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This work proposes a methodology for automatically validating the internal lighting system of an auto-
mobile by assessing the visual quality of each instrument in an instrument cluster (IC) (i.e., vehicle
gauges, such as speedometer, tachometer, temperature and fuel gauges) based on the user’s perceptions.
Although the visual quality assessment of an instrument is a subjective matter, it is also influenced by
some of its photometric features, such as the light intensity distribution. This work presents a method-
ology for identifying and quantifying non-homogeneous regions in the lighting distribution of these
instruments, starting from a digital image. In order to accomplish this task, a set of 107 digital images
of instruments were acquired and preprocessed, identifying a set of instrument regions. These instru-
ments were also evaluated by common drivers and specialists to identify their non-homogenous regions.
Then, for each region, we extracted a set of homogeneity descriptors, and also proposed a relational
descriptor to study the homogeneity influence of a region in the whole instrument. These descriptors
were associated with the results of the manual labeling, and given to two machine learning algorithms,
which were trained to identify a region as being homogeneous or not. Experiments showed that the pro-
posed methodology obtained an overall precision above 94% for both regions and instrument classifica-
tions. Finally, a meticulous analysis of the users’ and specialist’s image evaluations is performed.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Instrument Clusters (IC) have become one of the most complex
electronic embedded control systems in modern vehicles (Huang,
Mouzakitis, McMurran, Dhadyalla, & Jontes, 2008), providing the
user with a diverse range of information varying from driving con-
ditions, messages, and pre-diagnostics to powerful infotainment
systems (Castineira, Dieguez, & Castano, 2009). In order to provide
all these data, the numbers of components included into a single
dashboard (or IC) increased considerably.

These modern ICs, besides being an essential electronic
interface with the user (Wei, Xian-Kui, Lei, Rui, & Bin, 2006), also
represent a strong stylish element to the consumer. They have a
great influence in the internal aspect of the vehicle, and transmit
different kinds of sensations to the user, such as modernity, sport-
iveness, futurism, classic, etc. (see Fig. 1). However, in addition to
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the attractive graphic design of the ICs, it is essential that they
present an appropriate visual quality.

Visual quality is a highly subjective concept that depends on the
user’s perception, but it is also influenced by photometric features
such as color (i.e., saturation and hue combination) and intensity.
In this work, we consider that the visual quality of an IC is
determined by a uniform distribution of the light intensity. Visual
systems like ICs can present several problems regarding light
intensity, which can cause visual discomfort to the vehicle user.
Fig. 2 illustrates some of these problems. As observed, in Fig. 2(a)
the light intensity concentrates in the middle of the ideogram,
while in Fig. 2(b) some regions are brighter or darker than the
others. In Fig. 2(c) the light intensity is higher on one side or corner
than the others.

Aiming to avoid these problems with light intensity, manufac-
tures usually employ a validation methodology to assess the visual
quality of the components of an IC. Most of the current methodol-
ogies used in industry are based on human visual inspection, which
is highly subjective, or semiautomatic methods. An example of a
semiautomatic method is the use of a spectrophotometer, i.e., an
expensive and specialized equipment used to measure light inten-
sity. The main problem in the use of a spectrophotometer is that its
measurements are very time-consuming. For instance, the valida-
tion of a vehicle IC, which usually contains in average 400 possible
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Fig. 1. Sportive Vehicles Instrument Clusters (IC). From left to right: Koenigsegg CCX 2007, Ford Fusion Sport 2010, Lexus is 300.

Fig. 2. Typical problems of intensity homogeneity in visual interactive systems: (a) light intensity concentrated in the middle of the ideogram, (b) some numbers are brighter
than others, and some regions are very dark, (c) light intensity is higher in the left than in the right side.

Fig. 3. An instrument cluster and its parts; (a) a typical Brazilian instrument cluster, (b) a component (i.e., a tachometer), (c) areas: a labeled tachometer image with more
than 60 connected regions.
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measurement points, can take almost 3 h of work. In addition, this
type of analysis does not include any scientific criterion for deter-
mining acceptable intensity homogeneity levels based on human
perception.

In this direction, the first attempts to introduce human percep-
tion into the validation process of visual interactive systems was
concerned with the automatic identification of Mura on monitors
and displays using images analysis (Lee & Yoo, 2004; Oh, Yun, &
Park, 2007). Mura is a Japanese word that describes a non-uniform
variation in the local intensity of a region that does not present a
defined contour, and it is noticeable as a visual unpleasant
sensation.

Although the methodologies proposed so far are suitable for
validating a unique region (surface), they are not recommended
for problems as the one tackled in this work. This is because an
IC represents a set of basic instruments (or components – see
Fig. 3(a)), such as the speedometer, the fuel and temperature
gauges, or the tachometer. Each component is formed by a set of
connected regions (see Fig. 3(b)), which can be segmented and la-
beled, as shown in Fig. 3(c). Hence, we need a methodology that



Fig. 4. Mach bands effect: (a) growing levels of intensity; (b) real intensity; (c)
noticed intensity.
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considers both the (local) brightness homogeneity in a single com-
ponent region, as well as the impact that each small region has in
the global visualization of the component.

In this direction, the main goal of this work is to develop a meth-
odology based on both digital image analysis and the human visual
perception (user’s evaluation) to validate the instruments of an IC.
By validate we mean to evaluate if a component presents a good, a
critical or a poor visual quality to the user. Note that this work fo-
cuses on a single component of the IC (e.g., the speedometer) instead
of a set of components, i.e., the IC. The latter is left for future work.

