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ABSTRACT

Expert systems are built from knowledge traditionally elicited from the human expert. It is precisely
knowledge elicitation from the expert that is the bottleneck in expert system construction. On the other
hand, a data mining system, which automatically extracts knowledge, needs expert guidance on the suc-
cessive decisions to be made in each of the system phases. In this context, expert knowledge and data
mining discovered knowledge can cooperate, maximizing their individual capabilities: data mining dis-
covered knowledge can be used as a complementary source of knowledge for the expert system, whereas
expert knowledge can be used to guide the data mining process. This article summarizes different exam-
ples of systems where there is cooperation between expert knowledge and data mining discovered
knowledge and reports our experience of such cooperation gathered from a medical diagnosis project
called Intelligent Interpretation of Isokinetics Data, which we developed. From that experience, a series
of lessons were learned throughout project development. Some of these lessons are generally applicable
and others pertain exclusively to certain project types.

1. Introduction

Expert knowledge and discovered knowledge are two powerful
tools that can be combined. Used together they maximize the qual-
ities that they have separately.

An expert system operates on a knowledge base that contains
the knowledge elicited from the expert (EK). This knowledge base
is represented by some formalism (rules, frames, Bayesian net-
works, etc.) and is built by the knowledge engineer from elicited
expert knowledge and, later, validated by the expert. Evidently,
the system is subject to and limited by the amount of knowledge
entered, that is, represented in its knowledge base. And, precisely,
the bottleneck in expert system construction is knowledge elicita-
tion, a phase conditioned by countless constraints ranging from the
number of available experts, or how much expertise the experts
have, to the complexity of the actual knowledge elicitation process.

Recently, automatic knowledge acquisition techniques have at-
tracted a lot of interest as they are potentially a big help for rem-
edying this bottleneck. The knowledge discovery in databases
(KDD) process, especially data mining techniques, is used to auto-
matically discover knowledge from data. The knowledge discov-
ered by data mining (DMK) is implicit in the data and can take

the shape of patterns or models that fit the data, trends in temporal
data, associations among different data features, rules, etc.

The key point is that these two approaches, knowledge elicita-
tion from experts and knowledge discovery from data, comple-
ment each other (da Silva, Amorim, Campos, & Brasil, 2002;
Daniels & van Dissel, 2002; de la Vega et al., 2010; Weiss, Buckley,
Kapoor, & Damgaard, 2003). Applied together, they can be used to
build better systems: data mining techniques can be used to
support the different tasks involved in expert system (ES) or
knowledge-based system (KBS) development (Flior et al., 2010;
Mejia-Lavalle & Rodriguez-Ortiz, 1998; Phuong, Phong, Santiprab-
hob, & Baets, 2001; Wang, Liu, & Cheng, 2004), and expert knowl-
edge can be used to facilitate and improve the results of the
different stages of the KDD process (Kusiak & Shah, 2006; Zhang
& Figueiredo, 2006).

The aim of this article is to describe the key results of this inter-
action between EK and DMK, while highlighting the lessons
learned over the years from our own experience of these issues
in the medical field, presenting a long-term project called 14 (Intel-
ligent Interpretation of Isokinetics Data). This project integrates ex-
pert systems and data mining techniques to process isokinetics
data. We believe that the results of and the lessons learned from
this project are potentially useful for developing systems incorpo-
rating EK and DMK.

The remainder of the article is organized as follows. Section 2
describes related work analyzing other applications that present
some facet of this type of cooperation. In Section 3 we outline
our 14 project. Sections 4-6 describe the three 14 project phases:



expert system development, data mining and symbolic data min-
ing. In Section 7 we summarize the lessons learned. And, finally,
Section 8 outlines some conclusions.

2. Cooperation between expert knowledge and discovered
knowledge in different fields

Cooperation between EK and DMK has emerged in different
fields, like medicine, engineering, finance, etc., and has diverse fea-
tures. We have grouped different examples of this cooperation into
two separate sections. In Section 2.1, we present cases where DM
techniques have been used to aid the development of an ES or
KBS. In Section 2.2, we present cooperation in the opposite direc-
tion, that is, expert system techniques used to improve a knowl-
edge discovery process or system.

2.1. Contribution of discovered knowledge to expert knowledge

Cooperation by applying data mining techniques to an expert
system built from heuristic knowledge elicited beforehand from
the expert has the goal of optimizing and maximizing the perfor-
mance of the resulting KBS. This contribution of discovered knowl-
edge to expert knowledge has been designed for different
purposes, as we describe below.

e When an expert’s heuristic knowledge is the basis for develop-
ing an ES and there is a consistent database of solved cases, it is
usual practice to check ES robustness by applying DM techniques
to the generated database. An example of this type of cooperation
is to be found in (Cooke et al.,, 2000). PERFEX is a rule-based expert
system for the automatic interpretation of cardiac SPECT (single
photon emission computed tomography) data. This system infers
the extent and severity of CAD (coronary artery disease) from per-
fusion distributions, and outputs a patient report summarizing the
condition of the three main arteries and other pertinent informa-
tion. The overall goal is to assist in the diagnosis of CAD. The expert
system presents the resulting diagnostic recommendations in both
visual and textual forms in an interactive framework, thereby
enhancing overall utility. DM techniques were applied to the
patient database containing images and text to validate the system
and the confidence (certainty factors) in the heuristic rules of the
ES.

¢ Frequently, KBS users have to answer a great many questions
formulated by the system to gather information about the prob-
lem. In consultation systems like these, the application of DM
techniques to the stored results of previous system executions
can optimize future question/answer sequences by reducing
the number of questions. This is what the research presented
in Bethel, Hall, and Goldgof (2006) did. The developed system
is a web-based expert system to match eligible breast cancer
patients with open clinical trials, or categorize the reasons
why an eligible patient was not put onto the trial. Through
interviews with clinicians, implications were discovered that
reduced the number of questions/answers required to deter-
mine eligibility. The idea is that a physician will immediately
know the answers to some questions based on answers to oth-
ers, that is, there is a clear implication that always holds.

e When the knowledge base is built with generic global knowl-
edge and ES behavior on a specific local problem is unknown
(i.e., we do not know whether it will correctly and completely
account for all the cases that can occur in that local situation),
discovered knowledge can be used to verify whether the rules
obtained are representative enough for the local data and if
the local data have any new correlation that the knowledge
base does not contain. This cooperation between discovered

knowledge and expert knowledge was applied in Lama et al.
(2006) to treat nosocomial infection. The MERCURIO system
was designed to support medical practitioners in the complex
task of controlling nosocomial infections. Its knowledge base
was built from both the NCCLS (the National Committee for
Clinical Laboratory Standards) guidelines and the expert’s sug-
gestions. These guidelines are quite general, since they were
built considering data regarding many laboratories around the
world. However, it is not clear that they can completely and cor-
rectly interpret the infections developed inside a particular hos-
pital environment. For this reason, it was necessary to verify if
the rules obtained from the NCCLS document were representa-
tive of the local hospital infections, and if there were other cor-
relations in the local hospital infection data that are either not
considered in the NCCLS document or unknown to the expert
microbiologists. To address these problems, data mining was
applied to local hospital infection data to generate association
rules that show the susceptibility or resistance of a bacterium
to different antibiotics. The discovered association rules were
transformed into alarm rules that were confirmed by experts
and then used for data validation in the system.

