
Segment Confidence-based Binary Segmentation (SCBS) for

Cursive Handwritten Words

Brijesh Verma and Hong Lee

School of Computing Science, CQUniversity

North Rockhampton, Queensland 4702, Australia

b.verma@cqu.edu.au

Abstract – A novel Segment Confidence-based Binary Segmentation (SCBS) for cursive

handwritten words is presented in this paper. SCBS is a character segmentation strategy for

off-line cursive handwriting recognition. Unlike the approaches in the literature, SCBS is an

unordered segmentation approach. SCBS is repetition of binary segmentation and fusion of

segment confidence. Each repetition generates only one final segmentation point. The Binary

Segmentation module is a contour tracing algorithm to find a segmentation path to divide a

segment into two segments. A set of segments before binary segmentation is called pre-

segments, and a set of segments after binary segmentation is called post-segments. SCBS

uses over-segmentation technique to generate suspicious segmentation points on pre-

segments. On each suspicious segmentation point, binary segmentation is performed and the

highest fusion value is recorded. If the highest fusion value is greater than the one of pre-

segments, the suspicious segmentation point becomes the final segmentation point for the

iteration. If not, no more segmentation is required. Segment confidence is obtained by fusing

mean character, lexical and shape confidences. The proposed approach has been evaluated on

local and benchmark (CEDAR) databases.

1 Introduction

Off-line Cursive Handwriting Recognition (OffCHR) is an automatic process to convert an

input handwritten document image into computer-recognizable character

representations. OffCHR has been active research domain for decades, and industrial

beneficiaries have been trying to automate repetitive manpower oriented tasks such as

processing postal address, bank checks, form data, historical manuscripts, etc [1]. Despite

sleepless research in OffCHR for decades, the performance of the state-of-the-art OffCHR is

below the industrial standard to accommodate the real world problems [2-6]. The researchers

in this field agree that the main contributor of the low OffCHR performance is the

segmentation [7-15].

Segmentation is a process to discriminate each letter from others, prior to recognition into

electronic character representations. Typically, OffCHR involves a set of processes such as

pre-processing, normalization, segmentation, recognition. Pre-processing is a cleanup process

to remove unwanted information [16-18]. Noise removal is done in the pre-processing stage.

Normalization is to standardize the information, so it can be fitted into a data form that

segmentation and recognition need. Normally, thresholding or skeletonization, thinning, slant

and slope corrections are performed in normalization process. The normalized handwritten

image passes through segmentation process to find letter boundaries. A sub-image bound by

two neighboring boundaries is called a segment. The recognition is to classify each segment

into a character representation [19-21]. As seen in the typical OffCHR framework in Figure 1,

the segmentation precedes the recognition. In other words, the recognition process is based

on the outcomes of the segmentation process. It implies that better recognition performance

can be achieved on better segmentation outcomes. However, the segmentation is a very

difficult process because of the nature of cursive handwriting and it has become a major error

contributor in OffCHR [22-27].

Preprocess

ü Noise removal
ü Thresholding
ü Thining
ü Skew Correction
ü Resize

Segmentation

ü Holistic
ü Dissction
ü Knowledge-Based

Recognition

ü Classification
ü Validation
ü Lexicon check

Figure 1. Typical frameworks of Off-line Cursive Handwriting Recognition (OffCHR)

Therefore, the aim of the research presented in this paper is to investigate a novel

segmentation algorithm which can avoid problems of existing algorithms and improve the

segmentation accuracy. The proposed segmentation algorithm is based on novel ideas such as

binary segmentation and use of multiple confidence values.

The rest of this paper is organized into 5 sections. Section 2 presents a review of existing

literature. The proposed algorithm is described in Section 3. Section 4 presents the

experimental results. An analysis of experimental results and a discussion are presented in

Section 5. Finally, Section 6 concludes the paper.

2 Review of segmentation in handwriting recognition

The review of handwriting recognition techniques focused on the segmentation, is presented

in this section.

2.1 Representation of segmentation

Traditionally, segmentation was manifested into x-coordinates of input images. Especially in

machine printed OCR, segmentation was only a matter of finding zero foreground pixel from

vertical histogram of the recognizing image. However, in cursive handwriting recognition,

there is no guarantee that neighboring characters will be separated by empty space.

Therefore, new representation of segmentation must be introduced. Segmentation path is

another technique to represent segmentation between two characters. Segmentation path is a

connected list of x-y coordinates to represent a boundary between two neighboring

characters. It is virtually impractical to separate two handwritten characters using a vertical

line. However, segmentation paths are simply used to define the character boundaries

[11,22,25,27].

2.2 The relation between handwriting recognition and segmentation

Researchers often describe relationship between segmentation and recognition processes in

OffCHR, as chicken and egg relationship. It is arguable which one comes first. Similarly,

segmentation cannot be completed until it is correctly recognized. On the other hand,

recognition cannot be done without segmenting the whole word image into individual

characters [11]. Segmentation is very difficult process in OffCHR, and it is one of the main

factors for low accuracy. Researchers have found the contributors to make segmentation very

hard. The major contributors are shape variability, connectivity, overlapping and brokenness.

Some examples of difficult words are shown below in Figure 2.

A word ‘Tucson’, the ‘T’ is broken into two pieces. A word ‘Troy’, the excessive horizontal bar from
letter ‘T’ overlaps over letters of ‘r’ and ‘o’

A word ‘KanKaKee’, the same letters have written
in different shape and sizes.

A word ‘Charlotte’; all the letters are connected.

Figure 2. Handwritten words showing characters for brokenness, overlapping, variability and

connectivity.

