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Abstract – A novel Segment Confidence-based Binary Segmentation (SCBS) for cursive 

handwritten words is presented in this paper. SCBS is a character segmentation strategy for 

off-line cursive handwriting recognition. Unlike the approaches in the literature, SCBS is an 

unordered segmentation approach. SCBS is repetition of binary segmentation and fusion of 

segment confidence. Each repetition generates only one final segmentation point. The Binary 

Segmentation module is a contour tracing algorithm to find a segmentation path to divide a 

segment into two segments. A set of segments before binary segmentation is called pre-

segments, and a set of segments after binary segmentation is called post-segments. SCBS 

uses over-segmentation technique to generate suspicious segmentation points on pre-

segments. On each suspicious segmentation point, binary segmentation is performed and the 

highest fusion value is recorded. If the highest fusion value is greater than the one of pre-

segments, the suspicious segmentation point becomes the final segmentation point for the 

iteration. If not, no more segmentation is required. Segment confidence is obtained by fusing 

mean character, lexical and shape confidences. The proposed approach has been evaluated on 

local and benchmark (CEDAR) databases.   

1 Introduction 

Off-line Cursive Handwriting Recognition (OffCHR) is an automatic process to convert an 

input handwritten document image into computer-recognizable character 

representations.  OffCHR has been active research domain for decades, and industrial 

beneficiaries have been trying to automate repetitive manpower oriented tasks such as 

processing postal address, bank checks, form data, historical manuscripts, etc [1]. Despite 

sleepless research in OffCHR for decades, the performance of the state-of-the-art OffCHR is 

below the industrial standard to accommodate the real world problems [2-6]. The researchers 



in this field agree that the main contributor of the low OffCHR performance is the 

segmentation [7-15]. 

Segmentation is a process to discriminate each letter from others, prior to recognition into 

electronic character representations. Typically, OffCHR involves a set of processes such as 

pre-processing, normalization, segmentation, recognition. Pre-processing is a cleanup process 

to remove unwanted information [16-18]. Noise removal is done in the pre-processing stage. 

Normalization is to standardize the information, so it can be fitted into a data form that 

segmentation and recognition need. Normally, thresholding or skeletonization, thinning, slant 

and slope corrections are performed in normalization process. The normalized handwritten 

image passes through segmentation process to find letter boundaries. A sub-image bound by 

two neighboring boundaries is called a segment. The recognition is to classify each segment 

into a character representation [19-21]. As seen in the typical OffCHR framework in Figure 1, 

the segmentation precedes the recognition. In other words, the recognition process is based 

on the outcomes of the segmentation process. It implies that better recognition performance 

can be achieved on better segmentation outcomes. However, the segmentation is a very 

difficult process because of the nature of cursive handwriting and it has become a major error 

contributor in OffCHR [22-27]. 
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Figure 1. Typical frameworks of Off-line Cursive Handwriting Recognition (OffCHR) 

Therefore, the aim of the research presented in this paper is to investigate a novel 

segmentation algorithm which can avoid problems of existing algorithms and improve the 

segmentation accuracy. The proposed segmentation algorithm is based on novel ideas such as 

binary segmentation and use of multiple confidence values.  

 

The rest of this paper is organized into 5 sections. Section 2 presents a review of existing 

literature. The proposed algorithm is described in Section 3. Section 4 presents the 

experimental results. An analysis of experimental results and a discussion are presented in 

Section 5. Finally, Section 6 concludes the paper. 



2 Review of segmentation in handwriting recognition 

The review of handwriting recognition techniques focused on the segmentation, is presented 

in this section. 

2.1 Representation of segmentation 

Traditionally, segmentation was manifested into x-coordinates of input images. Especially in 

machine printed OCR, segmentation was only a matter of finding zero foreground pixel from 

vertical histogram of the recognizing image. However, in cursive handwriting recognition, 

there is no guarantee that neighboring characters will be separated by empty space. 

Therefore, new representation of segmentation must be introduced. Segmentation path is 

another technique to represent segmentation between two characters. Segmentation path is a 

connected list of x-y coordinates to represent a boundary between two neighboring 

characters. It is virtually impractical to separate two handwritten characters using a vertical 

line. However, segmentation paths are simply used to define the character boundaries 

[11,22,25,27].  

