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ANN-Based Residential Water End-use Demand Forecasting Model 

 

Abstract 

Bottom-up urban water demand forecasting based on empirical data for individual water end uses or 

micro-components (e.g., toilet, shower, etc.) for different households of varying characteristics is 

undoubtedly superior to top-down estimates originating from bulk water metres that are currently 

performed. Residential water end-use studies partially enabled by modern smart metering 

technologies such as those used in the South East Queensland Residential End Use Study 

(SEQREUS) provide the opportunity to align disaggregated water end-use demand for households 

with an extensive database covering household demographic, socio-economic and water appliance 

stock efficiency information. Artificial Neural Networks (ANNs) provide the ideal technique for 

aligning these databases to extract the key determinants for each water end-use category, with the 

view to building a residential water end-use demand forecasting model. Three conventional ANNs 

were used: two feed-forward back propagation networks and one radial basis function network. A 

sigmoid activation hidden layer and linear activation output layer produced the most accurate 

forecasting models. The end-use forecasting models had R2 values of 0.33, 0.37, 0.60, 0.57, 0.57, 

0.21 and 0.41 for toilet, tap, shower, clothes washer, dishwasher, bath and total internal demand, 

respectively. All of the forecasting models except the bath demand were able to reproduce the 

means and medians of the frequency distributions of the training and validation sets. This study 

concludes with an application of the developed forecasting model for predicting the water savings 

derived from a citywide implementation of a residential water appliance retrofit program (i.e., 

retrofitting with efficient toilets, clothes washers and shower heads). 

 

Keywords: Artificial neural network, residential water demand forecasting, water end use, water 

micro-component, water demand management 
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1. Introduction  

The urbanised South East Queensland (SEQ) region in Australia, like many other inhabited regions, 

faces a series of complex problems involving the supply and demand management of water 

resources. From 2005 to 2008, SEQ endured a severe drought in conjunction with high population 

growth (Queensland Water Commission, 2009). In response, water demand management programs 

and policies were instituted to reduce demand and prolong the duration of an adequate supply of 

water. However, given that there was inadequate understanding of the relationship between end-use 

water demand (e.g., for showers) and household characteristics, the effectiveness of the water 

demand management schemes (e.g., a shower head replacement program) was difficult to determine 

with any degree of precision (Queensland Water Commission, 2009). In response to this limited 

understanding of residential water end-use demand, the South East Queensland Residential End Use 

Study (SEQREUS) was funded by the Queensland State Government (see Beal et al., 2011). The 

SEQREUS resulted in a large database containing aligned water end-use data for over 250 

households, water appliance stock efficiency data, demographic data and socio-economic data.  

Artificial Neural Networks (ANNs)  was deemed the most suitable technique to exploit this 

database to develop a residential water end-use demand forecasting model for the primary purpose 

of determining the effectiveness of a range of water demand management programs (e.g., household 

appliance stock retrofit programs). 

2. Background 

2.1 Residential water end-use studies 

Residential water end-use studies utilise high-resolution smart water metering, data logging, flow 

trace analysis and surveys to determine the volume and features of each water end use, such as tap 

water use, clothes washer, dishwasher, shower, toilet, bath, irrigation and miscellaneous. These 

studies result in a comprehensive registry of disaggregated water consumption end uses (Loh & 
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Coghlan, 2003; Willis et al., 2009; Beal et al., 2010; Beal et al., 2011c; Gato et al., 2011; Willis et 

al., 2011). Information gathered from end-use studies and associated stock efficiency, socio-

demographic and intervention studies allows greater understanding of the predictors of end-use 

water demand (Mayer et al., 1999; Loh & Coghlan, 2003; Heinrich, 2009; Willis et al., 2010; Gato 

et al., 2011; Beal et al., 2011b; Makki et al., 2011; Willis et al., 2011). Such detailed stochastic 

information can inform enhanced urban water demand practices and policy. The end-use study 

dataset underpinning this empirical modelling study is described briefly in the next section.  

2.2 SEQREUS 

The SEQREUS was a $1M research project funded by the Urban Water Research Security Alliance 

(UWRSA) from 2009-2011 and completed by the Smart Water Research Centre (SWRC) located at 

Griffith University. The objectives of the greater SEQREUS were to calculate household and per 

capita disaggregated consumption, reveal key determinants of water end-use demand, study diurnal 

demand patterns at an end-use level and assess the influence of water-efficient appliances (Beal et 

al, 2011c). This particular sub-study utilises an end-use dataset collected in June 2010 covering 252 

detached households in four interconnected cities (i.e., Brisbane, Gold Coast, Ipswich and Sunshine 

Coast) located in the greater SEQ region. Moreover, this sub-study employs a comprehensive 

aligned dataset consisting of appliance stock efficiency, demographic and socio-economic variables 

for each of these households. These aligned datasets provided the foundations of the ANN-based 

residential water end-use demand forecasting model discussed here and associated water efficiency 

retrofit program simulation. The model focused on the internal demand end uses, which were 

consistent over the study period. The irrigation or outdoor end-use category was not included in this 

forecasting model because this end-use category is highly variable from day to day and requires 

end-use data over numerous seasonal periods over many years to provide a satisfactory dataset. 

However, the omission of the outdoor end-use category is not considered a limitation of this present 

study, as the key goal was to model scenarios of water stock efficiency and demographic parameters 
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for different households, thereby informing best-practice water efficiency programs. 

2.3 Reported predictors of water end-use demand 

The predominant variables influencing total and disaggregated water demand include socio-

economic and demographic variables, regional and climatic variables and appliance stock efficiency 

(Beal et al., 2010; Beal et al., 2011b). This purpose of this section is to outline the reported 

variables affecting total and disaggregated water demand. 

