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1. Introduction

During the last decade, the motivation for applying feature 
selection (FS) techniques has shifted from being an optional sub-
ject to becoming a real prerequisite for model building. The main 
reason for this change is the high-dimensional nature of many 
modeling tasks in fields such as bioinformatics (Armañanzas et al., 
2011; García-Torres et al., in press), materials (Pérez-Benítez & 
Padovese, 2011), text mining (Azam & Yao, 2011; Chen, Huang, 
Tian, & Qu, 2008), etc. The selection of features and the removal or 
reduction of redundant information unrelated to the classifica-tion 
task on hand will not only reduce the complexity of the prob-lem 
and improve the efficiency of the processing but will also simplify 
significantly the design of the classifier. The FS is one of the 
essential and frequently used techniques in machine learning 
(Arauzo-Azofra, Aznarte, & Benítez, 2010; Foithong, Pinngern, & 
Attachoo, 2011; García-López, García-Torres, Melián-Batista, 
Moreno-Pérez, & Moreno-Vega, 2006; García-Torres, García-López, 
Melián-Batista, Moreno-Pérez, & Moreno-Vega, 2004; Kabir, Shah-
jahan, & Murase, 2011; Pacheco, Casado, & Núnez, 2007; Yang, Liao, 
Meng, & Lee, 2011). An FS method generates different candidates 
based on an evaluation 
h & Liu, 1997).
, FS can be divided into 
s assess the relevance of 
erties of the data,
such as distance, consistency, and correlation (Dash & Liu, 1997;
Dash & Liu, 2003; Hall, 2000). These criteria are independent of
any inductive learning algorithm. In contrast, the wrapper ap-
proach requires one predetermined mining algorithm and uses
its performance to evaluate and determine which features are
selected (Kohavi & John, 1997). Wrappers often select features that
have a higher accuracy; however, they are criticized for their high
computational cost and low generality. To take advantage of the
above two approaches, a hybrid model was proposed to handle
large data sets (Bermejo, Gámez, & Puerta, 2008; Das & Filters,
2001; Xing, Jordan, & Karp, 2001). Moreover, some methods,
known as embedded, use internal information of the classification
model to perform FS (Guyon & Elisseeff, 2003; Saeys, Abeel, & de
Peer, 2008).

Based on the generation procedure, FS can be divided into indi-
vidual feature ranking (FR) and feature subset selection (FSS)
(Blum & Langley, 1997; Guyon & Elisseeff, 2003). FR measures
the relevance of each feature to the class and then ranks features
by their scores and selects the top-ranked features. These methods
are widely used because of their simplicity, scalability, and good
empirical success (Guyon & Elisseeff, 2003; Golub et al., 1999).
However, FR is criticized because it can capture only the relevance
of the features to the target concept, whereas the redundancy and
basic interactions between features are not discovered. Addition-
ally, the number of features retained is difficult to determine; as
a result, a threshold is required. In contrast, FSS attempts to find
a set of features that have good performance. This method inte-
grates the metric for measuring the feature-class relevance and
the feature–feature interactions. In (Liu & Yu, 2005), a large
number of selection methods are categorized, in which different
algorithms address these issues distinctively. We found different
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search strategies, namely exhaustive, heuristic and random
searches, and combined them with several types of measures to
form different algorithms. The time complexity is exponential in
terms of the data dimensionality for an exhaustive search, and it
is quadratic for a heuristic search. The complexity can be linear
with the number of iterations in a random search, but experiments
show that, to find the best feature subset, the number of iterations
required is usually at least quadratic to the number of features
(Dash, Liu, & Motoda, 2000). In this categorization, to handle large
data sets, a hybrid model was also proposed to take advantage of
the above two approaches (FR, FSS). These methods decouple rele-
vance analysis and redundancy analysis, and they have been pro-
ven to be more effective than ranking methods and more
efficient than subset evaluation methods on many traditional
high-dimensional data sets. In this framework, (Yu & Liu, 2004)
proposed a fast correlation-based filter algorithm (FCBF) that used
a correlation measure to obtain relevant features and to remove
redundancy. Recursive Feature Elimination (RFE) is a proposed FS
algorithm described by Guyon, Weston, Barnhill, and Vapnik
(2002) that works by choosing the r features which lead to the
largest margin of class separation, using an SVM classifier. Ding
and Peng (2003) uses mutual information for gene selection, find-
ing maximum relevance with minimal redundancy by solving a
simple two-objective optimization. In another method, (Hall &
Holmes, 2003) proposes a rank search method to compare FS algo-
rithms, but this method is not an efficient way to select a subset of
features, especially in high-dimensional domains.

In this work, we present two FS methods that are based on a hy-
brid model, and we attempt to take advantage of all of the different
approaches by exploiting their best performances in two steps:
first, features are evaluated individually, providing a ranking based
on a filter or wrapper criteria; second, a feature subset evaluator
(filter or wrapper) is applied to a certain number of features in
the previous ranking, following a search strategy. This approach
provides the possibility of efficiently applying any subset evalua-
tor, wrapper model included, in large and high-dimensional do-
mains, obtaining a few features with high predictive power. The
final subset is obviously not the optimum, but it is not feasible to
search for every possible subset of features through the search
space. Thus, in these types of domains, feature selection is more
than necessary, it is indispensable. The remainder of this paper is
structured as follows. Section 2 provides notions of feature rele-
vance and redundancy and introduces our concept of incremental
ranked usefulness. Subsequently, the algorithms are described.
Experimental results are shown in Section 3, and the most interest-
ing conclusions are summarized in Section 4.
2. Hybrid-generation feature selection

2.1. Introduction

In feature subset selection, two types of features are usually
perceived as being unnecessary: features that are irrelevant to
the target concept and features that are redundant given the other
features.

