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Abstract 

Demand Forecasting is an essential process for any firm whether it is a supplier, manufacturer or 
retailer. A large number of research works about time series forecast techniques exists in the 
literature, and there are many time series forecasting tools. In many cases, however, selecting the 
best time series forecasting model for each time series to be dealt with is still a complex problem. In 
this paper, a new automatic selection procedure of time series forecasting models is proposed. The 
selection criterion has been tested using the set of monthly time series of the M3 Competition and 
two basic forecasting models obtaining interesting results. This selection criterion has been 
implemented in a forecasting expert system and applied to a real case, a firm that produces steel 
products for construction, which automatically performs monthly forecasts on tens of thousands of 
time series. As result, the firm has increased the level of success in its demand forecasts. 

Keywords: Expert System, Forecasting model selection, Time series, Automatic forecasting, Error 
measures 

1. Introduction 

In the business setting, demand forecasting must be considered a process to obtain 
information that will be used in different decision-making processes. Success in demand 
forecasting is a critical factor so that the cost-cutting and improved customer service 
objectives in planning processes and production scheduling are met (Spedding & Chan, 
2000). In short, reducing errors in forecasts helps minimise the risk that the firm assumes to 
cover its customers’ demands (Nikolopoulos & Assimakopoulos, 2003). 

In recent decades, numerous time series forecasting models have been proposed. A 
review of the last 25 years may be seen in De Gooijer & Hyndman (2005). Time series 
forecasting software tools usually offer a variety of techniques, some of which provide the 
user the possibility to automatically define parameters. In real business settings however, 
where it might be necessary to forecast thousands of time series, it is necessary to provide 
the decision-maker with expert systems that either deal with the automatic parameterisation 
of certain forecasting models or the most suitable forecasting model selection from a set of 
models. 

On the other hand, the forecasting error concept has also been an object for various 
authors in the literature. This measurement is done with varied objectives: to determine the 
degree of success of a specific forecast, to analyse how forecasting evolves over time, to 
compare different forecasting models with a time series, to check the performance of a 
forecasting model with several time series, etc. In terms of the objective pursued, 
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measuring the error may be done in several ways: out-of-sample and within-sample errors, 
with a sign or in an absolute value, that are linear or quadric, with units or adimensional 
errors, etc. Besides, some forecasting models will be more suitable than others depending 
on the impact that the error made in the immediate, short-term, mid-term or long-term 
forecasts has on the business decisions. 

The main objective of this work is to propose an automatic selection method of time 
series forecasting models which is applicable to different work settings and that allows the 
user to consider the importance of past errors. 

The rest of the article is set out as follows: the measurements of forecasting errors are 
analysed in Section 2. In Section 3, different model selection criteria are analysed. Section 
4 analyses the treatment of demand forecasting in expert systems and decision support 
systems. An extended criterion for time series forecasting models is proposed in Section 5. 
The results of applying the proposed selection criterion are described in Section 6 by using 
a two forecasting models on the monthly M3 Competition series, and its application to a 
real case is also described. Section 7 presents the conclusions and future lines of research 
are considered. 

2. Forecasting errors 

A wide range of formulae exists to measure forecasting errors. From basic formulae to 
those that use relative errors, which take either the time series values or the forecasts 
obtained by a forecasting model as a reference. The model which is used more often as 
reference is Naïve (the forecast equals the last value observed). In De Gooijer & Hyndman, 
2005, the more commonly used forecasting error measurements are related. 

The difference between the absolute and quadratic errors is that the latter penalise the 
more serious errors to a greater extent. The selection between both types will depend on the 
importance given to major forecasting errors. Theil’s inequality coefficient represents a 
compromise between absolute and quadratic errors (Makridakis et al., 1998). 

It will be appropriate to use certain errors or others depending on the objective pursued. 
In order to compare the performance of a forecasting model on different time series for 
example, it is advisable to use adimensional errors. This is achieved simply by dividing by 
the time series value (MAPE). Nonetheless, dividing only by the time series value means 
that the error is not symmetrical (the relative error differs in terms of the error sign for 
identical errors in the absolute value). Nonetheless, the sMAPE may be used to avoid this 
problem. However, it has to be taken into account that the sMAPE presents an undesired 
performance when the real value or the forecast come close to zero. If a reference model is 
used (like Naïve) to obtained a relative error, at the same time a model goodness is obtained 
in relation to the reference model (which tends to be the most simple). Armstrong & 
Collopy (1992) recommended the Geometric Mean of the Relative Absolute Error 
(GMRAE) for model calibration. For selecting the most accurate methods they 
recommended the Median RAE (MdRAE) when few series are available and the Median 
Absolute Percentage Error (MdAPE) otherwise. 