Socio-economic and demographic variables include household size, number of adults, number of 

children, number of teenagers, gender, age, income and education. Socio-economic and 

demographic variables are not generally independent and can thus be correlated with one another 

(Neter et al., 1983). Highly correlated socio-economic and demographic variables can therefore be 

used as proxy variables (Arbues et al., 2003). The typical practice when developing linear 

regression models is to include interaction terms between interrelated variables to reduce over-

explanation of the system and error terms (Neter et al., 1983).  

Household size or occupancy has a highly significant causal relationship to both per household 

demand and per capita demand. As expected, as occupancy of a household increases, so does its 

demand for water. However, an increase in water demand with an increasing number of household 

occupants is by no means a linear relationship (Heinrich, 2009; Beal et al., 2011a; Gato, 2011; Lee 

et al., 2012). Conversely, when analysing per capita demand against household occupancy, 

household per capita consumption decreases as household size increases (Beal et al., 2010; Gato, 

2011). The decrease in per capita consumption with increasing consumption relates to an ‘economy-

of-scale’ effect within the household (Beal et al., 2011a). Additionally, reduced per capita 

consumption could be related to greater competition for water using devices in peak periods, 

thereby reducing each occupant’s usage (i.e., reduced time in the shower during the morning rush).  
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Considering the age characteristics of household occupants provides a better estimate of end use 

consumption (Makki et al., 2011). On average, households with younger children are lower water 

consumers than households containing predominantly teenagers, especially for shower use.  Arbues 

et al. (2003) describes an optimum household size as well as the point where the economies of scale 

vanish, based on a correlation between the age gap between offspring and, hence, a greater 

possibility of more teenagers occurring in a larger household. 

Beal et al. (2011a) observed that older households, based on average occupant age, used more water 

per capita than younger households. Willis et al. (2009) hypothesised that retired individuals spend 

a relatively greater proportion of their time at home and thus have a greater opportunity to use 

water-dependent appliances. Similarly, Kenney et al. (2008) observed that as the mean age of a 

household increases, so does household water consumption. Kenney et al. (2008) also outlined the 

correlation between age, household income and wealth, noting that the increase of water 

consumption per household is a result of the combination of these variables. 

Household income has been reported to have a variety of relationships with water consumption. 

Loh & Coghlan (2003) found that households with greater incomes have greater per capita and 

household water consumption than households with lower incomes, due mainly to much higher 

discretionary irrigation end-use demand. Beal et al. (2011a) outlined a trend of larger, high-income 

households using less water per capita than smaller, low-income households. Kenney et al. (2008) 

also observed that higher income households consume more water on a household basis than lower 

income households. The conflicting results highlight the importance of reporting water demand in 

water end-use categories (e.g., shower use) and on a per capita basis. Such reporting provides a 

levelised comparison. 

Water-use stock and appliance efficiency, commonly measured by water efficiency labelling 

schemes (e.g., WELS in Australia and WaterSense in the United States), is the unit amount of water 

used or consumed per unit of time (e.g., min) for a particular water end use device. Higher 
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efficiency ratings (e.g., 5 stars) have lower water consumption (i.e., 6 L/min). Beal et al. (2011a) 

analysed the efficiency of clothes washers and shower heads against daily per capita water 

consumption. Clothes washers rated 3 stars or less had an average of 35.1 L/p/d consumption, 

whereas clothes washers having 4 stars or less had an average consumption of 28.3 L/p/d. This 

difference equates to a saving of 6.6 L/p/d (Beal et al., 2011a). Similar stock efficiency comparisons 

for shower heads showed a significant 13.9 L/p/d saving (Beal et al., 2011a). Other studies have 

reinforced this finding, showing that water efficient appliances result in decreased water demand 

(Gato, 2006; Kenney, 2008, Heinrich, 2009). 

2.4 Residential water end use demand modelling 

The modelling of residential water end-use demand requires the application of analytical techniques 

(e.g., Bayesian networks, multi-variable regression and stochastic modelling) and an extensive 

database of predictor variables. While a number of studies have presented models that are capable 

of predicting total residential demand (Froukh, 2001; Jorgensen et al., 2009; Polebitski & Palmer, 

2010), far fewer studies have attempted to predict water end-use demand. The advent of high-

resolution smart metering and water end-use disaggregation software tools have allowed end-use 

modelling to be performed with a reasonable degree of accuracy.  

Gato (2006) employed a multi-variable regression approach, applying empirical information 

collected from the Melbourne Residential End Use Study. Various tailored demographic variables 

were used to predict the demand of particular water end uses. Predictor variables identified from 

regression modelling included the number of adults, the number of children less than 12 years of 

age, the number of children 12 and older, and appliance information, such as ownership of a 

dishwasher, the type of clothes washer and the fraction of dual flush toilets in the household. 

Significant prediction models were produced for the following water end uses: total internal 

demand; toilet demand; shower demand; clothes washer demand; dishwasher demand; and tap 

7 



 

demand.  

Blokker et al. (2010) developed a stochastic end-use model based on demographics, end-use 

category frequency of use, flow duration and event occurrence likelihood to simulate water demand 

patterns. To develop this stochastic end-use model, a Poisson rectangular pulse model was derived 

from smart water metering studies and surveys (Blokker et al., 2010).  The final stochastic end-use 

model approach developed by Blokker et al. (2010) accounted for 0.93 of the observed variance for 

the diurnal pattern of water demand.  

Hsiao et al. (1995) adapted a Bayesian conditional demand framework to develop a forecasting 

model to predict electric water heating associated with residential water demand end uses. The 

construction of the Bayesian models involved the formation of appliance dummy variables and 

transforming the variables into fractions of demographics and weather variables (Hsiao et al., 

1995). The variables were then combined with aggregated loads, appliance ownership and 

demographic information. The method was applied to two data sets containing 49 and 347 homes, 

respectively, and produced models with acceptable relative errors ranging from 0.081 to 0.298. 