The proposed methodology preprocesses and extracts intensity
homogeneity descriptors from a set of acquired component
images. At the same time, users evaluate the components and iden-
tify their non-homogeneous regions. The users perceptions are
then combined with the intensity homogeneity descriptors, and la-
ter given to two machine learning algorithms, namely Artificial
Neural Network (ANN) and Support Vector Machine (SVM). These
algorithms learn to identify homogenous and non-homogenous re-
gions and, given a new component image, validate it as a good, crit-
ical or poor visual quality.

A preliminary version of this work appears in Faria, Menotti,
Lara, Pappa, and Araújo (2010), where the methodology was first
introduced. However, in Faria et al. (2010), a single dataset ob-
tained from the classification of a specialist was given as input to
two machine learning algorithms. Here, we extend the set of
experiments so that six different datasets are used. These datasets
were created based on the opinions of five ordinary drivers regard-
ing the ICs. The analysis performed by the users is contrasted with
the analysis of the specialist, as well as the results obtained by the
machine learning algorithms with these datasets. Moreover, an
overview of the automotive systems of visual interaction is given,
and some formalisms are introduced to better describe the pro-
posed methodology.

By identifying the non-homogeneous regions of the instru-
ments, we will contribute in an effective way to the industrial
development process of IC, reducing significantly the time of qual-
ity analysis.

The remainder of this work is organized as follows. Section 2
introduces basic concepts regarding lighting systems. Section 3
presents the proposed methodology. An analysis of the users’ and
specialist’s evaluations is performed in Section 4. Section 5 pre-
sents the experiments performed to validate the proposed method-
ology. Finally, conclusions and future works are pointed out in
Section 6.
1 Ernst Mach 1838–1916, Austrian physical and philosopher.
2. Automotive systems of visual interaction

This section introduces some basic concepts of visual ergonom-
ics necessary to understand the users analysis. According to the
International Ergonomics Association (IEA), ergonomics is the sci-
entific discipline that studies the interactions between men and
the environment where they live in, and its main objective it to im-
prove men’s welfare and their interaction with the environment.

In the automotive environment, the visual ergonomics regards
the harmony of the illumination of IC, considering colors, contrast,
reflexes, ghost lights, lighting distribution (homogeneity), glare,
etc. Its main objectives are to improve the safety and comfort of
the human visual system, avoiding fatigue.

As indicated by Walraven et al. (2001), the visual ergonomics of
aircrafts interaction systems, which is extensible to the automotive
industry, comprehends two types of evaluation:

� Cognitive: Studies the efficiency of the information transmis-
sion by the instruments, which should be easily readable, of fast
interpretation, and not give margins to double meanings.
� Visual quality of the instrument: Studies the color, intensity
and homogeneity of the luminous distribution of the
component.

In this work, we focus on the visual quality of the instrument,
studying the perception that users have on the illumination homo-
geneity of the components.

In this context, Gonzalez and Woods (2007) describe two inter-
esting effects in the human perception of the lighting intensity that
an object has in relation to its context. The first effect, exemplified
by the Mach1 bands, shows that the perception of the lighting inten-
sity is not only given in function of the object. The human visual sys-
tem tends to exceed or to reduce the intensity perception as it
approximates or stands back from another level of intensity. For
example, in Fig. 4(a), although the intensity of each column is con-
stant, the intensity perception of the transition regions are brighter
for dark columns and darker for bright columns. Fig. 4(b) and (c)
highlight this effect.

The second effect, called simultaneous contrast, also shows that
the perception of the intensity is strongly influenced by the back-
ground in which the object is inserted. For instance, in Fig. 5,
although the central square (object) has the same intensity in the
three images, as soon as the background becomes darker the hu-
man perception tends to notice the object brighter.

Regarding studies considering the ergonomics of automotive
interactive systems, they first appeared right after the Second
World War, where several components (gauges) were added to
the aircrafts cockpits. The equipments were designed to give valu-
able information to the pilots, but their interface did not allow pi-
lots to make a correct and fast interpretation of their readings. This
was mainly because of the lack of good visibility of some instru-
ments and the non-standardization of the instruments disposition
in the cockpit. As a consequence, countless accidents happened,
and from then many studies were performed to modify the original
projects to improve the operability and visualization for the pilot.



Fig. 5. Example of simultaneous contrast.

Fig. 6. A diagram of the proposed methodology.

2 In optics, particularly as it relates to film and photography, the depth of field
(DOF) is the portion of a scene that appears acceptably sharp in the image.
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Contemporaneously to the studies of the ergonomics applied to
aviation appeared the studies in the automotive industry. Their
main goal was to provide drivers a comfortable and easy interac-
tion environment. In this scenario, the IC became the main channel
of interaction between the driver and the car. Along the years the
IC has become one of the most complex embedded electronic
systems in modern vehicles (Huang et al., 2008), providing the dri-
ver with a diverse universe of information, from drive conditions,
messages and pre-diagnostics to multimedia systems (Castineira
et al., 2009).

3. Methodology

This section describes the methodology proposed to identify, in
an automatic way, regions with non-homogeneous lighting on
components using image analysis. Fig. 6 shows a general scheme
of the proposed methodology for the automatic validation of the
internal lighting system of an automobile.