2.2 The relation between handwriting recognition and segmentation 

Researchers often describe relationship between segmentation and recognition processes in 

OffCHR, as chicken and egg relationship. It is arguable which one comes first. Similarly, 

segmentation cannot be completed until it is correctly recognized. On the other hand, 

recognition cannot be done without segmenting the whole word image into individual 

characters [11]. Segmentation is very difficult process in OffCHR, and it is one of the main 

factors for low accuracy. Researchers have found the contributors to make segmentation very 

hard. The major contributors are shape variability, connectivity, overlapping and brokenness.  

Some examples of difficult words are shown below in Figure 2. 

A word ‘Tucson’, the ‘T’ is broken into two pieces. A word ‘Troy’, the excessive horizontal bar from 
letter ‘T’ overlaps over letters of ‘r’ and ‘o’

A word ‘KanKaKee’, the same letters have written 
in different shape and sizes.

A word ‘Charlotte’; all the letters are connected.

 

Figure 2. Handwritten words showing characters for brokenness, overlapping, variability and 

connectivity. 



It is difficult to write characters in exact shapes by the same person. It would be even more 

difficult to write characters in exact shapes by two or more people. Handwriting projects 

unique characteristics of the writers. Uniqueness means variability of handwritten character 

shapes [5]. Connected characters make segmentation the most difficult process in OffCHR 

because it makes difficult to know how many characters to be recognized. OCR in machine 

printed character recognition has been successful because segmentation in OCR is very easy. 

It is said easy because segmentation can be done by locating empty spaces between the 

characters. However, in OffCHR, majority of handwritten words are connected and letters can 

be overlapped. Unlike connected characters, the overlapping factor can be separated by using 

path finding algorithms. However, unlike vertical line separation, path finding algorithms 

involve navigating algorithms that come with greater computational costs. Unlike machine 

printed characters, in OffCHR there are often broken characters. The broken characters cause 

de-segmentation problem. De-segmentation is a process to recognize the broken characters 

and combine them and recognize them as one character. It is very hard process to find out 

whether a character is broken or not. There has been some research conducted and published 

on spotting broken characters [7,8,28]. 

2.3 Character segmentation methodologies for cursive handwriting recognition 

Many researchers have been tackling the segmentation of handwritten image using various 

approaches. The segmentation techniques used in the literature can be grouped into 3 groups 

such as holistic, dissection and knowledge-based.   

Holistic approach is also called segmentation-free. In holistic approach, global features of 

handwritten word image are used against the list of words under consideration for 

recognition. As the name 'holistic' implies, recognizing individual characters is ignored. The 

recognition accuracy is generally linear to the size of list of words under consideration, which 

is called, lexicon. So, the holistic approach is appropriate for handwriting recognition 

problems with small lexicon domain, such as bank checks processing [29-36]. 

Dissection is a segmentation technique to find boundaries between neighboring characters 

without involving knowledge about characters. One of the typical dissection approaches is 

using vertical histogram of foreground pixels of the input image. The vertical histogram 

based approach was eminent technique in OCR. However, the dissection technique is no 

longer eligible to handle irregular handwritten images [37]. 



Neither holistic nor dissection technique uses knowledge about characters during 

segmentation process. However, researchers have incorporated the idea of using classifiers 

equipped with character knowledge to cope with the irregularities of handwriting nature. In 

this type of knowledge based segmentation approach, there are two mainstream techniques. 

One is to allocate segmentation point where the employed classifier recognizes up to. 

Typically, a pair of sliding window and classifiers is implemented together. In the technique, 

a fixed-size sliding window [38-41] scans a handwritten word image from left to right. While 

scanning, the classifier confirms if the sub-image is recognizable as a legal character or not. 

The other method combines the idea of dissection technique and the classifiers in the 

segmentation process. In this technique, the input image is dissected into many sub-images 

based on rules and heuristics, namely over-segmentation. The preliminary dissection is to 

locate all the possible segmentation points. Because of the idea to find all the possible letter 

boundaries, there might be excessive segmentation points. This technique is called, over-

segmentation. The following process is to remove the excessive segmentation points, and the 

process is called, validation. The primary objective of validation is to remove excessive 

segmentation points by incorporating classifiers. This technique anticipates the over-

segmenter and validator, and that‟s the reason it is called „Hybrid‟ technique.  The hybrid 

tends to find all the letter boundaries. However, it is still unaccomplished problem to remove 

all the excessive segmentation points and to keep the correct ones [10,24,42-44].  