It is difficult to write characters in exact shapes by the same person. It would be even more

difficult to write characters in exact shapes by two or more people. Handwriting projects

unique characteristics of the writers. Uniqueness means variability of handwritten character

shapes [5]. Connected characters make segmentation the most difficult process in OffCHR

because it makes difficult to know how many characters to be recognized. OCR in machine

printed character recognition has been successful because segmentation in OCR is very easy.

It is said easy because segmentation can be done by locating empty spaces between the

characters. However, in OffCHR, majority of handwritten words are connected and letters can

be overlapped. Unlike connected characters, the overlapping factor can be separated by using

path finding algorithms. However, unlike vertical line separation, path finding algorithms

involve navigating algorithms that come with greater computational costs. Unlike machine

printed characters, in OffCHR there are often broken characters. The broken characters cause

de-segmentation problem. De-segmentation is a process to recognize the broken characters

and combine them and recognize them as one character. It is very hard process to find out

whether a character is broken or not. There has been some research conducted and published

on spotting broken characters [7,8,28].

2.3 Character segmentation methodologies for cursive handwriting recognition

Many researchers have been tackling the segmentation of handwritten image using various

approaches. The segmentation techniques used in the literature can be grouped into 3 groups

such as holistic, dissection and knowledge-based.

Holistic approach is also called segmentation-free. In holistic approach, global features of

handwritten word image are used against the list of words under consideration for

recognition. As the name 'holistic' implies, recognizing individual characters is ignored. The

recognition accuracy is generally linear to the size of list of words under consideration, which

is called, lexicon. So, the holistic approach is appropriate for handwriting recognition

problems with small lexicon domain, such as bank checks processing [29-36].

Dissection is a segmentation technique to find boundaries between neighboring characters

without involving knowledge about characters. One of the typical dissection approaches is

using vertical histogram of foreground pixels of the input image. The vertical histogram

based approach was eminent technique in OCR. However, the dissection technique is no

longer eligible to handle irregular handwritten images [37].

Neither holistic nor dissection technique uses knowledge about characters during

segmentation process. However, researchers have incorporated the idea of using classifiers

equipped with character knowledge to cope with the irregularities of handwriting nature. In

this type of knowledge based segmentation approach, there are two mainstream techniques.

One is to allocate segmentation point where the employed classifier recognizes up to.

Typically, a pair of sliding window and classifiers is implemented together. In the technique,

a fixed-size sliding window [38-41] scans a handwritten word image from left to right. While

scanning, the classifier confirms if the sub-image is recognizable as a legal character or not.

The other method combines the idea of dissection technique and the classifiers in the

segmentation process. In this technique, the input image is dissected into many sub-images

based on rules and heuristics, namely over-segmentation. The preliminary dissection is to

locate all the possible segmentation points. Because of the idea to find all the possible letter

boundaries, there might be excessive segmentation points. This technique is called, over-

segmentation. The following process is to remove the excessive segmentation points, and the

process is called, validation. The primary objective of validation is to remove excessive

segmentation points by incorporating classifiers. This technique anticipates the over-

segmenter and validator, and that‟s the reason it is called „Hybrid‟ technique. The hybrid

tends to find all the letter boundaries. However, it is still unaccomplished problem to remove

all the excessive segmentation points and to keep the correct ones [10,24,42-44].

As discussed so far, holistic is plausible for only small lexicon domains such as bank check

legal amounts. When it comes to the real word problem with large lexicon, the holistic

method shows very little success. It is also hard to draw universal heuristics to find

boundaries without knowledge because the nature of informal handwriting. Past research

shows that there was little success using a dissection technique. However, knowledge-based

segmentation can improve the performance if the accurate classifiers are employed.

According to the past results, knowledge-based recognition techniques outperform the

dissection technique, and that's why the method is continuously pursued by researchers.

There are two types of knowledge-based segmentation techniques. The first one is to put the

character boundaries based on recognition using sliding window technique. The second one is

hybrid technique based on over-segmentation and validation. Over-segmentation is to put

boundaries wherever doubtful, and validation is to remove the excessive segmentation

boundaries. Over-segmentation tends to find all letter boundaries. However, there is little

success in validating the excessive segmentation points. Therefore, by improving the

validation accuracy, the overall segmentation accuracy can be improved.

2.4 Segmentation techniques

Tripathy et al. [45] incorporated water reservoir approach to segment the connected

characters in Oriya text recognition. A water reservoir is a region formed by connected

components and the region could retain water as if water were poured into. Water reservoir

technique is to detect and segment connected regions based on touching position, reservoir

base-area points, topological and structural features. Their approach has been experimented

on 1840 images of Oriya scripts. The segmentation accuracy was 96.7% on two-character

touching images (1458), 95.1% on three-character touching images (311), and 93.3% on four

or more character touching images (71). However, the water reservoir approach is for single

connection between characters, and they did not address the issues of multi connection

between characters. Pal et al. [46] also used water reservoir approach to segment touching

numeral digits, and experimented on French bank checks. The segmentation accuracy was

94.8%.

Zhao et al. [47] proposed background thinning segmentation algorithm to segment connected

Chinese characters. The background thinning generates feature points such as end points, fork

points and corner points. Sub-strokes are the segments between feature points and extracted.

The connected points are located by identifying the lengths of sub-strokes and the topological

relationship between sub-strokes. Alhajj et al. [48] proposed multi-agents to segment

handwritten connected digits. Their strategy is to detect the deepest-top valley and the

highest-bottom hill by dedicated agents. Each agent is responsible for nominating

segmentation points where connected area, and the final segmentation points are

compromised by the degree of the confidence assessed by the agents. This approach was

experimented on 4095 images written by 150 writers, and obtained 97.8% segmentation

accuracy. This approach is targeting to segment only two touching digits, so it is

inappropriate to apply to problems involving multiple characters.