In the first step, the images are acquired using a meticulous pro-
cedure that guarantees the image reflects in the best possible way
the real lighting condition. This process is described in detail in
Section 3.1. The image acquisition is followed by a feature extrac-
tion phase, described in Section 3.2, where a set of features (or
descriptors) that reflect the lighting distribution in the image are
calculated. Here a new descriptor, which takes into account the
global light intensity, is proposed.

These set of features extracted from the images are then associ-
ated with a set of labels given to the regions of the images by the
users, generating datasets. These datasets are then given to two
classification algorithms: Support Vector Machine (SVM) and Arti-
ficial Neural Network (ANN), as detailed in Section 3.4, which will
automatically classify component regions as being homogenous or
not. Finally, based on the number of regions classified as non-
homogenous, a component is classified as acceptable, unacceptable
or in need of attention.

Note that the evaluation of the components performed by the
users is the most difficult and subjective part of this process. Hence,
we leave to discuss it with a high level of details in Section 4.

3.1. Image acquisition

The methodology proposed in this work is highly dependent on
the quality of the acquired images. As we are analyzing the images
according to their light intensity, we need them to reproduce as
faithfully as possible the patterns of light distribution of a compo-
nent. In photography, parameters such as the Shutter Speed (s) and
the Diaphragm Opening (f-stop) have great influence in the image
exposure (Gimena, 2004). Fig. 7 shows the effects of varying these
parameters for image acquisition.

In order to obtain the best parameter values for s and f-stop, we
selected two IC components of different colors and used a spectro-
photometer to measure their ‘‘real’’ light intensities in a set of 52
points, as showed in Fig. 8. We chose to use the spectrophotometer
due to its very accurate measurements. After that, we acquired
images for these two IC components using a basic digital camera
with six s variations (1/500; 1/800; 1/1000; 1/1300; 1/1500, and 1/2000),
letting the f-stop fixed to 2.7. We chose a small value for f-stop be-
cause the depth of field2 (Peterson, 2004) should be as shallow as
possible, since we want to focus only on the IC. The f-stop was fixed
because there is a reciprocity law between shutter speed and
diaphragm opening, i.e., s and f-stop hold a direct relation (Gimena,



Fig. 7. Differences obtained in the images when calibrating the f-stop and shutter speed (s) parameters.

Fig. 8. Points of measurement with the spectrophotometer.
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2004).
Having the set of acquired images, we selected for each of them

the pixel values corresponding to each of the 52 points previously
measured by the spectrophotometer in the ‘‘real’’ IC component
(see Fig. 8). The pixel values of the image were taken from the V
(value/intensity) channel of the HSV color system (Gonzalez &
Woods, 2007). We wanted to compare the values measured by
the spectrophotometer with the ones found in the images. In order
to do that, we first normalized both values following the max–min
rule (Martinez, Sanches, Prados, & Pereles, 2005), i.e.,

z ¼ x�minðxÞ
maxðxÞ �minðxÞ ; ð1Þ

where x represents the pixel value.
The values obtained are shown in Fig. 9. From these normalized

values, we calculated the Mean Square Error (MSE) between the
spectrophotometer reading and the corresponding pixel value in
the image, i.e.,

MSE ¼ 1
n

Xn

i¼1

ðxi � �xÞ2; ð2Þ
where n is the number of points, �x is the value read by the spectro-
photometer, and xi is the pixel value in point i.

The results obtained are reported in Table 1. The figures in Table
1 show that the camera setup that best represents the measure-
ment done by the spectrophotometer is the one with shutter speed
s = 1/1500. Therefore, all images used in this work were acquired
with a digital camera with f-stop = 2.7 and s = 1/1500.

3.2. Feature extraction

After acquiring the images, the methodology for IC components
validation proposed in this work preprocesses and extracts inten-
sity homogeneity descriptors from these images.

As previously explained, each IC component is represented by
several connected regions. The image preprocessing step has as
its main goal to identify these regions. Hence, the original image
is submitted to the following procedures, as illustrated in Fig. 10:

� Image conversion from RGB (Red, Green and Blue) to HSV (Hue,
Saturation and Value) color space. The HSV color space was cho-
sen because it represents the colors in a more intuitive manner.
The V channel (Value/Intensity/Brightness) is taken as the light-
ing intensity representative (Gonzalez & Woods, 2007).
� Image thresholding (Otsu, 1979). This process sets pixel values

above some threshold to 1 (white) and below this threshold to 0
(black).
� Image erosion (Serra, 1984). Erosion is a morphologic operation

used to eliminate irrelevant details from an object, starting from
pixels in the borders. The reason for using erosion in this work
was to eliminate undesirable border pixels that appeared due to
camera resolution.
� Labeling of connected components (Shapiro & Stockman, 2002).

Labeling is an effective technique for binary image segmenta-
tion. It examines the connectivity of the pixels with their neigh-
bors and labels connected sets. This method was used to extract
and identify the regions present in a component.

3.3. Homogeneity descriptors

After identifying the regions of an image, we extract a set of
descriptors that represent the light homogeneity in each region
of the component. Our goal is to later associate these descriptors
with a category defined by the user. This category says whether
the region is homogenous or not according to the user’s sensations.



Fig. 9. Calibrating the digital camera – normalized values: spectrophotometer measurements versus pixel reading values.

Table 1
Mean square error between the spectrophotometer readings
and its corresponding pixel values in the image. The camera
setup with 1/1500 value for shutter speed is the one that best
represents the measurement done by the spectrophotometer.

