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Genetic wavelet packets for speech recognition
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Departamento de Informdtica, Facultad de Ingenieria y Ciencias Hidricas,
Universidad Nacional del Litoral, CONICET, Argentina

Abstract

The most widely used speech representation is based on the mel-frequency
cepstral coefficients, which incorporates biologically inspired characteristics
into artificial recognizers. However, the recognition performance with these
features can still be enhanced, specially in-adverse conditions. Recent ad-
vances have been made with the introduction of wavelet based representations
for different kinds of signals, which have shown to improve the classification
performance. However, the problem of finding an adequate wavelet based
representation for a particular problem is still an important challenge. In
this work we propose a genetic algorithm to evolve a speech representation,
based on a non-orthogonal wavelet decomposition, for phoneme classification.
The results, obtained for a set of spanish phonemes, show that the proposed
genetic algorithm is'able to find a representation that improves speech recog-
nition results. Moreover, the optimized representation was evaluated in noise
conditions.
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1. Introduction

Automatic speech recognition systems need a pre-processing stage to
make phoneme key-features more evident, in order to obtain significant im-
provements in the classification results [1]. This task was first addressed by
signal processing techniques like filter-banks, linear prediction coding and
cepstrum analysis [2]. The most popular feature representation<currently
used for speech recognition is built from the mel-frequency cepstral coeffi-
cients (MFCC) [3], which are based on a linear model of voice production
together with the codification on a psycho-acoustic scale;” However, due to
the degradation of recognition performance in the presence of additive noise,
many advances have been conducted in the development of alternative fea-
ture extraction approaches. In particular, techniques like perceptual linear
prediction [4] and relative spectra [5] incorporate features based on the hu-
man auditory system and provides some robustness in ASR. Also, significant
progress has been made with the application-of different artificial intelli-
gence techniques in the field of speech processing [6]. Besides, the utilization
of wavelet based analysis for speech feature extraction has recently been
studied [7, 8, 9, 10].

The multi-resolution analysis associated with discrete wavelet transform
(DWT) can be implemented as a filter bank decomposition (or filter bank
schemes) [11]. Wavelet packet transform (WPT) is a generalization of the
DWT decomposition which offers a wider range of possibilities for signal rep-
resentation in the time-scale plane [12]. To obtain a representation based
on this transform, usually, a particular orthogonal basis is selected among
all the available basis. Nevertheless, in phoneme classification applications
there is not_evidential benefit on working with orthogonal basis. Moreover,
it is known that the analysis performed at the level of the auditory cortex is
highly redundant and, therefore, non-orthogonal [13]. Without this restric-
tion the result of the full WPT decomposition is a highly redundant set of
coefficients, from which a convenient representation for the problem in hand
can be selected.

Many approaches addressing the optimization of wavelet decompositions
for feature extraction have been proposed. For instance, in [14] an automatic
extraction of high quality features from continuous wavelet coefficients ac-
cording to signal classification criteria was presented. In [15], an approach
based on the best basis wavelet packet entropy method was proposed for elec-
troencephalogram classification. Also, a method for the selection of wavelet



family and parameters was proposed for the phoneme recognition task [16].
Similarly, the use of wavelet based decompositions has also been proposed as
a tool for the development of robust features for speaker recognition [17, 18].
Another interesting approach was proposed in [19], in which a novel approach
for generating the wavelet that maximizes the discrimination capability. of
ECG beats using particle swarm optimization. Also, the use of evolutionary
computation techniques in order to optimize over-complete decompositions
for signal approximation was proposed in [20]. Furthermore; the use of a
genetic algorithm to optimize WPT based features for pathology detection
from speech was proposed in [21], where an entropy criterion was minimized
for the selection of the wavelet tree nodes. Similar approaches propose the
optimization of wavelet decomposition schemes using evolutionary compu-
tation for denoising [22, 23] and image compression [24]. Besides, different
approaches have been proposed for the optimization of wavelet based repre-
sentations using swarm intelligence [25, 26]. Many other studies also rely on
evolutionary algorithms for feature selection [27, 28, 29] and the optimization
of speech representations [30, 31, 32]. However, the flexibility provided by
the full WPT decomposition hasmnot. yet been fully exploited in the search
for a set of features to improve speech recognition results. When this search
is not restricted to non-redundant representations, there is a large number of
non-orthogonal dictionaries to be explored, leading to a hard combinatorial
problem.

