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A B S T R A C T 

Acquired brain injury (ABI) is one of the leading causes of death and disability in the world and is asso­
ciated with high health care costs as a result of the acute treatment and long term rehabilitation involved. 
Different algorithms and methods have been proposed to predict the effectiveness of rehabilitation 
programs. In general, research has focused on predicting the overall improvement of patients with ABI. 
The purpose of this study is the novel application of data mining (DM) techniques to predict the outcomes 
of cognitive rehabilitation in patients with ABI. We generate three predictive models that allow us to 
obtain new knowledge to evaluate and improve the effectiveness of the cognitive rehabilitation process. 
Decision tree (DT), multilayer perceptron (MLP) and general regression neural network (GRNN) have 
been used to construct the prediction models. 10-fold cross validation was carried out in order to test 
the algorithms, using the Institut Guttmann Neurorehabilitation Hospital (IG) patients database. Perfor­
mance of the models was tested through specificity, sensitivity and accuracy analysis and confusion 
matrix analysis. The experimental results obtained by DT are clearly superior with a prediction average 
accuracy of 90.38%, while MLP and GRRN obtained a 78.7% and 75.96%, respectively. This study allows to 
increase the knowledge about the contributing factors of an ABI patient recovery and to estimate treat­
ment efficacy in individual patients. 

1. Introduction 

Acquired brain injury (ABI) is one of the leading causes of death 
and disability in the world. In Europe, brain injuries from traumatic 
and non-traumatic causes are responsible for more years of disabil­
ity than any other cause (The Lancet Neurology, 2010). Because 
most of these patients are young people, their remaining functional 
limitations and psychosocial problems contribute significantly to 
health care related costs and loss of productivity. 

After sustaining an ABI, patients have impairments consisting of 
not only physical, but also cognitive, social, and behavioral limita­
tions. The most frequently occurring cognitive sequelae after an 
ABI pertain to mental process slowness, attention deficits, memory 
impairments, and executive problems. The injury dramatically 
changes the life of patients and their families (Pérez et al., 2010). 
The rapid growth on ABI case numbers and the importance of 
cognitive functions in daily activities, both demand efficient pro­
grams of cognitive rehabilitation. 

Recovery from ABI can be facilitated with cognitive rehabilita­
tion. Cognitive rehabilitation aims to compensate, or restore when 

possible, lost brain functions, improving the quality of life of the pa­
tients (Fundaci Institut Guttmann, 2008; Sohlberg & Mateer, 2001). 

One of the problems of the rehabilitation process is its time 
length, that in many cases is inadequate for a complete and effec­
tive rehabilitation. To improve and expand the cognitive rehabilita­
tion process, automated systems for cognitive rehabilitation of 
patients with ABI have been recently introduced (Solana, Cáceres, 
Gómez, Ferrer-Celma, & Ferre-Bergada, 2011; Tormos, García-
Molina, García-Rudolph, & Roig, 2009). These systems generate 
large amounts of data. The analysis of these data, using data 
mining techniques, allows us to obtain new knowledge to evaluate 
and improve the effectiveness of the rehabilitation process. Also 
using information analysis and data mining techniques, we can 
create predictive models and decision support systems for the 
treatment of patients with ABI. 

The data used in this study were obtained from the PREVIRNEC© 
platform. PREVIRNEC© is a cognitive tele-rehabilitation platform, 
developed over a web-based architecture based on web technolo­
gies and it's conceived as a tool to enhance cognitive rehabilitation, 
strengthening the relationship between the neuropsychologist and 
the patient, extending the treatment duration and frequency, 
allowing personalization of treatment and monitoring the perfor­
mance of rehabilitation tasks. PPREVIRNEC© has been developed 



during the past six years by the Universitat Rovira i Virgili and 
Technical University of Madrid (Spain), together with the Instituí 
Guttmann Neurorehabilitation Hospital, IG (Spain) neuropsychol­
ogy and research departments (Solana et al., 2011). This platform 
has been included in the hospital clinical protocols since 2005 
and at the moment of this analysis PREVIRNEC© database stores 
1120 patients, with a total of 183047 rehabilitation tasks 
executions. 

Different statistical methodologies and predictive data mining 
methods have been applied to predict clinical outcomes of rehabil­
itation of patients with ABI (Rughani et al., 2010; Ji, Smith, Huynh, 
& Najarían, 2009; Pang et al., 2007; Segal et al., 2006; Brown et al., 
2005; Rovlias & Kotsou, 2004; Andrews et al., 2002). Most of these 
studies are focused in determining survival, predicting disability or 
the recovery of patients, and looking for the factors that are better 
at predicting the patient's condition after suffering an ABI. 