Liang et al. [49] proposed a meta synthetic approach to segment handwritten Chinese

character strings. They applied Viterbi algorithm to search linear segmentation paths, and the

redundant paths are eliminated by heuristics. Non-linear segmentation paths are obtained by

background thinning algorithms. Especially, touching characters are further investigated with

foreground and background information. The final segmentation paths are decided by mixture

probabilistic density function. Their approach was experimented on 921 Chinese character

strings and achieved 87.6% segmentation accuracy. However, their experiment seems biased

because their database may contain many linearly separable images shown in the examples.

Dawoud [50] proposed the iterative cross section sequence graph (ICSSG) for handwritten

character segmentation. ICSSG is a binarization technique of grey scale image, and the result

of the binarization is the segmentation of connected characters. ICSSG is based on the idea

that the stroke thickness of the connected points between characters is greater than the

average stroke thickness. This method was experimented on 2575 numeral characters from

bank checks, and obtained 76.9% recognition accuracy. However, this algorithm would fail

where the characters are connected in a line.

Renaudin et al. [51] proposed over-segmentation and graph construction technique to

segment touching digits. Over-segmentation points were located on singular area. Singular

areas are where the stroke is disrupted such as intersections, high curvature, thickness

variations, etc. Graph was constructed based on over-segmented primitives, and the final

segmentation points were found by searching the best path on the graph. Their approach was

experimented on touching two-digit images, and produced 68.9% of correct segmentation and

recognition. General idea of their method is over-segmentation and best-path searching. Their

method was only tested touching two-digit examples. The searching time and complexity will

rise when more digits are involved and they are connected. Suwa [52] proposed graph

representation technique to segment multiply connected digits. In their approach, the binary

patterns are thinned and the edges and vertices are extracted. The patterns are represented as a

connected graph. Graph theory and heuristic rules calculate the candidate segmentation path.

Also rules are incorporated to eliminate the ligatures and the touching strokes are uniformed

by digit boundary detection. The approach was experimented on 2000 pairs of touching digits

from NIST-19 database. The segmentation accuracy was reported as 88.4%. They should

expand the testing database from two-digits to multiple digits. The real world examples are

more likely multiple character strings.

3 Segment Confidence-based Binary Segmentation (SCBS)

The proposed approach, SCBS, is repetitive process of fusion and segmentation of

handwritten word images based on a set of suspicious segmentation points (SSPs). The

details of SCBS are described in following subsections.

3.1 Overview

Overall system architecture of the proposed approach is presented in Figure 3.

Calculate Fusion Confidence on Pre-segments (PreFC)
and generate suspicious segmentation points (SSPs) on pre-segments

On a SSP, perform Binary segmentation

SSPs and PreFC

Calculate Fusion Confidence of Post-segments (PostFC): Mean Character
Confidence (MCC), Mean Lexical Confidence(MLC), Mean Shape

Confidence(MSC)

Post-segments

Record the highest fusion value and post-segments

PostFC

More SSP?

Yes:
Next SSP

PostFC > PreFC AND
Count(PreFC) < SegMax

No:
The highest PostFC and the post-segments

Yes:
Pre-segments =
 Post-segments

Assign pre-segments
as final segments

No

Final segmentation points

Word image and lexicon

Count the number of character in the longest word in the lexicon, and set the number as SegMax

SegMax

Figure 3. Overview of Segment Confidence-based Binary Segmentation (SCBS)

3.2 SegMax variable

SegMax is a variable to limit the maximum number of segments. The ultimate goals of

OffCHR are to recognize the input word image, not the individual characters. Character

recognition is essential for word recognition. For the word recognition, most of OffCHR uses

lexicon. Lexicon plays a role as a dictionary for the recognition domain. It provides an

important clue that the maximum sub-images (segments) for a word image should be no more

than the number of characters of the longest word in the lexicon. Since each segment

represents a character, the maximum number of segments should be equal to the number of

characters in the longest word from considering lexicon. In our proposal, the variable

SegMax has been set to the number of characters of the longest word in lexicon.

3.3 Generating Suspicious Segmentation Points (SSPs)

The core idea of introducing over-segmentation into OffCHR is not to miss any letter

boundaries. So, successful over-segmentation generates a segmentation set containing all

letter boundaries regardless of existence of excessive segmentation points, which are called

over-segmentation points. The best way to increase the chances to have successful over-

segmentation is to locate as many segmentation points as possible. Often many rules and

heuristics are applied to achieve successful over-segmentation. Every segmentation point

from over-segmentation points can be a correct segmentation point, so it is called Suspicious

Segmentation Point (SSP).

In the proposed approach, the SSPs are generated by using vertical foreground pixel density

and stroke thickness variable. The stroke thickness is the most occurring continuous

foreground pixel count. It is measured by scanning the segmenting word vertically and

horizontally. While scanning, the occurrences are recorded and the most occurring

continuous foreground pixel count becomes the stroke thickness of the segmenting word. The

details of the stroke thickness measurement are described in [44]. Once the stroke thickness is

estimated, the SSPs are located where the vertical foreground pixel density is less than the

stroke thickness. However, to increase the chance of locating the correct boundaries, the SSPs

are located where the vertical foreground pixel density is less than three times of the stroke

thickness. The continuous SSPs are consolidated as a single SSP by finding the one in the

middle.

The suspicious segmentation points are screened by hole detection module to remove the

ones crossing hole regions. The reason to incorporate this screening process is two-fold.

Firstly, reducing the number of SSP cuts down the computational costs significantly. The

computational cost of validation for a SSP is much cheaper than validation by classifier in the

later stage. The second reason is to reduce the number of segments. A segment is a sub-image

defined by two neighboring segmentation points. The lesser segments, the lesser spatial

segment combinations for classifier have to validate. An example of SSP generating process

is described in Figure 4.