Here we propose a new approach to optimize over-complete decomposi-
tions from a WPT dictionary, which consists in the use of a genetic algorithm
(GA) for the selection of wavelet based features. In order to evaluate the so-
lutions during the search, the GA uses a learning vector quantization (LVQ)
classifiers” Some preliminary results with this strategy were presented in [33].
The methodology, referred to as genetic wavelet packets (GWP), relies on
the benefits provided by evolutionary computation to find a better signal
representation. This feature selection scheme, known as wrapper [34, 35],
isiwidely used as it allows to obtain the good solutions in comparison with
other techniques [36].

The organization of this paper is as follows. In Section 2, brief descriptions
of the properties of WPT and GA are presented. Next, our wrapper method
for the selection of the WPT components is described. The following section
discusses the obtained recognition results for a set of spanish phonemes.
Finally, the general conclusions and future work are presented.



2. Materials and methods

2.1. Wawvelet and wavelet packet transforms

In contrast with sine and cosine bases, wavelet bases are simultaneously
localized in time and frequency. This feature is particularly interesting in
the case of signals which present both stationary and transient behaviors.
Wavelets can be defined, in a simplified manner, as a function of zero mean,
unitary norm and centered in the neighborhood of ¢t = 0 [37]:

b(t) € I3(R): / Tt = 0 ()] =4, (1)

A family of time-frequency atoms is obtained by scaling and translating the

wavelet function: .
—u
us(l) = —= 2
ualt) = v (NS ©)

with u, s € R. This way, the continuous wavelet transform of the signal z(t)
is defined as the inner product with this family of atoms
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The discrete dyadic wavelet transform (DWT) of z[n] € RY is obtained by
discretizing translation and scaling parameters in (3), as u = m and s = 27.
A fast implementation of the DWT based multiresolution analysis exists
[11], which uses low-pass and high-pass filters to decompose a signal to detail
(d;[n]) and approximation (a;[n]) coefficients. Since the filter outputs contain
half the frequency components of the original signal, both approximation and
detail can be sub-sampled by two, maintaining the number of samples. This
process is iteratively repeated for the approximation coefficients, increasing
the frequency resolution on each decomposition step. As result a binary
decomposition tree is obtained, where each level corresponds to a different
scale j [38]

Gl =v3 S gln— 2mayln], (4)
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here g[n| and h[n] are the impulse responses of the high-pass and low-pass
filters associated with the wavelets and scaling functions, respectively.

The WPT could be considered as an extension of the DWT which pro-
vides more flexibility on frequency band selection. With the same reasoning
above, details (high frequency components) can be decomposed as well as
approximations (low frequency components). In a similar way to the DWT,
the full wavelet packets decomposition tree is obtained by

A ilm] = V2 Z [n — 2m]c?[n], (6)

n=—oo

I m] = V2 Z hln — 2m][n); (7)
where 7 is the depth of the node and p indexes the nodes in the same depth,
every cf with p even is associated to approximations and every cf with p odd
is associated to details.

The wavelet packet analysis allows to represent the information contained
in a signal in a more flexible time-scale plane, by selecting different sub-trees
from the full decomposition(Figure 1). For the selection of the best tree
it is possible to make use ‘of the knowledge about the characteristics of the
signal and to obtain an‘efficient representation in the transform domain. For
the case of signal compression the criteria is based on “entropy” measures,
method named as'best orthogonal basis [39]. Another possibility, closer to the
classification problem, is to use the local discriminant basis algorithm, which
provides an‘appropriate orthogonal basis for signal classification [40]. These
criteria are based on the assumption that an orthogonal basis is convenient.
Nevertheless; for the case in study there is not evidence on the convenience
of a non-redundant representation. Moreover, the redundancy often provides
additional robustness for classification tasks in adverse conditions [31]. Be-

cause of this, a method which explores a wider range of possibilities should
be studied.