Another type of cooperation of discovered knowledge with
expert knowledge takes place when the application domain
changes too quickly, and it is very hard or even impossible to
timely update the KBS developed by the expert. Discovered
knowledge is applied for this purpose, as it can be used to
update the system. An example of this type of cooperation is
described in WuJing (2001) in a project concerned with opti-
mizing a mobile network. The problem with using a mobile net-
work is that it changes very often, and its management software
also upgrades very often. So the knowledge in the expert system
must be upgraded accordingly. Traditional knowledge extrac-
tion methods cannot conform to the fast changing environment,
and DM techniques have been applied to update the knowledge,
using the Operation and Maintenance Center repository as a
source.

2.2. Contribution of expert knowledge to discovered knowledge

Expert knowledge supports the extraction of knowledge apply-
ing DM techniques and the later validation of this knowledge in a
wide variety of manners, as described in the following,

e One of the problems of automatically extracting knowledge is
how to validate and check its fitness. In this respect, Holmes
and Cunningham describe a typical case of KBS construction
where expert knowledge can debug and validate the set of rules
gathered from DM (Holmes & Cunninghan, 1993). The “Explora”
data mining tool is used to build and maintain the ES. “Explora”
is a statistics-based mining program that applies domain
knowledge and statistical measurements of the database to
identify patterns of attribute values and value combinations
that occur more or less frequently in the database. The discov-
ered knowledge is debugged and validated by the expert and
built into the ES.

DM can be applied in personalized applications, typical in e-
commerce (dynamic content presentation, personalized ad tar-
geting, individual customer recommendations, etc.). In these
types of applications rule discovery methods are applied indi-
vidually to the transactional data of every user to capture each
user’s truly personal behavior. EK can be used to globally vali-
date all this locally mined knowledge and discard irrelevant
rules. Adomavicius and Tuzhilin deal with the problem of a
human expert validating large numbers of locally mined rules
with relatively little input from the expert (Adomavicius &
Tuzhilin, 2001). This is done by applying different rule



validation operators to cluster similarity-based rules, and filter
template-based rules and interestingness-based rules. These
operators are supplemented by visualization operators, statisti-
cal analysis operators and browsing operators.

Since a data mining process involves multiple stages, a knowl-
edge discovery worker generally faces a confusing array of
choices when presented with a data set to mine. Decisions
include for example choosing between C4.5, naive Bayes or neu-
ral networks; deciding whether to use discretization and, if so,
which method; deciding whether to subsample or to prune;
and deciding how to take into account the costs of misclassifi-
cation. Expert knowledge can be used to guide the user in all
those decisions. An intelligent discovery assistant that helps a
data miner to explore the space of valid DM processes is pre-
sented in Bernstein, Provost, and Hill (2005). First, it provides
users with systematic enumerations of valid DM processes. This
way, users do not miss important, potentially fruitful options.
Second, it also ranks these valid processes by different criteria
to help users choose between the options. A combination of sev-
eral subjective heuristic functions is used for ranking. The main
criteria are speed and accuracy, but any other factors of interest
to the user, like cost, sensitivity, comprehensibility, etc., and
combinations thereof, could also apply.

Most existing data mining algorithms are data driven and do
not fully exploit domain knowledge and decision makers’ intu-
itions. Thus data mining is expected to perform better with than
without prior knowledge. This is the case of the Knowledge-
Based News Miner (KBNMiner) presented in Hong and Han
(2002), which focuses on the effect that news information can
have on the prediction of interest rates. KBNMiner is designed
to use a prior knowledge base, representing expert knowledge,
as a foundation on which to probe and collect news from the
Web using text mining techniques. This news information
together with the data stored in a financial database will be
applied to a neural network model for interest rate predictions.
Traditional data mining is merely a data-driven process and
often overlooks valuable information such as existing knowl-
edge, expert experience or context and real constraints. Then
the output results cannot be directly applied to support busi-
ness decision making. Companies need more interpretable and
acceptable models that cannot be mined without the use of
EK. For this reason, understanding and utilizing domain knowl-
edge is a critical success factor for data mining projects. How to
combine domain knowledge and data mining methods in the
knowledge discovery process is an important issue addressed
by several authors who have proposed several approaches (Kop-
anas, Avouris, & Daskalaki, 2002; Lima, Mues, & Baesens, 2009;
Peng & Kou, 2008). Huang, Zhang, Zhu, and Shi (2009) propose a

new methodology called data mining integrated with domain
knowledge, aiming to discover more interesting, more action-
able knowledge combining DMK and EK.

o The interaction between the data mining process for knowledge
discovery and the application of expert knowledge to verify and
debug this knowledge has sometimes led to the construction of
intelligent data mining systems including data mining knowl-
edge and expert knowledge. This is the type of system described
by Hu and Liu (2006), which consists of three layers: data min-
ing system layer (mines the first-level knowledge), expert sys-
tem layer (controls the operation of the data mining layer and
executes deep mining) and expert user layer (adjusts control-
ling parameters generating a more meaningful rule set). Com-
bining the user query, expert knowledge and the produced
rules, the intelligent data mining system generates an ES and
runs the ES on an inference engine to produce the response to
the user queries.

3. The 14 ES-DM project

We have experienced the cooperation between EK and DMK in a
medical diagnosis system called 14 (Intelligent Interpretation of
Isokinetics data) developed over a number of years (1996-2011).
This system uses underlying knowledge in the isokinetics domain,
gathered by combining the expertise of a physician specialized in
isokinetics techniques and data mining techniques applied to a
set of existing data.

