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Abstract

Visual data mining with virtual reality spaces is used for the representation
of data and symbolic knowledge. High quality structure-preserving and max-
imally discriminative visual representations can be obtained using a combina-
tion of neural networks (SAMANN and NDA) and rough sets techniques, so
that a proper subsequent analysis can be made. The approach is illustrated
with two types of data: for gene expression cancer data, an improvement in
classification performance with respect to the original spaces was obtained;
for geophysical prospecting data for cave detection, a cavity was successfully
predicted.

Keywords: Data and Knowledge Visualization, Visual Data Mining,
Virtual Reality, Data Projection, Neural Networks, Rough Sets

1. Introduction

Knowledge discovery is the non-trivial process of identifying valid, novel,
potentially useful, and ultimately understandable patterns in data [5]. In
general, data under study are described in terms of collections of heteroge-
neous properties, typically composed of properties represented by nominal,
ordinal or real-valued (scalar) variables, as well as by others of a more com-
plex nature, like images, time-series, etc. In addition, the information comes
with different degrees of precision, uncertainty and information completeness
(missing data is quite common). Patterns to discover are also of different
kinds (geometrical, logical, behavioral, etc.).
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Technological advancements in recent years are enabling the collection of
large amounts data in many fields. For example, in the field of Bioinformat-
ics, high-throughput microarray gene experiments are possible, leading to an
information explosion. This increasing rates of data generation require the
development of data mining procedures facilitating the in-depth understand-
ing of the internal structure of data more rapidly and intuitively.

The complexity of many data analysis procedures makes it more difficult
for the user to extract useful information out of the results from the tech-
niques applied. Classical data mining and analysis methods are sometimes
difficult to use, the output of many procedures may be large and time con-
suming to analyze, and often their interpretation requires special expertise.
Moreover, some methods are based on assumptions about the data which
limit their application, specially for the purpose of exploration, comparison,
hypothesis formation, etc., typical of the first stages of scientific investigation.

The role of visualization techniques in the knowledge discovery process is
well known. The human brain still outperforms the computer in understand-
ing complex geometric patterns, thus making the graphical representation of
complex and abstract information directly appealing. A virtual reality (VR)
technique for visual data mining on heterogeneous, imprecise and incomplete
information systems was introduced in [24, 25]. Several reasons make VR a
suitable paradigm for visual data mining: different representation models ac-
cording to human perception preferences can be chosen, it allows immersion,
it creates a living experience, it is broad and deep, and for using VR the user
needs no mathematical knowledge and no special skills.

The purpose of this paper is twofold. First, to explore the construction
of high quality VR spaces for visual data mining using a combination of
neural networks and rough sets techniques. Second, to use the quality of the
constructed VR spaces for classification tasks. The whole process is, in turn,
divided into two steps. In the first one, both data and symbolic knowledge
are transformed into VR spaces where their structure and properties can
be visually inspected and quickly understood. In the second step, a proper
subsequent analysis is made within the constructed VR spaces with the aim
of obtaining good classification results. This latter analysis depends on the
problem at hand. The approach is illustrated with two types of data: gene
expression cancer data and geophysical prospecting data for cave detection.

Three two-class gene expression cancer data sets were selected, represen-
tative of three of the most important types of cancer in modern medicine:
liver, stomach and lung. They are composed of samples from normal and
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tumor tissues, described in terms of tens of thousands of variables, related
to the gene expression intensities measured in microarray experiments. In
the first step, neural networks for Sammon’s projection (SAMANN) [9, 13]
are used for unsupervised structure-preserving mapping to low-dimensional
feature spaces, where the corresponding VR spaces are constructed. Despite
the very high dimensionality of the original patterns, high quality visual rep-
resentations in the form of structure-preserving virtual spaces are obtained
for every data set, which enables the differentiation of cancerous and non-
cancerous tissues: the projected 3D spaces are polarized with two distribution
modes, each one corresponding to a different class. In the second step, linear
Support Vector Machines are constructed in the respective projected spaces,
leading to an improvement in classification performance with respect to the
original spaces.

A case of geophysical prospecting for underground caves is also studied.
It is not the typical two-class presence/absence problem because only one
class is known with certainty. In contrast, this is a problem with partially
defined classes: the existence of a cave beneath a measurement station is
either known for sure or unknown. In the first step, SAMANN and Non-
linear Discriminant Analysis (NDA) networks [29, 12, 13] are constructed.
SAMANN networks are used for unsupervised mapping to low-dimensional
feature spaces, obtaining high quality structure-preserving visual represen-
tations. NDA networks are used for supervised mapping to low-dimensional
feature spaces where objects belonging to different classes are maximally dif-
ferentiated. In the second step, the VR spaces and the NDA results allow
to derive a fuzzy cave membership function and to predict unknown objects
to the cave class. In one of the areas with higher values, a borehole drilled
actually hit a cavity. Rough sets methods are applied for evaluating the
information content of the original descriptor variables and for the extrac-
tion of symbolic rules from the data. The general properties of the symbolic
knowledge can be found with greater ease in the virtual reality space, and
the structures of the knowledge base and the data were found very similar.