The purpose of this study is the novel application of data mining 
to predict the outcomes of the cognitive rehabilitation of patients 
with ABI. Three algorithms were used in this study: decision tree 
(DT), multilayer perceptron (MLP) and a general regression neural 
network (GRNN). PREVIRNEC© database and IG's Electronic Health 
Records (EHR) (Instituí Guttmann Neurorehabilitation Hospital, 
1997) has been used to test the algorithms. For assessing the 
algorithm's accuracy of prediction, we used the most common per­
formance measures: specificity, sensitivity, accuracy and confusion 
matrix. The results obtained were validated using the 10-fold 
cross-validation method. 

The remainder of this paper is organized as follows. Section 2 
presents a brief introduction to data mining, the algorithms used 
in this research and a detailed description of the database. Section 
3 shows the experimental results obtained. Section 4 presents a 
discussion of these results. Finally, Section 5 describes the summa­
rized conclusions. 

2. Materials and methods 

2.1. Review of data mining techniques 

2.1.1. Knowledge discovery in databases and Data mining 
Today there is still some confusion about the terms Knowledge 

Discovery in Databases (KDD) and Data Mining (DM). Often these 
two terms are used interchangeably. The term KDD is used to 
denote the overall process of turning low-level data into high-level 
knowledge. KDD is defined as: the nontrivial process of identifying 
valid, novel, potentially useful, and ultimately understandable 
patterns in data (Fayyad et al., 1996). On the other hand, data min­
ing is commonly defined as the extraction of patterns or models 
from observed data. Therefore DM is at the core of the knowledge 
discovery process, although this step usually takes only a small 
part (estimated at 15-25%) of the overall KDD effort (Brachman 
& Anand, 1996). The overall KDD process contemplates five phases: 
data preparation, data preprocessing, data mining, evaluation and 
interpretation, and implementation (Fayyad et al., 1996). 

Data mining classification technique is split in two phases: the 
first one is the construction of a classification model that consists 
in training the algorithm using a data set in order to build the predic­
tive classification model. The second phase is the evaluation of the 
model classification efficiency, using a testing data set (Yen, Chen, 
& Chen, 2011; Kóksa, Batmaz, & Caner, 2011; Seng, & Chen, 2010). 

2.1.2. Decision trees (J48) 
Decision tree (DT) provides powerful techniques for classifica­

tion and prediction, that are widely used in data mining. The most 
commonly used DT algorithms include Quinlans ID3, C4.5, C5 
(Quinlan, 1993), Breimans classification and regression tree (CART) 

(Breiman, Friedman, Olshen, & Stone, 1984) and Chi-squared Auto­
matic Interaction Detector (CHAID) (Hartigan, 1975). As the name 
implies, this technique recursively separates observations in 
branches to construct a tree for the purpose of improving the 
prediction accuracy. In doing so, it uses mathematical algorithms 
to identify a variable and corresponding threshold for the variable 
that splits the input observation into two or more subgroups (Yeh, 
Hou, & Chang, 2012). The most commonly mathematical algorithm 
used for splitting includes Entropy based information gain (used in 
ID3, C4.5, C5), Gini index (used in CART), and chi-squared test 
(used in CHAID). This step is repeated at each leaf node until the 
complete tree is constructed. The objective of the splitting 
algorithm is to find a variable-threshold pair that maximizes the 
homogeneity (order) of the resulting two or more subgroups of 
samples (Delen, Fuller, McCann, & Ray, 2009). 

Based on the favorable prediction results we have obtained 
from the preliminary runs, in this study we use the J48 algorithm 
as our decision tree method. The J48 algorithm is an implementa­
tion of the C4.5 algorithm (Witten & Frank, 2005) included in the 
WEKA software platform (weka, 2011). In order to tune the J48 
algorithm to optimize its performance, we varied the confidence 
factor (default value of confidence factor is 0.5), which is a value 
that is used by the algorithm to prune developed trees (pruning 
of a DT is conducted to avoid over-fitting the model on the records 
used for modelling). A lower confidence factor results in more 
pruning (Witten & Frank, 2005), and a minimum number of objects 
for a leaf of 2. 

2.1.3. Multilayer perceptron (MLP) 
Multilayer perceptron (MLP) are the most commonly used 

feedforward neural networks due to their fast operation, ease of 
implementation, and smaller training set requirements (Haykin, 
1994). The MLP consists of three sequential layers: input, hidden 
and output layers. The hidden layer processes and transmits the 
input information to the output layer. A MLP model with insuffi­
cient or excessive number of neurons in the hidden layer may 
cause problems of bad generalization and over-fitting. There is 
no analytical method for determining the number of neurons in 
the hidden layer, so it is usually chose empirically (Haykin, 1994; 
Marcano-Cedeño, Quintanilla-Domínguez, & Andina, 2011). 

Each neuron j in the hidden layer sums its input signals x¡ 
impinging onto it after multiplying them by their respective 
connection weights w¡¡. The output of each neuron is described 
as follows: 

y¡=/(Xwi¡x>') 0) 

where/is an activation function using the weighted summations of 
the inputs. An activation function can be a simple threshold, sigmoi-
dal, or hyperbolic tangent function (Marcano-Cedeño et al., 2011; 
Güler, Gokcil, & Gülbandilar, 2009; Orhan, Hekim, & Ozer 2011). 
In this study, a sigmoidal transfer function was used as the activa­
tion function. 