2) each suspicious segmentation region is consolidated into a single
suspicious segmentation point (SSP).

3) Hole detection removes SSPs crossing hole region, and remaining SSPs
become the final set of SSPs.

1) word ‘Garthersburg’: suspicious segmentation regions (in gray color) by
pixel histogram.

Figure 4. An example of generating a set of Suspicious Segmentation Points (SSP) from the

word, „Garthersburg‟.

3.4 Calculating Fusion of Segment Confidence (FSC)

The result of binary segmentation is a set of segments. A set of segments before the binary

segmentation is defined as pre-segments. A set of segments after the binary segmentation is

defined as post-segments. Therefore, the number of post-segments is always one bigger than

the one of pre-segments. To calculate FSC, the three types of confidence values are estimated

individually to a set of segments and they are fused together by applying pre-set weight

factors. The three types of confidences are Mean Character Confidence (MCC), Mean

Lexical Confidence (MLC) and Mean Shape Confidence (MSC). Let be the

weight factors for lexical, character and shape confidences accordingly. In the proposed

approach, the weight factors were set as = 0.4, = 0.35 and = 0.25. The final FSC

was calculated in the following equation. How to estimate MLC, MCC and MSC is described

in the following subsections.

3.4.1 Mean Character Confidence (MCC)

A character confidence is measured by using the output from the neural network based

classifier, which is pre-trained on correctly segmented characters. The classifier produces 52

confidence values (26 lowercases and 26 uppercases of English alphabets) for each segment.

The decision of the classification is made by finding the highest confidence value out of 52.

Therefore, the mean character confidence for a set of segments is found by dividing the sum

of individual mean character confidence (MCC) with the number of segments.

Let S be a set of segments, be the number of segments in and Top(Si) be the highest

confidence value of the ith segment in S:

3.4.2 Mean Lexical Confidence (MLC)

A character matching confidence score between a segment and a character is defined as

finding a corresponding confidence value from the segment‟s neural outputs for the character.

For example, the character matching confidence score for character „a‟ is the first neural

confidence value for a segment, and the 27
th

 neural confidence value for character „A‟. In the

following equation, the neural output O(S) for segment S is described by subscripting the

characters for their corresponding values. In the equation, the character matching confidence

scores between a segment and a character are as follows: a=Oa, b=Ob, c=Oc … A=OA, B=OB,

C=OC … Z=OZ.

A word matching confidence score between segments and characters (a lexical word) are

calculated by dividing the total character matching score with the number of character

matching comparison. In the proposed approach, there are two types of character matching

algorithms such as direct matching and neighbor matching. As shown in Figure 5, the direct

matching is a character matching where the segment index in the segments and the character

index in a word are the same. The neighbor matching is a character matching between Si in a

set of segments S and C(i-1) in a word C, or Si and C(i+1).

 S = {S1, S2, S3}

 C = {C1, C2, C3}

Direct matching

Neighbour matching

1) Character matchings between a set of segments (S) and
a set of characters (C) when both have the same number of

elements.

 S = {S1, S2, S3, S4, S5}

C = {C1, C2, C3}

2) Character matchings when the number of segments are
greater than the number of characters

 S = {S1, S2, S3}

 C = {C1, C2, C3, C4, C5}

3) Character matchings when the number of segments are
less than the number of characters

Figure 5. Character matching: 1) performs total of 7 character matching (3 directs + 4

neighbors), 2) and 3) total of 13 matching (5 directs + 5 neighbors)

Let S be a set of segments, C be a set of characters in a word, M(Si, Ci) be the matching score

between ith segment and ith character. The total number of matching performed would be

calculated by the number of elements in S as „Q‟ multiplied by 3, minus 2 because the first

and the last elements performed one less neighbor matching.

3.4.3 Mean Shape Confidence (MSC)

Shape Confidence (SC) is to measure how well each segment fits to the ideal character shape.

The ideal shape is universally defined as related to the height and the width of a segment. The

ideal character shape satisfies the fact that the difference between the height and the width of

a segment is very close to zero.

Let h and w be the height and width of a segment, and the SC in the proposed methodologies

are calculated by the following equation:

Therefore, the Mean Shape Confidence (MSC) is the sum of SC for all segments, and divided

by the number of segments. Let S be a set of segments, be the number of segments in S,

and SC(Si) be the function to measure the shape confidence of ith element in S. MSC is

estimated by the following equations:

Implementing MSC has two advantages. The first is to give higher segmentation priority to

the wider segment, which is likely to contain more characters. The second is that MSC

becomes the driving force for segmentation to be performed when the Mean Character

Confidence and Lexical Confidence are lower than threshold.

3.4.4 Binary Segmentation Algorithm (BSA)

The core idea of Binary Segmentation Algorithm (BSA) is to split an image/sub-image into

two sub-images on a given Suspicious Segmentation Point. BSA is applied to the connected

components or characters. Contour tracing algorithm is already introduced to segment non-

connected components. However, the contour tracing will not work on connected

components because there is no path through from lower bound to upper bound. BSA is

devised to work similar way as the contour tracing, but it can find a path through foreground

pixels to make a path, where SSP lies.

As shown in Figure 6, the tracing starts from a random tracing start point on the lower bound.