Shutter speed (s) MSE
ffiffiffiffiffiffiffiffiffiffi
MSE
p

1/500 0.033 0.182
1/800 0.012 0.108
1/1000 0.010 0.099
1/1300 0.003 0.055
1/1500 0.001 0.036
1/2000 0.069 0.005
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Several metrics have already been proposed in the literature to
compute the light homogeneity of a region (Cheng & Sun, 2000;
Gimena, 2004). In Oh et al. (2007), for example, the authors define
the Lighting Uniformity metric, i.e.,

ULðRÞ ¼ ðrmin=rmaxÞ � 100; ð3Þ
Fig. 10. Stages of preprocessing: (a) original image; (b) V channel from HSV color spa
where rmax and rmin represent the maximum and minimum inten-
sity values of a region R, respectively. In Gonzalez and Woods
(2007) and Borges, Mayer, and Izquierdo (2008), the intensity distri-
bution is defined by statistical moments of the levels of the histo-
gram of a region. Let R be a random variable denoting levels of
the regions and let PR(ri), i = 0,1,2, . . . ,L � 1, be the corresponding
histogram, where L is the number of distinct levels. Then, the nth
moment of R is defined as:

lnðRÞ ¼
XL�1

i¼0

ðri �mðRÞÞnPRðriÞ; ð4Þ

where

mðRÞ ¼
XL�1

i¼0

ðri � PRðriÞ; ð5Þ

where m stands for the average level. From these equations, other
statistical moments, namely the 3rd moment (Eq. (6)), uniformity
ce; (c) binary image; (d) image after erosion; (e) labeled connected components.
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(Eq. (7)), entropy (Eq. (8)), smoothness (Eq. (9)), and standard devi-
ation (Eq. (10)) can be estimated as

l3ðRÞ ¼
XL�1

i¼0

ðri �mðRÞÞ3PRðriÞ; ð6Þ

UðRÞ ¼
XL�1

i¼0

P3
RðriÞ; ð7Þ

eðRÞ ¼ �
XL�1

i¼0

PRðriÞ � log2PRðriÞ; ð8Þ

SMðRÞ ¼ 1� 1=ð1þ r2ðRÞÞ ð9Þ

and

rðRÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
l2ðRÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
r2ðRÞ

q
: ð10Þ

The descriptors presented in Eqs. (3) and (6)–(10) were ex-
tracted from each of the component regions. Furthermore, we are
also interested in the impact each region has in the global unifor-
mity (GU) of the entire component. Hence, we propose a descriptor
that considers both the local region and global component intensi-
ties, named as Relative Descriptor (Faria et al., 2010) and defined as

RDðRÞ ¼ ðmLðRÞ=mGÞ � 100; ð11Þ

where mL(R) and mG stand for the average intensity of a region R
and the average intensity of the whole component (or instrument)
in analysis, respectively.

These descriptors were associated with the labels given by the
user through the process detailed in Section 4, and given to the ma-
chine learning algorithms described in the next section.

3.4. Machine learning

Machine learning refers to a set of methods that can learn from
data (Duda, Hart, & Stork, 2000; Mitchell, 1997). Given a set of
examples, described by a set of attributes (descriptors), machine
learning algorithms can perform three types of learning: super-
vised, semi-supervised and unsupervised. In this work, the learner
will deal with supervised learning, as the categories the examples
belong to (homogeneous or not) are known. The learner works by
finding relationships between the attributes that describe an
example and the category it is associated with.

There are many types of machine learning algorithms that could
be used to solve the problem tackled in this paper. We chose to use
two state-of-the-art classification algorithms: Support Vector
Machine (SVM) and Artificial Neural Network (ANN).

Support Vector Machines (SVMs) (Scholkopf & Smola, 2002) are
methods that build classifiers by constructing hyper-planes in a n-
dimensional space, i.e., by drawing ‘‘lines’’ in the n-dimensional
space that are able to separate examples from different classes.
When faced with non-linear problems, SVMs create a mapping be-
tween a set of input values (examples) and a feature space, where
these initially non-linear class boundaries are made linearly sepa-
rable via a transformation (or mapping) of the feature space. This
mapping is done by a set of mathematical functions called kernels.
After performing this mapping, SVMs use an iterative training algo-
rithm to minimize an error function.

Artificial Neural Networks (ANNs) (Bishop, 1996) are computa-
tional systems inspired by the way the nervous system and the hu-
man brain process information. They have become popular due to
their capabilities to deal with irregularities, work with uncertain,
incomplete and/or insufficient data, and have proved to be power-
ful tools to find patterns in data, including non-linear relationships.
4. User’s evaluation of instruments

As explained before, the homogeneity descriptors extracted
from each region should be associated with a category, i.e., homog-
enous or not. This characterization will allow us to, in a next step,
automatically identify non-homogeneous regions in a component
in analysis, taking into account human perception.

Hence, 48 common drivers and one automotive lighting special-
ist were chosen to perform the analysis of the components. The
experiment with common drivers involved 35 men and 13 women,
with ages from 20 to 50 years, having height varying from 1.55 m
to 1.90 m, different professional activities, some using vision cor-
rective systems (lenses and glasses) and others not. The variety
of the group provides a representative sample of common drivers.

Every IC component, from a set of 107 IC components, obtained
from 30 ICs, were evaluated by five different users and the special-
ist. The components were distributed for the users in a way that
any two users would not evaluate more than one common instru-
ment. The specialist evaluated all the instruments, generating a
gold-standard dataset for comparisons.