2. Virtual Reality Spaces for Visual Data Mining

Information systems were introduced in [16]. They have the form S =
〈U,A〉 where U is a non-empty finite set called the universe and A is a non-
empty finite set of attributes, such that each a ∈ A has a domain Va and an
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evaluation function fa. The Va are not required to be finite. More generally,
heterogeneous and incomplete information systems should be considered [23].

A virtual reality (VR) space for the visual representation of informa-
tion systems [24, 25], is defined as Υ = 〈O,G,B,ℜm, go, l, gr, b, r〉. O is
a relational structure composed by objects and relations (O = 〈O,Γv〉,
Γv = 〈γv

1 , . . . , γ
v
q 〉, q ∈ N

+ and the o ∈ O are objects), G is a non-empty
set of geometries representing the different objects and relations. B is a non-
empty set of behaviors (i.e. ways in which the objects from the virtual world
will express themselves: movement, response to stimulus, etc.). ℜm ⊂ R

m is
a metric space of dimension m (the actual VR geometric space). The other
elements are mappings: go : O → G, l : O → ℜm, gr : Γ

v → G, b : O → B,
r is a collection of characteristic functions for selecting which of the orig-
inal relations will be represented in the virtual world. The representation
of an information system Ŝ in a virtual world requires the specification of
several sets and a collection of extra mappings: Ŝv = 〈O,Av,Γv〉, O in Υ,
which can be done in many ways. A desideratum for Ŝv is to keep as many
properties from Ŝ as possible. Thus, a requirement is that U and O are in
one-to-one correspondence (with a mapping ξ : U → O). The structural
link is given by a mapping f : Ĥn → ℜm. If u = 〈fa1(u), . . . , fan(u)〉 and
ξ(u) = o, then l(o) = f(ξ(〈fa1(u), . . . , fan(u)〉)) = 〈fav

1
(o), . . . , fav

m
(o)〉 (fav

i

are the evaluation functions of Av).
Humans perceive most of the information through vision, in large quanti-

ties and at very high input rates. The human brain is extremely well qualified
for the fast understanding of complex visual patterns, and still outperforms
computers. Several reasons make VR a suitable paradigm: i) it is flexible
(it allows the choice of different representation models to better suit human
perception preferences), ii) allows immersion (the user can navigate inside
the data, and interact with the objects in the world), iii) creates a living ex-
perience (the user is not merely a passive observer, but an actor in the world)
and iv) VR is broad and deep (the user may see the VR world as a whole,
and/or concentrate on specific details of the world). Of no less importance
is the fact that in order to interact with a virtual world, only minimal skills
are required [19].

3. Neural Networks for the Construction of Virtual Reality Spaces

The typical desiderata for the visual representation of data and knowledge
can be formulated in terms of minimizing information loss, maximizing struc-
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ture preservation, maximizing class separability, or their combination, which
leads to single or multi-objective optimization problems. In many cases, these
concepts can be expressed deterministically using continuous functions with
well defined partial derivatives. This is the realm of classical optimization
where there is a plethora of methods with well known properties. In the
case of heterogeneous information the situation is more complex and other
techniques are required (see, for example [26, 27]).

In the unsupervised case, the function f mapping the original space to
the VR (geometric) space R

m can be constructed as to maximize some
metric/non-metric structure preservation criteria [11] as is typical in mul-
tidimensional scaling [3], or minimize some error measure of information loss
[18]. A typical error measure is:

Sammon Error =
1∑

i<j δij

∑

i<j

(δij − ζij)
2

δij
(1)

