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Abstract

A completely automated, high-throughput biodosimetry workstation has been developed by the
Center for Minimally Invasive Radiation Biodosimetry at Columbia University over the past few
years. To process patients’ blood samples safely and reliably presents a significant challenge in the
development of this biodosimetry tool. In this paper, automated failure recognition methods of
robotic manipulation of capillary tubes based on a torque/force sensor are described. The
characteristic features of sampled raw signals are extracted through data preprocessing. The
twelve-dimensional (12D) feature space is projected onto a two-dimensional (2D) feature plane by
the optimized Principal Component Analysis (PCA) and Fisher Discrimination Analysis (FDA)
feature extraction functions. For the three-class manipulation failure problem in the cell harvesting
module, FDA yields better separability index than that of PCA and produces well separated
classes. Three classification methods, Support Vector Machine (SVM), Fisher Linear
Discrimination (FLD) and Quadratic Discrimination Analysis (QDA), are employed for real-time
recognition. Considering the trade-off between error rate and computation cost, SVM achieves the
best overall performance.
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1. Introduction

High speed and efficient automation of biodosimetric assays for triage is becoming a top
priority for homeland security [1]. A robotically-based Rapid Biodosimetry Tool (RABIT)
has been developed [2], which automates two mature assays (micronucleus and y-H2AX
assay) for triage following radiation exposure and is able to process 6,000 samples/day.
Robust mechanical and electrical designs are introduced to improve the RABIT’s reliability
to avoid process failures as many as possible. However, there still exists 0.5 to 1.0 percent
manipulation-related failure rate because plastic (PVVC) capillaries are easily distorted.
Therefore, it is necessary to develop effective fault diagnosis capability to recover the
RABIT from failures and bring the process back to an in-control state. It is also helpful for
the RABIT to take immediate remedial actions to save samples, such as blood, lymphocytes,



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Chenetal.

Page 2

etc. in the capillary tubes. Otherwise lost or damaged samples may lead to a delay in
treatment of severely irradiated patients.

Explicit model-based expert systems in a complex robot system [3] need more elaborate
models for probability elicitation to improve quantitative modeling and better intelligent
diagnosis, while the failure recognition methods proposed in this paper are based on
experimental raw data from sensors. The first step is to search for the most characteristic
features from available large amount of historical data (training data) [4]. Many statistic
techniques for analyzing these massive datasets have been developed including Principal
Component Analysis (PCA) and Fisher Discriminant Analysis (FDA) [5]. A methodology to
extract features combining PCA with wavelet analysis was proposed [6]. FDA provides an
optimal lower dimensional representation in terms of discriminating among classes of data
[7], where for fault diagnosis, each class corresponds to data collected during a specific
known fault. Although FDA has been heavily studied in the pattern classification literature
and is only slightly more complex than PCA, its use for analyzing biodosimetry assay
process is not reported. It is expected that FDA should outperform PCA when the primary
goal is to discriminate among faults.

The following step after obtaining the characteristic features is to search for optimized
classifiers to discriminate feature data. The Bayesian decision rule assigns a pattern to the
class with the maximal posterior probability. Commonly used parametric models are
multivariate Gaussian distributions for continuous features, binomial distributions for binary
features, and multi-normal distributions for integer-valued (and categorical) features. For
Gaussian distributions, if the covariance matrices for different classes are assumed to be
identical, then the Bayesian rule provides a linear decision boundary. On the other hand, if
the covariance matrices are different, the resulting Bayesian rule provides a quadratic
decision boundary. Another category of classifiers is to construct decision boundaries
directly by optimizing certain error criterion. A classical example of this type of classifier is
Fisher Linear Discriminant (FLD) that minimizes the mean squared error (MSE) between
the classifier output and the desired labels. Support Vector Machine (SVM) is among the
most robust and successful classification algorithms [8] by maximizing the margin (distance
from the separating hyperplane to the nearest example). SVM performs well when applied to
problems which have a small sample, are nonlinear and high dimensional. In particular,
SVM exhibits the maximum generalization ability even when the samples are few. It is with
this advantage that SVM has been successfully applied to many fields including
classification recognition, regression analysis and forecast [9]. The basic SVM supports only
binary classification, but extensions have been proposed to handle the multiclass
classification case as well [10].