There have been some recent attempts to predict residential water end-use demand. While these 

techniques appeared satisfactory by meeting certain statistical significance or reliability thresholds, 

each technique had particular advantages and weaknesses. The multi-variable regression modelling 

approach applied by Gato (2006) benefits from being less complex than the other methods but is 

susceptible to over-predicting the system due to multi-collinearity of independent variables (Hsiao 

et al. 1995). The stochastic modelling approach benefits by its universal applicability because it is 

not reliant on direct measurements (Blokker et al., 2010). The Bayesian conditional demand 

framework using a small sample of metered houses and aggregated load information can produce 

accurate models (Hsiao et al., 1995). 

Modelling residential water end-use demand invariably is a process mired in the highly variable 
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preferences of consumers and intercorrelated nonlinear demographic information. High-income 

category households, as compared to other income categories, are observed to have a higher 

frequency of children in the household. The reasoning behind this observation is that, as people age, 

they move into higher income brackets corresponding to their experience in the work force, and 

with age they are more likely to get married and have children. ANN modelling techniques have an 

ability to adapt, learn and generalise relationships occurring within input information (Karayiannis 

& Venetsanopoulos, 1993). To improve on the modelling of residential water demand end uses, due 

to the properties of the ability to adapt, learn and generalise, ANN modelling techniques are 

predicted to be better suited to dealing with highly variable data sets and intercorrelated nonlinear 

inputs. 

3. Artificial neural networks 

3.1 Overview 

ANNs are comprised of one or more processing units called 'artificial neurons' or 'perceptrons' 

(Karayiannis and Venetsanopoulos, 1993). Perceptrons of an ANN are interconnected with one 

another by a series of weighted connections. The perceptrons of an ANN, depending on the system 

being replicated, are arranged in layers, with each perceptron of the preceding layer having a 

weighted connection with each neuron of the proceeding layer. In the process of ANN training to 

replicate a system, a training data set is fed through the network. Each perceptron processes the 

input data or input signal from either the input layer or the preceding perceptrons. The final layer of 

the ANN produces an output signal. The weights and structure of the network are altered in a 

manner depending on the specific training algorithm. 

3.2 Perceptron 

The perceptron is comprised of several components including the weights of the inputs, the 
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summation function, the activation function and the output (Karayiannis and Venetsanopoulos, 

1993). The weights of the inputs act as a linear multiplier to change the magnitude of the input 

value. There is an input weight connected to the neuron for each input variable. The summation 

function acts to sum all weighted input signals. The summation term is then inputted into the 

activation function to produce an output. The activation function of the perceptron is dependent on 

the type of ANN and the desired application.           

3.3 ANN structure 

The structure of an ANN falls into one of two main categories: single-layer networks and multiple-

layer networks. Single-layer networks comprise an input layer of values and an output layer of 

perceptrons. Multi-layered networks consist of an input layer of values, one or more hidden layers 

of perceptrons and an output layer of perceptrons. The number of perceptrons in each layer is 

dependent on the nature of the model being predicted.  

3.3.1 Linear Activation Perceptron 

Eqs. 1 to 3, below, display the function of the linear activation perceptron. 

v j=∑
h= 1

m

w jh xh                                                                                                                                  (1)  

σ(v j)= v j                                                                                                                                        (2) 

Y j= σ (v j)                                                                                                                                       (3) 

where x is the input vector of input variables, xh is the input variable h of the input vector, m is the 

number of input variables, wjh is the weighted connection from input variable h to perceptron j, vj is 

the summation term of perceptron j, σ is the perceptron activation function, and Yj is the output from 

perceptron j. 
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3.3.2 Sigmoid activation perceptron 

Eqs. 4 to 6, below, display the function of the sigmoid activation perceptron, 

v j=∑
h= 1

m

w jh xh                                                                                                                                  (4) 

σ(v j)=
6

1+ e−α v j
− 3                                                                                                                        (5)                                                                                                                                 

Y j= σ (v j)                                                                                                                                       (6) 

where the variables are defined as above. 

3.3.3 Radial basis function perceptron 

Eq. 7, below, displays the function of the radial basis function perceptron. 

𝑌𝑌𝑗𝑗(𝑥𝑥) = �1 + ℎ
𝑑𝑑2
�𝑥𝑥 − 𝑐𝑐𝑗𝑗�                 (7) 

where x is the input vector of input variables, cj is the radial basis centre of perceptron j, h is the 

number of hidden perceptrons, d is the greatest Euclidean distance between radial basis centres, and  

Yj is the output from perceptron j. 

3.3.4 Error back propagation 

The weights connecting the hidden layer to the output layer are updated according to error back 

propagation by eq. 8 below. 

wki (t+ 1)= wki( t)+ α (Y jk− Y k )σ ' (v k)Y i                                                                                       (8) 

where Yi is the output from perceptron i of the hidden layer, Yjk is the output from perceptron k of 

the output layer, Yk is the observed value of perceptron k, vk is the summation term of perceptron k, 

α is the training rate, wki is the weighted connection from the output of the hidden perceptron i to 
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perceptron k, wki(t) is the weight of the current epoch, and wki(t+1) is the weight of the next epoch. 

The weights connecting hidden layers are updated according to error back propagation by eq. 9, 

below. 

wih( t+ 1)= wih(t )+ α (∑
k= 1

m

(Y jk− Y k )σ ' (v k)wki)σ ' (vi) xh                                                               (9) 

where Yi is the output from perceptron i of the hidden layer, Yjk is the output from perceptron k of 

the output layer, Yk is the observed value of perceptron k, vk is the summation term of perceptron k, 

α is the training rate, wki is the weighted connection from the output of the hidden perceptron i to 

perceptron k, x is the input vector of variables, xh is the input variable h, m is the  number of output 

perceptrons, vi is the summation term of perceptron i, wih is the weighted connection from the input 

variable xh to perceptron i, wih(t) is the weighted connection of current epoch, and wih(t+1) is the 

weighted connection of the next epoch. 

