Fuzzy BS model have been used successfully for uncertain
MCDM with incompleteness, impreciseness or ignorance. In this paper, the TOPSIS method with Fuzzy
BS model is proposed to solve Group Belief MCDM problems. Firstly, the Group Belief MCDM problem
is structured as a fuzzy belief decision matrix in which the judgments of each decision maker are
described as Fuzzy BS models, and then the Evidential Reasoning approach is used for aggregating the
multiple decision makers’ judgments. Subsequently, the positive and negative ideal belief solutions are
defined with the principle of TOPSIS. In order to measure the separation from the ideal belief solutions,
the concept and algorithm of Belief Distance Measure are introduced to compare the difference between
Fuzzy BS models. Using the Belief Distance Measure, the relative closeness and ranking index can be cal-
culated for ranking the alternatives. A numerical example is finally given to illustrate the proposed
method.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction et al., 2009; Jahanshahloo, Lotfi, & Izadikhah, 2006b; Wang & Elhag,
TOPSIS (Technique for Order Performance by Similarity to Ideal
Solution) is one of the major techniques in dealing with Multiple
Criteria Decision Making (MCDM) problems. It simultaneously
considers both the shortest distance from the Positive Ideal Solu-
tion (PIS) and the farthest distance from the Negative Ideal Solu-
tion (NIS), and preference order is ranked according to their
relative closeness combining two distance measures (Hwang &
Yoon, 1981). The technique is helpful for Decision Makers (DMs)
to structure the problems, conduct analysis, and rank the alterna-
tives (Shih, Shyur, & Lee, 2007). Due to its logicality, rationality,
and computational simplicity, TOPSIS has been widely applied to
the research of evaluation and selection problems and risk analysis
problems (Balli & Korukoglu, 2009; Chamodrakas, Alexopoulou, &
Martakos, 2009; Chen & Tzeng, 2004; Chen, Lin, & Huang, 2006;
Chu, 2002; Chu & Lin, 2003; Dagdeviren, Yavuz, & Kilinc, 2009;
Deng, Yeh, & Willis, 2000; Ertugrul & Karakasoglu, 2009; Wang &
Elhag, 2006; Wang & Lee, 2009; Ye & Li, 2009).

To meet the specific requirements of real-world decision mak-
ing problems, e.g., uncertain or group decision environments, over
past few years many extended TOPSIS methods have also been pro-
posed, such as Fuzzy TOPSIS (Chamodrakas et al., 2009; Chen,
2000; Chen et al., 2006; Chu, 2002; Chu & Lin, 2003; Dagdeviren
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2006; Wang & Lee, 2007; Wang & Lee, 2009); Fuzzy AHP and TOP-
SIS (Balli & Korukoglu, 2009; Ertugrul & Karakasoglu, 2009); TOP-
SIS with interval data (Jahanshahloo, Lotfi, & Izadikhah, 2006a;
Ye & Li, 2009); TOPSIS with grey relation analysis (Chen & Tzeng,
2004) and Group TOPSIS (Shih et al., 2007; Wang & Lee, 2007; Ye
& Li, 2009). Particularly, in the stream of Fuzzy TOPSIS, Chen
(2000) extended TOPSIS to the fuzzy environment where the rating
of each alternative and the weight of each criterion are described
by linguistic terms and expressed in triangular fuzzy numbers.
The ranking of all alternatives is determined by calculating the dis-
tances to both the fuzzy PIS and fuzzy NIS simultaneously. Chu
(2002) proposed a fuzzy group TOPSIS model under different sub-
jective attributes in which the membership function is aggregated
by interval arithmetic and a-cuts of fuzzy numbers and alterna-
tives are ranked by mean of the integral values. It was further ap-
plied to the decision problems with criteria assessed in linguistic
terms (Chu & Lin, 2003). Wang and Elhag (2006) introduced a fuzzy
TOPSIS method on alpha level sets and presented a nonlinear pro-
gramming solution procedure. Jahanshahloo et al. (2006b) ex-
tended TOPSIS method for decision-making problems with fuzzy
data. Wang and Lee (2007) presented a generalized TOPSIS with
two operators Up and Lo which satisfy the partial ordering relation
on fuzzy numbers. More recently, Fuzzy Analytic Hierarchy Process
(FAHP) and TOPSIS methods was proposed by taking subjective
judgments of decision makers into consideration by Balli and Kor-
ukoglu (2009) and Ertugrul and Karakasoglu (2009). In addition,
Fuzzy TOPSIS approach integrating subjective and objective
weights (Wang & Lee, 2009), a class of fuzzy methods based on
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TOPSIS (Chamodrakas et al., 2009), and the AHP and TOPSIS meth-
ods under fuzzy environment (Dagdeviren et al., 2009) were also
developed for particular decision making problems.