The instruction given to each evaluator was: ‘‘identify regions of
the IC components that present lack of homogeneity’’. All the eval-
uations were performed in a dark chamber, with all environment
lights off, emulating a real driving condition at night. The IC was
fixed in a bench test (see Fig. 11(a)), respecting the position and
average inclination it would have in a vehicle in relation to the dri-
ver. For each IC, a schematic drawing was given to the user
(Fig. 11(b)), who marked in this drawing the regions where they
judged there was ‘‘lack’’ of homogeneity.

At the end of the evaluation procedure, we noticed there was a
high level of disagreement among users when identifying non-
homogenous regions. This result highlights the subjectivity and
difficulty of the problem. In order to label groups of non-homoge-
nous regions, we decided to set an agreement threshold, based on
the number of users that identified a region as non-homogenous.
Note that this part of the process does not take into account the
opinion of the specialist, only the common users. We chose to cre-
ate five different datasets according to this agreement threshold. A
dataset n is composed by all regions classified as non-homoge-
neous by at least n users. Hence, Dataset 1 has all regions classified
as non-homogenous by any user, and it is the set with more non-
homogenous samples (see Table 2), Dataset 5, in contrast, has only
0.65% of non-homogenous regions, as it requires that all five users
agree the region is non-homogenous.

Table 2 presents the distribution of classes (non-homogeneous
(NH)/homogeneous (H)) for each dataset based on the agreement
threshold and the specialist. The data are expressed in percentage
and absolute numbers. Note that Dataset 2 presents a class distri-
bution similar to that generated by the specialist.
4.1. Contrasting common users and specialist evaluations

This section contrasts the opinion of the users among
themselves and with the opinion of the specialist when classifying
homogenous and non-homogenous regions. The degree of
agreement regarding non-homogeneous or homogeneous regions
(represented by X in Eq. (12)) is defined as

AgreementðX;D1;D2Þ ¼
#ðD1ðXÞ

T
D2ðXÞÞ

#ðD1ðXÞ
S

D2ðXÞÞ
; ð12Þ

where Dn(X) represents the set of regions of type X (i.e., non-
homogeneous or homogeneous) in dataset n (where n varies from
1 to 6 – datasets generated by 5 agreement thresholds plus the spe-
cialist) and #(�) represents the cardinality of dataset �.



Fig. 11. The evaluation setup: (a) the IC; (b) the drawing given to the user.

Table 2
Distribution of homogeneous (H) and non-homogenous (NH) regions for each of the 6
datasets generated. In total, 3410 regions were extracted from 107 IC components.

Evaluator Regions

NH (%) H (%) NH (#) H (#)

Dataset 1 41.32 58.68 1409 2001
Dataset 2 20.56 79.44 701 2709
Dataset 3 8.83 91.17 301 3109
Dataset 4 3.43 96.57 117 3293
Dataset 5 0.65 99.35 22 3388
Specialist 20.59 79.41 702 2708

Table 3
Agreement matrix for non-homogeneous regions.

Dataset
1

Dataset
2

Dataset
3

Dataset
4

Dataset
5

Specialist

Dataset 1 1.00 0.50 0.21 0.08 0.02 0.32
Dataset 2 0.50 1.00 0.43 0.17 0.03 0.33
Dataset 3 0.21 0.43 1.00 0.39 0.07 0.22
Dataset 4 0.08 0.17 0.39 1.00 0.19 0.12
Dataset 5 0.02 0.03 0.07 0.19 1.00 0.02
Specialist 0.32 0.33 0.22 0.12 0.02 1.00

Table 4
Agreement matrix for homogeneous regions.

Dataset
1

Dataset
2

Dataset
3

Dataset
4

Dataset
5

Specialist

Dataset 1 1.00 0.74 0.64 0.61 0.59 0.63
Dataset 2 0.74 1.00 0.87 0.82 0.80 0.77
Dataset 3 0.64 0.87 1.00 0.94 0.92 0.80
Dataset 4 0.61 0.82 0.94 1.00 0.97 0.81
Dataset 5 0.59 0.80 0.92 0.97 1.00 0.80
Specialist 0.63 0.77 0.80 0.81 0.80 1.00
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Tables 3 and 4 present the degree of agreement among each
dataset pair. An agreement of 1 says that all the labels are the same
for the two groups (or datasets). As expected, the figures in the ta-
bles show that there is a higher level of agreement for homoge-
neous labeling than non-homogeneous. This is natural as the
images tend to present much more homogenous regions (and these
ones can be easily identified by the user). Considering non-homo-
geneous regions, the opinions vary a lot according to the users sen-
sitivity to the lightning system (some are more critical and others
more tolerant). We also note that the largest number of disagree-
ments occurs in regions close to the global perception threshold
between homogeneous and non-homogeneous, which varied from
user to user.

Considering the agreements among the specialist and the five
datasets generated by the users’ evaluations, again in the homoge-
neous regions the agreement indexes are relatively high, reaching
0.81. However, for the non-homogeneous regions, they did not go
over 0.33.

4.2. Users opinions on the specialist evaluation

In this work, we assume the knowledge and experience of the
specialist makes it easier for him to identify non-homogenous re-
gions correctly. However, it is important for us to know if the com-
mon users agree with the specialist evaluations. Hence, in order to
find out if the specialist evaluation really represents the general
users’ perception, a new experiment was performed, and the users
evaluated the classifications made by the specialist.