A random tracing start point is a randomly picked background pixel on lower bound. The

tracing continues recursively through all the neighboring background pixels until there are no

more neighboring background pixels to be navigated. While navigating, the encountered

coordinates of the foreground pixels lying on SSP are recorded. In the recorded coordinates,

the tracing algorithm takes one with smallest y-coordinate value, and continues navigating

towards upper bound through neighboring foreground pixels on SSP until it reaches an

untraced background pixel. The tracing ends when a pixel on upper bound is reached. Until

then, tracing through background pixels and tunneling through foreground pixels on SSP are

repeated. In Figure 6, the characters of „i‟ and „g‟ are connected. Since they are connected,

BSA must be used to dissect them. There are two foreground crossings in SSP. However, the

foreground crossing 2 should not be crossed since the tracer can make to upper bound

without crossing 2.

Lower bound

Upper bound

Foreground crossing 1

Foreground crossing 2

Segmentation path

(Grey solid line)
Traced end point

SSP

(Black dashed line)

Random tracing

start point

Figure 6. An example of Binary Segmentation Algorithm (BSA)

3.4.5 Termination of SCBS

As mentioned earlier, the SCBS is an iterative algorithm, which repeats cycles of Binary

Segmentation and evaluation of Fusion of Segment Confidence. In the proposed approach,

there are two terminating conditions. The first condition concerns the SegMax variable.

SegMax variable defines the number of segments. The total number of segments should not

exceed the SegMax.

The other condition is the improvement factor. The pre-segments are the current set of

segments before the Binary Segmentation is applied. The post-segments are defined as a

result set of Binary Segmentation on a set of pre-segments. The fusion of segment confidence

is estimated on pre-segments ad post-segments. If fusion of segment confidence on post-

segments is greater than the one on pre-segments, then improvement has been made.

Otherwise, no improvement can be made on any SSP. Therefore SCBS terminates.

3.4.6 SCBS in Steps

 In previous sections, sub-processes for SCBS are discussed. In this section, stepwise

algorithm for SCBS is presented.

Step 1. Input cursive handwritten word image.

Step 2. Estimate parameter.

Step 3. Generate Suspicious Segmentation Points (SSPs).

Step 4. Use binary segmentation for each SSP, calculate FSC and record the highest

confidence value.

Step 5. Check if terminating conditions are met

Step 6. If not terminating, the post-segments become the pre-segments. Go to step 3. If

terminating the post –segments become the final segmentation points.

4 Experimental results

4.1 Implementation

The proposed approach has been implemented in Java programming language and many

experiments were conducted.

4.2 Database preparation

Two sets of experiments were conducted on a local database and CEDAR benchmark

database to check the effectiveness of the proposed approach. The local database was created

by our group, which has been obtained from multiple writers. The CEDAR benchmark

database was taken from CEDAR\TEST\CITIES\BD directory.

4.3 Neural networks training

A MLP neural network with a single hidden layer was trained on pre-segmented characters

with back-propagation learning algorithm. It takes 100 inputs, and produces 52 outputs. The

52 outputs represent 52 alphabets (upper and lower cases). The number of hidden units and

the number of iteration were varied during the training. The number of hidden units with the

best training result was used in the experiment.

4.4 Segmentation performance criteria

As described in [27], the numbers of over-segmentation, under-segmentation, and bad-

segmentation points are counted by manual inspection. The over-segmentation is defined as a

character segmented into more than three segments. Under-segmentation points are the

missing segmentation points between two neighbouring characters. Finally, the bad-

segmentation is the rest of inappropriate cuts that don‟t belong to under-segmentation and

over-segmentation and don‟t separate two characters correctly. The final segmentation results

are calculated by dividing each categorical result with total number of characters used in the

experiment.

TABLE 1. SEGMENTATION PERFORMANCE RESULTS

Database
Size Segmentation rate (%)

word Character Under Over Bad Average

Local 293 1215 7.82 0.74 3.13 3.90

CEDAR 161 973 10.79 0.31 2.88 4.66

5 Analysis and discussion

As shown in Table 1, there are two experimental results for local and CEDAR databases. As

mentioned in previous section, the segmentation results are analyzed by the number of

segmentation errors in each category. The segmentation error categories are over, under and

bad segmentation errors. For the experiment results from the local database, the highest

segmentation error was generated by the under segmentation, which recorded 7.82%. Over

and bad segmentation errors were 0.74% and 3.13% accordingly. The average segmentation

error for the experiment on the local database was 3.90%. The result from the experiment on

CEDAR benchmark database shows that the highest error was generated from under

segmentation error similar to the local database results. Over and bad segmentation errors

were 0.31% and 2.88% accordingly. The average segmentation error for the CEDAR

experiment was 4.66%.

The overall segmentation error was higher in CEDAR experiments than in local. However,

the similar segmentation error pattern has been shown that the under segmentation errors

were the highest in both experiments. Also, the bad segmentation errors were the next highest

errors in both experiments. Finally, the over segmentation error was the lowest error category

in both experiments.

Table 2 shows the segmentation error characters and their contribution percentage in each

segmentation error category for both experiments. Overall, the under segmentation errors

were the highest in each category. For the local database, the most under segmented character

pairs were 8.79 for ht, 5.02 for an, 4.60 for fo, etc. The most over segmented characters were

w(33.33) c(22.22) f(11.11) g(11.11) d(11.11) and o(11.11) in order. The worst segmented

characters were n(26.53), h(22.45), w(20.41), m(6.12), s(6.12), f(4.08), e(2.04), c(2.04),

a(2.04), i(2.04), u(2.04), r(2.04), and y(2.04) in order.

For CEDAR database, the most under segmented character pairs were ch(5.71) al(5.71)

el(4.76) no(3.81) il(3.81) er(3.81), etc. The over segmented characters were w(33.33)

e(33.33) and s(33.33). The bad segmented characters were m(25.00) e(14.29) r(14.29)

u(10.71) n(10.71) a(7.14) w(3.57) d(3.57) b(3.57) c(3.57) and i(3.57).