The sum of squared differences between the desired and actual 
values of the output neurons E is defined as follows (Marcano-
Cedeño et al., 2011; Güler et al., 2009): 

z=\Y.^i-yi? (2) 

where yd¡ is the desired value of output neuron j and y¡ is the actual 
output of that neuron. Each w,¡ weight is adjusted to minimize the 
value E depending on the training algorithm adopted. In this 
context, the backpropagation method (BP) is widely used as a pri­
mary part of an artificial neural network model. However, since 
the BP has some constraints such as slow convergence (Haykin, 
1994; Marcano-Cedeño et al., 2011; Güler et al., 2009) or not being 



able to find the global minimum of the error function, a number of 
variations for the BP were proposed. Therefore, in this study we 
used the BP supported by the Levenberg-Marquardt algorithm 
(Haykin, 1994). We also used different parameters of hidden layer, 
learning rate and momentum with the purpose of obtaining the 
best network structure for the MLP. 

2.1.4. General regression neural network (GRNN) 
The General regression neural network (GRNN) consists of four 

layers: input, pattern, summation and output layers. The number 
of input units in the first layer is equal to the total number of 
parameters. This first layer is fully connected to the second, pattern 
layer, where each unit represents a training pattern and its output is 
a measure of the distance of the input from the stored patterns. 
Each pattern layer unit is connected to the two neurons in the sum­
mation layer: S-summation neuron and D-summation neuron. The 
S-summation neuron computes the sum of the weighted outputs of 
the pattern layer while the D-summation neuron calculates the un­
weighted outputs of the pattern neurons. The connection weight 
between the ¡th neuron in the pattern layer and the S-summation 
neuron is y, the target output value corresponding to the ¿th input 
pattern (Specht, 1991). For D-summation neuron, the connection 
weight is unity. The output layer merely divides the output of each 
S-summation neuron by that of each D-summation neuron, yielding 
the predicted value to an unknown input vector X as 

y,(X) = 
TLiytEXP[-D(x,xt) 
£¡LiEXP[-D(X,X,)] 

(3) 

where n indicates the number of training patterns and the Gaussian 
D function in Eq. (3) is defined as 

D(X,X() = £ 
X, •j-Xtf 

(4) 

where p indicates the number of elements of an input vector. The x¡ 
and Xij represent the jth element of x and x„ respectively. The f is 
generally referred to as the spread factor, whose optimal value is 
often determined experimentally (Specht, 1991). A large spread 
corresponds to a smooth approximation function. Too large a spread 
means a lot of neurons will be required to fit a fast changing func­
tion. Too small a spread means many neurons will be required to fit 
a smooth function, and the network may not generalize well. In this 
study, different spreads were tested to find the best value for the 
given problem. The GRNN does not require an iterative training pro­
cedure as in the BP method (Burcu & Tülay, 2008). GRNN is success­
fully used in pattern recognition due to the advantages on fast 
learning and convergence to the optimal regression surface as the 
number of samples becomes very large (Burcu & Tülay, 2008). 

2.2. Data description 

The Institute Guttmann is a hospital specialized in the compre­
hensive rehabilitation and medical/surgical treatment of persons 
suffering from spinal cord injury, ABI or other serious physical 
disabilities of neurological origin. One of the areas of expertise of 
IG is cognitive rehabilitation of patients with ABI. There is no stan­
dard classification of cognitive functions. The IG classifies cognitive 
functions as follows: attention, executive function, memory, and 
language. Disturbances of attention, memory and executive func­
tioning are the most common neurocognitive consequences of 
TBI at all levels of severity (Upadhyay, 2008), therefore in this 
study we only work with them (See Fig. 1). 

As a first step of the cognitive rehabilitation process, the special­
ists of IG perform a neuropsychological (NPS) assessment of the 
patient, for evaluating their cognitive functions and determining 
the degree of affectation in each cognitive function. The NPS is 
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Fig. 1. Classification of the cognitive functions and their respective subfunctions 
according to Institute Guttmann Neurorehabilitation Hospital. 

the instrument that allows the specialists to make a proper assess­
ment of the patient's cognitive profile, while functional and 
psychosocial scales reflect the impact of deficits in daily life. The 
NPS assessment battery used in the IG includes 27 items covering 
the major cognitive domains (attention, memory and executive 
functions) measured using standardized cognitive tests (see 
Table 1). This first evaluation allowed us to know the initial 
cognitive profile of the patient's affectation. All NPS assessment 
battery items are normalized to a 0-4 scale, where 0 = no affecta­
tion, 1 = mild affectation, 2 = moderate affectation, 3 = severe, and 
4 = acute affectation. This NPS initial evaluation of the patient will 
allow the IG professional to plan a three to five months personal­
ized rehabilitation program using the PREVIRNEC© platform. Once 
treatment is completed, all patients are administered the same NPS 
assessment tests. Differences between pre and post NPS scores 
were used to measure particular patient's outcome in the domains 
of attention, memory, executive functions and in their respective 
subfunctions. These changes are assigned to one of the following 
labels: improvement, no improvement, normal, NSI (No significant 
improvement). 