Each user received a schematic drawing were all the non-
homogenous regions identified by the specialist, and that the
industry assumes needs correction, were marked. They were taken
to the bench test in a darkroom, and were asked the following
question: ‘‘how do you evaluate the suggested corrections (the
specialist’s evaluation)?’’. The user had three options, in a scale
from 1 to 3:

1. Inadequate: After correcting the suggested regions the instru-
ment would not present a homogeneous illumination.

2. Appropriate: After correcting the suggested regions the instru-
ment would present a suitable illumination.

3. Excessive: It is not necessary to correct all regions for the instru-
ment to present a good illumination.

Each instrument was evaluated by 5 different users and each
user evaluated 10 instruments on average. In total, 535 evaluations
(5 users � 107 IC components) were performed. The graph in
Fig. 12 summarizes the results obtained after evaluation.

Analyzing the graph, we observe that 72% of the specialist’s
labeling were considered by 5 out of 5 users as appropriate, while
17% were considered appropriate by 4 out of 5 users. The remain-
ing 11% are evaluations where only one, two or three users found
the change appropriate. From the 535 evaluations, only 48 were
considered as not appropriate by the users, obtained an acceptance
rate of 91% on the specialist labeling.

Fig. 13 shows in more detail the opinions of users when they dis-
agree with the specialist correction. From the 48 labeled evalua-
tions considered as not appropriate, 73% were classified as
excessive, and only 27% as insufficient. It is important to point



Fig. 12. Summary graph of the users opinion on the specialist evaluation.

Fig. 13. Summary graph of the users that disagree with the specialist.
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out that there was no correction considered as not appropriate by
all 5 users.
5. Computational results

Having created the datasets, experiments were performed in
two phases. First the regions of the images are classified as homog-
enous or not by the machine learning algorithms. Then, based on
the number of non-homogenous regions, the instruments are clas-
sified as acceptable, unacceptable or in need of attention.

Throughout this section, the results obtained by the machine
learning algorithms are presented in the form of confusion matri-
ces. The values in these matrices are presented in percentage
((#). Those express the average and the standard deviation
(l ± r) of 107 tests performed through leave-N-out/leave-one-out
validation, where N stands for the number of regions of each
instrument when an instrument is left out (i.e., leave-one-out).
Note that the high values of standard deviation in the confusion
matrices are due to the great variation in the number of regions
found in each instrument. For instance, some fuel gauges have 7 re-
gions, while some speedometers have 80 regions.
5.1. Classifying instrument cluster regions

This section shows the classification of the instrument regions.
As previously mentioned, we worked with ANN and SVM, using
MatLab implementations. As we are dealing with non-linear data,
the standard Matlab SVM algorithm was modified to use a polyno-
mial kernel function of order 3. The ANN chosen is the Multi-Layer
Perceptron (MLP) feed-forward back propagation, trained with a
Levenberg Marquardt function. The network architecture was set-
up with one hidden layer, with a number of neurons equals to 2/3
of the neurons in the input layer. All the neurons used the inverse
transcendental tangent function as an activation function. The
training stop criterion was a MSE smaller than 10�2, or 500 epochs.

Table 5 presents a summary of the general accuracy of the mod-
els trained and tested with the ANN and SVM. In Table 5, we ob-
serve that the evaluation performed by the specialist and the
users with agreement threshold 4 and 5 obtained the best results
for the general classification of the regions. However, note that
the classification of datasets 4 and 5 were expected to be good,
as they have really unbalanced classes. Predicting all classes as
homogenous would lead to accuracies of 96.57% and 99.35%,
respectively. Hence, the accuracy is not a good measure to evaluate
the results.

Table 6 shows results of precision per class. Note that, in this
case, the data labeled by the specialist is the one where the classi-
fiers better learn to distinguish the classes, with precisions around
94% for non-homogenous and 97% for homogenous regions. In this
scenario, Dataset 4 predicts 2.38% of regions correctly while Data-
set 5 does not provide enough information for learning. From these
experiments, we conclude that the specialist labeling was the best
for learning followed by Dataset 1. In any case, while the specialist
obtained 95% accuracy for NH regions, Dataset 1 obtained 53%.

Recall that Dataset 1 requires a single user to classify a region as
non-homogeneous while in Dataset 5 all five evaluators have to be
under agreement. Thus, the number of non-homogeneous regions



Table 5
Summary of the accuracy of the classifiers.

Evaluation Classifier

ANN (%) SVM (%)

Dataset 1 72.22 ± 14.84 70.39 ± 17.78
Dataset 2 83.84 ± 15.02 83.63 ± 15.67
Dataset 3 91.20 ± 10.68 91.82 ± 9.88
Dataset 4 96.57 ± 5.34 97.00 ± 4.79
Dataset 5 98.01 ± 7.54 99.42 ± 1.71
Specialist 97.28 ± 6.16 96.64 ± 6.65

Table 6
Precision values per class.

Evaluation Non-homogeneous Homogeneous

ANN (%) SVM (%) ANN (%) SVM (%)

Dataset 1 53.68 40.19 82.39 86.97
Dataset 2 34.65 22.12 94.42 96.63
Dataset 3 9.37 5.20 98.20 99.23
Dataset 4 2.38 0.00 99.42 99.93
Dataset 5 0.00 0.00 98.58 99.42
Specialist 94.79 93.01 97.75 97.34

Table 8
Distribution of IC components in the three classes defined by the specialist: accept,
attention and reject.