As discussed so far, holistic is plausible for only small lexicon domains such as bank check 

legal amounts. When it comes to the real word problem with large lexicon, the holistic 

method shows very little success. It is also hard to draw universal heuristics to find 

boundaries without knowledge because the nature of informal handwriting. Past research 

shows that there was little success using a dissection technique.  However, knowledge-based 

segmentation can improve the performance if the accurate classifiers are employed. 

According to the past results, knowledge-based recognition techniques outperform the 

dissection technique, and that's why the method is continuously pursued by researchers.  

There are two types of knowledge-based segmentation techniques. The first one is to put the 

character boundaries based on recognition using sliding window technique. The second one is 

hybrid technique based on over-segmentation and validation. Over-segmentation is to put 

boundaries wherever doubtful, and validation is to remove the excessive segmentation 

boundaries.  Over-segmentation tends to find all letter boundaries. However, there is little 



success in validating the excessive segmentation points. Therefore, by improving the 

validation accuracy, the overall segmentation accuracy can be improved.  

2.4 Segmentation techniques 

Tripathy et al. [45] incorporated water reservoir approach to segment the connected 

characters in Oriya text recognition. A water reservoir is a region formed by connected 

components and the region could retain water as if water were poured into. Water reservoir 

technique is to detect and segment connected regions based on touching position, reservoir 

base-area points, topological and structural features. Their approach has been experimented 

on 1840 images of Oriya scripts. The segmentation accuracy was 96.7% on two-character 

touching images (1458), 95.1% on three-character touching images (311), and 93.3% on four 

or more character touching images (71). However, the water reservoir approach is for single 

connection between characters, and they did not address the issues of multi connection 

between characters. Pal et al. [46] also used water reservoir approach to segment touching 

numeral digits, and experimented on French bank checks. The segmentation accuracy was 

94.8%.  

Zhao et al. [47] proposed background thinning segmentation algorithm to segment connected 

Chinese characters. The background thinning generates feature points such as end points, fork 

points and corner points. Sub-strokes are the segments between feature points and extracted. 

The connected points are located by identifying the lengths of sub-strokes and the topological 

relationship between sub-strokes. Alhajj et al. [48] proposed multi-agents to segment 

handwritten connected digits. Their strategy is to detect the deepest-top valley and the 

highest-bottom hill by dedicated agents. Each agent is responsible for nominating 

segmentation points where connected area, and the final segmentation points are 

compromised by the degree of the confidence assessed by the agents. This approach was 

experimented on 4095 images written by 150 writers, and obtained 97.8% segmentation 

accuracy. This approach is targeting to segment only two touching digits, so it is 

inappropriate to apply to problems involving multiple characters.  

Liang et al. [49] proposed a meta synthetic approach to segment handwritten Chinese 

character strings. They applied Viterbi algorithm to search linear segmentation paths, and the 

redundant paths are eliminated by heuristics. Non-linear segmentation paths are obtained by 

background thinning algorithms. Especially, touching characters are further investigated with 

foreground and background information. The final segmentation paths are decided by mixture 



probabilistic density function. Their approach was experimented on 921 Chinese character 

strings and achieved 87.6% segmentation accuracy. However, their experiment seems biased 

because their database may contain many linearly separable images shown in the examples.  

Dawoud [50] proposed the iterative cross section sequence graph (ICSSG) for handwritten 

character segmentation. ICSSG is a binarization technique of grey scale image, and the result 

of the binarization is the segmentation of connected characters. ICSSG is based on the idea 

that the stroke thickness of the connected points between characters is greater than the 

average stroke thickness. This method was experimented on 2575 numeral characters from 

bank checks, and obtained 76.9% recognition accuracy. However, this algorithm would fail 

where the characters are connected in a line.  

Renaudin et al. [51] proposed over-segmentation and graph construction technique to 

segment touching digits. Over-segmentation points were located on singular area. Singular 

areas are where the stroke is disrupted such as intersections, high curvature, thickness 

variations, etc. Graph was constructed based on over-segmented primitives, and the final 

segmentation points were found by searching the best path on the graph. Their approach was 

experimented on touching two-digit images, and produced 68.9% of correct segmentation and 

recognition. General idea of their method is over-segmentation and best-path searching. Their 

method was only tested touching two-digit examples. The searching time and complexity will 

rise when more digits are involved and they are connected. Suwa [52] proposed graph 

representation technique to segment multiply connected digits. In their approach, the binary 

patterns are thinned and the edges and vertices are extracted. The patterns are represented as a 

connected graph. Graph theory and heuristic rules calculate the candidate segmentation path. 