The assessment of muscle function has been a primary goal of
medical and sports scientists for decades. Its main objectives are
to evaluate the effects of training, diagnose muscular dysfunctions
and assess the effectiveness of rehabilitation programs (Gleeson &
Mercer, 1996). The isokinetics machine is one of the most signifi-
cant muscle evaluation devices and consists of a physical support
(see Fig. 1, left) on which patients perform exercises using any of
their joints (knee, elbow, ankle, etc.) within different ranges of
movement and at a constant speed. In the case of 14, we analyze
leg exercises to assess the knee joint.

Each patient session (test) is composed of a set of exercises per-
formed at a fixed constant speed depending on the test protocol in
use. The protocol is the design of the medical test as regards issues
like number and order of exercises, rest times between exercises
and other such details. Each exercise is composed of three repeti-
tions, and each repetition has one extension and one flexion.

Each exercise is characterized by the speed and the leg used.
The patient will be in a seated position and the movement is made
within a 0-90° flexion/extension arc of the leg. The isokinetics sys-
tem records the strength applied by the patient and the leg angle
every 2/100 s. These data (strength over time) are represented as
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Fig. 1. An isokinetics machine (left), the resulting strength curve (middle) and the curve after inertia peaks cleaning (right).



a sinusoidal curve, containing small peaks and other irregularities
(see Fig. 1, middle). The amplitude, total area and irregularities are
the main test analysis parameters. The data measured by the isoki-
netics dynamometer are presented to the examiner by a computer
interface. This interface sets out given parameters, which are used
to describe the tested muscle function (e.g., maximum strength
peak, total effort, etc.).

The software built into these systems does a good job at giving
the user access to the data, but there is room for improvement of
the software in terms of fully exploiting the massive data flow
and also enabling visually impaired physicians to use the system.
This is an important point, because one of the initial key goals of
the 14 project was to adapt the isokinetics interface for use by visu-
ally impaired physicians.

The 14 project was developed in conjunction with the National
Centre of Sports Research and Sciences and, in its early phases,
the Physiotherapy School of the Spanish National Organization
for the Blind, with the aim of building an application capable of
analyzing the data output by the isokinetics machine more com-
prehensively and providing users with more decision support.

The 14 project development has passed through three phases
(Fig. 2). The first phase consisted of the development of an expert
system for analyzing the isokinetics data and improving the user
interface of the system. The second phase consisted of developing
a KDD subsystem that used the numerical data generated by the
isokinetics machine to discover injury patterns and to create refer-
ence models. Finally, the third phase consisted of working with
symbols instead of numbers to try to better explain the system
output to the user, and the result is a symbols extraction method
and a weighted symbolic distance that can be used to perform
symbolic isokinetics analysis. These phases are described below,
highlighting the lessons learned throughout the process.

4. 14 Phase 1: Expert system development

In the design of the new application, the aim was to build a
whole series of new functionalities not developed in the original
isokinetics machine software, with the aim of providing better

decision-making support. These functionalities targeted prelimin-
ary data analysis (data validity, curve morphology, simple compar-
ative analysis) and also included a significant improvement of the
isokinetics machine user interface.

To create this decision support system, we opted to design an
expert system (Caraca-Valente, Lopez-Chavarrias, & Montes,
2000). To do this, we had access to an expert in the domain with
several years of experience running isokinetics tests on top-com-
petition sportspeople and other patients.

The ES works as follows (Fig. 2, left). The data gathered by the
isokinetics machine are transformed and formatted before being
stored in a test database. Then a cleaning and expert pre-process-
ing component is run to prepare the data for the expert analysis
performed by a KBS that contains expert functions and rules. Final-
ly, a visualization module displays the exercises and the expert
analysis results for the user.

4.1. Functions

The cleaning and data pre-processing stage had to deal with
routine and simple tasks such as removing incomplete exercises,
etc. At the same time, though, it had to tackle more complex tasks
that required the use of expert knowledge. A series of functions
including expert knowledge were created to perform these tasks:

o Firstly, the strength curves are preprocessed in order to elimi-
nate inertia peaks, that is, peaks produced by machine inertia
rather than by the patient’s actual strength (see Fig. 1, right).

o Then, 14 detects exercise extensions and flexions that are invalid
because the patient employed much less effort than in others, or
movements that can be considered atypical as their morphology
is unlike the others.

The analysis of the strength curves run using the expert func-
tions involves assessing different characteristics of the curve mor-
phology. These characteristics are what the specialist is interested
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in, and they constitute the basis for patient assessment. The evalu-
ated aspects are:

o Uniformity: how similar the exercise repetitions are.

e Regularity: whether the curve has a smooth contour or a lot of
peaks.

o Acceleration: a qualitative assessment of the time the patient
takes to reach the maximum strength value.

« Troughs: prolonged drops and rises in the exercise strength
value,

« Shape of the curve: overall assessment of the shape of the curve
based on the effort applied at the central angles (around 45°),
the flattening of the curve and the angle at which each maxi-
mum strength value is reached.

The design and implementation of the expert functions can be
described as an iterative and interactive induction process. Given
a number of strength curves, the expert evaluated each one and as-
sessed its characteristics. Then, tentative functions were imple-
mented. These functions were applied to a new set of curves, and
the results were shown to the expert for evaluation. This evalua-
tion led to some changes in function implementation, and so on.
This process ended when the functions provided the correct values
in a high percentage of the cases (over 98%). As we will see later,
these functions turned out to be useful for pre-processing purposes
in phase 2 of the system.

4.2. Rules

Functions represent procedural knowledge (especially calcula-
tions) very well, but they are not good at representing declarative
knowledge, such as heuristic assertions like “If there are many in-
valid exercises, repeat the tests”. Therefore, we decided to add
rules to include declarative knowledge to improve the system’s
decision support functionalities.

The rule-based part of the KBS is responsible for three aspects of
isokinetics analysis:

« Protocol validation: This process determines if the protocol has
been correctly applied. This is very important since the exper-
tise used for the later parts of the analysis is very sensitive to
the way in which the tests are performed. All the exercises must
have been completed successfully; the patient must tire to
some extent, etc.

Expert analysis of numerical data: Every numerical feature of
the curve (maximum strength value, total effort, gradients of
the curve, etc.) is expertly analyzed and findings supplied to
the user. There is an individual analysis of each leg and a com-
parison between both legs.

Morphological analysis of data, based on the output of the
expert functions described above. While the functions can
determine the morphology of the strength curves, the rule-
based subsystem uses the results output by the functions to
analyze the strength curves, compare each leg’s morphology
and extract conclusions such as, for instance, the presence of
some kind of dysfunction.