where δij is a dissimilarity measure between any two objects i, j in the orig-
inal space, and ζij is another dissimilarity measure defined on objects i, j
in the VR space (the images of i, j under f). Usually, the mappings f ob-
tained using approaches of this kind are implicit because the images of the
objects in the new space are computed directly. However, a functional rep-
resentation of f is highly desirable, specially in cases where more samples
are expected a posteriori and need to be placed within the space. With an
implicit representation, the space has to be computed every time that a new
sample is added to the data set, whereas with an explicit representation the
mapping can be used to compute directly the image of the new sample. As
long as the incoming objects can be considered as belonging to the same
population of samples used for constructing the mapping function, the space
does not need to be recomputed. Neural networks are natural candidates for
constructing explicit representations due to their universal function approx-
imation property. If proper training methods are used, neural networks can
learn structure-preserving mappings of high dimensional samples into lower
dimensional spaces suitable for visualization (2D, 3D). Such an example is
the SAMANN network. This is a feedforward network and its architecture
consists of an input layer with as many neurons as descriptor attributes, an
output layer with as many neurons as the dimension of the VR space and one
or more hidden layers. The classical way of training the SAMANN network
is described in [9, 13]. It consists of a gradient descent method where the
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derivatives of the Sammon error are computed in a similar way to the classical
backpropagation algorithm. Different from the backpropagation algorithm,
the weights can only be updated after a pair of examples is presented to the
network. As previously mentioned, the advantage of using SAMANN net-
works is that, since the mapping f between the original and the VR space
is explicit, a new sample can be easily transformed and visualized in the VR
space. The same networks could be used as non-linear feature generators in
a preprocessing step for other data mining procedures. A recent application
of SAMANN networks for data visualization can be found at [4].

In the supervised case, a natural choice for representing the f mapping
is a NDA neural network [29, 12, 13]. The NDA network is also feedforward
with an input layer with as many neurons as descriptor attributes, an output
layer with as many neurons as classes contain the decision attribute, a last
hidden layer with a number of neurons equal to the dimension of the VR
space and optionally other hidden layers. The NDA network is trained in a
standard way [12, 13] to minimize the mean squared error.

4. Support Vector Machines for Classification

Support Vector Machines (SVMs) for classification can be described as
follows [28]: the input vectors are mapped into a (usually high-dimensional)
inner product space through some non-linear mapping φ, chosen a priori.
In this space (the feature space), an optimal separating hyperplane is con-
structed. By using a (positive definite) kernel function K(u, v) the mapping
becomes implicit, since the inner product defining the hyperplane can be
evaluated as 〈φ(u), φ(v)〉 = K(u, v) for every two vectors u, v ∈ R

N . In the
SVM framework, an optimal hyperplane means a hyperplane with maximal
normalized margin for the examples of every class (the normalized margin is
the minimum distance to the hyperplane). When the data set is separable by
a hyperplane (either in the input space or in the feature space), the maximal
normalized margin hyperplane is called the hard margin hyperplane. When
the data set is not separable by a hyperplane (neither in the input space nor
in the feature space), some tolerance to noise is introduced in the model,
associated to a parameter C that allows to control the trade-off between the
margin and the errors in the data set. By setting C = ∞, the hard margin
hyperplane is obtained.

To fix notation, consider the classification task given by a data set X =
{(x1, y1), . . . , (xL, yL)}, where each instance xi belongs to the input space R

N ,
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and yi∈{−1,+1}. Using Lagrangian and Kuhn-Tucker theory, the maximal
margin hyperplane for a binary classification problem given by a data set is
a linear combination of simple functions depending on the data:

fSVM(x) = b+

L∑

i=1

yiαiK(xi, x) (2)

where the vector (αi)
L
i=1 is the (1-norm soft margin) solution of the following

constrained convex optimization problem:

Maximize α

∑L

i=1
αi −

1

2

∑L

i,j=1
yiαiyjαjK(xi, xj)

subject to
∑L

i=1
yiαi = 0 (bias constraint)

0 6 αi 6 C i = 1...L.

(3)

The points xi with αi > 0 (active constraints) are named support vectors.
The most usual non-linear kernel functions K(u, v) are Gaussian, polynomial
or wavelet kernels [15].

5. Symbolic Knowledge via Rough Sets and its Representation

with Virtual Reality

The Rough Set Theory [16] bears on the assumption that in order to
define a set, some knowledge about the elements of the data set is needed,
in contrast to the classical approach where a set is uniquely defined by its
elements. In the Rough Set Theory, some elements may be indiscernible from
the point of view of the available information and knowledge is understood
to be the ability of characterizing all classes of the classification [17].

A decision table is any information system of the form S = 〈U,A〉 where
A = A′ ∪{d}, A′ are the condition attributes and d is the decision attribute.
The lower approximation of a concept consists of all objects, which surely be-
long to the concept, whereas the upper approximation consists of all objects,
which possibly belong to the concept. For any B ⊆ A an equivalence rela-
tion IND(B) defined as IND(B) = {(x, x

′

) ∈ U2|∀a ∈ B, fa(x) = fa(x
′

)},
is associated. A reduct is a minimal set of attributes B ⊆ A such that
IND(B) = IND(A) (i.e. a minimal attribute subset that preserves the par-
titioning of the universe). The set of all reducts of an information system S

is denoted RED(A) (reduct computation is NP-hard, and several heuristics
have been proposed [30, 21]). Reduction of knowledge consists of removing
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superfluous partitions such that the set of elementary categories in the in-
formation system is preserved, in particular, with respect to those categories
induced by the decision attribute. Minimum reducts (those with a small
number of attributes) are extremely important, as decision rules can be con-
structed from them [2]. The algorithms for computing reducts and rules used
in this paper are those of the Rosetta system [14].