Also rules are incorporated to eliminate the ligatures and the touching strokes are uniformed 

by digit boundary detection. The approach was experimented on 2000 pairs of touching digits 

from NIST-19 database. The segmentation accuracy was reported as 88.4%. They should 

expand the testing database from two-digits to multiple digits. The real world examples are 

more likely multiple character strings.  

3 Segment Confidence-based Binary Segmentation (SCBS) 

The proposed approach, SCBS, is repetitive process of fusion and segmentation of 

handwritten word images based on a set of suspicious segmentation points (SSPs). The 

details of SCBS are described in following subsections. 



3.1 Overview 

Overall system architecture of the proposed approach is presented in Figure 3. 

Calculate Fusion Confidence on Pre-segments (PreFC) 
and generate suspicious segmentation points (SSPs) on pre-segments

On a SSP, perform Binary segmentation

SSPs and PreFC

Calculate Fusion Confidence of Post-segments (PostFC): Mean Character 
Confidence (MCC), Mean Lexical Confidence(MLC), Mean Shape 

Confidence(MSC)

Post-segments

Record the highest fusion value and post-segments

PostFC

More SSP?

Yes:
Next SSP

PostFC > PreFC AND
Count(PreFC) < SegMax

No:
The highest PostFC and the post-segments

Yes:
Pre-segments =
 Post-segments

Assign pre-segments 
as final segments

No

Final segmentation points

Word image and lexicon

Count the number of character in the longest word in the lexicon, and set the number as SegMax

SegMax

 

Figure 3. Overview of Segment Confidence-based Binary Segmentation (SCBS) 

3.2 SegMax variable 

SegMax is a variable to limit the maximum number of segments. The ultimate goals of 

OffCHR are to recognize the input word image, not the individual characters. Character 

recognition is essential for word recognition. For the word recognition, most of OffCHR uses 



lexicon. Lexicon plays a role as a dictionary for the recognition domain. It provides an 

important clue that the maximum sub-images (segments) for a word image should be no more 

than the number of characters of the longest word in the lexicon. Since each segment 

represents a character, the maximum number of segments should be equal to the number of 

characters in the longest word from considering lexicon. In our proposal, the variable 

SegMax has been set to the number of characters of the longest word in lexicon.   

3.3 Generating Suspicious Segmentation Points (SSPs) 

The core idea of introducing over-segmentation into OffCHR is not to miss any letter 

boundaries. So, successful over-segmentation generates a segmentation set containing all 

letter boundaries regardless of existence of excessive segmentation points, which are called 

over-segmentation points. The best way to increase the chances to have successful over-

segmentation is to locate as many segmentation points as possible.  Often many rules and 

heuristics are applied to achieve successful over-segmentation. Every segmentation point 

from over-segmentation points can be a correct segmentation point, so it is called Suspicious 

Segmentation Point (SSP). 

In the proposed approach, the SSPs are generated by using vertical foreground pixel density 

and stroke thickness variable. The stroke thickness is the most occurring continuous 

foreground pixel count. It is measured by scanning the segmenting word vertically and 

horizontally. While scanning, the occurrences are recorded and the most occurring 

continuous foreground pixel count becomes the stroke thickness of the segmenting word. The 

details of the stroke thickness measurement are described in [44]. Once the stroke thickness is 

estimated, the SSPs are located where the vertical foreground pixel density is less than the 

stroke thickness. However, to increase the chance of locating the correct boundaries, the SSPs 

are located where the vertical foreground pixel density is less than three times of the stroke 

thickness. The continuous SSPs are consolidated as a single SSP by finding the one in the 

middle.  

The suspicious segmentation points are screened by hole detection module to remove the 

ones crossing hole regions. The reason to incorporate this screening process is two-fold. 

Firstly, reducing the number of SSP cuts down the computational costs significantly. The 

computational cost of validation for a SSP is much cheaper than validation by classifier in the 

later stage. The second reason is to reduce the number of segments. A segment is a sub-image 

defined by two neighboring segmentation points. The lesser segments, the lesser spatial 



segment combinations for classifier have to validate. An example of SSP generating process 

is described in Figure 4. 

2) each suspicious segmentation region is consolidated into a single 
suspicious segmentation point (SSP).