Table 1 
Cognitive functions, subfunctions, neuropsychological tests and items designed and 
classified by Institute Guttmann Neurorehabilitation Hospital (IG). 
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FESTROOP 
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MLLETRES 
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RAVLT075 
RAVLT015 
RAVLT015R 

VCCUBS 

FEPMR 
FESTROOP 
MLLETRES 
FEWCSTE 
FEPMR 
VCCUBS 
FETMTB 
FEWCSTC 
FEPMR 



In this research we included two hundred and fifty patients with 
moderate to severe cognitive affectation (according to glasgow 
coma scale) that underwent rehabilitation treatment with the PRE-
VIRNEC© platform of IG. At the moment of this analysis PREVIR-
NEC© included the results of these patients performing 183047 
rehabilitation tasks. Each task is associated with one subfunction 
(see Table 1). This work seeks to demonstrate the predictive ability 
of the three methods by means of randomly selected tasks. In this 
study we focus in the analysis of the memory function, therefore, 
we only work with the tests that evaluate this function, and specif­
ically we used the task called "memory". For this purpose, of the 27 
NPS assessment tests, we selected the six tests that are used to as­
sess the cognitive function memory (MDIGITS, MLLETRES, SPAN, 
MRAVL075, MRAVL015, and MRAVL015TR). The total number of 
tasks executions during the rehabilitation treatment was 10191. 
The patients' average age is 36,56 6.5 years old, range 18-68 years 
old. The sample consists of 185 men and 65 women. We also con­
sidered some demographic data such as age and educational level 
because of their relevance in ABI patients' rehabilitation. A brief 
description of the data used is presented below: 

Demographic data 

• Age Group: each participant is categorized in 3 age groups: 
Group 1 (from 17 to 30 years old), Group 2 (from 31 to 55 years 
old) and Group 3 (from >56 years old). This attribute is called 
with the named of prediction code "AGE". 

• Educational Level: each participant is categorized in 3 education 
background level groups: Group 1 (Elementary School), Group 2 
(High School) and Group 3 (University). This attribute is called 
with the named code "EDU-LEVEL". 

Neuropsychological data 

• Wechsler Adult Intelligence Scale, (WAIS-III): it is used in the neu­
ropsychological assessment to measure adult and adolescent 
intelligence. In this research, three items of the WAIS-III (MDIG­
ITS, MLLETRES, SPAN) were included. The results of this test 
were normalized in the range of [0, 4] described above. 

• The Rey Auditory-Verbal Learning Test (RAVLT): it is widely used 
in the neuropsychological assessment for evaluating verbal 
learning and memory. It's easy to understand, and appropriate 
for both children and adults (ages 7-89). In this research we 
have included three items of the RALVT test: MRAVL075, 
MRAVL015, MRAVL015TR. The results of each test were normal­
ized in the range of [0, 4] described above. 

Tasks executions data 

• Result: is the result obtained by the participant in the execution 
of the tasks of cognitive rehabilitation, with a range of [0,100]. In 
particular, these results belong to one of the tasks called "mem­
ory". This attribute is called with the named code "RESULT". 

• Improvement: for each cognitive function, improvement values 
are obtained from neuropsychological assessments as the dif­
ference of pre and post values. The four possible values: 
improvement, no improvement normal, NSI (No significant 
improvement). This is transformed into a boolean variable 
(Yes/No). In this study the patients labeled as "normal" were 
omitted. In order to balance the data set, patients labeled 
"NSI" were added to patients labeled as "No improvement". 
This attribute is called with the named code "IMPROVEMENT". 

2.2.1. Data sets 
The data set consists of 10191 samples from the task "memory" 

of the IG database. The database contains 5476 (53.73%) 

Table 2 
Summary of the attributes and classes used in this research. 

Attribute number Code attribute Values of attribute 

1 AGE 1-3 
2 EDU-LEVEL 1-3 
3 MDIGITS 0-4 
4 MLLETRES 0-4 
5 SPAN 0-4 
6 MRAVL075 0-4 
7 MRAVL015 0-4 
8 MRAVL015TR 0-4 
9 RESULT 0-100 

Classes 
10 IMPROVEMENT Yes/No 

Table 3 
DT with different confidence factors. 

Model 

DTI 
DT2 
DT3 

Confidence factor 

0.25 
0.4 
0.6 

Minimum number 
objects 

2 
2 
2 

Accuracy (%) 

91.18 
90.63 
90.37 

Table 4 
Results obtained by multilayer perceptron with different network structures and 
parameters. 