So far, Fuzzy TOPSIS mainly considers the situation where the
rating of alternatives is expressed by vague or fuzzy concepts, that
is to say, an alternative can only be evaluated by a single linguistic
variable, e.g., either Good or Bad, on a certain criterion (Chen,
2000). However, in real-world decision making problems, DMs
usually can not express their evaluations by a single linguistic var-
iable due to the incompleteness and ignorance involved in infor-
mation acquisition process. Therefore, it is more appropriate to
express their opinions by a series of linguistic variables with belief
degrees, for example, the criterion C of alternative A may be eval-
uated as {(good, 0.7), (average, 0.3)}, which means that the DM is
70% sure that criterion C is ‘good’ and 30% sure that it is ‘average’.
This evaluation structure having belief degree on each evaluation
grade is called as Belief Structure (BS), which was firstly developed
to deal with MCDM problems under uncertainty by Yang and Singh
(1994), Yang and Sen (1994), and Yang and Xu (2002), and it has
been successfully extended to the area of Fuzzy MCDM (Guo, Yang,
Chin, & Wang, 2009; Yang, Wang, Chin, & Xu, 2006), Environmental
Impact Assessment (Wang, Yang, & Xu, 2006), New Product Devel-
opment (Chin, Xu, Yang, & Lam, 2008; Lam, Chin, Yang, & Liang,
2007), Quality Function Deployment (Chin, Wang, Yang, & Poon,
2009), Failure Mode and Effects Analysis (Chin, Wang, Poon, &
Yang, 2009), etc.

This paper is aimed at extending TOPSIS to deal with Group Be-
lief MCDM problem on the basis of the Fuzzy Belief Structure mod-
el. The rest of the paper is organized as follows. In Section 2, the
Fuzzy BS model and TOPSIS method are introduced as the basis
of this research. In Section 3, a novel belief distance measure algo-
rithm, which is used to measure the difference between two Fuzzy
BS models, is proposed and several properties are proved. In Sec-
tion 4, the procedure of the proposed TOPSIS with Fuzzy BS is pre-
sented step by step. Finally, a numerical example is given to
illustrate the proposed approach in Section 5, and the paper is con-
cluded in Section 6.

2. A brief introduction to TOPSIS and fuzzy belief structure

2.1. TOPSIS method

TOPSIS is a useful technique in the field of MCDM (Chen and
Hwang, 1992). The basic principle of the method is that the se-
lected alternative should have the shortest distance from PIS and
the farthest distance from NIS.

Suppose a MCDM problem has m alternatives and n criteria, and
the decision matrix is represented as [xij]m�n. The procedure of
TOPSIS consists of the following steps:

(1) Calculate the normalized decision matrix.
µ (x)

nij ¼

xijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1x2

ij

q ; i ¼ 1; . . . ;m; j ¼ 1; . . . ;n:
1 

H
N-1

H
...

H
n H

2
H

1
H

N

(2) Calculate the weighted normalized decision matrix.
v ij ¼ wjnij; i ¼ 1; . . . ;m; j ¼ 1; . . . ;n:

where wj is the weight of the jth criterion, and
Pn

j¼1wj ¼ 1.

(3) Determine the positive ideal and negative ideal solution
a b c d e f g h

Fig. 1. The mutual relationship between fuzzy evaluation grades.
Aþ ¼ vþ1 ; . . . ;vþn
� �

¼ max
i

v ij; j ¼ 1; . . . ; n
� �

;

A� ¼ v�1 ; . . . ;v�n
� �

¼ min
i

v ij; j ¼ 1; . . . ;n
� �

;

(4) Calculate the separation measures, using the n-dimensional
Euclidean distance. The separation of each alternative from
PIS is given as
dþi ¼
Xn

j¼1

ðv ij � vþj Þ
2

( )1
2

; i ¼ 1; . . . ;m:

Similarly, the separation from NIS is given as

d�i ¼
Xn

j¼1

ðv ij � v�j Þ
2

( )1
2

; i ¼ 1; . . . ;m:
(5) Calculate the relative closeness to the ideal solution.
Ci ¼
d�i

dþi þ d�i
; i ¼ 1; . . . ;m:
(6) Rank the preference according to Ci.