3) Hole detection removes SSPs crossing hole region, and remaining SSPs 
become the final set of SSPs.

1) word ‘Garthersburg’: suspicious segmentation regions (in gray color) by 
pixel histogram.

 

Figure 4. An example of generating a set of Suspicious Segmentation Points (SSP) from the 

word, „Garthersburg‟. 

3.4 Calculating Fusion of Segment Confidence (FSC) 

The result of binary segmentation is a set of segments. A set of segments before the binary 

segmentation is defined as pre-segments. A set of segments after the binary segmentation is 

defined as post-segments. Therefore, the number of post-segments is always one bigger than 

the one of pre-segments. To calculate FSC, the three types of confidence values are estimated 

individually to a set of segments and they are fused together by applying pre-set weight 

factors. The three types of confidences are Mean Character Confidence (MCC), Mean 

Lexical Confidence (MLC) and Mean Shape Confidence (MSC). Let  be the 

weight factors for lexical, character and shape confidences accordingly. In the proposed 

approach, the weight factors were set as = 0.4, = 0.35 and = 0.25. The final FSC 

was calculated in the following equation. How to estimate MLC, MCC and MSC is described 

in the following subsections. 

 



3.4.1 Mean Character Confidence (MCC) 

A character confidence is measured by using the output from the neural network based 

classifier, which is pre-trained on correctly segmented characters. The classifier produces 52 

confidence values (26 lowercases and 26 uppercases of English alphabets) for each segment. 

The decision of the classification is made by finding the highest confidence value out of 52. 

Therefore, the mean character confidence for a set of segments is found by dividing the sum 

of individual mean character confidence (MCC) with the number of segments. 

Let S be a set of segments,  be the number of segments in and Top(Si) be the highest 

confidence value of the ith segment in S: 

 

3.4.2 Mean Lexical Confidence (MLC) 

A character matching confidence score between a segment and a character is defined as 

finding a corresponding confidence value from the segment‟s neural outputs for the character. 

For example, the character matching confidence score for character „a‟ is the first neural 

confidence value for a segment, and the 27
th

 neural confidence value for character „A‟. In the 

following equation, the neural output O(S) for segment S is described by subscripting the 

characters for their corresponding values. In the equation, the character matching confidence 

scores between a segment and a character are as follows: a=Oa, b=Ob, c=Oc … A=OA, B=OB, 

C=OC … Z=OZ.  

 

A word matching confidence score between segments and characters (a lexical word) are 

calculated by dividing the total character matching score with the number of character 

matching comparison. In the proposed approach, there are two types of character matching 

algorithms such as direct matching and neighbor matching. As shown in Figure 5, the direct 

matching is a character matching where the segment index in the segments and the character 

index in a word are the same. The neighbor matching is a character matching between Si  in a 

set of segments S and C(i-1) in a word C,  or Si and C(i+1).  



   S = {S1,               S2,               S3}

   C = {C1,               C2,               C3}

Direct matching

Neighbour matching

1) Character matchings between a set of segments (S) and 
a set of characters (C) when both have the same number of 

elements.

     S = {S1,               S2,               S3,               S4,               S5}

C = {C1,               C2,               C3}

2) Character matchings when the number of segments are 
greater than the number of characters

        S = {S1,               S2,               S3}

       C = {C1,               C2,               C3,                C4,             C5}

3) Character matchings when the number of segments are 
less than the number of characters

 

Figure 5. Character matching: 1) performs total of 7 character matching (3 directs + 4 

neighbors), 2) and 3) total of 13 matching (5 directs + 5 neighbors) 

Let S be a set of segments, C be a set of characters in a word, M(Si, Ci) be the matching score 

between ith segment and ith character. The total number of matching performed would be 

calculated by the number of elements in S as „Q‟ multiplied by 3, minus 2 because the first 

and the last elements performed one less neighbor matching. 

 

3.4.3  Mean Shape Confidence (MSC) 

Shape Confidence (SC) is to measure how well each segment fits to the ideal character shape. 

The ideal shape is universally defined as related to the height and the width of a segment. The 

ideal character shape satisfies the fact that the difference between the height and the width of 

a segment is very close to zero.  