3.3.5 Hybrid training method 

The radial basis centre is selected according to the minimum Euclidean distance between the input 

vector and the radial basis centres. 

𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚 (‖𝑥𝑥 − 𝑐𝑐𝑚𝑚‖𝑚𝑚=1𝑚𝑚 )                 (10) 

where x is the input vector, ci is the radial basis centre of perceptron I, n is the number of radial 

basis perceptrons, and cmin is the radial basis centre pertaining to the minimum Euclidean distance. 

The accuracy of the RBFN is calculated using the RMSE function. If the minimum Euclidean 

distance between the input vector and the radial basis centres is above a specified threshold v and 

the RBFN accuracy acc is less than the desired level, the associated radial basis centre is shifted 

towards the input vector: 
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𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡 + 1) = �𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚
(𝑡𝑡) + 𝛼𝛼[𝑥𝑥 − 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚], 𝑚𝑚𝑖𝑖 (‖𝑥𝑥 − 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚‖ ≥ 𝑣𝑣   ∧   𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ≥ 𝑎𝑎𝑐𝑐𝑐𝑐

𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡),                                                                                 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒�                      (11)                                    

where x is the input vector, ci is the radial basis centre of perceptron I, n is the number of radial 

basis perceptrons, and cmin is the radial basis centre pertaining to the minimum Euclidean distance, v 

is the threshold, acc is the level of accuracy in terms of RMSE, α is the training rate, cmin(t) is the 

radial basis centre of the current epoch, and cmin(t+1) is the radial basis centre of the next epoch. 

The weights connecting the radial basis function perceptrons to the output layer are calculated by 

error back propagation. 

3.4 Hidden layer sigmoid activation 

The Hidden Layer Sigmoid Activation (HLSA) Network consists of one input layer, a hidden layer 

of sigmoid activation perceptrons and an output layer of sigmoid activation perceptrons. The 

sigmoid activation function of the HLSA has been modified so that the output of the function can 

incorporate normalised values from -3 to +3 to allow the network to process transformed data. The 

HLSA is trained according to Error Back Propagation.  

3.5 Hidden layer sigmoid activation linearly activated output  

The Hidden Layer Sigmoid Activation Linearly Activation Output (HLSALAO) network is a hybrid 

network consisting of an input layer, a hidden layer of sigmoid activation perceptrons and an output 

layer of linearly activation perceptrons. The sigmoid activation function of the HLSALAO has been 

modified so that the output of the function can incorporate normalised values from -3 to +3 to allow 

the network to process transformed data. The HLSALAO is trained according to Error Back 

Propagation.  
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3.6 Radial basis function network 

The Radial Basis Function Network (RBFN) is structured according to an input layer, a hidden 

layer comprised of radial basis function perceptrons and an output layer consisting of linearly 

activated neurons. The radial basis centres of the radial basis function perceptrons are selected from 

the sample training set at random. The RBFN is trained according to the hybrid training method. 

4. Research objectives 

The objectives of this research investigation were the following:  

1. Explore the feasibility of applying ANNs to the problem of residential water end use 

demand forecasting;  

2. Develop an ANN-based residential water end use demand forecasting model; and 

3. Apply the developed ANN-based model to simulate the potential savings derived 

from a water demand reduction retrofit program (e.g., retrofitting low efficiency 

shower heads and clothes washers with others of higher efficiency).  

5. Method 

5.1 Overview 

To achieve the stated research objectives, the following key research stages were followed: 

1. Identification of key determinants influencing residential end use demand. 

2. Normalisation of the training and validation dataset provided. 

3. Training of ANNs to produce disaggregated residential water demand end use models. 

4. Statistical analysis of ANN-produced results related to both the training and validation 

sets to ensure that they meet accuracy statistical significance criteria. 
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5. Development of an interactive water end use demand forecasting tool that can be used 

for a number of purposes, including examining the potential savings achievable from 

water appliance/fixture retrofit programs. 

5.2 Information and ANN input 

The SEQREUS provided a usable sample of 205 households that contained the entire dataset (i.e., 

water end-use data, water stock efficiency data, and demographic data for each household). For the 

analysis, a training set containing 175 samples was randomly selected, with the remaining 30 

samples used for model validation 

The numerous socio-economic, demographic and appliance efficiency variables within the dataset 

were selected as independent variables. These variables were the following: region; income; 

education level; occupancy; number of adults; number of children; number of teenagers; star rating 

of fixtures/appliances (i.e., tap, shower, clothes washer); and the installation of a dishwasher. The 

end use (e.g., shower) mean daily per household water consumption (i.e., L/hh/d) determined from 

the end use analysis process was set as the dependent variable. 

For the purpose of identifying the significant determinants and subsequent inputs into the ANN 

models, the participant data collected by the SEQREUS was organised in ordinal categories. Table 1 

details the established ordinal categories for the independent variables (i.e., socio-economic and 

demographic information). 

 

[INSERT TABLE 1] 

 

The efficiency of the water stock fixtures and appliances has been recorded and categorised in an 

ordinal manner according to the Water Efficiency Labelling Scheme (WELS) (AS/NZS 6400:2005). 
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Table 2 displays the WELS categories for the various water use appliances such as taps, showers, 

clothes washers, dishwashers and toilets. 