This paper begins with the classification of the failures of manipulating PVC capillaries.
Two feature extraction methods: PCA and FDA are implemented and compared to construct
two-dimensional (2D) feature planes from twelve-dimensional (12D) features. FDA yields a
better separability index than that of PCA and produces well separated classes. SVM, FLD
and QDA are employed to search for optimal classifiers offline and online fault recognition.
Considering the trade-off between error rate and computation cost, SVM achieves the best
overall performance.

2. Description of a High-throughput Biodosimetry Tool

Figure 1 presents the layout and the sample flow direction of the biodosimetry workstation
[2]. Patients’ blood is collected in PVC capillaries and fed into the RABIT at the input stage.
After a five-minute centrifugation, lymphocytes are separated from Red Blood Cells (RBC).
In the cell harvesting module, lymphocytes are extracted from individual capillaries and
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dispensed into a micro-well plate with membrane at the bottom of each well. The plate is
transferred to a liquid/plate handling system (including an incubator) where filter reagents
specific for each assay are sequentially dispensed. Following the completion of the assays,
the underdrains are removed from the plate and the membranes are peeled off and sealed
between two adhesive transparent sheets (substrate) at the Transfer to Substrate (TTS)
module. Finally, the substrate is delivered to the substrate imaging module, where dedicated
imaging hardware and software measure yields of micronuclei or -y-H2AX, which are
already well-characterized quantifiers for radiation exposure.

Most of robotic manipulation actions are taken place in the cell harvesting module (Figure
2). Initially the service robot transfers centrifuged buckets from the centrifuge to the bucket
holders, and then loads an empty micro-well plate from the plate stack to the plate holder.
The service robot repeats the same sequence of manipulating actions by 96 times till 96
wells of the micro-well plate are filled with lymphocytes. In each of the manipulating
sequences, the capillary gripper mounted on the end arm of the service robot is to pick up
individual capillaries first and then carry the capillary to the cutting position where the laser
beam is fired to cut the tube. At the cutting position, a CCD camera is used to identify the
cutting position and a barcode reader is used to identify the ID of the sample. Then the
bottom part of the capillary containing the RBC pellet is disposed, while the upper part is
moved above the micro-well plate to dispense the lymphocytes in the micro-well plate
pneumatically. Finally, the empty upper part of the tube is pulled out from the collet of the
capillary gripper by the tube disposing gripper. When the micro-well plate is full, the service
robot will transfer the plate to the liquid/plate handling module.

All failure recognition and recovery in this paper are based on the data from a force/torque
sensor with the setup shown in Figure 3. The top surface of the sensor is attached to the end
arm of the service robot. Its bottom is connected with a gripper junction, where the capillary
gripper is mounted. The sensor measures the forces and torques in the Cartesian coordinates
denoted as (Fy, Fy; Fz Ty Ty T).

3. Overall Scheme of Recognition and Recovery

While the paper is focused on the recognition aspect, its connection with the monitoring
aspect and recovery aspect are also briefly described below.

The maximum force on the Z axis (Fzmax) during picking up a capillary is used to monitor if
the robotic manipulation is successful or failed. In the normal operation, F;4 has the range
from 5.43 N to 6.13 N. While in the failed operation, a spike of force is sensed. Figure 4
shows three typical failures of picking up capillaries and their manipulation steps
(approaching to the picking position for a new capillary, leaving from the picking position).
In the first failure class, the last capillary is not disposed successfully, and when the gripper
moves to the picking position for a new capillary, the old capillary crashed onto the new one
and the already occupied gripper cannot grasp the new capillary. The second and third
failure classes are caused by position misalignments. In the second class (small
misalignment), the capillary is squashed by the spring-loaded collet of the gripper [2]. With
the third class (large misalignment), the capillary is pressed by the outer solid body of the

gripper.