Let h and w be the height and width of a segment, and the SC in the proposed methodologies 

are calculated by the following equation: 



 

Therefore, the Mean Shape Confidence (MSC) is the sum of SC for all segments, and divided 

by the number of segments. Let S be a set of segments,  be the number of segments in S, 

and SC(Si) be the function to measure the shape confidence of ith element in S. MSC is 

estimated by the following equations: 

 

Implementing MSC has two advantages. The first is to give higher segmentation priority to 

the wider segment, which is likely to contain more characters. The second is that MSC 

becomes the driving force for segmentation to be performed when the Mean Character 

Confidence and Lexical Confidence are lower than threshold.   

3.4.4 Binary Segmentation Algorithm (BSA) 

The core idea of Binary Segmentation Algorithm (BSA) is to split an image/sub-image into 

two sub-images on a given Suspicious Segmentation Point. BSA is applied to the connected 

components or characters. Contour tracing algorithm is already introduced to segment non-

connected components. However, the contour tracing will not work on connected 

components because there is no path through from lower bound to upper bound. BSA is 

devised to work similar way as the contour tracing, but it can find a path through foreground 

pixels to make a path, where SSP lies.  

As shown in Figure 6, the tracing starts from a random tracing start point on the lower bound. 

A random tracing start point is a randomly picked background pixel on lower bound. The 

tracing continues recursively through all the neighboring background pixels until there are no 

more neighboring background pixels to be navigated. While navigating, the encountered 

coordinates of the foreground pixels lying on SSP are recorded. In the recorded coordinates, 

the tracing algorithm takes one with smallest y-coordinate value, and continues navigating 

towards upper bound through neighboring foreground pixels on SSP until it reaches an 

untraced background pixel. The tracing ends when a pixel on upper bound is reached. Until 

then, tracing through background pixels and tunneling through foreground pixels on SSP are 

repeated. In Figure 6, the characters of „i‟ and „g‟ are connected. Since they are connected, 

BSA must be used to dissect them. There are two foreground crossings in SSP. However, the 



foreground crossing 2 should not be crossed since the tracer can make to upper bound 

without crossing 2.   

Lower bound

Upper bound

Foreground crossing 1

Foreground crossing 2

Segmentation path

(Grey solid line)
Traced end point

SSP

(Black dashed line)

Random tracing

start point

 

Figure 6. An example of Binary Segmentation Algorithm (BSA) 

3.4.5 Termination of SCBS 

As mentioned earlier, the SCBS is an iterative algorithm, which repeats cycles of Binary 

Segmentation and evaluation of Fusion of Segment Confidence. In the proposed approach, 

there are two terminating conditions. The first condition concerns the SegMax variable. 

SegMax variable defines the number of segments. The total number of segments should not 

exceed the SegMax.  

The other condition is the improvement factor. The pre-segments are the current set of 

segments before the Binary Segmentation is applied. The post-segments are defined as a 

result set of Binary Segmentation on a set of pre-segments. The fusion of segment confidence 

is estimated on pre-segments ad post-segments. If fusion of segment confidence on post-

segments is greater than the one on pre-segments, then improvement has been made. 

Otherwise, no improvement can be made on any SSP. Therefore SCBS terminates.  

3.4.6 SCBS in Steps 

 In previous sections, sub-processes for SCBS are discussed. In this section, stepwise 

algorithm for SCBS is presented. 

Step 1. Input cursive handwritten word image. 

Step 2. Estimate parameter. 



Step 3. Generate Suspicious Segmentation Points (SSPs). 

Step 4. Use binary segmentation for each SSP, calculate FSC and record the highest 

confidence value. 

Step 5. Check if terminating conditions are met 

Step 6. If not terminating, the post-segments become the pre-segments. Go to step 3. If 

terminating the post –segments become the final segmentation points. 

4 Experimental results 

4.1 Implementation 

The proposed approach has been implemented in Java programming language and many 

experiments were conducted.  

4.2 Database preparation 

Two sets of experiments were conducted on a local database and CEDAR benchmark 

database to check the effectiveness of the proposed approach. The local database was created 

by our group, which has been obtained from multiple writers. The CEDAR benchmark 

database was taken from CEDAR\TEST\CITIES\BD directory.   

4.3 Neural networks training 

A MLP neural network with a single hidden layer was trained on pre-segmented characters 

with back-propagation learning algorithm. It takes 100 inputs, and produces 52 outputs. The 

52 outputs represent 52 alphabets (upper and lower cases). The number of hidden units and 

the number of iteration were varied during the training. The number of hidden units with the 

best training result was used in the experiment. 