Evaluator IC component

Accept (#) Attention (#) Reject (#)

Dataset 1 14 6 87
Dataset 2 41 5 61
Dataset 3 58 6 43
Dataset 4 80 15 12
Dataset 5 101 5 1
Specialist 47 3 57
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in Dataset 5 is smaller than in Dataset 1. The analysis performed
here can be well understood by the confusion matrix of this exper-
iment, shown in Table 7.
5.2. Classifying instrument cluster components

The previous section presented the results obtained when clas-
sifying IC component regions. However, our aim is to classify a
whole component (instrument) based on the classification of its re-
gions. We propose to classify components into three categories,
which depend on the number of classified non-homogenous re-
gions. Each category is described as follows:

� Accept: The instrument presents less than or equal to 5% of its
regions classified as non-homogeneous.
� Attention: The instrument presents more than 5% and less than or

equal to 10% of its regions classified as non-homogeneous, and
the manufacturer should take that into account in the project.
� Reject: The instrument presents more than 10% of its regions

classified as non-homogeneous.
In this case, the manufacturer should modify the project of the
IC.
Table 7
Confusion matrix: classification for the regions.

l%(r%) Observed

ANN

NH (%)

Expected NH Group 1 19.02(18.55)
Group 2 6.05(7.89)
Group 3 0.74(2.24)
Group 4 0.07(0.49)
Group 5 0.00(0.00)
Specialist 15.47(15.89)

H Group 1 11.37(11.37)
Group 2 4.75(7.82)
Group 3 1.65(5.30)
Group 4 0.56(2.71)
Group 5 1.41(7.45)
Specialist 1.88(5.54)
The 5% and 10% tolerance levels are based on the practical expe-
rience of the specialist. Table 8 shows the class distribution of the
instruments according to this classification. As observed, the class
distribution varies a lot from one Dataset to another. For instance,
Dataset 5 rejects only 1 IC, while the Specialist rejects 57. The re-
sults obtained are shown in Tables 9 and 10.

A summary of all these results is shown in Table 10, which re-
ports the precision for the IC component classification, as well as
the number of what we call critical errors, i.e., the acceptation of a
bad IC component. Here, classifying a bad IC component as a good
one is much more serious than the opposite, as after product accep-
tation it is used as a ‘‘model’’ for the whole product chain process.

Analyzing the results generated when using the specialist’s
labeling in Table 9, we note that there were only 6 (resp. 7) out
of 107 wrong classifications for the ANN (resp. SVM), none of them
considered critic. Analyzing the results generated by the datasets
based on users’ evaluations, we note that in average the precision
is smaller than that obtained by the specialist’s evaluation, and the
number of critical errors varies from 11 to 30 for the first four data-
sets, being Dataset 3 the most critical one. The precision obtained
by the users’ labeling in Dataset 5 is as high as those made by the
specialist, and the classification resulting from this labeling pre-
sents just one critical mistake. The same types of results are ob-
tained by the ANN (resp. SVM), with 11 (resp. 6) out of 107
wrong classifications, including a critical error. These results can
be explained by the low number of NH regions in the Dataset 5
(only 22), as this group requires all users to agree on their evalua-
tion. This rarely occurs in practice due to the subjectivity of the
evaluation process.

5.3. Visualization of IC components classifications

This section presents and discusses the classification of four IC
components images classified by the system. Each column in
SVM

H (%) NH (%) H (%)

16.41(14.58) 14.24(15.27) 21.19(16.68)
11.41(13.13) 3.86(5.86) 13.59(14.44)
7.15(9.44) 0.41(1.18) 7.47(9.41)
2.86(4.66) 0.00(0.00) 2.94(4.79)
0.58(1.71) 0.00(0.00) 0.58(1.71)
0.85(1.87) 15.17(15.58) 1.14(2.37)

53.20(27.58) 8.41(10.48) 56.16(27.49)
77.79(19.71) 2.78(5.18) 79.76(18.73)
90.47(11.50) 0.71(1.83) 91.41(10.29)
96.50(5.52) 0.06(0.60) 97.00(4.79)
98.01(7.54) 0.00(0.00) 99.42(1.71)
81.81(17.44) 2.22(5.81) 81.47(17.67)



Table 9
Confusion matrix: final classification for the instruments.

Observed

ANN SVM

Accepted Attention Rejected Accepted Attention Rejected

Expected Accepted Dataset 1 6 2 6 7 3 4
Dataset 2 36 2 3 39 1 1
Dataset 3 57 0 1 58 0 0
Dataset 4 77 1 2 79 1 0
Dataset 5 97 1 4 101 0 0
Specialist 42 1 4 41 2 4

Attention Dataset 1 4 0 2 4 1 1
Dataset 2 2 0 3 2 1 2
Dataset 3 3 3 2 4 2 0
Dataset 4 15 0 0 15 0 0
Dataset 5 5 0 0 5 0 0
Specialist 0 2 1 0 2 1

Rejected Dataset 1 18 2 67 22 6 59
Dataset 2 12 7 42 18 10 33
Dataset 3 30 8 5 38 4 1
Dataset 4 11 0 1 12 0 0
Dataset 5 1 0 0 1 0 0
Specialist 0 0 57 0 0 56

Table 10
Summary of the accuracy of the classification of the instrument.