2.2. Fuzzy belief structure model

The BS model, which was originally developed by Yang and Sen
(1994), Yang and Xu (2002), Yang et al. (2006), is a distributed
assessment scheme with belief degrees to represent the perfor-
mance of an alternative on a criterion.

Suppose a criterion is assessed by a complete set of standards
with N evaluation grades, as represented by H = {H1,H2, . . . ,
Hn . . . ,HN}, where Hn is the nth evaluation grade. Without loss of
generality, it is assumed that Hn is preferred to Hn+1. A given assess-
ment for criterion c may be mathematically represented as the fol-
lowing distribution:

SðcÞ ¼ fðHn;bnÞ; n ¼ 1; . . . ;Ng; ð1Þ

where bn P 0;
PN

n¼1bn 6 1, and bn is a belief degree. Eq. (1) means
the criterion c is assessed to the grade Hn with the belief degree
bn. An assessment S(c) is complete if

PN
n¼1bn ¼ 1 and incomplete

if
PN

n¼1bn < 1. A special case is
PN

n¼1bn ¼ 0, which represents a com-
plete ignorance on criterion c.

In many practical decision situations, the evaluation grades are
possibly represented as fuzzy concepts. So it is necessary to extend
the BS model to the Fuzzy environments, in which the evaluation
grades are represented as fuzzy sets. Suppose a set of fuzzy evalu-
ation grades {Hn,n = 1, . . . ,N} may be either triangular or trapezoi-
dal fuzzy sets or their combinations. To simplify the discussion
without loss of generality, we assume that only two adjacent fuzzy
evaluation grades may intersect as shown in Fig. 1.

Since fuzzy evaluation grades and belief degrees are used, the
initial S(c) defined in Eq. (1) should be extended to include both
fuzzy sets (grades) and belief degrees. The former is used to model
fuzziness or vagueness and the later is used to evaluate incom-
pleteness or ignorance. As such, the extended S(c) is referred to
as Fuzzy Belief Structure (Yang et al., 2006).
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Fig. 2. Fuzzy grade utilities corresponding to fuzzy evaluation grades.

9402 J. Jiang et al. / Expert Systems with Applications 38 (2011) 9400–9406
3. Belief distance measure algorithm

As we know, the distance measure is one of the most important
steps in TOPSIS method. In order to extend TOPSIS to deal with
Fuzzy BS model, we first define a belief distance measure to quan-
tify the difference between two Fuzzy BS models, and then prove
some basic geometrical properties of the belief distance measure
in this section.

3.1. Basic concepts for metric distances

A metric distance defined on the set X is a mapping function,

d : X � X ! R;

where R is the set of real number. For all x,y,z 2 X, the distance func-
tion is required to satisfy the following conditions:

(1) Non-negativity: d(x,y) P 0;
(2) Identity of indiscernible: d(x,y) = 0 if and only if x = y;
(3) Symmetry: d(x,y) = d(y,x);
(4) Triangle inequality: d(x,y) 6 d(x,z) + d(z,y).

In the research field of decision science, Minkowski’s Lp metric
is usually used in many methods, such as goal programming and
global criteria method (Abo-Sinna & Amer, 2005; Lai, Liu, & Hwang,
1994). The Lp metric defines the distance between two points f and
f⁄ (the reference point) in k-dimensional space as follows:

dp ¼
Xn

i¼1

ðf �i � fiÞp
( )1=p

; p P 1:

One physical property of dp measure is well known: when p in-
creases, distance dp decreases, i.e., d1 P d2 P � � �P d1. It means
greater emphasis is given to the largest deviation in forming the to-
tal distance. More specifically, p = 1 implies an equal importance
(weights) for all these deviations; p = 2 implies that these devia-
tions are weighted proportionately with the largest deviation hav-
ing the largest weight. And ultimately p =1 suggests that the
largest deviation completely dominates the distance determina-
tion, i.e.,

d1 ¼max
i

f �i � fi

�� ��� �
:

Distance p = 1, 2, and1 are especially operationally important:
d1 (the Manhattan distance) and d2 (the Euclidean distance) are the
longest and the shortest distance in the geometrical sense; d1 (the
Tchebycheff distance) is the shortest distance in the numerical
sense.