4.3. 14 Phase 1: Results

In this phase, we developed an intelligent system, built by
means of an incremental KBS development process. This system
has a modular architecture that consists of; (a) data decoding, test-
ing and storage; (b) intelligent data analysis; (c) data and results
display and report generation. To carry out the intelligent analysis
of data, we built an expert system that represents procedural

expert knowledge by means of functions and declarative expert
knowledge by means of rules.

The intelligent system described was designed using an object-
oriented ES development methodology (Alonso, Fuertes, Martinez,
& Montes, 2000). This methodology is especially suited for this pro-
ject, as it encourages interaction between software developers and
medical/sports assessors. Exercises and tests are the most signifi-
cant classes of the object model in relation to data interpretation.

This system is particularly useful for specialists, as it makes
their job easier. In addition, as there are very few specialists in
isokinetics assessment of muscle strength data, this system is ex-
tremely valuable as an instrument for disseminating isokinetics
technology and encouraging non-expert medical practitioners to
enter this field.

4.4. 14 Phase 1: Lessons learned

From the development of the phase 1 of the project, we learned
the following lessons, which can be generalized to other expert
systems.

4.4.1. Advantage of using more than one formalism to represent
knowledge

The 14 expert system uses two types of expert knowledge repre-
sentations: functions and rules. Each representation accounts more
intuitively for the different types of knowledge elicited from the
expert and is more appropriate for some tasks. Expert functions
were used to represent procedural knowledge and were extremely
useful for calculating different numerical characteristics related to
the curve morphology, and for filtering and pre-processing the
data. Rules were used to represent declarative knowledge: they
are useful for representing fine-grained knowledge, like heuristics,
and were used for protocol validation and in-depth data analysis.
The knowledge comprised in each formalism can be used sepa-
rately to provide conclusions on particular issues, but they can also
be used together to provide more general conclusions.

4.4.2. A KBS lightens the workload of experts and provides support for
non-specialists

The ES built for the 14 system was highly successful in two dif-
ferent ways. First, it is a very useful tool that is an effective aid for
experienced physicians in their daily work. Second, it enables nov-
ice users to use and understand the results of an isokinetics ma-
chine. Like the isokinetics machine, many devices run proprietary
software and have an interface that provides set information, mak-
ing the results that they offer very hard to interpret. Consequently,
only very experienced physicians are able to operate them confi-
dently. KBSs can help expert users to do their job and be a vital
aid for non-specialist users, overcoming the above difficulties.

4.4.3. A KBS can enable access for users with disabilities

A KBS can enable access for users with disabilities, as it can
gather and analyze information presented in different formats,
and provide a summary with text-based information that can be
easily transformed to several modalities (speech, tactile dots in
Braille, graphs, etc.). In our case, the 14 system offered a text-based
user interface for numerical data that was, at the time, only used in
graphical format. The text-based summary information provided
by the system included the shape and other visual characteristics
of the curves that blind users could then use to access and correctly
interpret isokinetics data. This enabled blind physicians to perform
a new task that they were unable to perform before the develop-
ment of the 14 system. On the one hand, they could analyze the
isokinetics data without external help and, on the other, they
had an intelligent system that provided support for many tasks
and decisions.



4.4.4. The development of a KBS can improve the performance of
expert knowledge

During the interviews with the knowledge engineer, the expert
had to formulate and explain her knowledge. This led to an
improvement in the structure and, consequently, the efficiency of
her knowledge. The improvement in expert knowledge perfor-
mance is especially significant in underexplored domains, about
which little is known.

4.4.5. In problems in which privacy, safety or security issues have to be
considered, special care is needed when dealing with the users and
experts, and when using the data

In some domains, such as the medical domain, data confidenti-
ality is highly important and it is necessary to guarantee compli-
ance with data protection regulations. A less obvious, but equally
important, point is to mind the interaction with users, be they phy-
sicians or patients, and be especially sensitive to how they are trea-
ted. For example, system outputs should be provided more than
ever as decision support, as the physician is the only one that
can establish a diagnosis. Therefore, both the knowledge engineer
and the applications developer should be especially careful in this
type of domains.

4.4.6. Shortage of experts calls for exhaustive data processing

One option in domains where there are few experts and/or a
shortage of knowledge available in the public domain is to resort
to an exhaustive analysis of the stored data. In our case, the system
was based on the knowledge of just one expert, because there was
a shortage of domain experts and the literature on isokinetics data
analysis was sparse. Taking into account that the expert had run
and stored a great many isokinetics tests, we resorted to an in-
depth analysis of these data for the purpose of learning from the
test cases to counterbalance this handicap.

4.4.7. The expert systems approach is not enough when expertise is
limited

Isokinetics is a poorly explored domain, where there is neither
public knowledge nor a great many experts. [4 was very successful
at performing its tasks, but an expert system is evidently limited to
the amount of expert knowledge there is available. In our case,
some tasks, such as early injury detection or population modeling,
were beyond the expertise of the available expert and as a result
beyond the scope of 14. This pointed to the need to apply some
other approach that would supplement the work already com-
pleted. As there were a great many isokinetic tests run on sports-
people and other patients and that had been stored but never
processed or used in any way, we examined the option of exploit-
ing the potential of the stored data by applying data mining tech-
niques to extract implicit knowledge from the data. Therefore, in
the case of limited expertise, the expert systems approach is not
enough and something else is needed in order to achieve a more
successful system. In cases where a huge amount of data is avail-
able, KDD and DM techniques are a very promising option.

5. 14 Phase 2: Data mining

To exploit the knowledge stored in all the available isokinetics
exercises we decided to build a KDD system (Alonso, Caraca-Va-
lente, Martinez, & Montes, 2003; Alonso, Martinez, Pérez, Santa-
maria, & Valente, 2006) in order to extend and validate the ES
that we had built during the first phase of the 14 project. The
KDD subsystem has two modules (Fig. 2, middle): one for detecting
patterns (significant irregularities) in isokinetics curves and an-
other for generating characteristic models of certain population

groups. Both modules use the cleaning and expert pre-processing
component of the KBS for data preparation tasks.

5.1. Data cleaning and pre-processing

The data to be collected and selected must be relevant, ade-
quate and clean. This step is more crucial to success than decisions
about which learning algorithm to use. Data preparation was an
extremely pressing question in 4 due to the poor quality of the
stored data: incomplete or poorly run tests, missing data in some
tests, etc. Part of the ES built was used to clean the data, as it al-
ready analyzed tests for completeness and quality. This EK and
DMK cooperation was very useful as it provided a very powerful
mechanism for cleaning and debugging data.