6. Experiments with Gene Expression Cancer Data Sets

According to the World Health Organization, cancer is a leading cause
of death worldwide (http://www.who.int/cancer/en). From a total of 58
million deaths in 2005, cancer accounts for 7.6 million (or 13%) of all deaths.
The main types of cancer leading to overall cancer mortality are i) lung
(1.3 million deaths/year), ii) stomach (almost 1 million deaths/year), iii)
liver (662,000 deaths/year), iv) colon (655,000 deaths/year) and v) breast
(502,000 deaths/year).

6.1. Data Sets Description

Three microarray gene expression cancer databases were selected, repre-
sentative of three of the most important types of cancer in the world: liver,
stomach and lung cancer. They share the typical features of these kind of
data: a small number of samples (in the order of tens) described in terms of
a very large number of attributes (in the order of tens of thousands), related
to the gene expression intensities measured in microarray experiments.

6.1.1. Liver Cancer

The data were those used in [10], where zebrafish liver tumors were ana-
lyzed and compared with human liver tumors. First, liver tumors in zebrafish
were generated by treating them with carcinogens. Then, the expression pro-
files of zebrafish liver tumors were compared with those of zebrafish normal
liver tissues using a Wilcoxon rank-sum test. The original database had 20
samples (10 normal, 10 tumor) and 16, 512 attributes. As a result of this com-
parison, a zebrafish liver tumor differentially expressed gene set consisting of
2, 315 gene features was obtained. This data set was used for comparison with
human tumors. The results suggest that the molecular similarities between
zebrafish and human liver tumors are greater than the molecular similari-
ties between other types of tumors (stomach, lung and prostate). The data
can be found at http://www.ncbi.nlm.nih.gov/projects/geo/gds/gds_
browse.cgi?gds=2220.
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6.1.2. Stomach Cancer

The data were those used in [8], where a study of genes that are differ-
entially expressed in cancerous and noncancerous human gastric tissues was
performed. The original database contained 30 samples (22 tumor, 8 normal)
that were analyzed by oligonucleotide microarray, obtaining the expression
profiles for 6, 936 genes (7, 129 attributes). Using the 6, 272 genes that passed
a prefilter procedure, cancerous and noncancerous tissues were successfully
distinguished with a two-dimensional hierarchical clustering using Pearson’s
correlation. However, the clustering results used most of the genes on the
array. To identify the genes that were differentially expressed between can-
cer and noncancerous tissues, a Mann-Whitney’s U test was applied to the
data. As a result of this analysis, 162 and 129 genes showed a higher expres-
sion in cancerous and noncancerous tissues, respectively. In addition, several
genes associated with lymph node metastasis and histological classification
(intestinal, diffuse) were identified. The data can be found at http://www.
ncbi.nlm.nih.gov/projects/geo/gds/gds_browse.cgi?gds=1210.

6.1.3. Lung Cancer

The data were those used in [20], where gene expressions of severely em-
physematous lung tissue (from smokers at lung volume reduction surgery)
and normal or mildly emphysematous lung tissue (from smokers undergo-
ing resection of pulmonary nodules) were compared. The original database
contained 30 samples (18 severe emphysema, 12 mild or no emphysema),
with 22, 283 attributes. Genes with large detection P -values were filtered
out, leading to a data set with 9, 336 genes, that were used for subsequent
analysis. Nine classification algorithms were used to identify a group of
genes whose expression in the lung distinguished severe emphysema from
mild or no emphysema. First, model selection was performed for every al-
gorithm by leave-one-out cross-validation, and the gene list corresponding
to the best model was saved. The genes reported by at least four classifi-
cation algorithms (102 genes) were chosen for further analysis. With these
genes, a two-dimensional hierarchical clustering using Pearson’s correlation
was performed that distinguished between severe emphysema and mild or no
emphysema. Other genes were also identified that may be causally involved
in the pathogenesis of the emphysema. The data can be found at http:

//www.ncbi.nlm.nih.gov/projects/geo/gds/gds_browse.cgi?gds=737.
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Parameters Liver

Neurons in the Hidden Layer {10,30}
Weights Ranges {(10,5),(10,10),(15,5)}
Learning Rates {(.1,.01),(.2,.01),(.2,.02)}
Momentum {0,.5,.7}

Number of Iterations {200,500,1000}
Random Seed Four different values

Presented Pairs at Every Iteration (All,50,100)
Parameters Stomach

Neurons in the Hidden Layer {10,30}
Weights Ranges {(10,5),(10,10),(15,5)}
Learning Rates {(.5,.1),(1,.1),(2,.1)}
Momentum {0,.5,.7}

Number of Iterations {200,500,1000}
Random Seed Four different values

Presented Pairs at Every Iteration (All,50,200)
Parameters Lung

Neurons in the Hidden Layer {10,20}
Weights Ranges {(50,5),(50,10),(60,5)}
Learning Rates {(.005,.0005),(.01,.001),(.02,.002)}
Momentum {0,.5,.7}

Number of Iterations {200,500,1000}
Random Seed Four different values

Presented Pairs at Every Iteration (All,50,200)

Table 1: Parameters used for the SAMANN networks with cancer data sets.