Strictly speaking, forecasting errors are observed as the difference between the forecast 
and the real value when the forecast was done prior to knowing such a value. Nevertheless, 
certain time series forecasting models are based on the determination of their parameters so 
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that the time series fits. In such a case, a ‘forecast’ of the already known real values is 
carried out. In this way, the difference lies between within-sample forecast for a forecast 
with already known values, and an out-of-sample forecast for a forecast that involves 
unknown values. The errors obtained in this way are named within-sample and out-of-
sample, respectively. 

Researchers generally agree forecast accuracy should be assessed using out-of-sample 
tests rather than in-sample tests (Fildes & Makridakis, 1995). For a given forecasting 
method, in-sample errors are likely to understate forecasting errors. The M-competition 
(Makridakis et al., 1982) and other empirical studies show that forecasting errors generally 
exceed in-sample errors. Overfitting and structural changes may further aggravate the 
divergence between in-sample and post-sample performance (Tashman, 2000). 

In short, it is considered that forecasting out-of sample errors is more suitable for 
comparing time series forecasting models because their good model fit to time series data 
does not have to imply high accuracy in future forecasts (Simkins, 1995). 

Calculating out-of-sample forecast errors is done at the same time as the real value is 
known. Nonetheless, this forecasting may be done by what some authors call the out-of-
sample simulation (Coccari & Galucci, 1984). This is done by simulating that the last real 
time series values are not known and by applying the forecasting model by calculating the 
out-of-sample error obtained. Makridakis (1990) used the sliding simulation as a process 
for method selection and estimation. Makridakis applied variants of the sliding simulation 
to some time series used in the M-competition (Makridakis et al., 1982) and demonstrated 
that post-sample forecasting accuracy improved when smoothing weights were calibrated 
to minimize the post-sample error instead of calibrating weights in-sample. Fildes (1989) 
also used the rolling horizon procedure to compare the efficacy of various method-selection 
rules. Weiss & Anderson (1984) analysed the case of cumulative forecasts and proposed a 
calibration of the forecasting model to minimise a cumulative post-sample error measure. 

The present study intends to determine which forecasting model, from those that form a 
given series, is the most appropriate for each time series analysed. Therefore, since the 
comparison among the various time series is not a requisite, the indicators used are not 
relative errors, thus avoiding undesired performances with extreme values. 

3. Selection models methods 

The first forecasting model selection proposals date back to the sixties, and centred on 
the model’s goodness-of-fit to values that had already been observed. However, this 
selection approach prioritises models with more variables as they achieve a better fit, but a 
good ex-post forecast does not guarantee a good forecast of future values. Miller (1990) did 
a detailed study of the selection methods of those models proposed until that time. 

The problem of finding the equilibrium between the goodness-of-fit and the model’s 
complexity is ruled out if the approach changes and if the indicators related with out-of 
sample forecast errors are chosen. The situation might arise where a complex model with 
very good fits produces greater out-of-sample errors than the simpler model with a worse 
fit. 

Generally, the two most used model selection criteria are those of Akaike (Akaike 
Information Criterion AIC) (Akaike, 1973) and of Schwarz (Bayesian Information 
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Criterion BIC) (Schwarz, 1978). Both contemplate the model’s complexity by taking into 
account the degrees of freedom (the number of estimated parameters). The Schwarz 
criterion penalises the use of degrees of freedom more acutely (more complex models), 
thus it is stated to be more consistent. On the other hand, the Akaike criterion is 
asymptotically efficacious, while Schwarz’s is not. Asymptotic efficacy is related to the 
hypothesis that reality is much more complex than any model considered because, when the 
number of observations is increased, the number of the models in the series considered 
must also increase. The criteria that become slower as the number of models increases are 
not asymptomatically efficient. 

An alternative model selection method is the so-called cross validation method (Stone, 
1974). Data is partitioned into subsets in such a way that the analysis is initially performed 
on a single subset, while the other subset(s) is/are retained for subsequent use in confirming 
and validating the initial analysis. The mean squared prediction errors in the subsets left out 
defines the cross validation error. 

Inoue & Filian (2006) analyzed the Information Criteria (IC) against the simulated out-
of-sample forecasts for model selection. They compared the asymptotic and finite-sample 
properties of these methods in terms of their ability to minimize the true out-of-sample 
prediction mean squared error. They showed that, under suitable conditions, the IC method 
will be consistent for the best approximating model among the candidate models. In 
contrast, under standard assumptions the simulated out-of-sample forecasts method, based 
on recursive or rolling regressions, will select overparameterized models with positive 
probability. 

The relationship between model performance and certain characteristics of the time 
series has been a research topic for several authors (Makridakis et al., 1982). Time series 
can be classified into subcategories (yearly, quarterly, and monthly data, micro and macro 
data, industry and demographic data, and seasonal and non seasonal data). However, the 
pattern must also be taken into account to obtain differences of performance between 
selected and non selected models. 