 

[INSERT TABLE 2] 

 

5.3 Models 

Model development was limited to predicting the homogeneous internal demand component of total 

residential demand. Outdoor irrigation demand was not included in the forecasting model. While 

these end-use data (i.e., irrigation end-use consumption) was available for three seasonal periods, 

this amount of data was not considered sufficient for a predictive model due to the highly variable 

nature of this end use (i.e., irrigation volumes change from day to day depending largely on 

environmental conditions such as temperature, humidity and rainfall).  Additionally, household 

leakage was not considered in this internal demand model as this end use is also highly inconsistent, 

and its prediction is related to a range of other predictor variables not collected in this particular 

study (i.e., age of home, pipe material, toilet type, etc.).   

In summary, the ANN methodology and the refined dataset of independent variables were used to 

develop a forecasting model to predict the consumption values of each of the following dependent 

variables (i.e., end-use categories and total indoor) on a litre per household per day (L/hh/d) basis: 

toilet demand; clothes washer demand; shower demand; dishwasher demand; tap demand; and total 

internal demand. 

6. Identifying key determinants 

The demographic and stock efficiency variables did not fulfil the requirements of normality of 

distribution and homogeneity of variances. Therefore, to identify key determinants that can be 
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attributed to the effects of residential end uses, non-parametric tests such as the Kruskal-Wallis 

(KW) test and the Mann–Whitney Wilcoxon (MW) rank sum test were used to determine difference 

in distributions. A confidence interval of 90% was used to determine statistical significance. Linear 

regression analysis was applied to observe the statistical power of continuous variables to predict 

and account for the variance of residential water demand end uses. Table 3 below displays the 

independent variables, the mean values of the variables organised into ordinal categories, the 

statistical tests performed, the associated chi-square p-values and the linear regression analysis. 

 

[INSERT TABLE 3] 

 

The predominant key determinants affecting residential water demand end uses include household 

income, occupancy, the occurrence of children and the occurrence of teenagers. According to the 

WELS system, appliance stock efficiency was statistically significant only pertaining to toilet 

demand. Shower stock efficiency was found to be statistically significant when re-clustering star 

ratings into below two and above and equal to two. The identification of key determinants has 

revealed that each independent variable has at least one relationship of statistical significance with 

residential water demand end uses. Table 4 displays the input variables used to develop the 

disaggregated residential water demand end use models. 

 

[INSERT TABLE 4] 
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7. Results and discussion 

7.1 Examined ANN algorithms 

Table 5 displays the absolute relative error (ARE), average absolute error (AAE), root mean squared 

error (RMSE), Mann-Whitney Wilcoxon (MW) P-value and coefficient of determination (R2) for 

each residential water end use demand forecasting model produced corresponding to the applied 

ANN algorithms. The ANN algorithms resulted in a number of residential water end use demand 

forecasting models with varying degrees of accuracy. The HLSALOA model had the highest R2 and 

the least error. This model will be discussed further below. 

 

[INSERT TABLE 5] 

 

7.2 HLSALOA residential water demand end use forecasting models 

7.2.1 Analysis of error and variance 

Table 6 displays the different residential water end-use demand values, ARE, AAE, RMSE, RMSE 

as % of mean and R2 for the training set applied to the HLSALOA. The forecasting models 

produced by the HLSALOA varied in their ability to accurately predict demand. The forecasting 

model which had the least relative error was toilet demand and total internal demand, while 

dishwasher and bath demand forecasting models had the greatest error.  

 

[INSERT TABLE 6] 
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The forecasting models relating to toilet, tap, shower, clothes washer, dishwasher and total internal 

demand are statistically reliable because the RMSE is less than the observed means. Conversely, the 

bath demand forecasting model is not considered reliable because the RMSE value is greater than 

the observed mean. The R2 values for the end use demand forecasting models ranged from 0.21 for 

bath demand to 0.6 for shower demand. Given that most end use demand models explained 50% or 

greater of the observed variance, the demand forecasting models are deemed moderately reliable.  

 

Table 7 below displays the statistical analysis results when applying the validation data set to the 

forecasting models produced by the HLSALOA. Findings presented similar error levels to those of 

the training set. For the validation data set assessment, toilet, tap, shower, dishwasher and total 

internal demand forecasting models had prediction errors less than the observed means, indicating 

that they are reliable for predicting end-use demand levels in a household. 

 

[INSERT TABLE 7] 

 

The ability of the developed tap, toilet, shower and dishwasher demand forecasting models to 

explain variability of the validation set was actually better than for the training set. The increased 

accuracy was likely a product of the random sampling to compile the set. The validation set has 

demand values closer to the predicted values of the models and or the expected values of the 

training set. With similarity to the training set, the clothes washer, bath and total internal demand 

forecasting models accounted for a level of variance similar to the training set. Prediction accuracy 

remaining robust for the validation testing analysis stage provides confidence that the input 

variables used to construct the forecasting models are reliable. 

19 



 

7.2.2 Analysis of prediction accuracy 

The purpose of the following analysis is to determine whether the forecasting models can reproduce 

the residential water demand end use frequency distributions. If the forecasting models can 

reproduce the means and the medians of the distributions, the forecasting models are applicable on a 

macro or region-wide level. In turn, the forecasting models can be used for purposes such as 

simulating appliance retrofit programs. 

Figure 1 displays the mean of the observed and predicted standard mean and the t-test p-value for 

the training set and validation set of each end use forecast model produced by the HLSALOA.  The 

t-test derived p-values range from 0.85 for dishwasher demand to 0.96 for total internal demand for 

the training set. The t-test derived p-values range from 0.74 for dishwasher demand to 0.97 for toilet 

demand for the validation set. In all cases, the residential water demand end-use models produced 

distributions according to the training and validation sets that did not deviate from the observed 

water demand distributions to a statistically significant level, providing evidence that the models 

produced can accurately forecast the distributions of residential end-use demands for a set of 

households. 