In contrast, the purpose of a feature subset algorithm is to iden-
tify relevant features according to a definition of relevance. How-
ever, the notion of relevance in machine learning has not yet
been rigorously defined with common agreement (Bell & Wang,
2000). The study in (Kohavi & John, 1997) includes three disjointed
categories of feature relevance: strong relevance, weak relevance
and irrelevance. The study in (Bell & Wang, 2000) makes use of
Information Theory concepts to define the entropic or variable rel-
evance of a feature with respect to the class, whereas (Blum &
Langley, 1997) collects several relevance definitions.
Notions of feature redundancy are typically in terms of feature
correlation. It is widely accepted that two features are redundant
to each other if their values are completely correlated. There are
two widely used types of measures for the correlation between
two variables: linear and non-linear. In the linear case, the Pearson
correlation coefficient is used, and in the non-linear case, many
measures are based on the concept of entropy or on a measure of
the uncertainty of a random variable. Symmetrical uncertainty
(SU) (Press, Flannery, Teukolsky, & Vetterling, 1988) is frequently
used, which is defined as follows:

SUðX;YÞ ¼ 2
IGðXjYÞ

HðXÞ þ HðYÞ

� �

where HðXÞ ¼ �
P

iPðfiÞlog2ðPðfiÞÞ is the entropy of a variable X and
IG(XjY) = H(X) � H(XjY) is the information gain from X provided by
Y. Both of these measures are between pairs of variables. However,
they may not be as straightforward when determining feature
redundancy when one is correlated with a set of features. The study
in (Koller & Sahami, 1996) applies a technique that is based on
cross-entropy, named Markov blanket filtering, to eliminate redun-
dant features. This concept was formalized with the notion of a con-
ditionally independent attribute that can be defined by several
approaches (Xing et al., 2001; Yu & Liu, 2004).

When databases with many features are ranked, there are usu-
ally many features with similar scores. The frequent selection of
redundant features in the final subset is often criticized. However,
according to (Guyon & Elisseeff (2003)), accounting for presum-
ably redundant features can reduce noise and, therefore, a better
separation between the various classes can be obtained. Moreover,
a very high correlation (in absolute value) between variables does
not mean that they do not complement each other. Consequently,
the idea of redundancy in this paper is not based on the measure
of correlation between two features. Rather, it is based on any
subset evaluation criterion, which could be a filter or a wrapper
approach. In this sense, a feature (or set) is selected if additional
information is obtained when it is added to the previously selected
feature subset, and it is rejected in the opposite case because the
information provided is already contained (redundant) in the
previous subset.
2.2. First hybrid subset generation

This first approach considers the relevance, and the redun-
dancy concepts are included in the following ‘‘incremental useful-
ness’’ definition by Caruana and Freitag (1994): Given a sample of
data, an evaluation measure L, a feature space F and a feature sub-
set S(S # F), the feature Fi is incrementally useful to L with re-
spect to S if the evaluation of the hypothesis that L produces
using the group of features {Fi} [ S is better than the evaluation
achieved using just the subset of features S. In other words, if
the feature Fi is not incrementally useful to L with respect to S,
then the evaluation value given the subset S is equal to or better
than the known subset evaluation result {Fi} [ S. This scenario
suggests that if Fi gives no information beyond what is already
in S, then Fi can be safely removed. However, because the compu-
tational complexity for determining all of the possible interactions
between the features is very high (mainly in high-dimensional do-
mains), we consider using a guided search over an ordered list of
attributes.

We present a heuristic to select features by means of a modifi-
cation of the incremental usefulness concept. We address the
incremental ranked usefulness to devise an approach to explicitly
identify relevant features, and we do not take into account redun-
dant features. The idea behind this technique is to choose features
from a ranked list one by one in the following way:



1. First, the features are ranked according to an evaluation
measure.

2. Second, we address the list of features once, crossing the rank-
ing from the beginning to the last ranked feature.
(a) First, we emphasize the possibility of using any subset eval-

uator, filter or wrapper. We obtain the evaluation results
with the first feature in the list, and it is marked as selected.

(b) We obtain a new result in the same way but using the first
and second features. The second will be marked as selected
depending on whether the evaluation obtained is signifi-
cantly better.

(c) Repeat the process with the remaining features until the
last feature on the ranked list is reached.

(d) Finally, the algorithm returns the best subset that was
found, and we can state that it will not contain irrelevant
or redundant features.

The first part of the above algorithm is efficient because it re-
quires only the computation of N scores and to sort them; whereas
in the second part, the time complexity depends on the learning
algorithm that was chosen. It is worthwhile to note that the learn-
ing algorithm is run N (number of features) times with a small
number of features: only the selected ones are used. Therefore,
the running time of the ranking procedure can be considered to
be negligible with respect to the global process of selection. In fact,
the results obtained from a random order of features (without a
previous ranking) showed the following drawbacks: (1) the solu-
tion was not deterministic; (2) a greater number of features were
selected; (3) the computational cost was higher because the classi-
fier used in the evaluation contains more features starting with the
initial iterations.