2.2. Genetic wavelet packets

Genetic algorithms are meta-heuristic optimization methods motivated
by the process of natural evolution [41]. A classic GA consists of three kinds
of operators: selection, variation and replacement [42]. Selection mimics
the natural advantage of the fittest individuals, giving them more chance to
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Figure 1: Wavelet packets tree with six decomposition levels for a 256 samples signals.
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Figure 2: General scheme of the proposed wrapper method.

reproduce. The purpose of the variation operators is to combine informa-
tion from different individuals and also to maintain population diversity, by
randomly modifying chromosomes. The number of individuals in the cur-
rent population-that are substituted by the offspring is determined by the
replacement strategy. The information of a possible solution is coded in a
chromosome and its fitness is measured by an objective function, which is
specific to a given problem. Parents, selected from the population, are mated
to generate the offspring by means of the variation operators. The popula-
tion is then replaced and the cycle is repeated until a desired termination
criterion is reached. Once the evolution is finished, the best individual in the
population is taken as the solution for the problem [43]. Genetic algorithms
are inherently parallel, and one can easily benefit from this to increase the
computational speed [33].

In this case, the objective function needs to evaluate the signal represen-
tation suggested by a given chromosome, providing a measure of the class
separability. Therefore, the fitness function was defined as a phoneme clas-
sifier, based on the optimized learning vector quantization (O-LVQ) tech-
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Figure 3: Frequency band integration scheme (half tree).

nique [44]. This classifier uses a set of reference vectors (codebook) which are
adapted using a set of training patterns in order to represent the distribu-
tion of classes. O-LVQ was chosen because it requires much less processing
time than those used in state-of-the-art speech recognizers, based on hidden
Markov models (HMM). Although, after the optimization, for the validation
of the evolved representation an HMM based classifier was also used.

For the evaluation of every individual in the population, the classifier is
trained and tested on a phoneme corpus, and the recognition rate is used as
the fitness value. The scheme of the proposed wrapper method is shown in
Figure 2. The GA uses roulette wheel selection method, the classic mutation
and one-point crossover:” Also, an elitist replacement strategy was applied,
which maintains the best individual to the next generation.

The feature extraction scheme was designed for signals of 256 samples
length, this is 32 ms frames at 8 kHz sampling frequency. And the iterative
process of filtering and decimation was performed to obtain six decomposi-
tion levels; obtaining a full wavelet packet tree consisting of 1792 coefficients.
Then; in order to reduce the dimensionality of the search space, the coeffi-
cients inside each frequency band were “integrated” by groups. This means
that each band was subdivided into groups, and an energy coefficient for each

group was obtained by
5= Y lel’, (8)

Vey, GG;

where e is the energy coefficient for integration group j in scale s, G3, and
¢ is the k-th coefficient belonging to this group. Figure 3 illustrates the
integration scheme for the first half of the WPT decomposition tree, while
the other half is integrated in the same manner. Each small square represents
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Table 1: Integration scheme applied to the WPT tree for a 256 sample signal, which
reduces from 1792 wavelet coeflicients to 208 integration coeflicients.

Level 1 2 3 4 5 6
Nodes 2 4 8 16 32 64
Integration groups per node 8 8 4 2 1 1
Wavelet coefficients per group 16 8 8 8 8 4

6
Integration coefficients per level 16 32 32 32 32 64

a single component, in the first row (level 0) this is a sample of the temporal
signal and for the other rows (levels 1 to 6) each of them correspond to a single
wavelet coefficient. White and gray zones delimit_the different integration
groups and the tree nodes in each decomposition level are indicated with thick
line rectangles. Table 1 shows the number of components and coefficients in
each integration group. This integration scheme was heuristically designed,
considering the most relevant frequency bands:in speech and their temporal
resolutions.

After band integration, a normalization was applied: if w,[k] is the k-
th energy coefficient corresponding to the pattern p, then the normalized
coefficient will be given by

wy K]

= S FY

(9)

A canonical eyolution model with binary chromosomes was used, in which
every individual represents a different selection of the WPT band-integrated
coefficients. © Each gene in a chromosome represents one normalized coef-
ficient, andits value indicates whether that coefficient should be used to
parametrize the signals (Figure 4). Once the data base is processed, each
feature vector is composed by the normalized and band-integrated WP'T co-
efficients. These labeled patterns are used to train and test the O-LV(Q based
classifier. When a particular individual is evaluated, each feature vector is
reduced to the subset of coefficients indicated by the chromosome.