5.2. Discovering similar patterns in time series

Some knee-related injuries and dysfunctions appear as
characteristic patterns in the isokinetics curves. However, there
is no expert knowledge about these patterns. But one of the most
important potential applications of DM methods is precisely to find
patterns in data. In the case of time series (like the isokinetics
curves), pattern recognition means detecting representative parts
of the series for characterization.

Therefore, we developed a DM algorithm for finding significant
patterns (time subsequences of undetermined length) that are
likely to characterize a set of non-uniform time series, even though
important characteristics of these patterns, like length or position
within the time series, are unknown. Major changes had to be
made to existing algorithms in order to consider variable-length
patterns and pattern similarity.

5.3. Creating reference models for population groups

Another common task involved in assessing isokinetics exer-
cises is to compare a patient’s test against a reference model cre-
ated beforehand. These models represent the average profile of a
group of patients sharing common characteristics.

We developed a DM algorithm to create reference models from
a set of isokinetics curves, representing a particular group of indi-
viduals. A key aspect of the algorithm is the selection of the indi-
viduals to be used to generate the reference model and the
rejection of what are considered to be outliers that, if included,
would distort the model. Often, there is clearly a majority sub-
group of similar exercises, which represent the standard profile
that the user is looking for, and a disperse set of groups of one or
two exercises that are outliers. The exercises in the majority group
are used to create the reference model unifying all the exercises’
common characteristics while the outliers have to be identified
and discarded.

This used to be a difficult manual process done by an expert in
isokinetics. We implemented a semi-automatic mechanism to take
charge of the run-of-the-mill tasks, leaving the important decisions
to the expert. To do this, an automatic clustering process is en-
acted, and the clusters are then shown for the expert to decide
which set or sets of exercises the model should be based on.

At the end of the process, the system outputs the model that
represents the given population, which can be used to perform sev-
eral important tasks. For example, we can compare an isokinetics
exercise or a set of isokinetics exercises for a patient with the mod-
els stored in the database to determine which group the patient be-
longs or should belong to and identify what sport he or she should
go in for, what his or her weaknesses are with a view to improve-
ment or how he or she is likely to progress in the future.



5.4. 14 Phase 2: Evaluation and results

The goal of this evaluation step was to detect and to correct any
significant deviation of the partial results output during DM from
the results expected by the practitioners at an early stage of devel-
opment. The discovered knowledge was difficult to evaluate be-
cause there was little sound background knowledge about most
of the populations under study. Furthermore, even acknowledged
experts experience great difficulty in assessing the quality of a
model.

Therefore, the evaluation process focused on, first, verifying
whether the output patterns and models were representative and
to what extent and, second, validating their fitness for achieving
the selected goals: pattern-based injury detection and model-
based population characterization. For a more thorough discussion
of each of the evaluation tasks performed in phase 2 of 14, see Alon-
so, Caraca-Valente, Martinez, and Montes (2005). Here, we will just
outline the results of the evaluations of injury detection and refer-
ence models creation.

To evaluate the injury detection system performance, the pat-
tern detection algorithm was run on several sets of patients. Then
new cases {15 common injuries, 5 uninjured and 5 rare injuries)
were presented to the system, and the expert and novice physi-
cians. Only novice physicians made mistakes regarding common
injuries: they misclassified 2 of the 15 cases. As regards the 5 unin-
jured cases, the system failed to identify 1, the expert correctly
classified all of them and the novices made 2 mistakes. Finally,
for the rare injuries, system performance was the best, identifying
all 5 cases. The expert made 2 mistakes and could not identify 1 of
the cases, so she had only 2 correct responses. On the other hand,
the novice physicians made 2 mistakes and could not classify any
of the other 3.

To evaluate the reference models creation process first the sys-
tem was used to create a reference model for a given population.
Then new individuals were presented to the system, and the expert
and the novice physicians. They had to decide whether the individ-
uals belonged to the population represented by the model. The
new individuals were members of the population, non-members
and some unclassified individuals. System performance was best.
Out of the 30 individuals belonging to the model, it made only 4
mistakes whereas the expert made 9 mistakes and the novice 21.
All three correctly classified the 10 non-member individuals. Final-
ly, the system correctly identified the 10 unclassified individuals,
whereas the expert and the novice physicians each made two
mistakes.

We can conclude that the results obtained with the KDD
modules surpassed the expected results. Obviously, these results
must be read carefully, as most of the mistakes made by practi-
tioners can be put down to the fact that they were working
without sound background knowledge of many diseases and
had to deal with a huge amount of data for decision making.
In this respect, the 14 system was at an advantage. Anyhow,
the same practitioners have found 14 to be an extremely useful
tool for their work.

The 14 system integrating the KBS and the DM components is
fully operational. The users of the system claimed that it improved
the work of physicians in the field of isokinetics. They listed the
system’s prominent features as follows:

o Physicians who are not isokinetics specialists can use the sys-
tem thanks to the test interpretation, the patterns and the ref-
erence models.

e It is possible to analyze the full isokinetics strength curve. This
way, the complex parameters that are of use for interpreting the
tests can be inferred more correctly and completely.

« 14 increases the power of isokinetics systems. Population mod-
eling (by sports, specialties, diseases, etc.) is used to detect both
coincidences with and slight deviations from group norms. For
instance, models are used for the early evaluation of the capa-
bilities of young athletes and to detect what likelihood elite ath-
letes have of suffering certain injuries.

e [4 has provided for the intelligent analysis of the strength
curves and has improved evaluation procedures. The isokinetics
system features are better exploited thanks to, for example, the
automatic extraction of information concerning injuries.

¢ [4 has provided friendly access for medical practitioners to the
isokinetics parameters and an improved graphical presentation
of the results of isokinetics tests, making reports easier to
understand and more useful.

Additionally, the 14 system is providing more knowledge of the
characteristics of athletes’ strength. This has implications for the
development and evaluation of training and rehabilitation pro-
grams. The deployment of the 14 system was a major advance in
isokinetics data processing, as it meant that muscle strength mea-
surement systems could be better exploited. These issues make it
highly relevant in the field of top-competition sport.

5.5. 14 Phase 2: Lessons learned

The development of this phase 2 provided the following lessons
learned.

5.5.1. Knowledge from different sources can cooperate to enhance
system functionality

The co-operation between the two knowledge sources, the ex-
pert (KBS functions and rules) and the KDD system (patterns and
models) is able to output higher level conclusions that would be
difficult to achieve using only one knowledge source. The knowl-
edge from these two sources interacts to provide results that
would be very difficult to achieve using only one knowledge
source. For instance, both the rule-based KBS component and the
KDD rely on the expert functions for preparing and filtering the
data. These expert functions thus enable both an expert analysis
of a strength curve and the process of discovering injury patterns
and reference models.