Evaluation ANN SVM

Precision (%) Critical errors Precision (%) Critical errors

Dataset 1 71.96 18 62.62 22
Dataset 2 72.89 12 68.22 18
Dataset 3 60.75 30 57.00 38
Dataset 4 72.90 11 73.82 12
Dataset 5 90.65 1 94.39 1
Specialist 94.39 0 92.52 0
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Fig. 14 represents an image. In the first row are the original images,
followed by the resulting images of the classification based on the
specialist, Dataset 1 and Dataset 5, respectively. For these last
images the classification generated by the system is represented
by colors. The homogeneous and non-homogeneous regions cor-
rectly classified appear in white and yellow, respectively. The
non-homogeneous regions classified as homogeneous (critical er-
rors) are in red, whilst the homogeneous regions classified as
non-homogeneous appear in green.

Observing the images in Fig. 14, we verify that in Dataset 1 great
part of the regions are considered as non-homogeneous. On the
other hand, in Dataset 5 almost 100% of the regions are accepted
as homogeneous. Analyzing these images, some facts previously
verified by the computational experiments can be confirmed. The
results obtained by the specialist’s labeling (second line) show very
few regions misclassified, which did not impact the final classifica-
tion of the instrument (accept or reject). The results obtained by
Dataset 1 (third line) present a lot of regions erroneously classified,
directly contributing to the final misclassification of the instru-
ment. Dataset 5 has the problem of highly unbalanced classes,
which makes that the few non-homogeneous regions are wrongly
classified as homogeneous.

As claimed in the last subsection and shown in Table 10, the
proposed methodology achieve promising results by using the spe-
cialist for training the classifiers. In the following, we illustrate an
example where the classification using the specialist labeling
makes a mistake but not a critical one.

Fig. 15(a) presents an image of an instrument and its respective
classification based on the specialist’s labeling (Fig. 15(b)), which
had a wrong final classification. All the regions of this image were
originally labeled as homogeneous by the specialist. However, in
the classification performed by the methodology using all the other
specialist’s labelings, the region at the top of the image (that one
marked on green) is classified as non-homogeneous. As the num-
ber of the classified non-homogeneous regions in the instrument
is greater than 5% of the total number of regions, its final classifi-
cation is considered as rejected. In that situation there is a mistake
in the final classification of the instrument, which should be ac-
cepted. However, this error is not considered a critical mistake,
i.e., accepting a ‘‘bad’’ instrument.
5.4. Final considerations

The methodology proposed in this work has proved to be effec-
tive in automatically identifying non-homogeneous regions in a
component from an instrument cluster, used to aid the classifica-
tion of the complete instrument as accepted, on need of attention,
and rejected. The two classifiers used in this work (ANN and SVM)
obtained similar results for both the users’ evaluation and the spe-
cialist’s evaluation. An analysis on the number of descriptors used
in the models learnt showed that SVM uses less descriptors than
the ANN, achieving equivalent results in terms of precision.

The evaluations were divided in two groups:

1. Labeling with the specialist: Appropriate learning of the algo-
rithms; not so unbalanced distribution of the classes (homoge-
neous and non-homogeneous) and high precision in the final
classification of the instrument (accepted versus rejected).

2. Labeling with the users: Deficient learning of the algorithms;
quite unbalanced distribution of the classes (biased learning on
the homogeneous class) and final classification of the instrument
with critical mistakes (acceptation of ‘‘bad’’ instruments, i.e.,
instrument with more than 5% of non-homogeneous regions).

The specialist’s technical evaluation provided a learning for the
classifiers which generates the best precision for both non-homo-
geneous and homogeneous classes. Through the users’ evaluations
about the specialist’s evaluation, it was possible to notice that the
specialist represents the average perception of users very well,
obtaining an index of acceptance higher than 90%.



Fig. 14. Classification of four images according to the generated datasets: homogeneous and non-homogeneous regions correctly classified appear in white and yellow, while
misclassified non-homogeneous and homogenous regions are in red and green. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Fig. 15. Instrument regions and theirs respective classifications obtained by the proposed methodology.
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The proposed methodology presents two main advantages over
the method that uses the spectrophotometer: it is cheap to imple-
ment (a spectrophotometer is much more expensive than a digital
camera) and computationally efficient. These two characteristics
allow the manufacturer of automotive ICs to apply the methodol-
ogy in several points of his production line, reducing the number
of reproofs made in the assembly line due to instruments with
bad illumination.
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6. Conclusions

Studies looking to map, characterize, and understand human
perceptions are as attractive as complex. Human sensations
depend on each individuals experience and acquired knowledge.
This work presented a methodology for automatic validation of
Automotive Instrument Cluster using the concept of light homoge-
neity in images analysis, computational intelligence, and human
evaluations. To feed the machine learning algorithms (ANN and
SVM), aiming at the classification of the region as homogeneous
or not, evaluations were performed by a specialist and ordinary
users. The experimental results for classifying both instrument
regions and components are above 94%.

The evaluations with the users presented great dispersion
among the results. On the other hand, the evaluations accom-
plished by the specialist presented good consistence and obtained
high acceptance indexes by the users, i.e., more than 90%.

As presented in the introduction, the application of this meth-
odology in the industry will help to raise quality and save precious
time in the development phase of new instruments. The use of this
methodology will also aid the phase of experimental tests in both
the assembly line and indicating the manufacturer the points that
should be improved in its project.
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