A fundamental question is how a significant improvement is
analyzed. In the wrapper model, a fivefold cross-validation is used
to estimate whether the accuracy of the learning scheme for a set
of features is significantly better than the accuracy obtained for
another set. We conducted a paired, two-tailed Student?s t-test
to evaluate the significance (at the 0.1 level) of the difference be-
tween the previous best subset and the candidate subset. This last
definition allows us to select features from the ranking, but only
those that significantly increase the classification rate are chosen.
Although the size of the sample is small (fivefold), our search
method uses a t-test. We want to obtain a heuristic, not to per-
form an accurate population study. However, it must be noted
that it is a heuristic based on an objective criterion for the pur-
pose of determining the statistical significance level of the differ-
ence between the accuracies of each subset. However, the
confidence level has been relaxed from 0.05 to 0.1 because of
the small size of the sample. Statistically significant differences
at the p < 0.05 significance level would not allow us to add more
features because it would be difficult for the test to obtain signif-
icant differences between the accuracy of each subset. Obviously,
if the confidence level is increased, then more features can be se-
lected, and vice versa. Following a filter model in the subset eval-
uation, we need a different way to find out whether the value of
the measurement of a set is significantly better than another set
when adding an attribute. This criterion verified whether the
improvement surpasses a threshold (for example, 0.005); one of
the compared alternatives resulted from the best previous subset
and the other resulted from the joint candidate. Consider an
example of the feature selection process performed by our ap-
proach whereby a wrapper model is used:

1. First, the features are ranked according to the wrapper evalua-
tion of each individual feature. We have the following ranking:
f5, f7, f4, f3, f1, f8, f6, f2, f9.

2. Subset selection:
(a) Then, we take the classification accuracy with the first fea-
ture in the list (F5:80%).

(b) In the next step, we run the classifier with the first two fea-
tures of the ranking (F5,F7:82%), and a paired t-test is per-
formed to determine the statistical significance level of
the differences. In this case, we suppose that if the p-value
is greater than 0.1, then F7 is not selected.

(c) The same scenario occurs with the next two subsets
(F5,F4:81%,F5,F3:83%). Later, the feature F1 is added because
the accuracy obtained is significantly better than that with
only F5 (F5,F1:84%), and so on.

(d) Finally, the algorithm returns the best subset found.

In short, the classifier is run nine times to select, or not, the
ranked features (F5,F1,F2:89%): once with only one feature, four
times with two features, three times with three features and once
with four features. Most of the time, the learning algorithm is run
with few features. In short, this wrapper-based approach requires
much less time than other approaches that utilize a broad search
engine.

As we can see in the algorithm, the first feature is always se-
lected. This circumstance does not result in a large shortcoming
in high-dimensional databases because usually several different
sets of features share similar information. The main disadvantage
of sequential forward generation is that it is not possible to consider
certain basic interactions among features, i.e., features that are
useless by themselves can be useful together. Backward generation
remedies some problems, although many hidden interactions (in
the sense of being unobtainable) will remain, but this approach de-
mands more computational resources than does the forward ap-
proach. The computer-load necessities of the backward search
could become very inefficient in high-dimensional domains be-
cause it starts with the original set of attributes and removes fea-
tures increasingly.

2.3. Second hybrid subset generation

As in the previous subset generation, this method begins by
generating a ranking, followed by the union of feature subsets by
means of a down-top ranked-strategy, until subsequent feature
subset combinations do not produce any better subsets. Once
again, we emphasize the possibility of using any subset evaluator,
filter or wrapper in both steps of this approach:

1. Step one generates a feature ranking that ranges from best to
worst according to a specific evaluation measure.

2. Next, a list of solutions is generated in such a way that a solu-
tion for each individual feature is created, and the same ranking
order is maintained. This second hybrid search consists of mak-
ing a subset of relevant features by joining subsets with a lower
number of features. With every iteration, a new list of solutions
from the previous structure is generated. Each candidate set,
made by joining two sets from the previous list of solutions, will
become part of the next list of solutions if, when the subset
evaluator is applied to it, gives back a higher measure value
than the value obtained with the best (or first) subset from
the previous list of solutions. To prevent the algorithm from
becoming prohibitively time-consuming, new sets of features
are generated by joining the first sets to the remaining previous
list of solutions in the following way:
(a) The first set on the list is joined to the second set; next, the

first set is joined to the third set, and so on until the end of
the list.

(b) Next, the second set of the list is joined to the third set, the
second set is joined to the fourth set, and so on until the last
set on the list.



Table 1
Data sets Acron – acronym, Atts – number of attributes, Inst – number of instances.

Repository Data Acron. #Atts. #Inst. #Class.