For the three failure classes identified below, £, varies respectively from 23.15 N to
47.88 N (class 1), from 22.62 N to 26.51 N (class 2), and from 35.08 N to 42.16 N (class 3).
Therefore, the mean value of the lowest £, Of failure classes (22.62 N) and the highest
Frmax Of the normal operation (6.13 N) is set as a threshold to label the current manipulation
successful or not. Since this threshold is significantly away from either normal or abnormal
scenarios, the probability of “false positive” is negligible.

Expert Syst Appl. Author manuscript; available in PMC 2013 August 01.



1duasnue Joyiny vd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Chenetal.

Page 4

Each failure class has different forces and duration time of the crashing between capillaries
or the capillary and the gripper. This information is helpful to label manipulation failures
and take corresponding recovery actions. Figure 5 shows typical sampled force/torque data
knowing the first failure class. Obviously, F,and 7, show the most significant changes
when manipulation failures happen because the service robot moves vertically while picking
up a capillary, and bent tubes cause torques around a horizontal axis. The duration time is
around one second, which is used as the sampling window.

Figure 6 illustrates the procedure of failure recognition. The offline classifier training is to
search for optimized classifiers for a given training data set (force/torque data of repeated
experimental failures). The online fault recognition is to make a classification decision with
the trained classifiers when manipulation failures happen in the RABIT. All of raw sampling
data are passed through a low-pass filter to reduce noises. Characteristic features, such as
peak value, duration time, and signal energy, are calculated for the following recognition
steps.

After the failure diagnosis, different recovery schemes are employed. When the class 1
failure occurs, the RABIT must stop the movement of the robot immediately, and send an
emergency alert to the operator. Then the operator manually removes the undisposed
capillary, and restarts the robot. As to the class 2 failure, automated recovery is implemented
because the current capillary is not destroyed. The RABIT identifies the arm length (ratio of
torque and force) and then calculate the corresponding position offset in 3D Cartesian
coordinates to negate the arm length. The service robot will adjust the picking position of
the desired new capillary accordingly and try to pick it up again. As to the failure of class 3,
a semi-automated recovery is implemented. Although the current capillary is destroyed, the
position offset can be known through the automated analysis of force/torque information. A
logical and efficient sequence is to pass over this bent capillary, move onto next one with a
position adjustment to account for the large misalignment.

4. Methods of Failure Recognition

Recognition algorithms for feature extraction and classification are briefly summarized
below for the self-containment of the paper.

4.1 Feature Extraction

Two linear methods of feature extraction: PCA and FDA, are employed to reduce the
dimension of a characteristic feature space. The critical evaluation criterion is the
separability of the resultant classes.

The feature extraction is identical to an optimization problem that given a training data set,
find the best linear transformation function:

=W x+b 1)

where original feature vector x € /", extracted feature vector z€ R, transformation matrix
WeE R™M and the threshold 6 € R™ After transformation, the corresponding scatter
matrices are [11]:

Si=W's,W, S;=Ww's,w, Sr=w’'sw o)

where S, is within-class scatter matrix, Sy is between-class scatter matrix and S;is total-
class scatter matrix.
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PCA considers the following reconstruction model for feature vector X€ /" as:

F=W(z - b)=b+ ) ziw; ®
i=1

where vector 5= - W), € R, w;is the #7 column of W, and z;is the element of the extracted
feature vector. Then minimizing the criterion function:

l m 2
Jm=>| [13+sz[ wi] ~ @
k=1

i=1

is to find matrix w=[ w; w, --- w, ]Wwhere /isthe number of data points. This can be
formulated as the following constrained optimization problem:

max  J,.,(W)=|WTS,W|

subject to w[.Twl:l ®
where w;is the /7 normalized eigenvector of the scatter matrix S;corresponding to the ih
eigenvalue.

If the sample class labels were known, FDA is able to be used for the supervised dimension
reduction. FDA seeks the transformation function (Equation 1) that maximizes the ratio of
the between-class scatter matrix to the within-class scatter matrix and the problem is defined
as:

_Iwrs,wi
max  Jp, (W)=g75in 6
T (6)

i W,:l

subject to w

The solution matrix W = [uq, ws, ... W] is composed by a set of generalized eigenvectors
corresponding to the m largest eigenvalues {11, Ay, ... A} in Spw;= A,S,w;[12]. When

Syis nonsingular it can be solved by a conventional eigenvalue problem by § 1§ ,w;=w;.