[INSERT FIGURE 1] 

 

A similar analysis was performed for the analysis of the replication medians for the training and 

validation sets under the Mann-Whitney Wilcoxon rank sum test. Apart from bath residential water 

demand end use, predicted demand distributions reproduced the medians of the observed demand 

distributions without deviating to a statistically significant level. In conjunction with the analysis of 

means, this correspondence of predicted values to observed values provides further evidence that 

the forecasting models, with bath demand as the exception, can accurately forecast the distributions 

of residential end-use demands for a set of households. 
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8. Model application: appliance retrofit program simulation 

The most valuable application of the residential water end-use demand forecasting models 

developed in this study is for the estimation of water savings attributed to a range of water 

appliance retrofit programs (e.g., retrofitting toilets from low to high efficiency). Toilet demand, 

shower demand and clothes washer demand retrofit programs have been selected to exemplify the 

application of the residential water end use demand forecasting models. To aid in the retrofit 

program simulations, an interactive residential water end use demand forecasting tool was 

developed populated by the forecasting models. The 205 household samples from the SEQREUS 

were used for the appliance retrofit program simulations discussed below. 

8.1 Retrofit programs and results 

Table 8 displays the distribution of the sample based on their clustered star ratings and the 

associated demand values for the toilet, shower and clothes washer end use categories. Also, the 

overall average mean household demand for these end use categories is provided. Three retrofit 

programs were simulated using the developed ANN-based water end use demand forecasting 

model, namely: 

• Toilet retrofit program simulating the installation of 3 star-rated toilets in residential 

premises that have toilet star ratings of < 2; 

• Shower head retrofit program simulating a retrofit of showerheads of < 2 star rating shower 

head with those having ≥ 2 star rating; and 

• Clothes washer retrofit program simulating the installation of 4 star front loading clothes 

washers to replace those having < 4 star rating and not being front loading. 
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[INSERT TABLE 8] 

 

The program is assumed to have a 100% penetration rate. Table 9 details the baseline mean 

household demand for each of the retrofitted end use appliances, the projected post-retrofit water 

demand pertaining to each end use, and the mean household savings. The toilet retrofit program had 

the highest mean daily household saving of 20.54 L/hh/d (i.e. 7.55 kL/hh/y). Conversely, the shower 

retrofit program had the lowest mean daily household saving of 4.54 L/hh/d (1.66 kL/hh/y). A 

respectable 13.56 L/hh/d (4.95 kL/hh/y) saving was predicted for retrofitting clothes washers. 

Showering is a behaviourally influenced water use activity while toilets and clothes washers are 

mechanised appliances. Potentially, the lower shower end use saving may be due to households 

having efficient shower heads compensating lower flow rates by longer showers.  

 

[INSERT TABLE 9] 

 

8.2 Model implications for citywide water appliance retrofit program estimation 

The toilet, shower and clothes washer residential water demand end-use forecasting models have 

demonstrated their intended usefulness at predicting the expected change in demand for various 

water use appliance retrofit programs. Combining the most effective programs from the toilet, 

shower and clothes washer program categories, a predicted 14.14 kL/hh/y or a 12.7% mean 

reduction in household demand is expected to be achieved. The Gold Coast City Council (GCCC) 

region in Queensland, Australia where this study was conducted has 206,000 households (GCCC, 

2011). If the combination of the most effective programs were instituted over the GCCC 

municipality and assuming that 50% of households partake, the expected reduction in demand 
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would be 1.45 GL/year, which equates to 582 Olympic sized swimming pools. 

9. Conclusion 

The identification of key determinants of residential end use water demand showed that household 

income, number of adults, number of children, number of teenagers, and appliance stock efficiency 

regarding toilet, shower and clothes washer end uses were the predominant determinants. The 

identification of key determinant results mirrored previous studies such as Kenny (2008), Heinrich 

(2009), Beal et al. (2010, 2011a & 2011b), Gatto et al. (2011) and Makki et al. (2011). 

The results of applied ANN algorithms demonstrated that the HLSALOA produced the highest level 

of accuracy. The HLSALOA produced residential end use demand forecasting models with R2 

ranging from 0.21 for the bath demand forecasting model to 0.60 for the shower demand forecasting 

model. The clothes washer demand, dishwasher demand and total internal demand account for 

nearly half or more of the observed variance. The root mean standard errors (RMSEs) of the models 

were less than half in all cases apart from dishwasher and bath demand forecasting models. The 

models applied to the validation set produced similar results. The HLSALOA was able to predict 

the means and medians of the observed demand frequency distributions except in the case of the 

bath demand forecasting models. 

The study demonstrated that applying ANN-based modelling methodology is a feasible means of 

producing residential water demand end use forecasting models. The most accurate ANN algorithm 

employed produced models that have a moderate forecast accuracy applying to all end uses with the 

exception of bath demand. The applicability of the produced residential water demand end-use 

forecasting models was displayed by their ability to reproduce the demand frequency distributions 

of the training and validation sets with bath demand being the exception. In turn, the residential 

water demand end uses forecasting models could be used to simulate water demand reduction 

retrofit programs. Improvements can be made on this study by testing more complex ANN 
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algorithms, identifying determinants of greater applicability and using empirical data with less noise 

to construct the models. 
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Tables 

Table 1: Evaluated predictor variable descriptions 

Category Income category ($) Education category Age category Region Occupancy 

1 <30000 Primary School 15 - 24 Gold Coast 1 

2 30000 - 59999 High School 25 - 54 Brisbane  2 

3 60000 - 89999 Trade/TAFE/Tertiary 55 - 64 Ipswich 3 

4 90000 - 119999 Undergraduate >64 Sunshine Coast 4 

5 >120000 Postgraduate - - 5 

6 - - - - 6 

 

 

 

Table 2: WELS summary 

Star Rating Tap 
(L/min) 

Shower 
(L/min) 

Clothes washer Dishwasher Toilet (L/flush) 

Half Full 

0 > 16 > 16 Star rating of clothes 
washer is calculated 
according to the 
outline in section 2.3.5 
of the AS/NZS 
6400:2005. 