TABLE 2. CHARACTERS OR CHARACTER PAIRS CAUSED SEGMENTATION ERRORS IN EACH

SEGMENTATION ERROR CATEGORY FROM LOCAL AND CEDAR DATABASES

Category Character/Character pair (Frequency in %) from local

Under

Ht(8.33) fo(7.29) ot(6.25) ir(6.25) it(6.25) in(6.25) ar(5.21) an(4.17) ll(3.12)

ap(3.12) no(2.08) or(2.08) rs(2.08) et(2.08) er(2.08) ae(2.08) nu(1.04)

ls(1.04) hi(1.04) ho(1.04) di(1.04) su(1.04) dn(1.04) sy(1.04) be(1.04)

ew(1.04) is(1.04) ev(1.04) mo(1.04) iv(1.04) at(1.04) aw(1.04) io(1.04)

eh(1.04) al(1.04) ai(1.04) el(1.04) tu(1.04) ek(1.04) tt(1.04) ci(1.04) ep(1.04)

en(1.04) ch(1.04) es(1.04) ry(1.04)

Over w(33.33) c(22.22) f(11.11) g(11.11) d(11.11) o(11.11)

Bad
n(28.95) w(26.32) h(23.68) m(5.26) e(2.63) s(2.63) r(2.63) c(2.63) a(2.63)

y(2.63)

Category Character/Character pair (Frequency in %) from CEDAR

Under

Ch(5.71) al(5.71) el(4.76) no(3.81) il(3.81) er(3.81) ot(2.86) or(2.86) ls(2.86)

ir(2.86) ai(2.86) tt(2.86) cl(1.90) ce(1.90) lu(1.90) lt(1.90) di(1.90) dn(1.90)

as(1.90) im(1.90) ek(1.90) ac(1.90) et(1.90) nt(0.95) ny(0.95) bo(0.95)

st(0.95) ou(0.95) op(0.95) oo(0.95) ko(0.95) ow(0.95) oz(0.95) gn(0.95)

co(0.95) ci(0.95) gs(0.95) go(0.95) lo(0.95) hs(0.95) lp(0.95) hi(0.95)

dl(0.95) iv(0.95) ez(0.95) in(0.95) io(0.95) au(0.95) eg(0.95) tu(0.95)

ap(0.95) ep(0.95) iy(0.95) ad(0.95) en(0.95) ag(0.95) ah(0.95) es(0.95)

ae(0.95)

Over w(33.33) e(33.33) s(33.33)

Bad
m(25.00) e(14.29) r(14.29) u(10.71) n(10.71) a(7.14) w(3.57) d(3.57) b(3.57)

c(3.57) i(3.57)

Overall segmentation error contribution by character is shown in Table 3. The values in the

table were generated by counting the occurrences in CEDAR result from Table 2. It describes

that the letter „l‟ contributed the most segmentation error of 10.83%. On the other hand, the

least segmentation error was caused by the letter „x‟ for 0.09%.

TABLE 3. OVERALL SEGMENTATION ERROR CONTRIBUTION RATIO (%) BY CHARACTER FROM

CEDAR RESULT

A b C d e f G h i j K l M

8.89 1.3 4.44 2.96 8.43 1.85 1.94 3.61 8.52 0.37 1.11 10.83 1.76

N o P q r s T u v w X y z

5.46 6.9 2.04 0.09 6.57 5.56 9.44 3.98 1.3 0.74 0.09 1.67 0.19

The results obtained using the proposed approach are compared with the published results.

However, it should be noted that it is very difficult to compare the results as many

researchers use their own databases and many do not report the segmentation results. As

shown in Table 4, the proposed approach using CEDAR database generated higher under

segmentation errors. However, the results of over segmentation error were much better than

[10,42] and very similar to [27]. Bad segmentation error also exhibits the similar comparison

as the over segmentation error. The overall average segmentation performance has been

improved over [10,42] but shows lower performance than [27]. It should be noted that the

local database was used in [27]. The proposed approach heavily depends on the neural

confidence value to calculate the mean lexical confidence and the mean character confidence.

Those confidence values have higher weight factors to decide if a suspicious segmentation

point is good or bad. In the proposed approach, the neural network classifier was trained and

it has 61% accuracy. The segmentation can be improved by testing with more accurate neural

classifier.

TABLE 4. SEGMENTATION PERFORMANCE COMPARISON

 Database
Segmentation rate (%)

Over Under Bad Average

[10] CEDAR 317 7.4 2.0 11.6 7.0

[27] Local 750 0.1 0.8 2.3 1.06

[42] CEDAR 317 10.0 0.2 8.7 6.3

SCBS
Local 293 0.74 7.82 3.13 3.90

CEDAR 161 0.31 10.79 2.88 4.66

6 Conclusions and future research

In this paper, a novel Segment Confidence-based Binary Segmentation is proposed as a

segmentation strategy for off-line cursive handwriting recognition. The proposed approach

has been tested on local and CEDAR benchmark databases. The proposed approach uses

over-segmentation technique to generate Suspicious Segmentation Points (SSP). Based on

SSPs, binary segmentation was applied on each SSP and the segment confidence was

evaluated to see if any improvement was made. The promising results were obtained on both

databases. The results showed that the proposed approach produced higher under

segmentation error than the results from the literature. Over and bad segmentation was

moderate comparing to the literature, and the overall segmentation performance was also

moderate. The proposed segmentation approach heavily depends on the output from the

neural classifier. Therefore, the segmentation results can be improved by using more accurate

neural classifier on CEDAR benchmark database. In our future research, we will focus on

improving neural confidence and optimizing the weighting for fusion of multiple

confidences.