The selection of individuals should be done considering the set of coeffi-
cients represented by each chromosome. The chromosomes which codify the
best signal representations, those which allow better classification results,
should be assigned high probability. As the codification could be redundant
and no restriction is imposed for coefficients combination, the GA initial-
ization consists on a random settling of the genes in the chromosomes. All
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Figure 4: Codification example with a 80 genes chromosome and the corresponding WPT
tree. Dark boxes represent the used coefficients and the white boxes represent those that
are discarded.

Algorithm 1: Optimization for GWP.

Obtain full WPT for each phoneme example in thée eorpus using (6) and (7)
Apply the band-integration scheme to WPT coefficients using (8)
Normalize the integrated coefficients for each pattern according to (9)
Initialize the GA population
Evaluate population (Algorithm 2)
repeat

Select parents (roulette wheel)

Create a new population from selected parents

Replace population

Evaluate population
until stopping criteria is met

the steps involved in the GWP feature selection strategy are summarized in
Algorithm 1, while the details for the population evaluation are shown in
Algorithm 2.

2.3. Phoneme corpus

The speech data used for experimentation is a subset of the Albayzin
geographic corpus [45, 46], named Minigeo. This subset consists of 600 ut-
terances, spoken by twelve different speakers (six men and six women) which
where between fifteen and fifty five years old. This speech data has been
phonetically segmented using a speech recognition system based on hidden
Markov models [47]. This way the temporal localization of every phoneme
within each utterance was obtained. The extracted phonetic corpus was par-
titioned in three groups, a training set and a testing set to be used during
evolution, and a third data set which was used only for the validation of best



Algorithm 2: Evaluate population.

for each individual in the population do
Re-parameterize training/test patterns according to the chromosome

Train the LVQ based classifier on the training set
Test the LVQ based classifier on the test set
Assign classification rate as the current individual’s fitness

solutions after the feature selection process.

The experiments included the phonemes /a/, /e/, /i/s /o/, /u/, /b/,
/d/, /p/ and /t/ from Spanish. The five vowels were ingluded because of
their obvious importance in the language, while the four occlusive phonemes
have been included because of their similar characteristics, that make a set
particularly difficult to distinguish [48]. Evem though it can be suggested
that all phonemes should be included, our hypothesis is that this strategy
simplifies the task of the GA while still allows to find features useful in
continuous ASR. In order to avoid adding additional complexity to the search
of the GA, every sample used in the optimization consisted in a single speech
frame of 32 ms length, which was extracted from the center of the phoneme
utterance.

3. Results and discussion

3.1. Genetic optimization of wavelet packets

In [49], various wavelet families have been tested in order to find which
one is the most convenient for signal classification. In this work the tests
included the most widely used families, among which we can mention Meyer,
Daubechies, Symmlets, Coiflets y Splines [50]. As result, the 4th order Coiflet
family was chosen to be used on the following experiments.

For' the first experiment, a codebook of 117 vectors (13 per phoneme)
was used within the LV(Q classifier and the initial learning rate was set on
0.02. The classifier training was made in 6 epochs with 1449 patterns and
252 patterns were left for testing. For the GA, the population size was set
on 100 individuals, while crossover and mutation probabilities were set on
0.9 and 0.05, respectively. The performance of the best solution found was
57.94% of correct classifications.

As the LVQ codebook initialization has a random component, repeated
evaluations for the same individual may result on different fitness values.
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Table 2: Summary of obtained fitness and validation results.