UCI ads ADS 1558 3279 2
Arrhythmia ARR 279 452 16
Hypothyroid HYP 29 3772 4
Isolet ISO 617 1559 26
Kr vs Kp KRV 36 3196 2
Letter LET 16 20000 26
Multi feat MUL 649 2000 10
Mushroom MUS 22 8124 2
Musk MUK 166 6598 2
Sick SIC 29 3772 2
Splice SPL 60 3190 3
Waveform WAV 40 5000 3

NIPS Arcene ARC 10000 100 30
Dexter DEX 20000 300 50
Dorothea DOR 100000 800 50
Gisette GIS 5000 6000 30
Madelon MAD 500 2000 96

BIO Colon COL 2000 62 2
Leukemia LEU 7129 72 2
Lymphoma LYM 4026 96 9
GCM GCM 16063 190 14
(c) This process of combining a set of features with the remain-
ing sets on the list is conducted with the best k feature sets
from the previous list of solutions.

(d) The process ends when combining the subsets no longer
causes an improvement and returns the best-positioned
feature subset of all of the subsets that were evaluated.

Consider an example of the feature selection process performed
by this reduction process, where a filter model is used as an
evaluator:

1. An initial feature ranking is generated. In this case, a filter mea-
sure is used as an individual evaluator (it could be a correlation
measure), obtaining the following: f1, f7, f4, f5, f2, f3, f6, f9, f8.

2. The evaluation of the first feature of the previous ranking (f1) is
used to set the limit. In this example, we use the same filter
measure to evaluate a subset of attributes. The threshold is
set at 0.167, which is obtained by applying the evaluator to
the feature f1.

3. Next, considering k = 3, subsets of features are generated with
the first three features of the previous ranking (f1, f7, f4) and
the following features in the ranking, and they are evaluated
with the filter. The sets with the evaluation in bold type have
passed the threshold that was set beforehand with a feature
(0.167):
(a) With feature f1 the following combinations are obtained:

(f1, f7 � 0.261), (f1, f4 � 0.237), (f1, f5 � 0.083), (f1, f2 � 0.083),
(f1, f3 � 0.202), (f1, f6 � 0.179), (f1, f9 � 0.083), (f1, f8 � 0.083)

(b) With feature f7: (f7, f4 � 0.289), (f7, f5 � 0.123), (f7, f2 �
0.123), (f7, f3 � 0.234), (f7, f6 � 0.230), (f7, f9 � 0.123),
(f7, f8 � 0.123)

(c) And with feature f4: (f4, f5 � 0.101), (f4, f2 � 0.101),
(f4, f3 � 0.237), (f4, f6 � 0.198), (f4, f9 � 0.101), (f4, f8 � 0.101)

Ranking the subsets that have improved compared with the previous
best subset (f1 � 0.167) leaves the following: (f7, f4 � 0.289) (f1, f7 �
0.261), (f1, f4 � 0.237), (f4, f3 � 0.237), (f7, f3 � 0.234), (f7, f6 � 0.230),
(f1, f3 � 0.202), (f4, f6 � 0.198), (f1, f6 � 0.179)
4. The evaluation of the first subset in the ranking produces the

new threshold (f7, f4 � 0.289). Once again, subsets are made
with the three first sets of the last ranking generated ((f7, f4),
(f1, f7), (f1, f4)) with the remaining pairs, and they are evaluated
with a filter measure. As in the previous step, the subsets that
pass a new limit (0.289) are in bold type:
(a) The combinations given below are obtained with the set

(f7, f4): (f7, f4, f1 � 0.296), (f7, f4, f1 � 0.296), (f7, f4, f3 � 0.289),
(f7, f4, f3 � 0.289), (f7, f4, f6 � 0.273), (f7, f4, f1, f3 � 0.301),
(f7, f4, f6 � 0.273), (f7, f4, f1, f6 � 0.287)

(b) With the set (f1, f7): (f1, f7, f4 � 0.296), (f1, f7, f4, f3 � 0.301),
(f1, f7, f3 � 0.261), (f1, f7, f6 � 0.255), (f1, f7, f3 � 0.261),
(f1, f7, f4, f6 � 0.287), (f1, f7, f6 � 0.255)

(c) And with (f1, f4): (f1, f4, f3 � 0.264), (f1, f4, f7, f3 � 0.301), (f1, f4,
f7, f6 � 0.287), (f1, f4, f3 � 0.264), (f1, f4, f6 � 0.234), (f1, f4,
f6 � 0.234)

Ranking the subsets that pass the current threshold (0.289), we
have the following: (f7, f4, f1, f3 � 0,301), (f7, f4, f1 � 0,296)
5. In the next step of this example, the limit is set at 0.301, which

is not surpassed by any combination of subsets in the remaining
ranking. Therefore, the process ends because the new list of
solutions is empty. Therefore, the selected subset will be the
one that occupies the first position of the last ranking of the fea-
ture subsets.

Generating sets that were already evaluated occurs very fre-
quently in the process of combining two subsets. Therefore, the
evaluated subsets will be controlled to prevent the evaluation from
being repeated.
3. Experiments and results

The aim of this section is to evaluate our approaches in terms of
classification accuracy, degree of dimensionality and speed in
selecting features, to see how good our two hybrid generation ap-
proaches (H1 and H2) are in situations where there is a large num-
ber of features and instances. We must consider that these
proposals are search methods that are applied in a preprocessing
phase, designed for the sake of the subsequent data analysis and
classification; thus, the quality of these preprocessing methods
must be investigated indirectly by their final performances in the
data classification. However, it is well known that the performance
of classification depends not only on the adopted preprocessing
method but also on the properties of the data to be classified and
the adopted classification method. To make the experiments objec-
tively reflect the performances of the different search methods, we
have carefully considered the representativeness of the selected
data and the classification method. The data and methods used
in the experiments, as well as in the experimental results, are de-
scribed below.