Model 

MLP1 
MLP2 
MLP3 

I2 

9 
9 
9 

HL2 

5 
10 
10 

O2 

1 
1 
1 

LR2 

0.1 
0.9 
0.5 

Momentum 

0.1 
0.2 
0.2 

Epoch 

1000 
3000 
2000 

Accuracy (%) 

79.57 
78.42 
79.57 

Table 5 
Results obtained by GRNN using different spread. 

Model 

GRNN1 
GRNN2 
GRNN3 

Spread 

1 
0.5 
0.06 

Accuracy (%) 

76.55 
76.98 
77.19 

improvement samples and 4715 (46.26%) no improvement sam­
ples. Each sample is also associated with its class label.which is 
either "improvement" or "no improvement". Table 2 shows the 
attributes and classes used in this research. 

2.2.2. Measures of quality 
The measures of quality of models are built from a confusion 

matrix which records correctly and incorrectly recognition of the 
true positives (TP), false positives (FP), false negatives (FN) and 
the true negatives (TN) in binary classification. In order to extend 
the usage of confusion matrix, we define the TP, FP, FN and TN in 
this paper as follows: 

• True positive (TP): the TP denotes the number of patients that 
improve and are classified as patients that improve. 

• False positive (FP): the FP denotes the number of patients that 
do not improve and are classified as patients that improve. 

• False negative (FN): the FN denotes the number of patients that 
improve and are classified as patients that do not improve. 

• True negative (TN): the TN denotes the number of patients that 
don't improve and are classified as patients that do not improve. 

The sensitivity, specificity and accuracy prediction of classifica­
tion are defined by: 



Table 6 
Results for 10-fold cross-validation for all folds and all model. Bold values highlight the best results obtained in this research. 

Fold No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Average 
St. Dev.a 

Multilayer perceptron (MLP) 

Confusion Matrix Accuracy (%) 

7168 
110 
6980 
120 
7160 
104 
7003 
123 
7195 
115 
7180 
90 
7025 
137 
7175 
112 
7155 
125 
7170 
89 

2003 
910 
2192 
899 
2012 
915 
2169 
896 
1977 
904 
1992 
929 
2147 
882 
1997 
907 
2017 
894 
2002 
930 

79.26 

77.31 

79.23 

77.51 

79.43 

79.57 

77.59 

79.30 

78.98 

79.48 

78.77 
0.9288 

Sensitivity 

(%) 
78.16 

76.10 

78.06 

78.21 

78.45 

78.28 

76.59 

78.23 

78.01 

78.17 

77.83 
0.7980 

Specificity (%) 

89.21 

88.22 

89.79 

87.93 

88.71 

91.16 

86.56 

89.01 

87.73 

91.26 

88.26 
1.6795 

Decision tree (DT) 

Confusion 

8357 
85 
8295 
98 
8281 
101 
8215 
114 
8265 
89 
8310 
74 
8350 
84 
8255 
97 
8261 
109 
8279 
96 

Matrix 

814 
935 
877 
921 
891 
918 
957 
905 
907 
930 
892 
945 
822 
935 
917 
922 
911 
910 
893 
923 

Accuracy (%) 

91.18 

90.43 

90.27 

89.40 

90.27 

90.81 

91.11 

90.05 

89.99 

90.30 

90.38 
0.4612 

Sensitivity 

(%) 
91.12 

90.45 

90.28 

89.57 

90.11 

90.60 

91.03 

90.00 

90.06 

90.26 

90.35 
0.4738 

Specificity (%) 

91.67 

90.29 

90.09 

88.81 

91.27 

92.73 

91.76 

90.48 

89.30 

90.58 

90.62 
1.1853 

General regression neural network 

Confusion 

6775 
300 
6812 
269 
6920 
199 
7008 
192 
6911 
209 
6975 
202 
7020 
194 
6899 
218 
7055 
207 
7022 
187 

Matrix 

2396 
720 
2360 
750 
2123 
820 
2164 
827 
2261 
810 
2197 
817 
2152 
825 
2273 
801 
2117 
812 
2150 
832 

Accuracy (%) 

73.55 

74.20 

75.95 

76.88 

75.76 

76.46 

76.98 

75.56 

77.19 

77.07 

75.96 
1.2467 

(GRNN) 

Sensitivity 

(%) 
73.87 

74.27 

75.45 

76.40 

75.35 

76.05 

76.53 

75.22 

76.92 

76.55 

75.66 
1.0169 

Specificity (%) 

70.59 

73.60 

80.47 

81.16 

79.49 

80.18 

80.96 

82.13 

79.69 

81.64 

78.99 
3.7923 

Confusion matrix shows the classification or the cases in the test dataset in contusion matrix, the columns denote the actual cases and the rows denote the predicted. Accuracy = (TP + TN)/(TP + FP + TN + FN); sensitivity = 
TP/(TP + FN); specificity = TN/(TN + FP). 

a St. Dev.: standard deviation. 