There are two basic sources of knowledge about forecasting method selection: empirical 
studies and forecasting experts (Collopy & Armstrong, 1989). The empirical literature 
provides numerous guidelines for selecting among forecasting methods. Rule-based 
forecasting (RBF) is a type of expert system that is applied to time series extrapolation. The 
rules are based on the knowledge of five experts on forecasting methods. It consists of 99 
rules and the forecast is obtained from combining forecasts from four extrapolation 
methods: random walk, regression, Brown's linear exponential smoothing trend (Brown, 
1959) and Holt's exponential smoothing (Holt et al., 1960), using 18 features of time series 
(Collopy & Armstrong, 1992) (Armstrong et al., 2001). 

Franses & Koehler (1998) proposed a model selection strategy for time series that 
displays increasing seasonal variation. This strategy provides a systematic overall approach 
without using Box-Cox transformations for comparing models with alternative stochastic 
and deterministic components. Their empirical results, however, indicate that the models 
selected using our tests on the in-sample observations often perform reasonably well in out-
of-sample forecasting. 

Machine learning algorithms can be applied to the selection of forecasting methods 
(Arinze, 1994) as a classification problem where the best forecasting model is the class 
attribute, and where time series features are the predictors. These algorithms learn to relate 
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time series features with the best models. Using such an approach, Prudencio et al. (2004) 
propose a supervised classification method that originates from the symbolic data analysis 
field for the model selection problem. 

Flores & Pearce (2000) described an expert system which was originally designed to 
forecast monthly demand for industrial products that was modified to run the data of the 
M3 Competition. The rule base for this forecasting expert system was implemented using 
the IF-THEN rules. The complete process detects and adjusts irrelevant early data, detects 
and adjusts outliers, verifies the trend type, detects seasonality and period, chooses the 
preferred forecasting method, generates forecasts, shows forecasts from all methods to 
human users, allows users to choose a preferred method alters forecast values and finally 
stores the results. The forecasting methods used were: simple exponential smoothing, 
Gardner’s damped trend exponential smoothing, classical decomposition (all of them 
without and with seasonality) and six-period moving average. In addition, a combination 
approach which averages the forecasts of all methods was used. 

Most selection criteria of forecasting models based on out-of-sample errors use the one-
step forecasting error, in other words, the errors obtained in the forecast of the next point of 
the time series. Nonetheless, and depending on how the firm uses immediate, short-, mid- 
and long-term forecasts, a more suitable forecasting model might be that with, for instance, 
a mid-term out-of-sample content than another model with a very good one-step out-of-
sample content, but one with a poorer mid-term performance. In short, the importance of 
the forecasting horizon must be taken into account when defining a model selection 
criterion. 

4. Forecasting Experts Sytems 

Forecasting demand is a complex area of decision making in the company. Not only lot 
of variables have to been considered, but normally the forecasting process should be 
repeated on a wide range of products, making it necessary to provide an automatic system 
to the decision maker to perform this work. However, demand forecasting has been a 
decision process lowly implemented in expert systems, and in some cases, indicators of the 
goodness of the results have not been the most appropriated from a business standpoint. In 
the next paragraphs some of the most significant studies on these issues are discussed. 

Wong and Chong (1993) performed a survey about applications of expert systems in 
manufacturing industries. The results of this study show that expert systems are generally 
not perceived to be accurate or reliable tools for forecasting production demand. The 
review of pertinent literature also revealed that few expert systems were available for 
forecasting in manufacturing. They concluded that intelligently combining forecasts 
obtained from different sources and forecasting techniques was a promising area of 
research. 

Armstrong and Yokum (2001) performed a survey among forecasters to judge potential 
adoption of expert systems in relation to Box-Jenkins and scenarios. The respondents were 
classified in researchers, educators, practitioners and decision makers. The respondents 
viewed favourably expert systems in comparison with the mentioned techniques. They 
concluded that, in comparison with two well-established forecasting techniques, expert 
systems appear to have reasonable prospects for diffusion. 
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Liao (2005) performed a literature review and classification of articles from 1995 to 
2004 about expert systems. The applications to forecasting techniques were related with 
Neural Networks and Fuzzy Expert Systems. 

Eom and Kim (2006) conducted a follow-up survey about Decision Support Systems 
(DSS) Applications covering the period between 1995 and 2001 extending the two previous 
ones (Eom and Lee, 1990), (Eom et al., 1998). They conclude that the production and 
operations management applications were the predominant DSS application area over the 
90s and stated that the second survey reported several applications for aggregate demand or 
item demand forecasting and that the success of most industries often hinges on the 
accuracy of their forecast of demand. Forecasting and statistical models among others have 
been increasingly embedded in the model base of DSSs. 

Researchers have developed expert systems or decision support systems for demand 
forecasting to face not only the time series forecasting, but to model complicated aspects as 
promotion, incomplete information or new product launching among others. 