Star rating of 
dishwasher is 
calculated 
according to the 
outline in 
section 2.3.5 of 
the AS/NZS 
6400:2005. 

- - 

1 12 – 16 12 – 16 < 4.5 < 9.5 

2 9 – 12 9 – 12 < 4.5 < 9.5 

3 7.5 – 9 7.5 – 9 < 3.5 < 6.5 

4 6 – 7.5 6 – 7.5 < 3.2 < 4.7 

5 4.5 – 6 4.5 – 6 - < 4.7 

6 < 4.5 - - < 4.7 
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Table 3: Identification of significant determinants  

Independent Ordinal category distribution mean (L/hh/d) ANOVA Regression 

variable 0 1 2 3 4 5 Test df p-value Gradient R2 

Total internal demand 

Region  352.26 338.19 286.22 333.86  KW 3 0.50   

Income  247.21 330.05 375.50 443.78 343.69 KW 4 0.00   

Education  344.75 303.95 330.09 338.92 373.00 KW 4 0.28   

No. of Adults  241.74 342.45 406.23 493.13  KW 3 0.00 68.87 0.10 

No. of Children  421.72 390.35 478.73   KW 2 0.43 61.21 0.07 

No. of Children* 303.23 421.59     MW - 0   

No. of Teenagers  454.1 543.9    MW - 0.24 150.57 0.18 

No. of Teenagers* 306.73 506.74     MW - 0   

Toilet demand 

Region  47.54 50.54 50.09 59.77  KW 3 0.03   

Income  49.72 53.99 51.21 64.36 55.75 KW 4 0.14   

Education   47.65 52.73 44.36 55.71 KW 3 0.59   

No. of Adults  0.00 0.00 0.00 0.00  KW 4 0.00 11.51 0.10 

No. of Children  45.96 56.8  66.04    KW 2 0.652  4.23 0.01 

No. of Children* 52.66 55.43     MW - 0.38   

No. of Teenagers  59.06 59.06    MW - 0.203  22.41 0.05 

No. of Teenagers* 51.57 65.51     MW - 0.04   

Star Rating 69.02 55.25 47.69 39.87   KW 5 0.01 -9.39 0.11 

Tap demand 

Region  87.86 54.17 55.08 49.85  KW 3 0.00   

Income  50.91 60.32 56.15 73.85 57.12 KW 4 0.14   

Education   57.93 55.47 59.33 61.84 KW 3 0.59   

No. of Adults  39.38 65.05 71.22 104.24  KW 3 0.00 13.00 0.07 

No. of Children  60.76 56.87  60.76    KW 2 0.652  4.23 0.01 

No. of Children* 59.7 65.15     MW - 0.22   

No. of Teenagers  87.24  54.86     MW - 0.203  38.96 0.17 

No. of Teenagers* 59.7 65.15     MW - 0.03   

Star Rating 57.41 79.01 25.91 27.18 25.43 21.86 KW 4 0.34 -0.17 0.00 

Shower demand 

Region  93.50 94.80 103.90 106.20  KW 3 0.93   

Income  62.54 97.50 122.98 118.10 116.27 KW 4 0.00   

Education   88.24 91.51 95.57 90.28 KW 3 0.65   

No. of Adults  73.21 104.15 129.11 126.43  KW 3 0.00 16.20 0.03 

No. of Children  99.42 123.2  179.4    KW 2 0.01 22.01 0.04 

No. of Teenagers  147.9 166.1     MW - 0.06 53.32 0.11 

Star Rating 140.16 111.12 86.59 89.94 104.04 115.66 KW - 0.59 -5.90 0.02 

Star Rating*  124.92 86.21    MW - 0.04   
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Dishwasher demand 

Region  5.24 6.18 4.55 5.31  KW 3 0.79   

Income  3.69 4.74 7.58 8.61 6.71 KW 4 0.03   

Education  2.30 5.51 4.41 7.03 8.25 KW 3 0.04   

No. of Adults  9.25 9.59 12.66 16.90  KW 3 0.40 2.06 0.04 

No. of Children  7.62 9.31 9.80   KW 2 0.66 2.65 0.07 

No. of Children* 4.49 8.89     MW - 0   

No. of Teenagers  5.63 6.33    MW - 0.81 1.29 0.01 

No. of Teenagers* 5.78 6.69     MW - 0.09   

Has Dishwasher 0.00 9.23     MW - 0.00   

Clothes washer demand 

Region  63.23 89.65 57.96 60.81  KW 3 0.01   

Income  40.84 66.64 97.64 102.73 70.50 KW 4 0.00   

Education  62.86 64.98 74.06 83.84 68.61 KW 3 0.26   

No. of Adults  46.42 80.12 84.20 120.70  KW 3 0.00 14.14 0.04 

No. of Children  104.68 97.47 109.60   KW 2 0.92 23.86 0.10 

No. of Children* 61.31 105.9     MW - 0   

No. of Teenagers  87.88 112.69    MW - 0.98 22.38 0.08 

No. of Teenagers* 67.52 104.33     MW - 0.01   

Loading (front/top)  50.74 79.21    MW - 0.00   

Rating  118.14 81.18 84.36 64.37  KW 2 0.11   

Bath demand 

Region  7.76 5.75 0.23 3.84  KW 3 0.02   

Income  2.43 2.91 6.15 9.27 7.44 KW 4 0.04   

Education   2.20 5.51 7.67 4.55 KW 3 0.03   

No. of Adults  5.20 27.61 31.82 7.20  KW 3 0.09 0.90 0.00 

No. of Children  9.38  6.54  3.61    KW 2 0.603  4.21 0.06 

No. of Children* 2.78 10.86     MW - 0   

No. of Teenagers  4.41  7.77     MW - 0.963  0.48 0.00 

No. of Teenagers* 4.66 5.38     MW - 0.97   

* Represents a re-clustering of demographic or appliance variables to identify relationships between the variable the respected water 
demand end use to identify key determinants. 
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Table 4: Residential water demand end use forecasting model input variables 