3.2. Similarity between fuzzy evaluation grades

Before defining the belief distance measure, we firstly measure
the similarity between fuzzy evaluation grades based on the simi-
larity of fuzzy sets (Chen, 1996; Wei & Chen, 2009). In Fig. 1, the
fuzzy evaluation grades are represented by triangular or trapezoi-
dal fuzzy sets. Correspondingly, the utilities to fuzzy evaluation
grades can be also represented by triangular or trapezoidal fuzzy
sets, which were called as fuzzy grade utilities (Yang et al.,
2006). A fuzzy grade utility should have the same form as its cor-
responding fuzzy evaluation grade. Without lose of generality, sup-
pose the utilities of each fuzzy evaluation grade are represented
using the trapezoidal fuzzy numbers as follows:

UðHnÞ ¼ un
1;u

n
2;u

n
3;u

n
4

� 	
; ð2Þ

where un
kðk ¼ 1; . . . ;4Þ 2 ½0;1�. The fuzzy grade utilities correspond-

ing to the fuzzy evaluation grades in Fig. 1 are shown in Fig. 2.
Let U(Hi) and U(Hj) be the fuzzy grade utilities of two fuzzy eval-
uation grades Hi and Hj, where UðHiÞ ¼ ui

1;u
i
2;u

i
3;u

i
4

� 	
and

UðHjÞ ¼ ðuj
1;u

j
2;u

j
3;u

j
4Þ. The similarity between Hi and Hj is calcu-

lated as follows:

~sijðHi;HjÞ ¼ 1�
P4

k¼1 ui
k � uj

k

��� ���
4

; ð3Þ

where 0 6 ~sij 6 1, because of un
kðk ¼ 1; . . . ;4Þ 2 ½0;1�. The similarity

describes the difference among the fuzzy evaluation grades. The lar-
ger the value of ~sij, the higher the similarity between the fuzzy eval-
uation grades Hi and Hj. If a fuzzy evaluation grade Hi is triangular
fuzzy set, we have ui

2 ¼ ui
3 and the similarity calculation is same.
3.3. Belief distance measure

According to definition in Eq. (1), a Fuzzy BS model S consists of
N fuzzy evaluation grades. To simplify the calculation, we firstly
formulate a Fuzzy BS model as a corresponding vector
B = v(S) = (b1,b2, . . . ,bN). In this way, the comparison between two
Fuzzy BS models is transformed into the distance measure be-
tween two vectors. Suppose there are two Fuzzy BS models S1

and S2, the corresponding vectors are B1 and B2. The distance be-
tween S1 and S2 is defined as:

dBSðS1; S2Þ ¼ dBSðB1;B2Þ ¼
1
2
ðB1 � B2ÞeSðB1 � B2ÞT


 �1
2

; ð4Þ

where eS ¼ ½~sij�n�n is a similarity matrix, in which the element ~sij is
defined in Eq. (3).

This belief distance measure is an effective and simple method
to calculate the distance between two Fuzzy BS models. Some
important properties are described as follows:

Property 1. The distance between two Fuzzy BS models S1 and S2 is
located between 0 and 1, i.e. 0 6 dBS(S1,S2) 6 1.

According to Eq. (4), it is obvious that dBS(S1,S2) P 0.
Since the quasi-Euclidean distance is normalized by the coeffi-

cient 1/2, it can also be guaranteed that dBS(S1,S2) 6 1.

Property 2. Two Fuzzy BS models S1 and S2 are identical if and only if
dBS(S1,S2) = 0.
Proof. If S1 and S2 are identical, S1 = S2, then dBSðS1; S2Þ ¼
ð12 OeSOTÞ

1
2 ¼ 0.

If dBS(S1,S2) = 0, then (B1 � B2) = 0, which implies B1 = B2, i.e.
S1 = S2. h

Property 3. The distance is symmetrical, i.e. dBS(S1,S2) = dBS(S2 ,S1).
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Proof

dBSðS1; S2Þ ¼ dBSðB1;B2Þ ¼
1
2
ðB1 � B2ÞeSðB1 � B2ÞT


 �1
2

¼ 1
2
ðB2 � B1ÞeSðB2 � B1ÞT


 �1
2

¼ dBSðB2; B1Þ

¼ dBSðS2; S1Þ: �
Property 4. Let S1,S2 and S3 be three Fuzzy BS models. The triangle
inequality is satisfied: dBS(S1,S2) + dBS(S2,S3) P dBS(S1,S3).
Proof. In order to prove dBS(S1,S2) + dBS(S2,S_3) P dBS(S1,S3), that is
to proveffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2
ðB1 � B2ÞeSðB1 � B2ÞT

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ðB2 � B3ÞeSðB2 � B3ÞT

r
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ðB1 � B3ÞeSðB1 � B3ÞT

r
:

Let m1 = (B1 � B2),m2 = (B2 � B3), then (B1 � B3) = m1 + m2, the above
inequality is transformed as,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2

m1
eSmT

1

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

m2
eSmT

2

r
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ðm1 þm2ÞeS m1 þm2ð ÞT

r

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

m1
eSmT

1 þm1
eSmT

2

þm2
eSmT

1 þm2
eSmT

2

 !vuut :

Calculate the squares of both sides, we further need to prove,

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1
eSmT

1

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2
eSmT

2

q
P m1

eSmT
2 þm2

eSmT
1:

Since ðm1
eSmT

2Þ
T ¼ m2

eST mT
1 ¼ m2

eSmT
1, we transform the formula

above intoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1
eSmT

1

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2
eSmT

2

q
P m1

eSmT
2:

That is to prove

m1
eSmT

1m2
eSmT

2 �m1
eSmT

2m1
eSmT

2 P 0:

The left side of the above inequality is equal to,

m1
eSmT

1m2
eSmT

2 �m1
eSmT

2m1
eSmT

2 ¼ m1
eS mT

1m2 �mT
2m1

� 	eSmT
2

¼ m1
eSmT

1 ðmT
1Þ
�1mT

1m2m�1
2

�
�ðmT

1Þ
�1mT

2m1m�1
2



m2
eSmT

2

¼ m1
eSmT

1 1� ðmT
1Þ
�1mT

2m1m�1
2

� 

m2
eSmT

2:

Because S1,S2 and S3 are Fuzzy BS models, the components of vector
B1,B2 and B3 are not more than 1, i.e.,

PN
n¼1bn 6 1, according to the

definition of Fuzzy BS model.
So, we have B1 � BT

2 6 1;B2 � BT
3 6 1;B1 � BT

3 6 1. And similarly,
m1mT

2 6 1;m1mT
2 6 1. As a consequence, we have

ðmT
1Þ
�1mT

2m1m�1
2 6 1; and 1� ðmT

1Þ
�1mT

2m1m�1
2 P 0:

It is also true that,

m1
eSmT

1 P 0 and m2
eSmT

2 P 0:

So, we can finally prove that,

m1
eSmT

1m2
eSmT

2 �m1
eSmT

2m1
eSmT

2

¼ m1
eSmT

1 1� ðmT
1Þ
�1mT

2m1m�1
2

� 

m2
eSmT

2 P 0
i.e.,

dBSðS1; S2Þ þ dBSðS2; S3ÞP dBSðS1; S3Þ: �
Property 5. Let S1,S2 and S3 be three Fuzzy BS models. If S1 is closer to
S3 than to S2, then dBS(S1,S3) < dBS(S2 ,S3).

We explain this property using an example. Given three BS
models:

S1 ¼ fð‘good’;0:9Þ; ð‘average’;0:1Þ; ð‘bad’;0Þg;
S2 ¼ fð‘good’;0:5Þ; ð‘average’;0:5Þ; ð‘bad’;0Þg;
S3 ¼ fð‘good’;1Þ; ð‘average’;0Þ; ð‘bad’;0Þg:

Suppose u(‘good’) = (0.7,1,1,1), u(‘average’) = (0.2,0.4,0.6,0.8),
u(‘bad’) = (0,0,0,0.3). The similarity can be calculated using
Eq. (3):

eS ¼ 1 0:575 0:150
0:575 1 0:575
0:150 0:575 1

264
375

and the distances are calculated using Eq. (4):

dBSðS1; S3Þ ¼ dBSðB1; B3Þ ¼
1
2
ð�0:1; 0:1;0ÞeSð�0:1;0:1; 0ÞT


 �1
2

¼ 0:0652;

dBSðS2; S3Þ ¼ dBSðB2; B3Þ ¼
1
2
ð�0:5; 0:5;0ÞeSð�0:5;0:5; 0ÞT


 �1
2

¼ 0:3260:

We therefore conclude,

dBSðS1; S3Þ < dBSðS2; S3Þ:
4. TOPSIS with fuzzy BS model

Suppose there are M alternatives Ai(i = 1, . . . ,M) and K DMs
Dk(k = 1, . . . ,K). Each alternative is evaluated by Cj (j = 1, . . . ,L) crite-
ria. To represent uncertainty, the Fuzzy BS model as defined by Eq.
(1) is applied to describe the judgments of DMs. With the above
context, the TOPSIS method with Fuzzy BS model for Group Belief
MCDM problem is carried out in the following procedures:

Step 1. Formulate the Group Belief MCDM problem by construct-
ing fuzzy belief decision matrix and identifying the
weights of criteria and DMs as:
ð5Þ

WD ¼ ½wD
1 ; . . . ;wD

k ; . . . ;wD
K �; ð6Þ

WC ¼ ½wC
1 ; . . . ;wC

j ; . . . ;wC
L �; ð7Þ

where Mk is the individual fuzzy belief decision matrix for
each DM Dkðk ¼ 1; . . . ;KÞ:wD

k is the weight of DM Dk,PK
k¼1wD

k ¼ 1:wC
j is the weight of criterion Cj,

PL
j¼1wC

j ¼
1:Sk

ij ¼ fðHn;bn;kÞ;n ¼ 1; . . . ;Ngij is a Fuzzy BS model defined
in Eq. (1). It means that, in decision maker Dk’s opinion,
alternative Ai is assessed to fuzzy evaluation grade Hn with
belief degree of bn,k regarding criterion Cj.
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Step 2. Aggregate multiple individual fuzzy belief decision matrix
Mk into fuzzy belief decision matrix M using the Evidential
Reasoning approach (Yang & Xu, 2002; Yang et al., 2006).
The aggregated fuzzy belief decision matrix M can be
expressed as:
M ¼ ½Sij�M�L ¼ M1 �M2 � � � � �MK ; ð8Þ

where its element Sij represents the aggregated rating of
alternative Ai with respect to criterion Cj.
In M = [Sij]M�L and Mk ¼ ½Sk

ij�M�L; Sij and Sk
ij are both Fuzzy BS

models, Sij = {(Hn,bn), n = 1, . . . ,N}ij and Sk
ij ¼ fðHn;bn;kÞ; n ¼

1; . . . ;Ngij; the analytical relation between bn from bn,k is
expressed as follows (Wang et al., 2006):

bn ¼
l �

QK
k¼1 wD

k bn;kþ1�wD
k

PN
j¼1

bj;k

 !
�
QK

k¼1 1�wD
k

PN
j¼1

bj;k

 !" #
1�l �

QK
k¼1 1�wD

k

� 	h i ;

n¼ 1; . . . ;N ð9Þ

with

l¼
XN

n¼1

YK

k¼1

wD
k bn;kþ1�wD

k

XN

j¼1

bj;k

 !
�ðN�1Þ

YK

k¼1

1�wD
k

XN

j¼1

bj;k

 !" #�1

;

ð10Þ

where wD
k is the weight of kth DM in Eq. (6).
Step 3. Normalize Fuzzy BS models if incompleteness is involved.
If the Fuzzy BS model is incomplete, i.e.

PN
n¼1bn < 1, we

define the Center-of-gravity of Fuzzy BS model to deal
with this ignorance. Firstly, the degree of ignorance is rep-
resented as bH ¼ 1�

PN
n¼1bn. Then, for the Fuzzy BS model

with N Fuzzy evaluation grades, we have N BS peak points,
which are defined as:
SPmðSÞ ¼ Hn;b
m
n

� 	
; n ¼ 1; . . . ;N

� �
; m ¼ 1; . . . ;N ð11Þ

with

bm
n ¼

bn þ bH; m ¼ n:

bn; m–n:

�
ð12Þ
SPm(S) means a situation when the ignorance degree bH of
Fuzzy BS model S is assigned entirely to the fuzzy evalua-
tion grade Hn. Then, the Center-of-gravity of Fuzzy BS mod-
el S is defined as:

SCðSÞ ¼
PN

m¼1SPmðSÞ
N

¼ Hn;

PN
m¼1b

m
n

N

 !
; ðn ¼ 1; . . . ;NÞ

( )
; ð13Þ
when S is incomplete, we use the Center-of-gravity of
Fuzzy BS model SC(S) instead of S.
Table 1
BS Judgments from decision makers.
Step 4. Determine the Positive Ideal Belief Solutions (PIBS) A+and
Negative Ideal Belief Solutions (NIBS) A�, respectively.
C1 C2 C3 C4

A1 D1 0.9, 0.1, 0, 0 0, 0.5, 0.5, 0 0, 0.2, 0.8, 0 0, 0.4, 0.4, 0
D2 0, 0.8, 0.2, 0 1, 0, 0, 0 0, 0.4, 0.6, 0 0, 0.7, 0.3, 0
Aþ ¼ Sþ1 ; . . . ; Sþj ; . . . ; SþL
n o

;