Kuo and Xue (1998) proposed a decision support system that utilizes fuzzy logic and a 
fuzzy neural network for the sake of learning fuzzy IF–THEN rules obtained from the 
marketing experts with respect to promotion, the result is further integrated with the 
forecast from artificial neural networks using the time series data. Their study concludes 
that the proposed system performs more accurately forecast than the conventional statistical 
method and single artificial neural networks. 

Efendigi et al. (2009) proposed a forecasting mechanism modelled by artificial 
intelligence approaches by the comparison of both artificial neural networks and adaptive 
network-based fuzzy inference system techniques to manage the fuzzy demand with 
incomplete information. The bipartite methodology obtained more accurate forecasts and 
they considered their proposal as a successful decision support tool in forecasting customer 
demands. 

Ching-Chin et al. (2010) proposed a decision-support system called the New Product 
Forecast System, to help execute the standard forecast procedure for new product sales 
forecasts. The Forecasting Model module contains the templates of six forecasting methods 
both classical (Moving Average, Exponential Smoothing, and Exponential Smoothing with 
Trends) and heuristic (Taylor Series, Sales Index, and Diffusion Model) specifically 
designed for new product sales forecasting. The decision support tool allows calculating the 
forecast according to the desired planning horizon: short-term, mid-term, and/or long-term. 

In order to state the success of an expert system for demand forecasting, the main 
parameter to consider is the forecast accuracy, i.e. minimizing forecasting errors. In Section 
2 different commonly used forecasting errors have been treated. Its use in expert system for 
demand forecasting is varied: arithmetic mean, mean absolute error, mean squared error, 
root mean square error or mean absolute percentage error. 

Petrovic et al. (2006) proposed a decision support system for demand forecasting that 
combines four forecasts values: two of them represent subjective judgments on future 
demand and two crisp values obtained using conventional statistical methods. The learning 
mechanism consider the arithmetic mean of the forecasts errors recorded in the past 
periods. 

Ali et al. (2009) used the mean absolute error (MAE) as a measure of overall accuracy 
of the candidate models on an extensive SKU-store level sales and promotion time series 
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from a European grocery retailer. They used regression trees with explicit features to model 
promotion and reported a substantial improvement of accuracy. 

Efendigil et al. (2009) proposed a forecasting mechanism modelled by artificial 
intelligence approaches including the comparison of artificial neural networks and adaptive 
network-based fuzzy inference system techniques to manage fuzzy demand. They 
employed the mean squared error (MSE) and the mean absolute percentage error (MAPE) 
as training errors. 

Lin and Lee (2009) combined Grey forecasting (GM) and Markov–Fourier Grey 
forecasting model (MFGM) to develop an expert system of diagnosis by artificial 
intelligence which improves the effectiveness of forecasting randomly fluctuating data. 
They used use the mean absolute error (MAE) to compare forecasting. 

Pai et al. (2009) developed a seasonal support vector regression (SSVR) model to 
forecast seasonal time series data. To minimize forecasting error of the SVR model they 
use the negative values of the mean absolute percentage error (MAPE) and, in addition, the 
root mean square error (RMSE) is used to measure the forecasting accuracy. 

Sayed et al. (2009) proposed an integrated model of statistical methods and a genetic 
algorithm used to choose the best weights among the statistical methods and to optimize the 
forecasted activities combinations that maximize profit. They consider the mean squared 
error (MSE) to guide the genetic algorithm for searching for the best combination of 
weights between the methods. 

Singh (2009) presented a method of forecasting based on high-order fuzzy time series. 
The comparison of accuracy in forecasted values of the proposed models with other models 
is made on the basis of mean absolute percentage error (MAPE) and mean square error 
(MSE). 

Behnamian and Ghomi (2010) introduced a new time-series forecasting model based on 
non linear regression with high flexibility to fit any number of data without preassumptions 
about real patterns of data and its fitness function. The proposed hybrid approach comprises 
two components: a particle swarm optimization and a simulated annealing. They use the 
mean absolute error (MAE), the mean square error (MSE) and the root mean square error 
(RMSE) but also the mean absolute percentage error (MAPE) in a case study. 

Khashei and Bijari (2010) proposed a hybrid model of artificial neural networks using 
auto-regressive integrated moving average (ARIMA) models in order to yield a more 
accurate forecasting model than artificial neural networks. They used as cost function the 
mean squared error (MSE) for training and mean absolute error (MAE) and mean squared 
error (MSE) to compare with other forecasting methods. 

In most of the expert systems one-step forecasting error is used to calculate the 
forecasting accuracy, but the real cases show that firms are interested in good forecasts not 
only at short-term but over a time horizon. This fact will be taken into account in the next 
section which describes the proposal for the automatic selection of forecasting models. 

5. Proposal of a model selection method 

Choosing one selection criterion of time series forecasting models will not only depend 
on the setting to which they are to be applied, but also on the various considerations to be 
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taken into account. The characteristics of the type of problem that we wish to solve are: 

• The set of time series on which to proceed and, therefore, for which the most 
suitable forecasting model must be selected, is very large (more than 10,000). 