6.2. Experimental Settings

Data preprocessing. For stomach and lung data, each gene was scaled to
mean zero and standard deviation one (original data were not normalized).
For liver data, no transformation was performed (original data were already
normalized).
Model training. For every data set, one-hidden layer SAMANN networks
were constructed to map the original data to a 3D VR space. The Euclidean
distance was the dissimilarity measure used in the original (δij) and the VR
(ζij) spaces. The activation functions were sinusoidal for the hidden layer
and hyperbolic tangent for the output layer. A collection of models was ob-
tained by varying some of the network controlling parameters (table 1), for
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a total of 1, 944 SAMANN networks for every data set.

6.3. Results

6.3.1. Visualization of SAMANN Results

For every data set, we constructed the histograms of the Sammon er-
ror for the obtained networks. The empirical distributions were positively
skewed (with the mode on the lower error side), which is a good behavior.
In addition, the general error ranges were small. In table 2 some statistics
of the experiments are presented: minimum, maximum, mean and standard
deviation for the best (i.e., with smallest Sammon error) 1, 000 networks.

Sammon Error

Data Set Minimum Maximum Mean Std.Dev.
Liver 0.03991 0.05564 0.04988 0.00362

Stomach 0.06295 0.07745 0.07286 0.00335
Lung 0.07924 0.10784 0.09469 0.00698

Table 2: Statistics of the best 1, 000 SAMANN networks obtained for cancer data sets.

Clearly, it is impossible to represent a VR space on printed media (nav-
igation, interaction, and world changes are all lost). Therefore, very simple
geometries were used for objects and only snapshots of the virtual worlds
are presented. For simplicity, in all of the VR-spaces presented G ={dark
spheres, light spheres}, B ={static} and the l function is based on the rep-
resentation of f given by a SAMANN network. r is a single characteristic
function for the relation C with the equivalent classes such that objects of
one class will be represented as dark spheres and those of the other class by
light ones.

Figures 1, 2 and 3 show the VR spaces corresponding to the best obtained
networks for the liver, stomach and lung cancer data sets respectively. Al-
though the mapping was generated from an unsupervised perspective (i.e.,
without using the class labels), objects from different classes were represented
in the VR space differently for comparison purposes. Transparent membranes
wrap the corresponding classes, so that the degree of class overlapping can
be easily seen. In addition, it allows to look for particular samples with
ambiguous diagnostic decisions.
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Figure 1: VR space of the liver cancer data set (Sammon error = 0.03991, best out of 1, 944
experiments). The space was generated from an unsupervised perspective, but classes
are displayed for comparison purposes. Dark spheres: normal, Light spheres: cancerous
samples.

The low values of the Sammon error indicate that the spaces preserved
most of the distance structure of the data, therefore giving a good idea about
the distribution in the original spaces. The three VR spaces are clearly
polarized with two distribution modes, each one corresponding to a different
class. Note, however, that classes are more clearly differentiated for the liver
and stomach data sets than for the lung data set, where a certain level of
overlapping exists. The reason for this may be that mild and no emphysema
were considered members of the same class (see section 6.1).

Since the distance between any two objects is an indication of their dis-
similarity, the new point is more likely to belong to the same class of its
nearest neighbors. In the same way, outliers can be readily identified, al-
though they may result from the space deformation inevitably introduced by
the dimensionality reduction.

6.3.2. Classification Results with SVMs

Since the projected spaces are polarized with two distribution modes,
each one corresponding to a different class, a linear classification model is
suitable from a supervised perspective. In our case, SVMs were used to that
end, as explained next.

First, for every data set we obtained Sammon-projected data with dimen-
sion values ranging from 3 to 20. For every dimension, 2, 500 Newton mini-
mization procedures were applied varying the initial point and the step size
to obtain implicit representations of the original data. Similar to SAMANN
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Figure 2: VR space of the stomach cancer data set (Sammon error = 0.06295, best out
of 1, 944 experiments). The space was generated from an unsupervised perspective, but
classes are displayed for comparison purposes. Dark spheres: normal, Light spheres: can-
cerous samples.

networks, the Euclidean distance was the dissimilarity measure used in the
original (δij) and the VR (ζij) spaces. The representations with smallest
Sammon error were selected. Then, for every dimension, a leave-one-out
cross-validation was performed to the projected data with hard margin lin-
ear SVMs (C = ∞).