A� ¼ S�1 ; . . . ; S�j ; . . . ; S�L
n o

; ð14Þ

D3 0, 0.6, 0.4, 0 0, 0.9, 0.1, 0 0, 0.2, 0.8, 0 0, 0, 0.5, 0.5

A2 D1 0, 0.9, 0.1, 0 0, 0.4, 0.5, 0 1, 0, 0, 0 0.1, 0.9, 0, 0

D2 1, 0, 0, 0 0.3, 0.6, 0.1, 0 0.5, 0.5, 0, 0 0, 0.4, 0.5, 0
D3 0, 0.6, 0.4, 0 0, 0.8, 0.2, 0 1, 0, 0, 0 0.6, 0.4, 0, 0
where Sþj and S�j are Fuzzy BS model, and L is the number of
criteria.
A3 D1 0, 0.4, 0.6, 0 0, 0.8, 0.2, 0 0, 0.5, 0.5, 0 0, 0, 0.8, 0.2
D2 0, 0.3, 0.7, 0 0, 0.4, 0.5, 0 0, 0, 0.4, 0.6 0, 0.3, 0.7, 0
D3 0, 0.7, 0.3, 0 0, 0, 0, 1 0, 0, 0.5, 0.4 0, 0.2, 0.8, 0
Step 5. Calculate the separation measure from PIBS A+ and NIBS
A�. For each alternative Ai, the separation measure Dþi
and D�i can be calculated using
Dþi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL

j¼1

wC
j dBS Sij; S

þ
j

� 
2

vuut ;

D�i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL

j¼1

wC
j dBS Sij; S

�
j

� 
2

vuut ; i ¼ 1; . . . ;M; ð15Þ

where wC
j is the weight of criterion Cj in Eq. (7). dBS Sij; S

þ
j

� 

(or dBS Sij; S

�
j

� 

Þ are the belief distance measure between the

Fuzzy BS model Sij and Sþj (or S�j Þ, which is defined in Eq.
(4).
Step 6. Calculate the relative closeness Ri for each alternative Ai:
Ri ¼
D�i

Dþi þ D�i
; i ¼ 1; . . . ;M: ð16Þ
Step 7. Rank the preference order according to Ri. A larger Ri indi-
cates a better performance of the alternative.

5. Numerical example

In order to illustrate the procedure of TOPSIS method with Fuz-
zy BS model for Group belief MCDM problem, a numerical example
is studied in this section.

Step 1. Structure the Group Belief MCDM problem.
Suppose a Group Belief MCDM problem has three alterna-
tives A1, A2 and A3, four criteria C1, . . . ,C4, and three deci-
sion makers D1, D2 and D3. Each decision maker gives his
judgment which is expressed as Fuzzy BS model for each
alternative on each criterion. Suppose there are four fuzzy
evaluation grades {H1,H2,H3,H4} = {‘excellent’, ‘good’, ‘aver-
age’, ‘poor’}. If the decision maker D1 state that he is 90%
sure that the alternative A1 on the criterion C1 is excellent
and 10% sure that it is good, the Fuzzy BS model would be
expressed as {(H1,0.9), (H2,0.1), (H3,0), (H4,0)}, or as
(0.9,0.1,0,0) briefly. Similarly, all judgments from decision
makers are collected and used to constitute Table 1. The
weights of criteria and DMs are supposed as
WC = [0.3,0.3,0.2,0.2] and WD = [1/3,1/3,1/3].

Step 2. Aggregate individual fuzzy belief decision matrix Mk into
aggregated fuzzy belief decision matrix M using the Evi-
dential Reasoning approach in Eqs. (8) and (9). The results
are shown in Table 2.

Step 3. Calculate the Center-of-gravity of Fuzzy BS model for
incomplete BS model. From Table 1, we know the Fuzzy
BS models S1

14; S
1
22; S

2
24; S

2
32 and S3

33 are the incomplete. And
correspondingly, S14, S22, S24, S32 and S33 are incomplete
in Table 2. Using the Eqs. (11)–(13), we can update Table 2
and then obtain Table 3.

Step 4. Determine the Positive Ideal Belief Solutions (PIBS) A+ and
Negative Ideal Belief Solutions (NIBS) ideal belief solutions
A�. According to the definition of Fuzzy BS model, the PIBS
and NIBS are:



Table 2
Aggregated fuzzy belief decision matrix.