• The group of time series forecasting models considered is wide and contains models 
of various kinds. 

• The forecasts to be achieved are not only of the one-step kind, but of a wide horizon 
(18 periods, for instance). 

• The decision-maker is interested in taking into account the errors made in the whole 
forecasting horizon and also at the different times the forecast was done. The 
decision-maker is also interested in taking decisions about the degree of power of 
major errors. 

• It must be possible for the method to be applied automatically without the need of 
the decision-maker intervening. 

For the purpose of facilitating the design of the selection criterion, several sentences are 
dedicated to help create their formula: 

• The selection criteria of the models will operate with out-of-sample errors rather 
than within-sample errors. 

• All errors made by all the forecasting models will be recorded for the forecasting 
horizon considered. 

• A different importance will be given to the errors made throughout the forecasting 
horizon. 

• A different importance will be given to the errors which, for the same period, have 
produced a specific forecasting model applied at different moments in time. 

• A power could be defined for the errors which depends on the closeness of the 
period considered. 

The following variables have been included: 
T : current period (last real observation) 

P : periods in which forecasts are calculated 

tY : the real time series value in period t  
s
tF : forecast of period t  calculated in period s  

s
tt

s
t FYe −= : error in period t  of the forecast made in period s  

st −=α : forecast forward  

sT −=β : forecast age 

( )απ : error power according to the forecast forward 

( )αµ : multiplicative error factor according to the forecast forward 

( )βλ : multiplicative error factor according to the forecast age 
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The RHWE (Rolling Horizon Weighted Error) criterion for the forecasting models 
selection is defined as follows: 

( ) ( ) ( )βλαµ
απ

⋅⋅=∑∑
t s

s
teRHWE  (1) 

where: 

( ) 1≥απ  (2) 

( ) 1=∑
α

αµ  (3) 

( ) 1=∑
β

βλ  (4) 

The model which presents the smallest criterion value is chosen. 
The proposed criterion is an extension of the classic selection criteria based on the 

minimum one-step out-of-sample error. Specifically, the RHWE is summarised as: 

• MAE when 1=α , ( ) 1=απ , ( ) 1=αµ  and vector ( )βλ  is homogeneous. 

• MSE when 1=α , ( ) 2=απ , ( ) 1=αµ  and vector ( )βλ  is homogeneous. 

In Table 1, we may observe a numerical example of the RHWE calculation for the 
exponential smoothing model. Forecasting begins by calculating from period 11 and a 4-
period horizon is foreseen. The forecasts made from periods 11 to 20 have been recorded, 
and the errors made have been calculated when this instant in time is reached. An error 
power equal to 1 has been considered, that is, a multiplicative factor of the error according 
to the forecasting forward which is inversely proportional to the degree of advance, and a 
multiplicative factor of the error according to the age of the forecast which is inversely 
proportional to the age. 
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Table 1  
Example of the RHWE calculation for the exponential smoothing model 

α 0,4
t Yt Ft et Ft et Ft et Ft et Ft et Ft et Ft et Ft et Ft et Ft et
1 91 91,0 91,0 91,0 91,0 91,0 91,0 91,0 91,0 91,0 91,0
2 99 91,0 91,0 91,0 91,0 91,0 91,0 91,0 91,0 91,0 91,0
3 56 94,2 94,2 94,2 94,2 94,2 94,2 94,2 94,2 94,2 94,2
4 89 78,9 78,9 78,9 78,9 78,9 78,9 78,9 78,9 78,9 78,9
5 49 83,0 83,0 83,0 83,0 83,0 83,0 83,0 83,0 83,0 83,0
6 63 69,4 69,4 69,4 69,4 69,4 69,4 69,4 69,4 69,4 69,4
7 40 66,8 66,8 66,8 66,8 66,8 66,8 66,8 66,8 66,8 66,8
8 58 56,1 56,1 56,1 56,1 56,1 56,1 56,1 56,1 56,1 56,1
9 87 56,9 56,9 56,9 56,9 56,9 56,9 56,9 56,9 56,9 56,9
10 56 68,9 68,9 68,9 68,9 68,9 68,9 68,9 68,9 68,9 68,9
11 40 63,7 23,7 63,7 63,7 63,7 63,7 63,7 63,7 63,7 63,7 63,7
12 92 63,7 -28,3 54,2 -37,8 54,2 54,2 54,2 54,2 54,2 54,2 54,2 54,2
13 60 63,7 3,7 54,2 -5,8 69,3 9,3 69,3 69,3 69,3 69,3 69,3 69,3 69,3
14 42 63,7 21,7 54,2 12,2 69,3 27,3 65,6 23,6 65,6 65,6 65,6 65,6 65,6 65,6
15 54 54,2 0,2 69,3 15,3 65,6 11,6 56,2 2,2 56,2 56,2 56,2 56,2 56,2
16 25 69,3 44,3 65,6 40,6 56,2 31,2 55,3 30,3 55,3 55,3 55,3 55,3
17 20 65,6 45,6 56,2 36,2 55,3 35,3 43,2 23,2 43,2 43,2 43,2
18 14 56,2 42,2 55,3 41,3 43,2 29,2 33,9 19,9 33,9 33,9
19 57 55,3 -1,7 43,2 -13,8 33,9 -23,1 25,9 -31,1 25,9
20 20 43,2 23,2 33,9 13,9 25,9 5,9 38,4 18,4

s=16 s=17s=10 s=11 s=12 s=13 s=18 s=19s=14 s=15

 