References

[1] H. Fujisawa, “Forty years of research in character and document recognition--an

industrial perspective,” Pattern Recognition, vol. 41, Aug. 2008, pp. 2435-2446.

[2] L. Zhang, A.M. Yip, M.S. Brown, and C. Lim Tan, “A unified framework for document

restoration using inpainting and shape-from-shading,” Pattern Recognition, vol. In

Press, Accepted Manuscript.

[3] R.M. Suresh and S. Arumugam, “Fuzzy technique based recognition of handwritten

characters,” Image and Vision Computing, vol. 25, 2007, pp. 230-239.

[4] S. Lu and C. Tan, “Retrieval of machine-printed Latin documents through Word Shape

Coding,” Pattern Recognition, vol. 41, 2008, pp. 1799-1809.

[5] M. Djioua and R. Plamondon, “Studying the variability of handwriting patterns using

the Kinematic Theory,” Human Movement Science, vol. In Press, Corrected Proof.

[6] M.T. Das and L.C. Dulger, “Signature verification (SV) toolbox: Application of PSO-

NN,” Engineering Applications of Artificial Intelligence, vol. In Press, Corrected Proof.

[7] N. Arica and F.T. Yarman-Vural, “An overview of character recognition focused on off-

line handwriting,” Systems, Man, and Cybernetics, Part C: Applications and Reviews,

IEEE Transactions on, vol. 31, 2001, pp. 216-233.

[8] N. Arica and F.T. Yarman-Vural, “Optical Character Recognition for Cursive

Handwriting,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, 2002, pp. 801-813.

[9] I. Bar-Yosef, A. Mokeichev, K. Kedem, I. Dinstein, and U. Ehrlich, “Adaptive shape

prior for recognition and variational segmentation of degraded historical characters,”

Pattern Recognition.

[10] M. Blumenstein and B. Verma, “Analysis of Segmentation Performance on the CEDAR

Benchmark Database,” Proceedings of the Sixth International Conference on Document

Analysis and Recognition, IEEE Computer Society, 2001, pp. 1142-1142.

[11] R.G. Casey and E. Lecolinet, “A Survey of Methods and Strategies in Character

Segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 18, 1996, pp. 690-706.

[12] E. Vellasques, L.S. Oliveira, A.S. Britto Jr, A.L. Koerich, and R. Sabourin, “Filtering

segmentation cuts for digit string recognition,” Pattern Recognition, vol. 41, 2008, pp.

3044-3053.

[13] E. Vellasques, L. Oliveira, A. Britto Jr., A. Koerich, and R. Sabourin, “Filtering

segmentation cuts for digit string recognition,” Pattern Recognition, vol. 41, Oct. 2008,

pp. 3044-3053.

[14] B. Verma, P. Gader, and W. Chen, “Fusion of multiple handwritten word recognition

techniques,” Pattern Recognition Letters, vol. 22, 2001, pp. 991-998.

[15] S. Zhao, Z. Chi, P. Shi, and H. Yan, “Two-stage segmentation of unconstrained

handwritten Chinese characters,” Pattern Recognition, vol. 36, 2003, pp. 145-156.

[16] Z. Lu, Z. Chi, W. Siu, and P. Shi, “A background-thinning-based approach for

separating and recognizing connected handwritten digit strings,” Pattern Recognition,

vol. 32, 1999, pp. 921-933.

[17] S. Nomura, K. Yamanaka, T. Shiose, H. Kawakami, and O. Katai, “Morphological

Preprocessing Method to Thresholding Degraded Word Images,” Pattern Recognition

Letters, vol. In Press, Accepted Manuscript.

[18] Y. Sun, T. Butler, A. Shafarenko, R. Adams, M. Loomes, and N. Davey, “Word

segmentation of handwritten text using supervised classification techniques,” Applied

Soft Computing, vol. 7, Jan. 2007, pp. 71-88.

[19] L.M. Lorigo and V. Govindaraju, “Offline Arabic handwriting recognition: a survey,”

Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 28, 2006, pp.

712-724.

[20] R. Plamondon and S.N. Srihari, “Online and off-line handwriting recognition: a

comprehensive survey,” Pattern Analysis and Machine Intelligence, IEEE Transactions

on, vol. 22, 2000, pp. 63-84.

[21] A. Vinciarelli, “A survey on off-line Cursive Word Recognition,” Pattern Recognition,

vol. 35, 2002, pp. 1433-1446.

[22] A. Elnagar and R. Alhajj, “Segmentation of connected handwritten numeral strings,”

Pattern Recognition, vol. 36, 2003, pp. 625-634.

[23] K. Hussein, A. Agarwal, A. Gupta, and P. Wang, “A knowledge-based segmentation

algorithm for enhanced recognition of handwritten courtesy amounts,” Pattern

Recognition, vol. 32, 1999, pp. 305-316.

[24] J. Sadri, C.Y. Suen, and T.D. Bui, “A genetic framework using contextual knowledge

for segmentation and recognition of handwritten numeral strings,” Pattern Recogn.,

vol. 40, 2007, pp. 898-919.

[25] X. Xiao and G. Leedham, “Knowledge-based English cursive script segmentation,”

Pattern Recognition Letters, vol. 21, 2000, pp. 945-954.

[26] Q. Xu, L. Lam, and C. Suen, “Automatic Segmentation and Recognition System for

Handwritten Dates on Canadian Bank Cheques,” Proceedings of the Seventh

International Conference on Document Analysis and Recognition, 2003, pp. 704-708.

[27] B. Yanikoglu and P.A. Sandon, “Segmentation of off-line cursive handwriting using

linear programming,” Pattern Recognition, vol. 31, 1998, pp. 1825-1833.