TP 
Sensitivity = T p T M ( % ) 

TN 
Specificity = p p T T Ñ ( % ) 

TP + TN 
Accuracy = T p + T N + F p + FN(%) 

2.3. Model evaluation 

(5) 

(6) 

(7) 

For test results to be more valuable, a fe-fold cross-validation is 
used among the researchers. It minimizes the bias associated with 
the random sampling of the training (Fayyad et al., 1996). In this 
method, whole data are randomly divided into k mutually exclu­
sive and approximately equal size subsets. The classification algo­
rithm is trained and tested k times. In each case, one of the folds is 
taken as test data and the remaining folds are added to form train­
ing data. Thus k different test results exist for each training-test 
configuration (Polat, §ahan, & Günes, 2006). The average of these 
results provides the test accuracy of the algorithm (Fayyad et al., 
1996). A 10-fold cross-validation is used in all of our experiments. 
Therefore, the 10191 samples are separated into 10 subsets ran­
domly (9 subsets with 1019 records and 1 subset with 1020) and 
then each subset is taken as test data in turn. 

3. Results 

In this section we present the obtained results in this research. 
All the models used in this study were trained and tested with the 
same data and validated using 10-fold cross-validation. First of all, 
we selected the best network structure for each model as 
explained in the following section. 

3.1. Network selection 

To select the best configuration for each model used in this 
study, we tested different network structures and parameters. 
We present only the top three results of each model. 

Table 3 shows the three best architectures for the DT model. 
DTI was selected because its accuracy was the best, choosing a 
confidence factor of 0.25. 

Table 4 shows the three best architectures for the MLP model. In 
this case we selected MLP1, because it has the lowest computa­
tional cost. 

To determine the best GRNN architecture, we generate different 
models varying the Spreads factor. Table 5 shows the three best 
configurations obtained. GRNN3 was selected because its accuracy 
was the best, choosing a spreads factor of 0.06. 

3.2. Performance evaluation 

In this study, the models were evaluated based on the accuracy 
measures discussed above (classification accuracy, sensitivity and 
specificity). The results were achieved using 10-fold cross-valida­
tion for each model, and are based on the average results obtained 
from the test data set (the 10th fold) for each fold. The results 
obtained are showed in Table 6. 

As seen in Table 6, the results obtained by DT model are supe­
rior to the ones obtained by MLP and GRNN. Also, if we compare 
the standard deviation of the models, the decision tree seems to 
be the most stable of the studied prediction models. 

4. Discussion 

The reported results (Table 6), validated by means of the 10-fold 
cross-validation method, show that the DT model produces a 

higher level of prediction accuracy than the MLP and GRNN models 
do. Prediction average of the DT model was 90.38% accurate with 
sensitivity and specificity rates of 90.35% and 90.62%, respectively. 
MLP model obtained a prediction average accuracy of 78.77% with 
a sensitivity rate of 77.83% and a specificity rate of 88.26%. GRNN 
model achieved 75.93%, 75.66% and 78.99% of prediction average 
accuracy, sensitivity and specificity rates respectively. Similarly, 
if we compare the standard deviation, it can be seen that DT is 
again superior in terms of stability to the other prediction models. 

We need to make a note that the results obtained by the GRNN 
model could improve substantially with a higher database, because 
it is well known that this algorithm require high volume of training 
patterns for obtaining a good performance. A derived consequence 
of enlarging the database would be the decrease of the backprop-
agation algorithm convergence rate used to train the MLP model. 
Another technique to improve results might be the use of feature 
selection algorithms to obtain a more accurate cognitive affecta­
tion profile. 

5. Conclusion 

In this paper three prediction models, decision tree (DT), multi­
layer perceptron (MLP) and general regression neural network 
(GRNN) are developed and compared. These models were applied 
to a real clinical head injury data set provided by the Institute 
Guttmann Neurorehabilitation Hospital and several architectures 
were tested in order to obtain the best structure and performance 
for each of them. The reported results, especially by DT model 
(90.38% prediction average accuracy), indicate that it is feasible 
to estimate the outcome of ABI patients as a function of the cogni­
tive affectation profile, obtained from the neuropsychological 
initial evaluation of the patient, and the rehabilitation process data 
collected by the PREVIRNEC© platform. Next steps would be to in­
clude more data derived from the clinical and demographic history 
of the patient, and also from the rehabilitation tasks performed as 
part of his cognitive rehabilitation treatment. Other future research 
would investigate different data mining approaches in order to 
achieve higher prediction rates. 

The findings from the present study led to an increase of knowl­
edge in the field of rehabilitation theory. This will serve to the 
specialists to generate and validate clinical hypotheses as a previ­
ous step to the creation of personalized therapeutic interventions 
based on clinical evidence. 

Acknowledgements 

The authors thank all the staff and patients from the Instituí 
Guttmann Neurorehabilitation Hospital for all their support and 
cooperation in this research. This research work was partially 
funded by Ministerio de Ciencia e Innovación (IPT-300000-2010-
30 and P0890525). 