Experiments were performed over three groups of data sets:
Twelve data sets were selected from the University of California
Irvine (UCI) Repository (Frank & Asuncion, 2010), five from the
Neural Information Processing Systems (NIPS) 2003 feature selec-
tion benchmark (Guyon, Gunn, Ben-Hur, & Dror, 2005), and four
data sets are microarrays related to cancer prediction. As can be
seen in Table 1, these data sets are characterized by a large number
of features and/or a large number of instances. First, from the well-
known UCI Machine Learning collection of databases, we choose
some of the biggest data sets from different domains (e.g., health,
gene, Internet, mushrooms, waveform). Second, the NIPS 2003
workshops included a feature selection challenge, in which partic-
ipants were provided with five data sets from different application
domains (cancer prediction from mass spectrometry data, hand-
written digit recognition, text classification, prediction of molecu-
lar activity, and one artificial data set). The input variables are
continuous or binary, sparse or dense, and all of the data sets are
two-class classification problems. Finally, four publicly available
gene microarray datasets: (1) colon (Alon et al., 1999), with the
expression levels of human genes from colon tissue samples; (2)
a leukemia data set (Golub et al., 1999) that contains samples with



malignant neoplasms of hematopoietic stem cells; (3) lymphoma
data (Alizadeh et al., 2000) comprising samples with nine different
subtypes of lymphoma; and (4) Global Cancer Map (GCM)
(Ramaswamy et al., 2000), containing samples divided into four-
teen varieties of tumor.

In view of their maturity and properties, we selected the follow-
ing widely used learning algorithms for our experiments to evalu-
ate the accuracy of the selected features: C4.5 (C4) and Naïve Bayes
(NB). These are two very representative methods in pattern recog-
nition: C4 generates decision trees to classify instances, whereas
NB classifies instances based on the Bayes’ theorem.

As we stated previously, our hybrid-sequential-ranked algo-
rithms always contain two blocks, which require a ranking and a
feature subset evaluation measure. Several versions of the hy-
brid-generation selection algorithms could be made by combining
the criteria for each group of measures (individual and subsets). To
simplify, in the experiments made for the two approaches, the
same evaluation measure was used to prepare the ranking and
for the measure used in the second part of the algorithm for the
feature subset search. To clarify the components that each ap-
proach uses in each case, a superscript is placed after H1 or H2 that
indicates the evaluator used in the two phases. Two types of subset
evaluation measures are used, one for each type of approach: (1)
wrapper, the subsequence classification method, NB or C4.5; and
(2) filter, CFS – correlation-based feature selection algorithm (Hall,
2000). For example, H1CF shows that CFS will be used as an individ-
ual measure in the first part and CFS will be used as a subset in the
second part, and H1NB shows that the NB classifier will be used in
both parts of the algorithm. As in the example of SubSection 2.3,
the H2 parameter k was set to 3.

Because of the high dimensionality of the data, we limited our
comparison to the sequential forward (SF) technique and the fast
correlation-based filter (FCBF) algorithm (Yu & Liu, 2004). On the
one hand, SF, also called the hill climbing or greedy search, looks
for the best single attribute, then tries each of the remaining attri-
butes in conjunction with the best to find the most suited pair, and
continues in this way until no improvement is obtained when add-
ing a new attribute. We chose two representative subset evalua-
tion measures in combination with the SF search engine. One,
denoted by SFNB or SFC4, uses a target learning algorithm to esti-
mate the worth of the feature subsets; the other, denoted by SFCF,
is a subset search algorithm that exploits the sequential forward
search and uses correlation measures (CFS) to guide the search.
By contrast, FCBF is a filter approach that uses a correlation mea-
sure to obtain relevant features and to remove redundancy.

The experiments were conducted using the WEKA implementa-
tion of all of these existing algorithms, and our approaches are also
implemented in the WEKA (Hall et al., 2009) environment. Table 2
shows the accuracy obtained with the NB and C4 classifiers, from
column 3 to 10, and from column 11 to 18, respectively. For each
group of results (NB or C4), the first three columns show the results
that are obtained with the H1,H2 and SF algorithms using the clas-
sifier as a subset evaluator, and in the following three columns, we
can see the results with the same algorithms using CFS instead of
the classifier; the next two columns correspond to the FCBF algo-
rithm and the results obtained with the complete dataset. By rows,
we distinguish the three groups of data sets previously stated, with
the last row of each group showing the accuracies averaged, while
the average of the three groups can be seen in the last row of the
table. In the first two groups, UCI and NIPS, the value of the success
rate was obtained by calculating the mean of five executions of two
cross-validations (5 � 2 CV), while one execution of ten cross-val-
idations (1 � 10 CV) was conducted in the groups of BIO data sets.
Then, two or ten reductions were made at each execution, one for
each training set, to prevent the selection algorithm from becom-
ing over-adjusted to the data used. Therefore, in all of the cases,
each value shown in the Table is the average accuracy obtained
from ten results. In the first two groups, we used two instead of
ten cross-validations because of the time cost consumed with mas-
sive amounts of data.