C1 C2 C3 C4

A1 0.2677, 0.5419,
0.1904, 0

0.3077, 0.5000,
0.1923, 0

0, 0.2260,
0.7740, 0

0, 0.3641,
0.4274, 0.1529

A2 0.3040, 0.5380,
0.1581, 0

0.0836, 0.6502,
0.2396, 0

0.8788, 0.1212,
0, 0

0.2119, 0.6221,
0.1383, 0

A3 0, 0.4587,
0.5413, 0

0, 0.4230,
0.2296, 0.3172

0, 0.1469,
0.5035, 0.3217

0, 0.1318,
0.8185, 0.0497

Table 3
Improved fuzzy belief decision matrix.

C1 C2 C3 C4

A1 0.2677, 0.5419, 0.3077, 0.5000, 0.0000, 0.2260, 0.0139, 0.3780,
0.1904, 0.0000 0.1923, 0.0000 0.7740, 0.0000 0.4413, 0.1668

A2 0.3040, 0.5380, 0.0902, 0.6568, 0.8788, 0.1212, 0.2188, 0.6290,
0.1581, 0.0000 0.2463, 0.0066 0.0000, 0.0000 0.1452, 0.0069

A3 0.0000, 0.4587, 0.0076, 0.4305, 0.0070, 0.1539, 0.0000, 0.1318,
0.5413, 0.0000 0.2372, 0.3247 0.5105, 0.3287 0.8185, 0.0497

1

µ (U)

Table 4
Belief d

A1

A2

A3
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Poor 

Utility 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Average Good Excellent

Fig. 3. Fuzzy grade utilities.

istances and separation measures.

C1 C2 C3 C4 Dþi =D�i Ri Rank

A+ 0.3968 0.3768 0.6631 0.6155 0.5035 0.5743 2
A� 0.7416 0.7453 0.6034 0.5341 0.6793

A+ 0.3743 0.4952 0.0636 0.4174 0.3889 0.6658 1
A� 0.7552 0.7079 0.9151 0.7457 0.7747

A+ 0.5963 0.6282 0.7090 0.6951 0.6498 0.4503 3
A� 0.6386 0.4609 0.4060 0.5664 0.5322
Aþ ¼ f1;0;0;0g and A� ¼ f0;0;0;1g:
Step 5. Calculate the separation measure from the PIBS A+ and
NIBS A�.
Suppose the utilities of fuzzy evaluation grades are:
uðH1Þ ¼ uð‘excellent’Þ ¼ ð0:8;1;1;1Þ; uðH2Þ ¼ uð‘good’Þ
¼ ð0:5;0:6;0:7; 0:9Þ;

u(H3) = u(‘average’) = (0.1,0.3,0.5,0.7) and u(H4) = u(‘-
poor’) = (0,0,0,0.2), as shown in Fig. 3.
Then, the similarity matrix can be calculated by Eq. (3):

eS ¼
1:000 0:725 0:450 0:100
0:725 1:000 0:725 0:375
0:450 0:725 1:000 0:650
0:100 0:375 0:650 1:000

26664
37775:

The distances between decision judgments and ideal solu-
tions are measured by Eq. (4), and the separation measure
Dþi and D�i can be calculated using Eq. (15). The results are
shown in Table 4.
Step 6. Calculate the relative closeness Ri to the ideal solution for
each alternative Ai using the Eq. (16). The results are also
shown in Table 4.

Step 7. Rank the preference order in terms of the values ofRi. In
the numerical example the ranking of three alternatives
is A2 � A1 � A3.

6. Conclusion

Uncertainty and group decision prevail in real-world MCDM
problems, the former is due to incomplete or non-obtainable infor-
mation, such as fuzziness, imprecision, vagueness, incompleteness
and ignorance; the later is due to the participation of multiple deci-
sion makers or experts. Therefore, this paper mainly focuses on the
group MCDM problem with uncertainty, which is called Group Be-
lief MCDM problem.

In order to deal with Group Belief MCDM problem, we first
study TOPSIS method with Fuzzy Belief Structure model. Fuzzy
BS model contains both fuzzy evaluation grades and belief degrees,
the former can model fuzziness or vagueness and the later incom-
pleteness or ignorance. And then, the decision making problem is
formulated as the fuzzy belief decision matrix with Fuzzy BS mod-
els, and Evidential Reasoning approach is used to aggregate multi-
ple decision makers’ judgments. To compare the difference
between Fuzzy BS models, a novel belief distance measure is de-
fined to measure the separation from ideal belief solutions. Subse-
quently, the proposed TOPSIS method with Fuzzy BS model is
introduced step by step, and is finally illustrated by a numerical
example. It is worth noting that the belief distance measure can
be not only used for the comparison of BS models in MCDM, but
also extended to alternative optimization in the future research.
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