However, the relations between these sources of knowledge are
not one way. The injury patterns and reference models can be en-
tered into the KBS for numerical and morphological comparisons.
They can provide higher level conclusions, such as a diagnosed
dysfunction or an individual’s likelihood of excelling at a particular
sport. This means that KDD systems can be used as a complement
to elicit knowledge from the expert. Even in ideal situations (where
there are many experts and a lot of public knowledge), the many
previously stored data can be used to discover knowledge that
can help to significantly increase existing domain knowledge or
simply add to/confirm existing expert knowledge.

5.5.2. Expert participation throughout the entire KDD process is
fundamental

Without skilled human supervision, blind use of data mining
software will only provide the wrong answer to the wrong ques-
tion applied to the wrong type of data (Larose, 2004). Therefore,
the procedure for applying KDD must include experts throughout
the whole process. They should start to get involved during the ac-
tual evaluation of the input data and they will be key actors in
enriching the results generated by the system. Hence, it is impor-
tant to define approaches that combine and integrate expert
knowledge and knowledge gathered by means of data mining
procedures.



In particular, expert participation is especially important for:

o Data preparation {data debugging, filtering and completeness).
KDD systems require good quality data to achieve good results.
In the 14 system we were able to use expert functions (devel-
oped in phase 1) to perform data cleaning and pre-processing.
This use of expert knowledge, represented as functions,
improved the quality of the results of the KDD system. The
knowledge of an expert is vital for the data cleaning and pre-
processing phases in the KDD process.
Evaluate the results of KDD. This is the typical case of coopera-
tion between ES and DM. Expert knowledge is required to vali-
date the results of KDD process before they can be used in the
real world. Usually a KDD system produces large sets of results,
most of which are quite worthless. Expert knowledge is needed
to select the more relevant and applicable results of the KDD
process. For example, expert knowledge can be used to select,
debug and validate the models and patterns discovered during
the DM process. In our case, expert participation was also
important because she identified with the project, which over-
came the traditional reticence of experts concerning technolo-
gies of this sort.

e The participation of an expert during the KDD process is also
important to deal with possible inconsistencies between the
EK and the DMK. There is no guarantee of positive results when
mining data for actionable knowledge (Larose, 2004). That is,
there is no guarantee that the knowledge gathered by the dis-
covery algorithms is consistent with the knowledge elicited
from the expert. If there are inconsistencies, the expert has to
decide which knowledge is more adequate for the system under
development.

5.5.3. A KDD system can increase expert domain knowledge

The results of this phase of KDD (injury patterns and reference
models) revert to the expert because they enable him or her to
advance in his or her knowledge of the domain, further exploring
areas that were not accessible before (further investigating what
the injury patterns are like and what consequences they have).
This lesson learned is applicable in application domains where
experience is limited and the existing data could be put to more
uses than those provided by expert-elicited knowledge-based
systems.

5.5.4. Data preparation is highly domain dependent

Data preparation is so domain dependent that it is very hard to
extrapolate the methods used to other domains. During data prep-
aration, some of the key problems are related to:

« Data structure: Problems such as unnecessary fields or missing
important data are very frequent.

« Deficient data collection and updating: Many data are still very
often collected by hand, and it is even quite common for them
to be stored on paper without using computer media. Even
when digital storage media are used, we often find that the data
are not updated or maintained as they should be. The effects of
this are devastating for the KDD process.

These problems mean that KDD activities have to be carried out
with few usable data, where data are poor and there is too much
noise. This leads to the problem of distinguishing between noise
and exceptional cases. In these cases, data preparation activities
are of utmost importance and depend on domain knowledge to
be carried out successfully.

5.5.5. The actual KDD process can check for outliers in the creation of
reference models for population groups

When creating a reference model for a given population, outli-
ers may turn up. Outliers are members of the population, but have
special characteristics that make them very unlike their peers. This
means that they are exceptions rather than rules for modeling that
population. For example, if we had a population of basketball play-
ers and it contained a very short player, this player has very differ-
ent physical characteristics to the other members of the
population, characteristics that would not be representative.

These outliers may significantly deviate from the expected
behavior model for the above group, thereby detracting from mod-
el representativeness. To do this, it is best to remove these outliers
before creating the reference model. Traditionally, this is a job usu-
ally commended to the domain expert, but it is a painstaking chore
that can be prone to errors and omissions. Additionally, an individ-
ual is very likely to be characterized as an outlier multidimension-
ally (that is, depending on the combination of more than one
characteristic), making it difficult for anyone to recognize the
above case.

In such situations a system can apply automatic techniques to
extract outliers as a first step in the reference model definition pro-
cess. This is what we did in the 14 system, which provides auto-
matic support for the expert to discard all the exercises that are
different. This is very helpful for the physician.

5.5.6. KDD is able to build new functionalities into the system

An important lesson to be drawn from attempts to apply ma-
chine learning to a scientific problem like 14 is that, if successful,
it provides a high-performance system with new, unprecedented
functionalities. In the case of 14, the KBS was unable to generate
or use reference models. Our KDD subsystem is capable of generat-
ing such models and applying them for new purposes, such as, for
example, predicting the best sport for a young sportsperson or
forecasting a patient’s propensity to suffer injuries in the future.

5.5.7. Facing problems in different domains poses new challenging
problems for the computer scientist

Another lesson learned is that new applications in new domains
often generate challenging new questions and directions for scien-
tific enquiry within computer science. For example, owing to the
special features of our problem, major changes had to be made
to the state-of-the-art algorithms in order to consider pattern sim-
ilarity using the Euclidean distance, as the related work either
searched for identical patterns in the series or considered only pat-
terns of a fixed given length.

6. 14 Phase 3: Symbolic data mining

Although the results of the 14 data mining system were correct,
we found that medical specialists sometimes found the system’s
conclusions, expressed in numerical terms, to be unsatisfactory
and difficult to justify. To improve system usability and the expert’s
confidence, it was decided to transform the numerical time series
into symbolic series so that they could be interpreted in the same
way as an expert does. We used expert knowledge in this transfor-
mation of data into symbolic series to capture the key concepts
from the viewpoint of isokinetics series analysis (Fig. 2, right).

To do this, we designed a symbols alphabet (ISA), a symbols
extraction method and a symbolic distance. The Symbols Extraction
Method (SEM) transforms the numerical isokinetics curves into
symbolic sequences represented according to ISA as shown in
Fig. 3.