Notice that SF did not report any results in several cases (n/a –
not available); most of them were in the wrapper approaches but 2
and 5 were with NB and C4, respectively, because of the time cost
consumption. Therefore, there are no success rates or selected
attributes in these cases. For the data sets DOR and GCM, no results
were provided because the program ran out of memory after a long
period of time as a result of its quadratic space complexity.

For the accuracy results, we performed the following compari-
sons: (a) all of the results output by each classifier on each repos-
itory (six comparisons in all) and (b) all of the results output by
each classifier (two comparisons in all). For dimensionality reduc-
tion, all of the result outputs were considered.

To support the conclusions obtained, statistical tests were ap-
plied. We applied the guidelines proposed by García and Herrera
(2008) because we present the results of several strategies without
a control method. They propose using a set or a family of hypoth-
eses that are associated with a set of pairwise comparisons to com-
pare the performance of a set of classifiers over multiple datasets.
To adjust the value of the level of significance a, García and Herrera
conclude that Bergmann–Hommel’s procedure is the most suitable.
They also propose an adjustment of the p-value of a pairwise com-
parison to account for the remaining comparisons that belong to
the family.

From the data in Table 2, we evaluated whether the differences
between the accuracy results were statistically significant at level
a = 0.95. On the one hand, the comparison with the NB classifier
values yielded the following conclusions:

� With respect to the comparison with all of the results, the dif-
ferences are not statistically significant between the wrapper
approaches, and the same scenario occurs between the filter
approaches. However, there are significant differences between
the accuracies obtained with H1NB, SFNB and the accuracies
obtained with the four filters and with the original set, where
the wrapper versions win. Furthermore, H2CF and H1CF filters
also win significantly for the complete data sets.
� If we analyze the results by each group of data sets, notice that,

with the UCI data sets, we conclude exactly the statement above
for all of the data sets, whereas no significant differences are
shown in the NIPS and BIO groups.

On the other hand, with the C4 classifier, we have the following:

� With respect to the comparison with all of the data sets, the
results are similar to those indicated by the classifier NB: there
are not significant differences between the wrappers or
between the filters. However, there are significant differences
between the accuracies obtained with H1C4, SFC4 and the accu-
racies obtained with the four filters. In addition, H2CF wins sig-
nificantly on the complete data sets.
� If we analyze the results by each group of data sets, we empha-

size that the result stated above for all of the data sets is valid
for UCI and NIPS, adding that H1CF also won for the entire data
set, whereas for the BIO group, there are no significant differ-
ences, except for the two approaches of the H1 with respect
to the H2 wrapper approach.

In Table 3, we can see the reduction performed by each feature
selection algorithm. In columns, in this case, we distinguish be-
tween the filter and wrapper results because the wrapper depends
on the classifier that was subsequently applied, whereas the filters
do not. In the first part, for the four filter approaches, the results



Table 2
Accuracy obtained with NB and C4 classifiers.

Rep. ID NB C4.5

Wrapper Filter All Wrapper Filter All

H2 H1 SF H2 H1 SF FCBF H2 H1 SF H2 H1 SF FCBF

UCI ADS 95.80 95.42 95.83 94.61 95.38 95.81 95.64 96.38 96.42 96.55 96.85 95.30 96.43 96.39 95.85 96.46
ARR 68.94 68.01 67.70 67.30 66.50 68.05 63.98 60.13 67.92 68.01 67.39 66.46 66.42 67.04 64.87 64.29
HYP 94.92 95.10 95.32 94.15 94.15 94.15 94.90 95.32 98.90 99.07 99.30 96.56 96.56 96.56 98.03 99.36
ISO 77.41 83.30 82.28 66.95 77.61 80.79 74.62 80.42 68.15 69.43 n/a 67.29 72.68 71.94 66.63 73.38
KRV 94.09 94.27 94.32 84.41 90.43 90.43 92.50 87.50 94.09 95.11 94.26 84.41 90.43 90.43 94.07 99.07
LET 55.74 65.67 65.67 64.28 64.28 64.28 65.06 63.97 80.50 84.99 85.17 84.21 84.21 84.21 84.84 84.45
MUL 96.80 97.21 96.87 96.55 97.04 96.72 96.19 94.37 93.74 92.42 93.11 92.77 93.17 93.12 92.29 92.74
MUS 98.68 98.78 99.01 98.52 98.52 98.52 98.52 95.10 99.41 99.91 100.00 98.52 98.52 98.52 98.84 100.00
MUK 84.60 84.59 84.59 74.54 79.94 69.78 72.29 83.56 95.71 95.43 n/a 94.44 94.06 94.60 91.19 95.12
SIC 93.88 94.55 93.88 93.89 93.89 93.89 96.25 92.41 96.33 98.28 98.19 96.33 96.33 96.33 97.50 98.42
SPL 94.65 94.85 94.91 93.63 93.63 93.60 95.49 95.26 92.73 93.05 93.04 92.54 92.54 92.61 93.17 92.92
WAV 80.38 80.85 81.55 80.34 81.01 80.12 78.42 80.02 75.93 76.20 75.44 76.65 76.46 76.56 74.52 74.75
Av. 86.32 90.36 89.19 85.08 86.24 87.70 86.26 85.44 88.32 87.03 88.07 85.04 84.78 85.87 86.31 85.94