Table 3 shows the best leave-one-out cross-validation performances ob-
tained for every projected data set, together with the results obtained with
the original dimensions. As it can be seen, classification performance im-
proves in the projected spaces (with a very low dimension).
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Figure 3: VR space of the lung cancer data set (Sammon error = 0.07924, best out of 1, 944
experiments). The space was generated from an unsupervised perspective, but classes are
displayed for comparison purposes. Dark spheres: severe emphysema, Light spheres: mild
or no emphysema. The boundary between the classes in the VR space seem to be a low
curvature surface.

Data Set Dimension Test% Dimension Test%

Liver 16,512 90.0% 13 100.0%
Stomach 7,129 100.0% 4 100.0%
Lung 22,283 73.3% 11 90.0%

Table 3: Best leave-one-out cross-validation results for linear SVMs (C = ∞) with cancer
data sets for original (left) and projected (right) data.

7. Experiments with Geophysical Prospecting Data

The proposed approach was applied to the detection of underground caves
with geophysical data. Cave detection is a very important problem in civil
and geological engineering. Sometimes the caves are opened to the surface,
but typically they are buried and geophysical methods are required for de-
tecting them. This task is usually very complex.
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7.1. Data Set Description

The studied area contained an accessible cave (see figure 8 right). Geo-
physical methods complemented with a topographic survey were used in the
studied area with the purpose of finding their relation with subsurface phe-
nomena [22].

The set of geophysical methods included 1) the spontaneous electric po-
tential (SPdry) at the surface of the earth in the dry season, 2) the vertical
component of the electro-magnetic field in the VLF region of the spectrum,
3) the spontaneous electric potential in the rainy season (SPrain), 4) the
gamma ray intensity (Rad) and 5) the local topography (Alt). The raw data
consist of these 5 fields (the attributes) on a spatial grid containing 1, 225
measurement stations (the data objects).

This is not the typical two-class presence/absence problem because only
one class is known with certainty. In contrast, this is a problem with par-
tially defined classes: the existence of a cave beneath a measurement station
is either known for sure or unknown. Note, however, that this is not a one
class problem, because two different classes exist. Since the classes are par-
tially defined, a combination of unsupervised and supervised approaches is
required.

7.2. Experimental Settings

Data preprocessing. In order to eliminate the data distortion introduced
by the different units of measure and to reduce the influence of noise and
regional geological structures, a data preprocessing process was performed
consisting of: i) conversion of each physical field to standard scores. ii)
model each physical field f as composed of a trend, a signal and additive
noise: f(x, y) = t(x, y) + s(x, y) + n(x, y) where t is the trend, s is the sig-
nal, and n is the noise component. iii) fit a least squares 2D linear trend
t̂(x, y) = c0+c1x+c2y and obtain the residual: r̂(x, y) = f(x, y)− t̂(x, y). iv)
convolve the residual with a low pass 2D filter to attenuate the noise com-
ponent: ŝ(x, y) =

∑N

k1=−N

∑N

k2=−N h(k1, k2)r̂(x− k1, y − k2), where ŝ(x, y)
is the signal approximation, and h(k1, k2) is the low-pass zero-phase shift
digital filter. v) recompute the standard scores and add a class attribute
indicating whether there is a known cave below the corresponding measure-
ment station or if its presence is unknown. The pre-processed data will be
called cave-prp-data.
Reducts from the original data set. The cave-prp-data set was dis-
cretized using the boolean reasoning algorithm and the reducts were found
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by Johnson’s algorithm [14]. A single reduct was found, consisting of all
of the 5 original variables, proving that no proper subset of these variables
exactly preserves the discernibility relation of the original data. That is, no
lower dimensional space based on the power set of the original variables is
discernibility-preserving. Thus, lower dimensional spaces based on non-linear
combinations must be constructed for visualization.
Model training. A collection of experiments was conducted with one-
hidden layer SAMANN networks in order to select adequate models for the
visualization. Two-hidden layer NDA networks were used to construct a
space where objects belonging to different classes are maximally differenti-
ated. The activation functions were sinusoidal for the first hidden layer and
hyperbolic tangent for the rest of layers. For the SAMANN networks, the
Euclidean distance was the dissimilarity measure used in the original (δij)
and the VR (ζij) spaces. A collection of models was obtained by varying
some of the network controlling parameters (table 4), for a total of 1, 260 for
the NDA and 324 for the SAMANN networks respectively.