T-s 10 9 8 7 6 5 4 3 2 1
λ 0,02 0,04 0,05 0,07 0,09 0,11 0,13 0,15 0,16 0,18
0,4 0,17 0,55 0,2 0,69 0,08 1,32 1,18 1,16 2,03 1,34
0,3 0,15 0,06 0,45 0,25 0,85 1,16 1,11 1,01 0,29
0,2 0,01 0,09 0,17 0,59 0,66 0,9 0,35 0,4
0,1 0,04 0 0,24 0,33 0,38 0,02 0,3 18,54

µ

 

Once the real values of the 9 forecasting periods are known for the described example, 
the RHWE value is 18,54 for a smoothing factor of 0,4. If the criterion for the selection of 
the smoothing factor were applied (the set of models considered would be of an exponential 
smoothing kind with varying smoothing factors), the criterion selected would be that which 
would provide a lower value. For this specific case, the smoothing factor which minimises 
the criterion is 0,56 whose value is 18,06. 

6. Experiments 

For the purpose of testing the proposed selection criterion, a set of forecasting models of 
various kinds has been chosen which range from the more classical models to those that use 
mathematical programming to establish their parameters. 

There are two ways to establish the proposed selection criterion goodness: applying the 
proposed selection criterion goodness to other selection criteria, or applying it to a set of 
known time series with the out-of-sample errors from different forecasting models that 
have been documented. Even though the criterion has been used to check other previously 
tested selection criteria in the real case, the monthly M3 Competition time series was opted 
to perform the experiments whose objective was to verify the results obtained by the 
criterion proposed in relation to the results obtained from the models which participated in 
the competition. 

6.1 Set of time series forecasting models 

Different time series forecasting models have appeared in recent decades which may be 
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classified into various families. Among these we find the family of the exponential 
smoothing models (Montgomery et al., 1990), which have been widely used in the practice, 
along with the ARIMA models (Box & Jenkins, 1970), which have been extensively used 
in the research. Despite the wide range of models, experience has shown that there is no 
forecasting model which works better than the rest in any given situation (Collopy & 
Armstrong, 1992). Therefore, a suitable selection of the model to be used for each time 
series may increase forecasting accuracy. 

Depending on the characteristics of a specific time series, some forecasting models will 
provide better results than others. But, since the aim of this study is to analyse how a 
criterion to select time series forecasting models works, the definition of this set should not 
affect the results. For this reason, only two different forecasting models have been chosen 
to experiment with the M3 Competition monthly time series: 

• Classical multiplicative decomposition. 

• Weighted simple moving average (using a quadratic programming model to 
determine the weights minimizing the in-sample errors). 

In a real application (as described in section 5.3), the number of models to consider must 
be large, and these models must present complementary performances for the time series 
that they have to deal with. Furthermore, the set of models to be considered must cover the 
different performances (seasonality, trend, intermittence, randomness, etc.) that may be 
noted in the time series to be dealt with. 

6.2 Applying M3 Competition monthly time series 

In order to validate the selection criterion of the time series forecasting models 
proposed, it was decided firstly to experiment with a data set on which the out-of-sample 
errors obtained with several forecasting models would have been calculated. To this end, 
the 1.428 monthly time series from the last international Makridakis competition (the M3 
Competition) (Makridakis & Hibon, 2000) were selected. Other studies on the levels of 
accuracy of forecasting models may be consulted at Reid (1975), Newbold & Granger 
(1974), Makridakis & Hibon (1979), (Makridakis et al., 1982), (Makridakis et al., 1993). 

The parameterisation implemented for this experiment was: 
18=α  (5) 

( ) 1=απ  (6) 

In other words, an 18-period process in the forecasting (the forecast of the following 18 
months in the M3 Competition were applied to the last time series value) and an error 
power equal to the unit (one of the most significant error measurements in the M3 was 
sMAPE). 

In order to build the data for the model selection applying the RHWE criterion, an ex-
ante simulation has been performed by assuming that the 18 final values of each time series 
were unknown, and by including a value of the time series in each calculation, which 
means a total of 19 forecasts for each time series. The 2 aforementioned forecasting models 
have been applied to the 1.428 time series of the M3 Competition, which gives a number of 
2.856 forecasts, and 18 months of forecasting are calculated for each one. Upon obtaining 
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the out-of-sample errors on the time series values, which are supposedly unknown, a total 
of 171 errors are calculated for each forecast. Then, up to 488.376 out-of-sample errors are 
obtained. 