NIPS ARC 65.40 64.60 60.60 66.00 63.20 60.20 61.20 65.40 63.60 65.80 62.40 61.60 59.00 56.60 58.80 57.00
DEX 79.13 81.33 75.33 80.67 82.47 87.73 85.07 86.47 78.30 80.27 90.47 80.40 81.47 80.13 79.00 73.80
DOR 93.25 93.23 n/a 93.25 93.80 n/a 92.38 90.68 93.20 92.13 n/a 93.20 91.63 n/a 90.33 88.73
GIS 91.17 92.66 93.55 87.26 90.83 92.64 87.58 91.88 93.00 93.29 n/a 89.60 90.92 93.07 90.99 92.68
MAD 60.99 59.00 60.12 60.37 60.56 60.17 58.20 58.24 68.40 73.02 72.99 69.30 69.77 69.29 61.11 57.73
Av. 77.99 78.16 72.40 77.51 78.17 75.19 76.89 78.53 79.29 80.90 75.29 78.82 78.56 74.77 76.05 73.99

BIO COL 83.81 85.48 84.05 79.05 80.95 82.62 77.62 53.33 82.14 83.81 80.71 83.57 85.24 86.90 88.33 82.14
LEU 91.43 93.04 87.32 93.04 94.46 91.43 95.89 98.57 83.21 88.57 87.32 87.32 85.89 84.82 83.21 82.14
LYM 83.67 82.44 83.56 85.56 84.33 75.11 78.22 75.11 68.78 80.00 73.00 80.33 85.56 79.22 78.22 81.44
GCM 62.11 67.33 n/a 62.11 70.53 n/a 68.95 65.79 50.00 46.84 n/a 53.68 52.63 n/a 52.63 60.00
Av. 80.26 82.07 84.98 79.94 82.57 83.05 80.17 73.20 71.03 74.81 80.34 76.23 77.33 83.65 75.60 76.43

Av. total 81.52 83.53 82.19 80.84 82.33 81.98 81.10 79.06 79.55 80.91 81.23 80.03 80.22 81.43 79.32 78.79

Table 3
Reduction performed by each feature selection algorithm. UCI: percentage of features retained; NIPS–BIO: number of features.

Rep. ID Filter Wrapper

NB C4.5

H2 H1 SF FCBF H2 H1 SF H2 H1 SF

UCI ADS 0.3 0.4 0.6 5.3 0.5 0.7 1.1 0.5 0.5 0.8
ARR 4.1 4.1 6.2 2.9 2.3 5.5 3.0 2.0 2.4 3.1
HYP 3.4 3.4 3.4 18.3 10.3 15.9 29.3 10.7 14.5 20.3
ISO 3.8 11.1 15.4 3.7 3.4 11.1 4.7 2.7 3.6 n/a
KRV 7.2 8.3 8.3 18.1 11.4 13.9 14.4 11.1 17.2 13.6
LET 56.3 56.3 56.3 64.4 39.4 68.8 72.5 45.0 68.8 63.1
MUL 3.9 4.3 13.9 18.7 2.1 3.4 2.4 1.5 3.2 2.1
MUS 4.5 4.5 4.5 16.4 7.3 9.5 13.6 9.1 18.6 22.3
MUK 7.5 3.9 9.8 1.7 1.0 0.6 0.6 4.9 5.8 n/a
SIC 3.4 3.4 3.4 16.6 3.4 8.3 3.4 7.2 20.3 19.0
SPL 10.0 10.0 10.2 36.3 15.3 21.8 24.7 12.2 16.3 18.3
WAV 35.3 31.0 37.0 15.3 21.3 30.5 32.3 17.5 24.0 19.8
Av. 11.6 11.7 14.1 18.1 9.8 15.8 16.8 10.4 16.3 18.2

NIPS ARC 22.5 39.2 42.6 35.2 4.6 15.3 3.8 2.7 7.9 3.7
DEX 7.5 11.3 35.5 25.1 15.3 30.2 13.2 5.8 18.9 8.7
DOR 2.1 11.9 n/a 75.3 2.3 10.5 n/a 2.6 7.2 n/a
GIS 8.6 30.2 62.2 31.2 9.2 35.3 24.2 11.5 26.9 n/a
MAD 6.3 5.8 9.9 4.7 4.9 11.8 5.8 4.3 17.0 12.4

BIO COL 7.3 15.8 22.1 14.6 4.0 3.5 5.9 2.5 2.9 3.3
LEU 5.6 6.7 40.3 45.8 3.0 2.5 3.2 1.9 1.2 1.6
LYM 30.5 57.6 153.2 290.9 7.7 10.3 7.1 5.2 8.8 8.2
GCM 32.1 56.1 n/a 60.9 19.3 44.0 n/a 9.1 9.8 n/a
were obtained with the H1, H2, and SF algorithms with CFS as an
evaluator, and the FCBF algorithm results are shown from columns
3 to 6. In the second part, for the wrapper approaches, the first
three columns (7–9) show the results obtained with the H1, H2
and SF algorithms using NB as a subset evaluator, and in the follow-
ing three columns, we can see the results with C4. By rows, there
are the same three groups, where the percentage of features re-
tained can be seen in the first group, and in the following two
groups (NIPS and BIO), the number of features is shown because
the percentage of attributes retained is too low to be comparable.