Parameters SAMANN

Neurons in the First Hidden Layer {20,30,40}
Weights Ranges {(10,5),(10,10),(15,15)}
Learning Rates {(3.0,1.5),(2.0,1.0),(1.0,0.5)}
Momentum {0,.1,.2}

Number of Iterations 200
Random Seed Four different values

Presented Pairs at Every Iteration All
Parameters NDA

Neurons in the First Hidden Layer {20,30,40,50,60}
Weights Ranges ({.1,.5,1,3,5,7,9},1.0)
Learning Rates .001,.001,.001
Momentum {.1,.2,.3}

Number of Iterations {1000,2000,3000}
Random Seed Four different values

Table 4: Parameters used for the SAMANN and NDA networks with the cave-prp-data

set.
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7.3. Results

7.3.1. Visualization of SAMANN Results

SAMANN networks mapped the original cave-prp-data 5-dimensional space
to a 3D VR-space from an unsupervised perspective. The distribution of the
Sammon error is shown in figure 4.

Figure 4: Left: Distribution of the SAMANN error (324 experiments) using SAMANN
networks with the cave-prp-data set. Right: Distribution of the classification error of the
cave class (1, 260 experiments) using NDA networks.

It is skewed towards the smaller errors end, which is a good behavior, with
a mean of 0.0229 and a standard deviation of 0.0013 indicating that error
values fluctuate within a narrow range. As an illustration, the VR-space
corresponding to experiment 135 is shown in figure 5.

Figure 5: VR-space of the cave-prp-data set corresponding to experiment 135 (Sammon
error = 0.0208). Objects of the cave class are dark. Objects of the unknown class are
light (this is for comparison purposes only, since the mapping generating the space is
unsupervised). Transparent membranes wrap the corresponding classes.
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The low value of the Sammon error indicates that the space preserved
most of the distance structure of the data, therefore, giving a good idea
about the distribution in the original space. The space is clearly polarized
with two distribution modes: one at the left hand side composed exclusively
of cave objects, and another at the right hand side composed only of un-
known objects. Since the distance between any two objects is an indication
of their dissimilarity, objects of the unknown class closer to objects of the
cave class are more likely to correspond to measurement stations having un-
derground cavities than objects further away. In particular, those objects of
the unknown class contained within the convex hull defined by the objects of
the cave class are very interesting. It is also evident that only a smaller pro-
portion of the objects of the unknown class are either contained, or close to
the convex hull of the cave class, as expected from the typical lognormal-like
distribution of many geological features.

A hierarchical clustering using Euclidean distance and Ward’s method [1]
(figure 6) clearly reveal the existence of two well defined clusters.

Figure 6: Dendrogram of the objects in the VR-space of figure 5 for the cave-prp-data set
(Ward’s method using Euclidean distance).

Their nature is explained by the 2x2 contingency table defined by the
membership with respect to the cave/unknown classes vs. those correspond-
ing to the two clusters emerging from the dendrogram. The table has a
highly significant χ2 value (165.872), indicating the high degree of associa-
tion between the existing classes (specially the cave class) and the formed
clusters. Cluster 2 corresponds to the cave class containing 120 of the 121
cave objects and 419 unknown objects (likely candidates to belong to the
cave class). Clearly, those in cluster 1 correspond to locations less likely to
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have underground cavities beneath.

Cluster 1 Cluster 2 Total
Unknown 685 419 1,104
Cave 1 120 121

7.3.2. Visualization of NDA Results and Cave Membership Function

A structure preserving space is not necessarily class-discriminating and
conversely. In a supervised situation, the information available from the
decision attribute is used for constructing a space where objects belonging to
different classes are maximally differentiated. NDA networks were used for
that purpose. The distribution of the classification error for the cave class
is shown in figure 4 (right) (the only determined class in the problem). The
distribution exhibits a skewed-multimodal characteristic with the important
modes shifted towards smaller error values (a good feature). Several networks
have 0% classification error for the cave class and a representative of them
is the one found in experiment 174.

A VR-space was built from a composition of the mapping function (ϕ)
represented by that network, with a principal components transformation
(P) given by f = (ϕ ◦ P) (figure 7).

Figure 7: VR-space maximizing class separability for the 1, 225 objects in the cave-prp-

data set according to the (ϕ ◦ P) function. The classification error of the cave class is
0%.