For many small size problem, 5! does not exist and has an upper bound m< ¢~ 1 (cis the
number of classes) [13].

4.2 Classification Algorithm

The aim of the SVM classifier is to maximize the margin between classes as a way to
distinguish them [8]. Under the case of linear separability, the decision rule g(x) = w/x+ b
can be constructed by solving the optimization problem as:

1 2
max JSVM(W):§||W|| (7
subject to y,'(wa+b) >1, i=1,2,...1
2

where y;is labeled as +1 or —1. Then for the two-class problem, SVM has a margin of H

The FLD is a linear discriminant classifier g(X) = w’/x+ b[14], where wis to maximize the
class separability. The optimization problem is formulated as:
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WISl
max JFLD(W)_leSiw| ®

subject to wTw=1

This can be observed as a generalized Rayleigh quotient, and thus, for two-class problem,
assuming S, is nonsingular, it is possible to find an analytics expression w= S, (u1 -
M2), wWhere pq, up are the mean values of two classes. Threshold bis determined by
“Bayesian decision theory” or any general classifier.

Different from linear classifiers, the decision rule of the QDA classifier is a quadratic
function like g(x) = x”Ox+ W7x+ b[15]. The resultant nonlinear classification hyperplane
is able to compass more data points than the linear hyperplane such that the classification
error rate is supposed to be lower.

4.3 Classification Error Rate Analysis

To derive an analytic classification error function for a parametric recognition problem, all
feature data are assumed to be normally distributed. Based on the extracted feature vectors
of the training data, mean values (expected values), and standard deviations are known.
Thus the Gaussian probability density functions of three failure classes (wq, wo, w3) are
derived as:

1 —
fix)= exp [—z(x—ﬂf>TZ,- 1<x—ui>], i=1,2,3 ©

_
QIS

where Jjis the /7 covariance matrix. If all classification decisions are based on the Bayesian
decision rule, the classification error probability of a three-class problem is described as:

Peror=] -+ [, oOP@)dx1 - dyt [+ [ fs(P@s)dxy -+ dp+
S S, fiGP@Ddx gt [ - [ A@P@s)dx - dxt 10)

[ J, fi@P@)dx - dxgt [ [ (0P - ~dxn]

where Aw)), /=1,2,3, is the probability of class 7, Dj;is the feature area where points which
are belong to class sare classified as class /because f{(x) > f(x), //=1,2,3, i# j. Equation
10 can be solved by numerical methods for high dimensional data and multiple classes and
used to evaluate the performance of feature extraction (Table 2).

5. Experimental Conditions

Training data are collected by conducting repeated failure experiments of manipulating
capillaries in the cell harvesting module of the RABIT system. Failure classes (Figure 4) are
denoted as class 1 (no disposing), class 2 (small misalignment) and class 3 (big
misalignment). In class 1, the previous tube is purposely not disposed. In class 2, the center
line of the gripper is misaligned to that of the new capillary by half of the diameter of the
collet (2.5 mm). While in class 3, the misalignment is 4.1 mm, half of the diameter of the
outer tubing of the gripper.

The force/torque sensor is from ATI (9105-GAMMA-R-10-U2-N0, 0.01% full-scale error).
The real-time sampling system is based on MATLAB xPC target and an analogy 1/0 card
(ServoToGo, ISA Bus Servo 1/0 Card Model 2). The sampling rate is 1 KHz and the
sampling window is 1.0 sec. Before extracting information from the signals, the raw data
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from the force sensor is passed through a low-pass filter (cutoff frequency 100 Hz, order 8)
to reduce high frequency noise.

The experiments of each failure class are repeated 30 times. Thus the training data set has 90
six-dimensional data vectors. The force/torque data in the form of (Fx, Fy, F7 Tx, Ty, T2
is obtained by multiplying the strain gage data from the sensor by a calibration matrix. The
robot is set to run at half speed (1 m/s). To alleviate force/torque noise due to the robot’s
rapid moving acceleration and deceleration, the smooth path planning is created with zero
initial/end velocities and accelerations.