References 

Andrews, P. J., Sleeman, D. H., Statham, P. R, McQuatt, A., Comible, V., Jones, P. A., 
et al. (2002). Predicting recovery in patients suffering from traumatic brain 
injury by using admission variables and physiological data: A comparison 
between decision tree analysis and logistic regression, journal of Neurosurgery, 
97, 326-336. http://dx.doi.Org/10.3171/jns.2002.97.2.0326. 

Brachman, R., & Anand, T. (1996). The process of knowledge discovery in databases: 
A human-centered approach. In U. Fayyad, G. Piatetsky-Shapiro, Smyth P. 
Amith, & R. Uthurusamy (Eds.), Advances in Knowledge Discovery and Data 
Mining. Cambridge: MIT Press. 

Breiman, L, Friedman, J. H., Olshen, R A., & Stone, C. J. (1984). Classification and 
regression trees (1st ed.). California: Wadsworth International Group. 

Brown, A. W., Malee, J. F., McClelland, R. L, Diehl, N. N., Englander, J., & Cifu, D. X. 
(2005). Clinical elements that predict outcome after traumatic brain injury: A 
prospective multicenter recursive partitioning (decision-tree) analysis. Journal 

http://dx.doi.Org/10.3171/jns.2002.97.2.0326


of Neurotrauma, 22(10), 1040-1051. http://dx.doi.org/10.1089/neu.2005. 
22.1040. 

Burcu, E., & Tülay, Y. (2008). Improving classification performance of sonar targets 
by applying general regression neural network with PCA. Expert Systems with 
Applications, 5, 472-475. http://dx.doi.Org/10.1016/j.eswa.2007.07.021. 

Delen, D., Fuller, C, McCann, C, & Ray, D. (2009). Analysis of healthcare coverage: A 
data mining approach. Expert Systems with Applications, 36(2), 995-1003. http:// 
dx.doi.org/10.1016/j.eswa.2007.10.041. 

Frawley, W. J., Paitetsky-Shapiro, G., & Matheus, C. J. (1996). Knowledge discovery in 
databases: An overview. Knowledge Discovery in Databases. California: AAAI/MIT 
Press. 

Frawley, W. J., Paitetsky-Shapiro, G., & Matheus, C. J. (1996). From data mining to 
knowledge discovery: An overview. In U. M. Fayyad et al. (Eds.), Advances in 
knowledge discovery and data mining (pp. 611-620). AAAI Press/The MIT Press. 

Fundaci Instituí Guttmann. (2008). Tecnologías aplicadas al proceso 
neurorrehabilitador. Estrategias para valorar su eficacia (1st ed.). Barcelona: 
Fundacin Instituí Guttmann. 

Güler, I., Gokcil, Z., & Gülbandilar, E. (2009). Evaluating of traumatic brain injuries 
using artificial neural. Expert Systems with Applications, 36(7), 10424-10427. 
http://dx.doi.Org/10.1016/j.eswa.2009.01.036. 

Hartigan, J. A. (1975). Clustering algorithms. New York: John Wiley & Sons. 
Haykin, S. (1994). Neural networks, a comprehensive foundation. New York: 

Macmillan College Publishing Company Inc. 
Instituí Guttmann Neurorehabilitation Hospital. (1997). Citing internet sources. 

URL: http://www.guttmann.com. 
Ji, S. Y., Smith, R, Huynh, T., & Najarían, K. (2009). A comparative analysis of multi­

level computer-assisted decision making systems for traumatic injuries. Medical 
Informatics and Decision Making, 9(2). http://dx.doi.org/10.1186/1472-6947-9-2. 

Koksa, G., Batmaz, I., & Caner, M. (2011). A review of data mining applications for 
quality improvement in manufacturing industry. Expert Systems with 
Applications, 38(10), 13448-13467. http://dx.doi.Org/10.1016/j.eswa.2011. 
04.063. 

Marcano-Cedeño, A., Quintanilla-Dominguez, J., & Andina, D. (2011). WBCD breast 
cancer database classification applying artificial metaplasticity neural network. 
Expert Systems with Applications, 38(8), 9573-9579. http://dx.doi.org/10.1016/ 
j.eswa.2011.01.167. 

Orhan, U., Hekim, M., & Ozer, M. (2011). EEC signals classification using the K-
means clustering and a multilayer perceptron neural network model. Expert 
Systems with Applications, 38(10), 13475-13481. http://dx.doi.org/10.1016/ 
j.eswa.2011.04.149. 

Pang, B. C, Kuralmani, V., Joshi, R., Hongli, Y., Lee, K. K., Ang, B. T., et al. (2007). 
Hybrid outcome prediction model for severe traumatic brain injury. Journal of 
Neurotrauma, 24(1), 136-146. http://dx.doi.org/10.1089/neu.2006.0113. 