The intrinsic dimensionality of this space is very close to one, and its shape
indicates an almost linear continuum within and between the two classes.
Conceptually, the objects at the two extremes represent the maximum expres-
sion of a cavehood property, and its opposite, the maximum expression of be-
ing solid rock, in geological terms. In between there is a gradation of the cave-
hood property, which is actually a fuzzy concept. Let om ∈ O be the object
of the VR-space satisfying the property ((ϕ ◦ P)(om))pc1 ≤ ((ϕ ◦ P)(o))pc1
for all o ∈ O and let oM be the object such that d(om, oM) >= d(om, o)
for all o ∈ O, where d is the Euclidean distance and pc1 is the first princi-
pal component. Then, a two dimensional membership function µc ∈ [0, 1]
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for caveness can be constructed as µc(o) = (1− (d(om, o)/d(om, oM))). Note
that although a supervised approach was used, this formulation is based only
on the information about the known class. The distribution of µ within the
investigated area is shown in figure 8 (left).

Figure 8: Right: Map of the known cave. Left: Fuzzy membership function µc of the cave

class computed from the VR-space obtained from the NDA network (Extreme values:
white=1, black=0). The white circle indicates the area where a borehole hit a cavity, not
opened to the surface.

The behavior of µ depicts a very consistent and realistic geological pat-
tern, where not only the known cave is correctly flagged with maximal mem-
bership values, but also defines a collection of halos around the known cave
with progressively decreasing values. In addition, other smaller areas with
medium to high values are indicated, suggesting locations where other un-
derground cavities could be expected. In particular, a borehole drilled at a
location within the white circle of figure 8 (left) actually hit a cavity.

7.3.3. Visualization of Symbolic Knowledge

Symbolic knowledge in the form of production rules was extracted from
the cave-prp-data set using rough set techniques, as explained in section
5. Structure preserving VR-spaces representing an information system with
rules as objects can be constructed by minimizing the Sammon error (1). In
this case the dissimilarity measure used for the original attributes was δij =
(1 − ŝij)/ŝij, where ŝij is Gower’s similarity coefficient [6]. The Euclidean
distance was the measure used for ζij in the VR space. A set of 345 rules
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were generated. Two representative examples are:

SPdry([−0.16981, ∗)) & V LF ([−0.75462, ∗)) &
SPrain([0.48744, ∗)) & Rad([−0.21015, ∗)) &
Alt([0.00346, ∗)) =⇒ unknown (123 objects)

SPdry([∗,−1.50209)) & V LF ([∗,−1.14882)) &
SPrain([∗,−0.46789)) & Rad([∗,−1.54413)) &
Alt([∗,−1.22398)) =⇒ cave (6 objects)

The approach described in [24, 25] for the construction of VR-spaces
representing symbolic knowledge in the form of production rules was applied
and the corresponding space is shown in figure 9 (left). When compared
with figure 5 it is clear that the structures of the knowledge base and the
data are very similar. An even clearer distribution is obtained if the rule
base is pre-processed with the Leader clustering algorithm [7] in order to
select representatives for subsets of similar rules and work with a smaller
information system.

Such a space is shown in figure 9 (right) where the relative size of an
object at a particular location in the VR-space is proportional to the number
of similar rules within its neighborhood (therefore, of data concentration in
the original feature space).

Figure 9: Left: VR-space with a representation of the 345 rules for the cave-prp-data set.
Right: VR-space with the 231 most representative rules (sizes are proportional to the
amount of similar rules at a given location). Dark objects: rules concluding about the
cave class. Light objects: rules concluding about the unknown class.

This allows an easy identification of the most general rules from the more
specific ones and also of knowledge granules. From the point of view of the
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distribution of the most important objects, the space is strongly polarized,
allowing the identification of the rules describing the properties of the physi-
cal fields more accurately identifying the presence of underground caves and
also the properties of the fields characterizing the areas most likely composed
of solid rock. At the same time it allows the identification of the knowledge
related with those objects of undetermined nature (i.e. from the undefined
class).

8. Conclusions and Future Work

A combination of neural networks and rough set techniques was used
for constructing virtual reality spaces for visual data mining suitable for
representing data and symbolic knowledge. Good neural network models
were found with the use of distributed computing techniques, that were used
as mapping functions to produce high quality VR spaces where the properties
of data and symbolic knowledge can be revealed.

For microarray gene expression cancer data sets, the obtained results show
that a few non-linear features can effectively capture the similarity structure
of the data and also provide a good differentiation between the cancer and
normal classes. Linear Support Vector Machines constructed in projected
spaces lead to an improvement in classification performance. However, in
cases where the descriptor attributes are not directly related to class structure
or where there are many noisy or irrelevant attributes the situation may not
be as clear. In these cases, feature subset selection and other data mining
procedures could be considered in a preprocessing stage.

Problems with partially defined classes can be approached successfully
by combining unsupervised and supervised techniques. A method for con-
structing membership functions in problems with partially defined classes
is proposed which can be used as a forecasting tool, as illustrated with an
example from geophysical prospecting. This approach can be extended to
multiclass problems with partially defined classes.
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