6. Results and Discussion

6.1 Characteristic Feature Selection

Two most significantly varying signals Fzand T (Section 3, Figure 5) are chosen for
failure recognition. The duration time is chosen to be the time when the signal is above v of

the max or the signal is below i of the min. It turns out to be around one second as seen in
Figure 7.

Figure 8 shows the extracted feature planes by an optimal FDA transformation from original
high dimensional (twelve-dimensional, eight-dimensional, six-dimensional, four-
dimensional respectively) features to two-dimensional (2D) features (xi, X»). The 12D space
is formed when the max/min value, peak to peak value, mean, standard deviation, energy
(curve integration with respect to time), and kurtosis are chosen as the features of ~~and
Tx. The separability index ( S;/S;) is also indicated in the figure. With decreased
dimension of original feature space, the class separability is decreased significantly. For the
application presented in the paper, the best class separability for FDA is achieved using the
12D feature.

The max/min value is the transient pulse force/torque when the capillary gripper collides
with the capillary, which reflects the level of distortion of the capillary tubes at the picking
position. The peak to peak value also implies the relative magnitude of collision shock. The
mean value describes what type of force/torque is involved during the capillary
manipulation. For the continuous spring contacting force, the mean value is high, like class
2. While, for the transient collision torque/force (unrecovered elastic force), like class 1 and
class 3, the mean value is low. The standard deviation shows how spread-out the torque/
force are, a key point to describe the vibration of the signals. The energy implies how long
and how much force/torque are engaged on capillaries. Lastly, the kurtosis refers to signal
shape and measures to what degree the signal has a flat top or sharp peak profile.

6.2 PCA Versus FDA

PCA seeks principal directions that best represent the original data, while FDA seeks
directions that are efficient for separating the data from different classes. Our work is mainly
focused on the separability of the failure classes when choosing feature methods for the
RABIT system. Therefore, FDA seems to be more appropriate and yet the separability of the
resultant low dimensional training data is computed to make comparison between PCA and
FDA.

Figure 9 shows the extracted feature planes of the three failure classes by PCA and FDA
from the same ten-dimensional features. As seen, the class separability index ( S;/S.) of
FDA is about 96 times higher than that of PCA. For class 1, the extracted feature space by
the PCA is undesirable because it almost spreads the whole plane area and especially two
points near the bottom left corner are far away from other data points. The PCA is incapable
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of clustering these two points closer to the center of the group. Another drawback of the
PCA is that some points of class 1 are overlapped with those of class 2 and class 3. The
overlapped region is likely to lead to large classification error. On the other hand, the FDA
is limited in computing the inverse of matrix S,,. If the dimension of feature vectors is high,
the matrix S, is close to be singular and thus it is impossible to be solved directly [16].

Table 1 presents the separability index after feature extraction by PCA and FDA from 12D
feature to 2D feature. The class separability of the FDA increases with the dimensions of
original features. Higher dimension of original features allows more space for the FDA to
search for the transformation function and thus achieve better performance. For the PCA,
although to minimize the feature reconstruction error may be a good criterion, in many cases
it does not necessarily lead to maximum class separability in lower dimensional feature
spaces. So the separability of the PCA for four dimensions in Table 1 turns out be to larger
than that of six dimensions, although its reconstruction error is worse. Figure 10 shows an
example of a two-class feature extraction from 2D to 1D where feature vectors in the two
classes follow the Gaussian distribution with the same covariance matrix. The eigenvectors
of the scatter matrix are computed and the resultant largest eigenvector are visually
presented as a PCA projection direction line. Obviously the PCA direction is worse with
respect to the separability because the two classes coincide after the features are projected
on the PCA direction.

Because the main aim of feature extraction problems for the manipulation failure
recognition presented in this paper is the separability of the resulting failure classes, FDA
achieves better separability index than PCA. The subsequent classifiers are computed based
on the training data whose features are extracted by FDA.