Pérez, R, Costa, U., Torrent, M., Solana, J., Opisso, E., Cceres, C, et al. (2010). Upper 
limb portable motion analysis system based on inertial technology for 
neurorehabilitation purposes. Sensors, 10, 10733-10751. http://dx.doi.org/ 
10.3390/S101210733. 

Polat, K., §ahan, S., & Günes, S. (2006). A new method to medical diagnosis: Artificial 
immune recognition system (AIRS) with fuzzy weighted pre-processing and 
application to ECG arrhythmia. Expert Systems with Applications, 31(2), 264-269. 
http://dx.doi.Org/10.1016/j.eswa.2005.09.019. 

Quinlan, J. R (1993). C4.5: Programs for machine learning (1st ed.). San Francisco: 
Morgan Kaufmann Publishers. 

Rovlias, A., & Kotsou, S. (2004). Classification and regression tree for prediction of 
outcome after severe head injury using simple clinical and laboratory variables. 
Journal of Neurotrauma, 21(7), 886-893. http://dx.doi.org/10.1089/0897715 
041526249. 

Rughani, A. I., Dumont, T. M., Lu, Z., Josh Bongar, M. S., Horgan, M. A., Penar, P. L, 
et al. (2010). Use of an artificial neural network to predict head injury outcome. 
Journal of Neurosurgery, 113(3), 585-590. http://dx.doi.org/10.3171/ 
2009.11.JNS09857. 

Segal, M. E., Goodman, P. H., Goldstein, R, Hauck, W., Whyte, J., Graham, J. W., et al. 
(2006). The accuracy of artificial neural networks in predicting long-term 
outcome after traumatic brain injury. Journal of Head Trauma Rehabilitation, 
21(4), 298-314. 

Seng, J. L., & Chen, T. C. (2010). An analytic approach to select data mining for 
business decision. Expert Systems with Applications, 37(12), 8042-8057. http:// 
dx.doi.org/10.1016/j.eswa.2010.05.083. 

Sohlberg, M. M., & Mateer, C. A. (2001). Cognitive rehabilitation: An integrative 
neuropsychological approach (1st ed.). New York: Guilford Press. 

Solana, J., Cáceres, C, Gómez, E.J., Ferrer-Celma, S., Ferre-Bergada, M., & Garcia-
Lopez et al. (2011). PREVIRNEC a new platform for cognitive tele-rehabilitation. 
In Proceedings of the third international conference on advanced cognitive 
technologies and applications, COGNITIVE 2011 September 25-30 (pp. 59-62). 
Rome, Italy. 

Specht, D. F. (1991). A general regression neural network. IEEE Transactions on 
Neural Networks, 6, 568-576. http://dx.doi.org/10.1109/72.97934. 

The Lancet Neurology. (2010). Traumatic brain injury: time to end the silence. 
Lancet Neurology, 9, 331. doi:10.1016/S1474-4422(10)70069-7. 

Tormos, J. M., García-Molina, A., Garcia-Rudolph, A., & Roig, T. (2009). Information 
and communication technology in learning development and rehabilitation. 
International Journal of Integrated Care, 9(5). 

Upadhyay, D. (2008). Cognitive functioning in TBI patients: A review of literature. 
Middle-East Journal of Scientific Research, 3(3), 120-125. 

<http://www.cs.waikato.ac.nz/ml/index.html>, 23th January 2011. 
Witten, I. H., & Frank, E. (2005). Data Mining Practical Machine Learning Tools and 

Techniques (2nd ed.). San Francisco: Morgan Kaufmann Publishers. 
Yeh, Y. L., Hou, T. H., & Chang, W. Y. (2012). An intelligent model for the 

classification of childrens occupational therapy problems. Expert Systems with 
Applications, 39(5), 5233-5242. http://dx.doi.0rg/10.1016/j.eswa.2011.ll.016 

Yen, D. Y., Chen, C. H., & Chen, Y. W. (2011). A predictive model for cerebrovascular 
disease using data mining. Expert Systems with Applications, 38(7), 8970-8977. 
http://dx.doi.Org/10.1016/j.eswa.2011.01.114. 

http://dx.doi.org/10.1089/neu.2005
http://dx.doi.Org/10.1016/j.eswa.2007.07.021
http://
http://dx.doi.Org/10.1016/j.eswa.2009.01.036
http://www.guttmann.com
http://dx.doi.org/10.1186/1472-6947-9-2
http://dx.doi.Org/10.1016/j.eswa.2011
http://dx.doi.org/10.1016/
http://dx.doi.org/10.1016/
http://dx.doi.org/10.1089/neu.2006.0113
http://dx.doi.org/
http://dx.doi.Org/10.1016/j.eswa.2005.09.019
http://dx.doi.org/10.1089/0897715
http://dx.doi.org/10.3171/
http://
http://dx.doi.org/10.1109/72.97934
http://www.cs.waikato.ac.nz/ml/index.html
http://dx.doi.0rg/10.1016/j.eswa.2011.ll.016
http://dx.doi.Org/10.1016/j.eswa.2011.01.114