Total internal 
demand 

Toilet Tap Shower Clothes 
washer 

Dishwasher Bath 

Income Income Income Income Income Income Income 

No. of adults No. of adults No. of adults No. of adults No. of adults No. of adults Education 

No. of children No. of 
children 

No. of children No. of children No. of children No. of children No. of children 

No. of 
teenagers 

No. of 
teenagers 

No. of 
teenagers 

No. of 
teenagers 

No. of 
teenagers 

No. of 
teenagers 

 

Toilet star 
rating 

Toilet star 
rating 

 Shower star 
rating 1 

Clothes washer 
loading 

Dishwasher 
installed 

 

Shower star 
rating 1 

  Shower star 
rating ≥ 2 

Clothes washer 
star rating 

  

Shower star 
rating ≥ 2 

      

Clothes washer 
loading 

      

Clothes washer 
star rating 
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Table 5: Applied artificial neural networks 

ANN applied End use ARE AAE (L/hh/d) RMSE (L/hh/d) MW p-value R2 

HLSA Toilet 0.35 14.89 17.03 0.32 0.33 

 Tap 0.62 20.36 26.25 0.10 0.28 

 Shower 0.83 35.64 49.92 0.27 0.51 

 Clothes Washer - 24.19 31.77 0.17 0.5 

 Dishwasher - 2.95 4.48 0.59 0.56 

 Bath - 5.87 11.52 0.00 0.25 

 Total Internal  0.34 79.59 102.36 0.29  0.28 

HLSALOA Toilet 0.36 14.19 18.03 0.24 0.33 

 Tap 0.52 18.53 24.47 0.3 0.37 

 Shower 0.81 32.44 45.25 0.17 0.6 

 Clothes Washer - 25.81 32.86 0.17 0.57 

 Dishwasher - 2.91 4.43 0.48 0.57 

 Bath - 6.03 11.80 0 0.21 

 Total Internal 0.30 69.48 87.77 0.47 0.47 

RBFN Toilet 0.34 13.73 17.70 0.34 0.36 

 Tap 0.63 20.30 26.21 0.20 0.28 

 Shower 0.90 38.56 54.60 0.13 0.42 

 Clothes Washer - 27.53 36.54 0.08 0.47 

 Dishwasher -  3.31 5.04 0.17 0.45 

 Bath - 5.96 11.81 0.00 0.21 

 Total Internal 0.31 70.37 91.32 0.38 0.43 
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Table 6: Training set analysis statistics 

End use Mean of 
Observed 

ARE AAE 
(L/hh/d) 

RMSE 
(L/hh/d) 

RMSE  
% of mean 

R2 

Toilet 49.69  0.36 14.19 18.03 36 0.33 

Tap 56.64  0.52 18.53 24.47 43 0.37 

Shower 92.24  0.81 32.44 45.25 49 0.6 

Clothes Washer 66.53  - 25.81 32.86 49 0.57 

Dishwasher 5.40  - 2.91 4.43 82 0.57 

Bath 3.96  - 6.03 11.80 297 0.21 

Total Internal 284.89  0.30 69.48 87.77 30 0.47 

 

 

 

 

 

Table 7: Validation set analysis statistics 

End Use Mean of 
Observed 

ARE AAE 
(L/hh/d) 

RMSE 
(L/hh/d) 

RMSE  
% of Mean 

R2 

Toilet 51.26 0.37 13.82 18.57 36 0.51 

Tap 55.13 0.36 13.96 18.83 34 0.69 

Shower 91.97 0.82 24.36 31.17 33 0.75 

Clothes Washer 65.96 0.35 19.61 26.26 29 0.56 

Dishwasher 4.46 - 2.08 3.21 71 0.66 

Bath 2.84  - 4.93 8.85 311 0.23 

Total Internal 282.98 0.31 62.34 80.01 28 0.47 
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Table 8: Retrofit program water end uses demand distribution 

Category WELS star rating 

Toilet end use 0 1 2 3 4 Overall 

Number of samples 52 68 56 29  205 

Percent of sample set (%) 25.37 33.17 27.32 14.15  100.00 

Mean household demand (L/hh/d) 88.84 60.29 45.17 38.96  60.39 

Shower < 2†  ≥ 2†   Overall 

Number of samples 40  165   205 

Percentage of sample set (%) 19.55  80.45   100.00 

Mean household demand (L/hh/d) 104.25  86.61   90.05 

Clothes washer 0 1 2 3 4 Overall 

Number of samples 20 5 19 58 103 205 

Percentage of sample set (%) 9.76 2.44 9.27 28.29 50.24 100.00 

Mean household demand (L/hh/d) 58.51 108.02 77.36 69.82 52.71 61.76 
†Demand difference in shower head efficiencies was found to be statistically significant when clustered in ratings < 2 and ≥ 2.  

 

 

 

Table 9: ANN model predicted savings from retrofit programs 

Retrofit program 
Baseline demand Post retrofit demand                       Mean saving predicted 

(L/hh/d)  (L/hh/d)  (L/hh/d)  (kL/hh/y) 

Toilet 60.39 39.85 20.54 7.50 

Shower 90.05 85.51 4.54 1.66 

Clothes washer 61.76 48.20 13.56 4.95 
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Figure captions: 

 

Figure 1: Analysis of training and validation predicted demand distributions vs. observed demand distributions 
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