6.3 Classification Error Rate

To solve the classification error rate by analytic error probability functions (Equation 8), the
following assumptions are made: the probabilities of failures for each failure class are
normal distributed; the mean and covariance of the training data are very close to expected
values; classification decisions comply with the Bayesian decision rule. For the problem on
a 2D extracted feature plane, instead of integrating over an infinite plan, the numerical result
of Equation 8 is achieved by integrating over a large enough area (10 times covariance on
each side of the mean).

Figure 11 shows normal Gaussian distribution probability density for the extracted features
presented in Figure 9B. To solve the analytic classification error probability function, each
probability distribution density function is characterized by an ellipse on the feature plane
(Figure 11B). The covariance matrices of class 1 and class 2 are close to be diagonal
because the major and minor axes of their distribution ellipses (Figure 11B) are nearly
parallel to the feature axes each other. Therefore the 2D probability density function of class
1 and class 2 are able to be decoupled into two one-dimensional (1D) probability density
functions. Since the major axes of class 3 distribution ellipses are significantly sloped, the
off diagonal elements of the covariance matrix of class 3 are non-negligible. Its probability
density function has to be coupled two dimensions.

Table 2 shows the estimated classification error rate of the three-class problem on the 2D
extracted feature plane. Estimated error rate of PCA is bigger than that of FDA. It is
consistent with the class separability shown in Table 1. The lower classification error rate
for four dimensions for PCA means is an exception and it perhaps means that the derived
PCA extraction function (projection direction) happens to improve the class separability,
although it minimizes the reconstruction error.
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6.4 Classifier Comparison

Three typical classifiers: SVM, FLD, and QDA are tested for the failure recognition of the
robotic manipulations in the RABIT. Figure 9B shows that the three failure classes in the
extracted feature plane are separated well. Thus simple classification methods are good
adequate. In addition, these classifiers incur lower computation costs as their computing
time is relatively low, which is helpful for online fault recognition in a high throughput
automation system.

Figure 12 shows that the decision boundaries (red and blue lines) and the testing data (three
classes, 30 points per class) of three derived classifiers (SVM, FLD and QDA). The testing
data is already projected on 2D plan from 12D feature space by a FDA transformation
function.

Although the classification error rate is calculated based on the analytic probability function
(Table 2), the results are limited due to the assumptions made in deriving the analytic
probability function (Equation 8). To directly evaluate the classification error for classifiers
SVM, FLD and QDA, classification is run on a set of testing data whose class labels are
already known. Comparing resultant classified labels with correct class labels, the confusion
matrix and the error rate are calculated. As to the testing data shown in Figure 12, the
classification error of SVM, FLD, and QDA is 1.1%, 4.4%, and 0.0%, respectively. Because
the derived quadratic classifier follows up the distribution shape, such as ellipses in Figure
11B, it leads to the lowest classification error. SVM searches for the classifier while
concerning about the small distance space between the classifier and nearest data point. This
tolerant space allows the classifier to cover more points if some testing points go further
away from the nearest data point of the training data. Therefore, the classification error of
SVM lies between QDA and FLD.

6.5 Computation Time

In a high throughput system, like the RABIT, the computation time is a valuable criterion to
evaluate the performance of the classifiers because the short interval between each
processing action requires a rapid recognition response including logging sensor data,
extracting features and making decision. In the RABIT, the service robot moves with a
maximum speed 2 m/s. The interval time between the end of picking up a capillary and laser
cutting is only 0.45 sec within which the failure diagnosis engine must finish the online
processing (Figure 6). For rapid response when failures occur, it is critical to shut down the
laser beam immediately before the operator could go in the system to rescue blood samples.
Since the computation is programmed in MATLAB, a relative comparison of computation
cost is needed among different classifiers and feature extraction methods.