The symbols are labeled with the region to which they belong
(extension or flexion) and characterized by their type (for instance,
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Fig. 3. The symbols of an isokinetics curve.

peaks and troughs will be characterized by their size, curvatures by
their shape, etc.) as shown in Fig. 3.

To be able to compare symbolic series, we propose a variation
on the Needleman-Wunsch distance {Needleman & Wunsch,
1970). The suggested distance — weighted symbolic distance
(WSD) - allocates a variable cost to the insert, substitute and delete
operations. This cost depends on the symbol and symbol type to be
inserted or deleted.

Not all the operations or all the symbols in the isokinetics field
have the same importance. For example, curvatures are symbols
that are part of any repetition, whereas peaks and troughs are cir-
cumstantial symbols, usually induced by minor patient injuries
and, therefore, may or may not appear. Additionally, a large peak
cannot be considered the same as a small peak.

With the help of an isokinetics expert, we defined a graph struc-
ture, where the majority of the cost of substituting two symbols is
determined by the symbol, whereas the symbol type serves to re-
fine that cost. The expert found this structure easier to understand,
and it is much easier to introduce changes due to alphabet varia-
tions or on any other ground. For a more detailed description see
Alonso et al. (2006).

6.1. I4 Phase 3: Evaluation and results

The evaluation of the system at this stage focused on two
points: (a) check whether the physiotherapist achieved more effi-
cient results by analyzing symbolic isokinetics sequences than
using numerical isokinetics sequences; (b) check whether the re-
sults achieved by the system comparing symbolic sequences using
the symbolic distance were more significant than comparing their
respective numerical sequences.

For point (a) the expert and novice physicians who participated
in the 14 project development were given 34 isokinetics tests
(including both the numerical sequence and the respective sym-
bolic sequence) for 20 healthy patients, 8 with a common injury
(torn ligament) and 6 with an unusual injury (osteochondritis).
Both the expert and the novice physicians had to classify each test
as showing no injury, torn ligament injury or osteochondritis
injury.

We found that the symbolic sequence yielded better results
than the numerical sequence for both the expert and the novice
physicians, although the results were better in relative terms in

the case of novice physicians. The expert correctly classified all
the healthy patients and the torn ligament injuries. However, the
expert was unable to correctly classify two of the osteochondritis
cases using the numerical sequence, which she was able to classify
using the symbolic sequence. The novice physician was able to cor-
rectly classify two healthy patients and two torn ligament injuries.

For point (b), the 14 system was fed with 28 knee isokinetics
tests, each performed by a different sportsperson: 20 had no injury,
5 had a common knee injury (torn ligament), and 3 had an unusual
injury (osteochondritis). The system was also given 3 reference
models, built by applying the symbol extraction method to the
respective numerical models: 1 without injuries and 2 with the
above-mentioned injury types. We calculated the distance be-
tween each test and the 3 models. The WSD average distance be-
tween each symbolic test and its corresponding model was
slightly lower than the distance between each numerical test and
its model. But when each test was confronted with the models it
did not fit, the difference was much bigger for the symbolic dis-
tance. The conclusion is that the WSD distance is more discrimina-
tive than its numerical counterpart because it focuses more on the
singular points (curvatures, peaks and troughs) that define the
injury.

This third phase of 14 is still under development, but has already
returned two major results. First, we obtained isokinetic symbolic
sequences that are more useful for the expert and novice than their
respective numerical sequences. Second, the designed WSD for the
symbolic sequences that is more discriminative than the Euclidean
distance applied to the numerical sequences. Current work focuses
on creating reference models in the symbolic domain, applying
grammar-guided genetic programming,.

6.2. 14 Phase 3: Lessons learned

6.2.1. Benefits of using non-numerical methods

The results of the comparisons revealed a point that we had not
noticed earlier. It was related to the fact that the system using
numerical methods calculated things differently to how the expert
worked within each population. The reason for these differences is
that the system, driven by the algorithms it uses, compares the
whole curves, whereas the expert focuses on only certain aspects
of the curves (such as maximum values, slopes, etc.), aspects that
can be associated with semantic criteria. This discovery was



extremely important, because it allowed us to define a new line of
work, namely using symbolic sequences. The use of symbolic meth-
ods to analyze the isokinetic tests has provided major benefits, not
only as regards the efficiency of better detecting injuries and dis-
criminating patterns and reference models, but also for experts in
their everyday work as they work better with this type of tests.

6.2.2. Importance of expressing results and reasoning in the expert’s
terms

Phase 3 provided a key lesson learned: it is not enough for the
system operation and results to be understandable for the expert,
but it is also necessary for the results to be expressed in a notation
that is familiar to the human expert.

In line with the above, even if the results and model presented
to the expert are useful, they may have the drawback of not being
expressed in the terms used normally in the domain. This is not
only a matter of the known problem that algorithms provide
numerical results that have to be translated to values that are
understandable for the expert, but also that the actual algorithms
should, whenever possible, emulate the expert’s cognitive struc-
ture and reasoning model to achieve better quality and more
understandable results.

7. Lessons learned throughout the project

Globally, the following lessons were learned.

7.1. Need for a close and continuous cooperation among the expert,
knowledge engineer and KDD analyst

To increase the possibilities of success of a project of this type it
is very important to have a close and continuous cooperation
among the expert, knowledge engineer and KDD analyst in any
knowledge discovery process and project development process.
Good coordination among the members of any project is always
important, but coordination is vital for project development if
any or all of the following aspects occur {as they did in this pro-
ject): shortage of available expert knowledge, little or no public do-
main knowledge, computer scientists inexperienced in the domain,
etc.

In the case of the 14 project, this close cooperation between the
expert and knowledge engineer played a key role in phase 1 in

Table 1
Lessons learned.

Lesson learned

defining the expert functions and rules. In phase 2, cooperation be-
tween the expert and the knowledge engineer, plus the KDD ana-
lyst, played a key role in the data cleaning and preparation
stages, and injury pattern discovery and numerical reference mod-
el creation. Finally, in phase 3, cooperation between the expert and
the knowledge engineer played a key role in defining the isokinet-
ics symbol alphabet, and all three cooperated on the definition of
the SEM and WSD.