4.4 Segmentation performance criteria 

As described in [27], the numbers of over-segmentation, under-segmentation, and bad-

segmentation points are counted by manual inspection. The over-segmentation is defined as a 

character segmented into more than three segments. Under-segmentation points are the 

missing segmentation points between two neighbouring characters. Finally, the bad-

segmentation is the rest of inappropriate cuts that don‟t belong to under-segmentation and 

over-segmentation and don‟t separate two characters correctly. The final segmentation results 

are calculated by dividing each categorical result with total number of characters used in the 

experiment. 

 



TABLE 1. SEGMENTATION PERFORMANCE RESULTS 

Database 
Size Segmentation rate (%) 

word Character Under Over Bad Average 

Local 293 1215 7.82 0.74 3.13 3.90 

CEDAR 161 973 10.79 0.31 2.88 4.66 

 

5 Analysis and discussion 

As shown in Table 1, there are two experimental results for local and CEDAR databases. As 

mentioned in previous section, the segmentation results are analyzed by the number of 

segmentation errors in each category. The segmentation error categories are over, under and 

bad segmentation errors. For the experiment results from the local database, the highest 

segmentation error was generated by the under segmentation, which recorded 7.82%. Over 

and bad segmentation errors were 0.74% and 3.13% accordingly. The average segmentation 

error for the experiment on the local database was 3.90%. The result from the experiment on 

CEDAR benchmark database shows that the highest error was generated from under 

segmentation error similar to the local database results. Over and bad segmentation errors 

were 0.31% and 2.88% accordingly. The average segmentation error for the CEDAR 

experiment was 4.66%.  

The overall segmentation error was higher in CEDAR experiments than in local. However, 

the similar segmentation error pattern has been shown that the under segmentation errors 

were the highest in both experiments. Also, the bad segmentation errors were the next highest 

errors in both experiments. Finally, the over segmentation error was the lowest error category 

in both experiments. 

Table 2 shows the segmentation error characters and their contribution percentage in each 

segmentation error category for both experiments. Overall, the under segmentation errors 

were the highest in each category. For the local database, the most under segmented character 

pairs were 8.79 for ht, 5.02 for an, 4.60 for fo, etc. The most over segmented characters were 

w(33.33) c(22.22) f(11.11) g(11.11) d(11.11) and o(11.11) in order. The worst segmented 

characters were n(26.53), h(22.45), w(20.41), m(6.12), s(6.12), f(4.08), e(2.04), c(2.04), 

a(2.04), i(2.04), u(2.04), r(2.04), and y(2.04) in order. 

For CEDAR database, the most under segmented character pairs were ch(5.71) al(5.71) 

el(4.76) no(3.81) il(3.81) er(3.81), etc. The over segmented characters were w(33.33) 



e(33.33) and s(33.33). The bad segmented characters were m(25.00) e(14.29) r(14.29) 

u(10.71) n(10.71) a(7.14) w(3.57) d(3.57) b(3.57) c(3.57)  and i(3.57).  

TABLE 2. CHARACTERS OR CHARACTER PAIRS CAUSED SEGMENTATION ERRORS IN EACH 

SEGMENTATION ERROR CATEGORY FROM LOCAL AND CEDAR DATABASES 

Category Character/Character pair (Frequency in %) from local 

Under 

Ht(8.33) fo(7.29) ot(6.25) ir(6.25) it(6.25) in(6.25) ar(5.21) an(4.17) ll(3.12) 

ap(3.12) no(2.08) or(2.08) rs(2.08) et(2.08) er(2.08) ae(2.08) nu(1.04) 

ls(1.04) hi(1.04) ho(1.04) di(1.04) su(1.04) dn(1.04) sy(1.04) be(1.04) 

ew(1.04) is(1.04) ev(1.04) mo(1.04) iv(1.04) at(1.04) aw(1.04) io(1.04) 

eh(1.04) al(1.04) ai(1.04) el(1.04) tu(1.04) ek(1.04) tt(1.04) ci(1.04) ep(1.04) 

en(1.04) ch(1.04) es(1.04) ry(1.04)  

Over w(33.33) c(22.22) f(11.11) g(11.11) d(11.11) o(11.11) 

Bad 
n(28.95) w(26.32) h(23.68) m(5.26) e(2.63) s(2.63) r(2.63) c(2.63) a(2.63) 

y(2.63) 