Because of the objective of the experiment was to reach a good performance in the M3 
Competition, the multiplicative factor of the error according to the forecasting forward 
( )αµ  and the multiplicative factor of the error according to the age of the forecast ( )βλ  

where estimated by means a mathematical programming model minimizing the average 
sMAPE of the final 18 values, performing a similar experiment as detailed in the previous 
paragraph, but considering the 18 final values of each time series as out-of-sample. 

Table 2 presents a comparison of the accuracy of the forecasting models which 
participate in the M3 Competition, in which the RHWE criterion has been included at the 
end of the table. This is in fact the error measure according to the sMAPE not only for the 
different forecasting horizon points, and also for different averages. It is seen that the 
RHWE criterion overcomes the best models in the competition, and its good performance 
particularly stands out in the averages of the forecasting horizons. The weighted simple 
moving average was selected for the 70% of the time series and the classical multiplicative 
decomposition for the 30%. 
Table 2  
sMAPE of the RHWE criterion compared with the results of the M3 Competition. Adapted from 
(Makridakis & Hibon, 2000) 

METHODS 1 2 3 4 5 6 8 12 15 18 1-4 1-6 1-8 1-12 1-15 1-18
NAIVE2 15,00 13,50 15,70 17,00 14,90 14,70 15,60 16,00 19,30 20,70 15,30 15,13 15,29 15,57 16,18 16,91
SINGLE 13,00 12,10 14,00 15,10 13,50 13,10 13,80 14,50 18,30 19,40 13,55 13,47 13,60 13,83 14,51 15,32
HOLT 12,20 11,60 13,40 14,60 13,60 13,30 13,70 14,80 18,80 20,20 12,95 13,12 13,33 13,77 14,51 15,36
DAMPEN 11,90 11,40 13,00 14,20 12,90 12,60 13,00 13,90 17,50 18,90 12,63 12,67 12,85 13,10 13,77 14,59
WINTER 12,50 11,70 13,70 14,70 13,60 13,40 14,10 14,60 18,90 20,20 13,15 13,27 13,52 13,88 14,62 15,44
COMB S-H-D 12,30 11,50 13,20 14,30 12,90 12,50 13,00 13,60 17,30 18,30 12,83 12,78 12,92 13,11 13,75 14,48
B-J automatic 12,30 11,70 12,80 14,30 12,70 12,60 13,00 14,10 17,80 19,30 12,78 12,73 12,89 13,21 13,96 14,81
AUTOBOX-1 13,00 12,20 13,00 14,80 14,10 13,40 14,30 15,40 19,10 20,40 13,25 13,42 13,71 14,10 14,93 15,83
AUTOBOX-2 13,10 12,10 13,50 15,30 13,30 13,80 13,90 15,20 18,20 19,90 13,50 13,52 13,76 14,16 14,86 15,69
AUTOBOX-3 12,30 12,30 13,00 14,40 14,60 14,20 14,80 16,10 19,20 21,20 13,00 13,47 13,89 14,43 15,20 16,18
ROBUST-TREND 15,30 13,80 15,50 17,00 15,30 15,60 17,40 17,50 22,20 24,30 15,40 15,42 15,89 16,58 17,47 18,40
ARARMA 13,10 12,40 13,40 14,90 13,70 14,20 15,00 15,20 18,50 20,30 13,45 13,62 14,00 14,41 15,08 15,84
AutomatANN 11,60 11,60 12,00 14,10 12,20 13,90 13,80 14,60 17,30 19,60 12,33 12,57 12,92 13,42 14,13 14,93
FLORES-PEARC1 12,40 12,30 14,20 16,10 14,60 14,00 14,60 14,40 19,10 20,80 13,75 13,93 14,22 14,29 15,02 15,96
FLORES-PEARC2 12,60 12,10 13,70 14,70 13,20 12,90 13,40 14,40 18,20 19,90 13,28 13,20 13,33 13,53 14,31 15,17
PP-Autocast 12,70 11,70 13,30 14,30 13,20 13,40 14,00 14,30 17,70 19,60 13,00 13,10 13,37 13,72 14,36 15,15
ForecastPRO 11,50 10,70 11,70 12,90 11,80 12,30 12,60 13,20 16,40 18,30 11,70 11,82 12,06 12,46 13,09 13,86
SMARTFCS 11,60 11,20 12,20 13,60 13,10 13,70 13,50 14,90 18,00 19,40 12,15 12,57 12,90 13,51 14,22 15,03
THETAsm 12,90 12,20 13,60 14,30 14,10 14,30 14,00 14,20 17,60 19,10 13,25 13,57 13,85 14,06 14,56 15,26
THETA 11,20 10,70 11,80 12,40 12,20 12,40 12,70 13,20 16,20 18,20 11,53 11,78 12,13 12,50 13,11 13,85
RBF 13,70 12,30 13,70 14,30 12,30 12,80 13,50 14,10 17,30 17,80 13,50 13,18 13,40 13,67 14,21 14,77
ForcX 11,60 11,20 12,60 14,00 12,40 12,20 12,80 13,90 17,80 18,70 12,35 12,33 12,46 12,83 13,60 14,45
AAM1 12,00 12,30 12,70 14,10 14,00 14,00 14,30 14,90 18,00 20,40 12,78 13,18 13,63 14,05 14,78 15,69
AAM2 12,30 12,40 12,90 14,40 14,30 14,20 14,50 15,10 18,40 20,70 13,00 13,42 13,87 14,25 15,01 15,93
RHWE 11,46 10,48 11,77 12,68 11,14 12,33 12,09 12,85 15,61 16,51 11,60 11,64 11,80 12,09 12,67 13,31