7.2. Need of a well-defined integration planning process for EK and
DMK

An important success criterion is that the integration of EK and
DMK must be a well-defined process. It should be a goal-directed
activity. There are always patterns in data, and the data miner can-
not judge their value unless he or she knows what to look for. The
client must provide a well-defined goal, and the knowledge engi-
neering with the human expert must provide a well-defined pro-
cess, without which there is no measure for success and no way
to assess the value of results. This is, however, often not possible,
as the client, users and experts, who are not knowledgeable about
the fields of EK and DMK, do not really know what to expect from a
development of this kind. In these cases, the knowledge engineer
should work in cooperation with the client to help define the goals.

The fact that the 14 project had only one expert and there was
no well-founded knowledge in the isokinetics field forced us to de-
fine partial goals and not set out a clear and specific schedule for
the EK and DMK process from the start. This EK and DMK process
opened up new research lines when we found that the symbolic
isokinetics representation matched the expert’s way of thinking
better than the numerical option. All this led to the extension of
the research over a sizeable time period.

7.3. The full understanding of the data by the knowledge engineer and
KDD analyst is vital for being able to provide novel solutions that help
to bring forward the state of the art in the field

Proposing better algorithms, suitable representation structures,
etc., are decisions that contribute in a large measure to system suc-
cess and cannot be taken without a full understanding of the do-
main. For example, the selection of the representation formalisms
and the inference mechanisms are just two of the decisions that lar-
gely condition project development. In this type of developments,

Scope of application

44.1 Advantage of using more than one formalism to represent knowledge

44.2 A KBS lightens the workload of experts and provides support for non-specialists

44.3 A KBS can enable access for users with disabilities

444 The development of a KBS can improve the performance of expert knowledge
44.5 1In problems in which privacy, safety or security issues have to be considered, special care is needed when dealing with

the users and experts, and when using the data
44.6 Shortage of experts calls for exhaustive data processing
44.7 The expert systems approach is not enough when expertise is limited

55.1 Knowledge from different sources can cooperate to enhance system functionality

5.5.2 Expert participation throughout the entire KDD process is fundamental
5.5.3 A KDD system can increase expert domain knowledge
5.5.4 Data preparation is highly domain dependent

5.5.5 The actual KDD process can check for outliers in the creation of reference models for population groups

55.6 KDD is able to build new functionalities into the system

5.5.7 Facing problems in different domains poses new challenging problems for the computer scientist

6.2.1 Benefits of using non-numerical methods
6.2.2 Importance of expressing results and reasoning in the expert's terms

71 Need for a close and continuous cooperation among the expert, knowledge engineer and KDD analyst

72 Need of a well-defined integration planning process for EK and DM

73 The full understanding of the data by the knowledge engineer and KDD analyst is vital for being able to provide novel

solutions that help to bring forward the state of the art in the field

General

General

General

Domains with few experts
Domains where privacy, safety and
security are critical

Domains with few experts
Domains with few experts
General

General

General

General

General

General

General

Domains with numerical data
General

General

General

General



the managers must be very familiar with the domain to be able to
make decisions. Due to the very nature of the domains where these
projects are to be developed (especially when they are very special-
ized domains with little public knowledge, etc.), this is not always
easy or immediate, meaning that it will require significant effort
in the early project phases. Despite contrary pressures, no effort
should be spared, as it will be vital for proposing the right represen-
tation structures, the best algorithms, etc., and, therefore, critical
for project success.

In the case of 14, the use of the three formalisms for represent-
ing the knowledge (functions, rules and, in phase 2, reference mod-
els) helped to provide a novel conception of the isokinetics system,
which emerged as a result of an in-depth analysis of the data by
the knowledge engineer and KDD analyst.

8. Summary of the lessons learned

This section summarizes the findings of the research into a table
listing the lessons learned described above. Table 1 includes a col-
umn labeled scope of application that aims to define the type of
domains or circumstances in which each lesson learned can be
applied.

Most of the lessons learned are generally applicable, as we con-
sider that they can be applied in almost any domain and/or system
type. Other more restricted scopes are listed for other lessons
learned, as they are only applicable to domains that meet a series
of characteristics.

In particular, lessons L04, LO6, LO7 are only applicable in do-
mains where there are few experts. If many domain experts were
available then a KBS is less likely to improve expert knowledge,
and exhaustive data processing is less likely to be required. On
the other hand, the expert systems approach is more likely to be
good enough for building useful systems on its own.

Similarly, lesson LO5 is specific for domains where privacy,
safety and security are critical. This lesson is not relevant in other
domains.

Finally, lesson L15 applies in domains were there are numerical
data that are directly evaluated by human beings. As humans are
well suited for pattern detection in data but have limited process-
ing capabilities, experts are likely to develop some symbolic-based
simplified model of the numerical data and thus a symbolic ap-
proach to DM would be beneficial.

9. Conclusions

Expert knowledge and data mining discovered knowledge do
not have to be two separate problem-solving alternatives. They
can be used together, complementarily, to develop, validate and
maintain a KBS. In this article, we have highlighted some real
examples of how this cooperation can be exploited to build better
systems and optimize the resulting system performance. In some
cases, the cooperation between these two fields can lead to the
construction of systems that would not have been built if it were
not for the positive effects of that cooperation.

We detailed a real example of this cooperation in the 14 project,
which our research group developed over several years. This pro-
ject started off as a typical expert system development, but later
had to incorporate the development of a data mining system
intrinsically linked to the expert system. This second part of the
project led to the implementation of a system with numerous func-
tionalities that would not have been possible if only one of the par-
adigms had been used: EK or DMK.

Noteworthy is the fact that we have been able to draw numer-
ous conclusions from the experience acquired in the development

of this project, which we set out in Section 7 of this paper as les-
sons learned.

As regards the cooperation between EK and DMK during project
development, it is worth mentioning that there were several types
of cooperation in the 14 system:

e Expert functions remove incorrect tests, eliminate incorrect
extensions and flexions and remove noise before applying the
numerical DM for pattern discovery. They also check that the
medical protocols for the tests were correctly applied.

o Expert knowledge was used to select and validate the patterns
discovered by the numerical DM system. Once the candidate
patterns had been discovered, the expert selected and validated
the relevant patterns.

o Expert knowledge was used for guidance at the beginning of the
reference model generation by semi-automatically selecting the
population to be used.

o In the symbolic stage, expert knowledge was used to generate
the vocabulary, gather symbolic data from the numerical data
and define the weights used in the symbolic distance.

The originality of the 14 system lies in the fact that an ES was
built that directly intervenes in the KDD process. Once this process
is complete, the discovered knowledge can be fed back to the ES.

From our experience in the I4 project and from the other exam-
ples described, we can conclude that, no matter what the direction,
the cooperation between these two disciplines helps to build supe-
rior and better validated systems containing more, higher quality
knowledge.
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