[28] C. Liu, K. Nakashima, H. Sako, and H. Fujisawa, “Handwritten digit recognition:

benchmarking of state-of-the-art techniques,” Pattern Recognition, vol. 36, 2003, pp.

2271-2285.

[29] Z.A. Aghbari and S. Brook, “HAH manuscripts: A holistic paradigm for classifying and

retrieving historical Arabic handwritten documents,” Expert Systems with Applications.

[30] A. Benouareth, A. Ennaji, and M. Sellami, “Semi-continuous HMMs with explicit state

duration for unconstrained Arabic word modeling and recognition,” Pattern Recognition

Letters, vol. 29, Sep. 2008, pp. 1742-1752.

[31] S. Gunter and H. Bunke, “HMM-based handwritten word recognition: on the

optimization of the number of states, training iterations and Gaussian components,”

Pattern Recognition, vol. 37, Oct. 2004, pp. 2069-2079.

[32] S. Lee and J. Kim, “Complementary combination of holistic and component analysis for

recognition of low-resolution video character images,” Pattern Recognition Letters,

vol. 29, Mar. 2008, pp. 383-391.

[33] J. Ruiz-Pinales, R. Jaime-Rivas, and M. Castro-Bleda, “Holistic cursive word

recognition based on perceptual features,” Pattern Recognition Letters, vol. 28, 2007,

pp. 1600-1609.

[34] S. Srihari, J. Collins, R. Srihari, H. Srinivasan, S. Shetty, and J. Brutt-Griffler,

“Automatic scoring of short handwritten essays in reading comprehension tests,”

Artificial Intelligence, vol. 172, Feb. 2008, pp. 300-324.

[35] T. Su, T. Zhang, D. Guan, and H. Huang, “Off-line recognition of realistic Chinese

handwriting using segmentation-free strategy,” Pattern Recognition, vol. 42, Jan. 2009,

pp. 167-182.

[36] X. Wang, V. Govindaraju, and S. Srihari, “Holistic recognition of handwritten character

pairs,” Pattern Recognition, vol. 33, Dec. 2000, pp. 1967-1973.

[37] B. Verma and H. Lee, “A segmentation based adaptive approach for cursive handwritten

text recognition,” IEEE International Joint Conference on Neural Networks, Orlando,

Florida, USA: IEEE IJCNN'07, 2007, pp. 2212-2216.

[38] H. Al-Muhtaseb, S. Mahmoud, and R. Qahwaji, “Recognition of off-line printed Arabic

text using Hidden Markov Models,” Signal Processing, vol. 88, Dec. 2008, pp. 2902-

2912.

[39] S.M. Awaidah and S.A. Mahmoud, “A multiple feature/resolution scheme to Arabic

(Indian) numerals recognition using hidden Markov models,” Signal Processing, vol.

89, Jun. 2009, pp. 1176-1184.

[40] A. Benouareth, A. Ennaji, and M. Sellami, “Semi-continuous HMMs with explicit state

duration for unconstrained Arabic word modeling and recognition,” Pattern Recognition

Letters, vol. 29, Sep. 2008, pp. 1742-1752.

[41] T. Su, T. Zhang, D. Guan, and H. Huang, “Off-line recognition of realistic Chinese

handwriting using segmentation-free strategy,” Pattern Recognition, vol. 42, Jan. 2009,

pp. 167-182.

[42] B. Verma, “A contour code feature based segmentation for handwriting recognition,”

Document Analysis and Recognition, 2003. Proceedings. Seventh International

Conference on, 2003, pp. 1203-1207.

[43] J. Chiang, “A hybrid neural network model in handwritten word recognition,” Neural

Networks, vol. 11, Mar. 1998, pp. 337-346.

[44] H. Lee and B. Verma, “A novel multiple experts and fusion based segmentation

algorithm for cursive handwriting recognition,” Neural Networks, 2008. IJCNN 2008.

(IEEE World Congress on Computational Intelligence). IEEE International Joint

Conference on, 2008, pp. 2994-2999.

[45] N. Tripathy and U. Pal, “Handwriting segmentation of unconstrained Oriya text,”

Sadhana, vol. 31, Dec. 2006, pp. 755-769.

[46] U. Pal, A. BelaI[combining diaeresis above]d, and C. Choisy, “Touching numeral

segmentation using water reservoir concept,” Pattern Recognition Letters, vol. 24, Jan.

2003, pp. 261-272.

[47] S. Zhao and P. Shi, “Segmentation of Connected Handwritten Chinese Characters Based

on Stroke Analysis and Background Thinning,” PRICAI 2000 Topics in Artificial

Intelligence, 2000, pp. 608-616.

[48] R. Alhajj and A. Elnagar, “Multiagents to Separating Handwritten Connected Digits,”

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on,

vol. 35, 2005, pp. 593-602.

[49] Z. Liang and P. Shi, “A metasynthetic approach for segmenting handwritten Chinese

character strings,” Pattern Recognition Letters, vol. 26, Jul. 2005, pp. 1498-1511.

[50] A. Dawoud, “Iterative Cross Section Sequence Graph for Handwritten Character

Segmentation,” Image Processing, IEEE Transactions on, vol. 16, 2007, pp. 2150-2154.

[51] C. Renaudin, Y. Ricquebourg, and J. Camillerapp, “A General Method of

Segmentation-Recognition Collaboration Applied to Pairs of Touching and Overlapping

Symbols,” Document Analysis and Recognition, 2007. ICDAR 2007. Ninth International

Conference on, 2007, pp. 659-663.

[52] M. Suwa, “Segmentation of connected handwritten numerals by graph representation,”

Document Analysis and Recognition, 2005. Proceedings. Eighth International

Conference on, 2005, vol. 2, pp. 750-754.