Category Character/Character pair (Frequency in %) from CEDAR 

Under 

Ch(5.71) al(5.71) el(4.76) no(3.81) il(3.81) er(3.81) ot(2.86) or(2.86) ls(2.86) 

ir(2.86) ai(2.86) tt(2.86) cl(1.90) ce(1.90) lu(1.90) lt(1.90) di(1.90) dn(1.90) 

as(1.90) im(1.90) ek(1.90) ac(1.90) et(1.90) nt(0.95) ny(0.95) bo(0.95) 

st(0.95) ou(0.95) op(0.95) oo(0.95) ko(0.95) ow(0.95) oz(0.95) gn(0.95) 

co(0.95) ci(0.95) gs(0.95) go(0.95) lo(0.95) hs(0.95) lp(0.95) hi(0.95) 

dl(0.95) iv(0.95) ez(0.95) in(0.95) io(0.95) au(0.95) eg(0.95) tu(0.95) 

ap(0.95) ep(0.95) iy(0.95) ad(0.95) en(0.95) ag(0.95) ah(0.95) es(0.95) 

ae(0.95)  

Over w(33.33) e(33.33) s(33.33) 

Bad 
m(25.00) e(14.29) r(14.29) u(10.71) n(10.71) a(7.14) w(3.57) d(3.57) b(3.57) 

c(3.57) i(3.57) 

 

Overall segmentation error contribution by character is shown in Table 3. The values in the 

table were generated by counting the occurrences in CEDAR result from Table 2. It describes 

that the letter „l‟ contributed the most segmentation error of 10.83%. On the other hand, the 

least segmentation error was caused by the letter „x‟ for 0.09%. 



TABLE 3. OVERALL SEGMENTATION ERROR CONTRIBUTION RATIO (%) BY CHARACTER FROM 

CEDAR RESULT 

A b C d e f G h i j K l M 

8.89 1.3 4.44 2.96 8.43 1.85 1.94 3.61 8.52 0.37 1.11 10.83 1.76 

N o P q r s T u v w X y z 

5.46 6.9 2.04 0.09 6.57 5.56 9.44 3.98 1.3 0.74 0.09 1.67 0.19 

 

The results obtained using the proposed approach are compared with the published results. 

However, it should be noted that it is very difficult to compare the results as many 

researchers use their own databases and many do not report the segmentation results. As 

shown in Table 4, the proposed approach using CEDAR database generated higher under 

segmentation errors. However, the results of over segmentation error were much better than 

[10,42] and very similar to [27]. Bad segmentation error also exhibits the similar comparison 

as the over segmentation error. The overall average segmentation performance has been 

improved over [10,42] but shows lower performance than [27]. It should be noted that the 

local database was used in [27]. The proposed approach heavily depends on the neural 

confidence value to calculate the mean lexical confidence and the mean character confidence. 

Those confidence values have higher weight factors to decide if a suspicious segmentation 

point is good or bad. In the proposed approach, the neural network classifier was trained and 

it has 61% accuracy. The segmentation can be improved by testing with more accurate neural 

classifier. 

 

TABLE 4. SEGMENTATION PERFORMANCE COMPARISON 

 Database 
Segmentation rate (%) 

Over Under Bad Average 

[10] CEDAR 317 7.4 2.0 11.6 7.0 

[27] Local 750 0.1 0.8 2.3 1.06 

[42] CEDAR 317 10.0 0.2 8.7 6.3 

SCBS 
Local 293 0.74 7.82 3.13 3.90 

CEDAR 161 0.31 10.79 2.88 4.66 

 



6 Conclusions and future research 

In this paper, a novel Segment Confidence-based Binary Segmentation is proposed as a 

segmentation strategy for off-line cursive handwriting recognition. The proposed approach 

has been tested on local and CEDAR benchmark databases. The proposed approach uses 

over-segmentation technique to generate Suspicious Segmentation Points (SSP). Based on 

SSPs, binary segmentation was applied on each SSP and the segment confidence was 

evaluated to see if any improvement was made. The promising results were obtained on both 

databases. The results showed that the proposed approach produced higher under 

segmentation error than the results from the literature. Over and bad segmentation was 

moderate comparing to the literature, and the overall segmentation performance was also 

moderate. The proposed segmentation approach heavily depends on the output from the 

neural classifier. Therefore, the segmentation results can be improved by using more accurate 

neural classifier on CEDAR benchmark database. In our future research, we will focus on 

improving neural confidence and optimizing the weighting for fusion of multiple 

confidences. 
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