As shown, for each approach (filter and wrapper), H2 is the
strategy that selects, on average, the smallest subsets of features.
These differences are statistically significant at level a = 0.95 for
H2 when using C4.5.

Differences between H2 (filter and wrapper using NB) and FCBF
are significant at a = 0.99 in favor of the first strategy. H2 reduction



Table 4
Running time in seconds for each feature selection algorithm.

Data Filter Wrapper

NB C4.5

H2 H1 SF FCBF H2 H1 SF H2 H1 SF

UCI 39.8 48.6 132.7 67.6 9610.1 6112.3 49620.2 6665.6 5384.3 40097.6
NIPS 423.1 799.9 8645.1 131.1 2493.0 11019.5 88279.7 1038.2 6114.0 16067.5
BIO 41.5 59.4 2083.6 11.1 574.0 442.5 1710.9 961.9 801.8 4887.4
Total 504.4 907.9 10861.4 209.8 12677.1 17574.3 139610.8 8665.7 12300. 1 61052.5

Fig. 1. Time percentage with respect to the total time for each algorithm.
is significant when compared with SF (filter and wrapper with NB)
at a = 0.95. FCBF is the strategy that finds the largest subsets. These
results are significant at 0.95 when compared with H1CF and SFC4.

Table 4 reports the running time for each feature selection algo-
rithm on the UCI, NIPS and BIO data sets, showing three different
results, two for the wrapper approaches (depending on the learn-
ing algorithm chosen) and one for the filter approach. These results
Fig. 2. Time versus reduction
do not include data for any algorithm when SF did not report any
results, i.e., ISO, MUK, DOR, GIS and GCM with C4, DOR and GCM
with NB and filter approaches with DOR and GCM. From the last
row in Table 4, a global comparison can be viewed in Fig. 1, where
the algorithm, the time needed for the algorithm and the percent-
age with respect to the total time are shown.

In the wrapper cases, on the one hand, we can observe in Table
4 that H1 requires slightly more time than H2 on average (columns
2–3, 6–7 and 9–10). The time savings of H2 with respect to H1 be-
comes more obvious when the volume of the data increases (the
number of features and/or instances), as in the NIPS data. The time
needed for both of the hybrid algorithms is similar with the BIO
data sets; however, H1 obtains better times than H2 for the wrap-
per versions with the UCI data. Therefore, although the amount of
data becomes massive, H2 becomes much more efficient. On the
other hand, the advantage of H1 and H2 with respect to the SF
(sequential forward search) is clear. Wrapper approaches of hybrid
versions are between 5 and 10 times faster than SF because the
wrapper subset evaluation is run fewer times. For example, for
the lymphoma data set and the C4 classifier, H1 and SF retain
8.80 and 8.20 genes, respectively, on average. To obtain these sub-
sets, the first run evaluated 4026 genes individually (to generate
the ranking) and 4026 subsets, whereas the second run evaluated
32180 subsets (4026 genes + 4025 pairs of genes + � � � + 4019 sets
of eight genes). The time savings of hybrid versions became more
obvious when the computer load necessary for the mining algo-
rithm increased. Finally, the filter approaches are compared (col-
umns 2–5), and we can see that the values are not comparable
with those obtained with wrappers. On average, the FCBF method
is the fastest, closely followed by the H2 and H1 algorithms, and
with wrapper algorithms.



Fig. 3. Time versus reduction with filter algorithms.
in the last position, SF requires much more time. Comparing the re-
sults in Fig. 4, it can be observed that there are obvious differences.

Figs. 2 and 3 show the plot of time versus reduction with both
the wrapper and filter approaches, respectively. In both cases, we
can see the results from the UCI data sets on the left and from
the NIPS + BIO on the right. The percentage of features retained is
represented on the abscissa. To clarify, we used a logarithmic scale
with the NIPS + BIO data instead of a decimal scale because of the
low values with these very high–dimensional data sets. On the
ordinate, we use Time

#Atts�#Inst: to capture the original size of each data
set, and a logarithmic scale is used in all cases.

Smaller values in the subset size are on the left side of the plot
and shorter times are in the lower position; thus, the bottom left
positions refer to results with better time costs and a large reduc-
tion. As shown in Fig. 2 with the wrapper approaches, in both cases
H2 is the strategy that has more points in this position; whereas in
Fig. 3 with the filters, we can see the previous assertion that a low-
er percentage of attributes is retained by H2, and less time is
needed by FCBF with the NIPS + BIO data sets.
4. Conclusions

In this work, we propose two hybrid models that are suitable for
working with large datasets. We compare the performance of both
algorithms with FS and FCBF. The experiments were conducted
with NB and C45 as induction algorithms in the filter and wrapper
approaches. We can state that the feature selection methods based
on ranking achieve promising results. Moreover, the SF strategy is
not suitable for large datasets because of its slow convergence. The
FCBF is a fast algorithm; however, it selects large feature subsets.

In short, on the one hand, accuracy results achieved by the
wrapper approaches of H1 are better than results obtained with fil-
ter approaches, whereas there are not significant differences be-
tween the accuracies obtained with respect to H2. On the other
hand, from a reduction point of view, the results obtained with
H2 are the best among the wrapper and filter comparisons.
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