Forecasting Horizons Average of Forecasting Horizons

 
Figure 1 shows the average value of the forecast age and forecast forward parameters for 

all the series. The one-step more recent error obtains the greatest (in average) weight for 
both parameters. But also wide horizons and past forecasting are taken into account with 
weights of 40% the greatest one. It seems that more recent forecasts are more important 
than short horizon forecasts and vice versa for older forecasts and wide horizon forecasts. 
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Fig. 1. Forecast age and forecast forward averages. 

In order to learn the effect of the selection criterion, a similar experiment was done 
where the one-step MAE was used as the selection criterion. This case was placed in 17th 
position, which demonstrates that the out-of-samples errors made in wide horizons and 
obtained at different times greatly improve the performance of the selection criterion. 

6.3 Application to a real case 

The RHWE selection criterion of time series forecasting models has been applied to a 
real case in a firm that produces steel for construction. The RHWE criterion forms part of 
the expert system of a demand forecasting tool which automatically calculates demand 
forecasts on tens of thousands of time series of a very wide range (according to its 
characteristics, such as its seasonality, trend, intermittence, randomness, length, changes in 
pattern, outliers, etc.). 

The expert system can chose for a set of 24 different forecasting models of various kinds 
which range from the more classical models to those that use mathematical programming to 
establish their parameters: 

• Decomposition models: classical additive or multiplicative decomposition; Theta 
Model (Assimakopoulos & Nikolopoulos, 2000) 

• Exponential Smoothing Models: Simple smoothing; Holt (Holt et al., 1960); Holt-
Winter (additive or multiplicative) (Winters, 1960); Croston (Croston, 1972); 
Syntetos-Boylan (Syntetos & Boylan, 2005) 

• Moving Average Models: Simple moving average; Weighted simple moving 
average 

• ARIMA Models (Box & Jenkins, 1970): Tramo/Seats (Gomez & Maravall, 2001) 
The “classical” calculation models have been used in these models. For those which 

require the estimation of one parameter, or of several, mathematical programming models 
have been used (determinist and fuzzy) which minimise within-sample errors or out-of-
sample errors. Furthermore, a combined model was included which applies ARIMA to the 
residual that has not been accounted for by the classical multiplicative decomposition 
method. A wide range of times series with different characteristics can be suitably 
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processed with this set of models. 

Criterion parameterisation differs to that used for the experiment with the M3 
Competition series since it is defined taking into account the relevance of the forecast 
accuracy along the horizon (12 months), depending the product family and the kind of 
decisions taken from this information. The result has been highly satisfactory as the RHWE 
criterion has, in general, coincided with the selection that an expert would have made. 

7. Conclusions 

This paper proposes a selection criterion for time series forecasting models by 
considering the out-of-sample errors recorded over time and for a specific horizon, whose 
importance is rated according to the distance from the instant in which the forecast is made 
and in accordance with the age of the forecast. This proposal also allows to define the 
degree of error power in accordance with the closeness of the period considered. 

To validate the proposed method, two well known time series forecasting models has 
been used, which have been tested against the monthly times series of the M3 Competition, 
and which have overcome the models of the competition. 

RHWE has been included in an expert system of a demand forecast tool, and it has been 
applied to a real case in a firm that produces steel for construction and which automatically 
forecasts on tens of thousands of time series on a monthly basis. The result has been highly 
satisfactory as the level of forecasting accuracy has increased in relation to the use of other 
selection criteria (for example, the lowest MSE). 

Several future lines of research have been defined from the results obtained: a) to carry 
out experiments with different error powers, multiplicative factor vectors of the error 
according to the forecasting forward, and with multiplicative factor vectors of the error 
according to forecasting age; b) analysing experiments with variations in the parameters to 
determine the impact of each parameter; c) relation of the criterion parameters with the 
characterisations of the time series to be dealt with. 
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