The total computation time is the sum of the time consumption of feature extraction and
classification. The feature extraction and classification problems discussed above are in 2D
spaces. Obviously the corresponding 1D problem should have less computation but worse
performance because of distortions occured during processing data. Table 3 shows the
relative comparison of computation time between 2D and 1D problems. The computation
difference between the 2D problem and the 1D problem is less than 0.015 sec, which is not
worth to switch from 2D to 1D. As to feature extraction, the computation cost of PCA is
10.3 percent larger than that of FLD. It supports the conclusion that FDA is better than PCA
for the feature extraction of the force/torque signals in the RABIT (Section 6.2). While as to
classification methods, the computation cost of QDA is 90.5 percent larger than that of
SVM, although QDA has smaller classification error. It is a trade-off between classification
error and response time while choosing SVM or QDA as the classifier.
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7. Conclusions

The proposed automated diagnosis scheme aims to detect and isolate three faults in the cell
harvesting, from which three remedial actions: manual recovery, fully automated recovery,
and semi-automated recovery, can be taken. The Force on Z axis (F) and the torque on X
axis (7,) are the most significant varying signals when the failures happen. Their max/min
value, peak to peak value, mean, standard deviation, energy, and kurtosis are calculated
from raw sampled data to construct a 12D feature space. The feature transformation
functions of PCA and FDA are derived by solving optimization problems as to the failure
training data set (three classes, 30 points per class). FDA has the better separability
performance and minimal estimated classification error than those of PCA when projecting
12D feature space to 2D feature plane. While PCA spends 10.3% more computing time than
FDA.

Three classifiers: SVM, FLD and QDA are implemented and compared. They are solved
offline based on the training data set. Their online fault diagnosis performances are
evaluated through the testing data set (three classes, 30 points per class). QDA incurs the
minimal classification error, while SVM takes the minimal computation time. Considering
the tradeoff between classification error and response time, the SVM is chosen for fault
recognition under the current configuration of the RABIT.
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Figure 1.

Layout of the rapid biodosimetry tool.
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Figure 2.

Prototype and processing sequence of the cell harvesting module ((D: pick up a capillary;
(: detect separation band, read barcode, cut the capillary; @: dispense lymphocytes; @:
dispose the empty capillary).
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Figure 3.
Force/torque sensor mounting and its Cartesian coordinates.
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Figure 4.

Failure modes on manipulating capillaries (A: failure because of last capillary not disposed
(classl); B: failure because of small position misalignment (class2); C: failure because of
big position misalignment (class3)).
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Figure5.

Sampled raw force/torque data from the force/torque sensor in the Cartesian coordinates
(force: Fy, Fy, F5 torque: Ty, Ty, T).
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Recognition procedure of robotic manipulation failures.
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Time responses of F,and Ty of the three failure modes.
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Figure8.

Comparison of the feature extraction results of the different original statistical features (A:
12D statistical feature space; B: 8D statistical feature space; C: 6D statistical feature space;

D: 4D statistical feature space). Their separability index ( J=S,/S,,).
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Figure9.

Comparison of the feature extraction methods between PCA (A) and FDA (B). Their
separability index (J=S,/S,,).
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PCA is not always best for pattern recognition. Projection on PCA direction makes the two
classes coincide. While, projection on FDA direction keeps the classes separated.
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Figure11.
Gaussian probability distribution of the three failure classes (A: normalized 2D probability
density function, B: multivariable distribution ellipses in the 2D feature plane).
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Classification for Testing Data with Fisher Linear Classifier

Classification for Testing Data with Quadratic Classifier
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Classification for the testing data (A: SVM classifier, B: fisher linear classifier, C: quadratic

classifier).

Expert Syst Appl. Author manuscript; available in PMC 2013 August 01.



1duasnuey Joyiny vd-HIN 1duasnue Joyiny vd-HIN

wduosnue Joyiny vd-HIN

Chenetal.

Table 1

Class separability index after feature extraction

Dimension of Original Feature PCA FDA

12
10
8
6
4

1226.7 177510.0
949.7801  91086.0
839.2027 36334.0
796.8680 12555.0
1050.4 8764.5
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Table 2

Estimated classification error on the extracted feature plane

Dimension of Original Feature PCA Error Rate (%)

FDA Error Rate (%)

12
10
8
6
4

2.5467
3.0456
3.1267
3.2281
2.8190

0.0056
0.0850
1.0154
2.2281
2.3349
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Table 3

Computation time cost

2D (sec) 1D (sec)

FDA 0.0680 0.0618
PCA 0.0750 0.0722
SVM 0.0698 0.0642
FLD 0.1216 0.1136
Quadratic  0.1330 0.1303
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