Strategy Convergence Fitness Validation
(# generations) Average STD
Random LVQ initialization 26 57.94%  53.69%  2.33%
Fixed LVQ initialization 216 57.78%  56.67%  2.9%
Generational LVQ initialization 355 64.07%  59.16% « 2.91%

Then, in order to obtain a good estimation of the performance for the best
individual, after the evolution, it was evaluated ten times with a validation
data set In this process we used 2637 training patterns and 450 test pat-
terns which were not used during the evolution. As result, an average of
53.69% correct classifications with a standard deviation of 2.33% was ob-
tained. Also, in order to analyze the effect of the random LV(Q) initialization
on the evolution, two different alternatives were considered. In the first case,
the randomness was eliminated from the codebook initialization. In this case,
the GA was able to find an individual with a fitness (classification rate) of
57.78%. With the validation procedure, described earlier, an average clas-
sification rate of 56.67% was obtained. Even though an improvement was
obtained, it is possible that the evolution was biased by this fixed codebook
initialization. Then, another strategy was considered, in which a fixed initial-
ization sequence was used. for each generation. In order to allow individuals
evaluated with different conditions (initializations) to coexist in the same
generation a generational gap of 10 individuals was used, maintaining more
information from one generation to the next. This means that, in addition
to the best individual which is preserved by the elitist strategy, another 10
individuals are chosen by the selection algorithm to be maintained to the
next generation. In this case the best solution achieved 64.07% correct clas-
sifications, and an average classification rate of 59.16% was obtained with
the validation data. Table 2 summarizes these results, showing that this last
strategy allowed to improve the generalization capability.

Table 3 shows a confusion matrix obtained from validation results. As
this matrix shows, the /t/ phoneme is mainly (61.51%) classified as /p/.
This error turn up because the experimental data was taken from the cen-
tral part of the samples and the plosive phonemes, like /p/ and /t/, have
their most particular attributes at the beginning (the phoneme plosion). A
similar problem happens with phoneme /d/, and this might be solved for all
plosive phonemes by considering their context (i.e. a number of precedent
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Table 3: Confusion matrix obtained from the validation of the best GA solution, giving
59.16% average classification rate.

ja/ __Je/ i/ Jo/ Ju/ _/b/ Jd/ /o] /Y]

/a/  84.85 00.30 00.00 11.82 01.21 01.21 00.30 00.30 00:00
/e/ 02.73 76.06 0182 05.15 03.64 0333 01.51 03.64 02.12
/i/ 00.00 08.18 86.97 00.00 00.30 0273 00.61 00.30° 00.91
/o/ 25.15 10.61 00.00 4242 1424 04.24 02.73 00.61  00.00
Ju/  08.79 00.00 01.51 08.48 59.39 1424 00.61 ~05.15 = 01.82
/b/ 0030 0242 00.00 04.54 09.70 62.12 06.06 = 13.03 01.82
/d/ 10.30  31.82  09.09 07.57 04.54 0454 10.61 1727 04.24
/p/  00.00 00.00 00.00 00.00 00.00 03.03 .0242  78.18 16.36
/t/ 00.00  00.00 00.00 00.30 00.00 04.54 01.82 61.51 31.82

and posterior frames).

3.2. Comparative analysis

In order to compare this results, the same classifiers were trained with
other state-of-the-art speech features: the classic MFCC [3], the alterna-
tive cepstral features based on Slaney’s filter-bank [51], and a representation
based on the standard DW'I. Tt is worth pointing out that, as the speech data
used in these experiments was sampled at 8 kHz, the original parameters of
the filter-bank proposed by.Slaney were modified by following the reason-
ing in [52]. Table 4 shows the results obtained with the above mentioned
representations and wusing a validation data set consisting of 450 patterns,
which were not used for the optimization. As it can be seen, the best aver-
age classification rate was obtained with the GWP. This shows that by the
genetic optimization of the full WPT decomposition it is possible to improve
the classification results, in contrast to the classic cepstrum based represen-
tations: On the other hand, it can be noticed that the phoneme /d/ seems
to bethe most difficult for all representations, except for DWT.

Even though the state-of-the-art speech recognizers use HMM for acoustic
modeling, the significant improvements provided by GWP when using an
LVQ based classifier should not be disregarded. These results clearly show
that a more efficient class separation is provided in the GWP features space.
It should be taken into account that this straightforward classifier was used
as objective function to guide evolution, and only the central frame was
considered for each phoneme pattern during the optimization.

12



Table 4: Classification results obtained with an LVQ based classifier.

Phoneme Cepstral coeflicients Wavelets
MFCC(13) Slaney(18) DWT(256) GWP(104)

/a/ 82.80 70.40 69.39 84.85
/e/ 77.40 61.60 54.54 76.06
/i/ 90.00 61.60 84.54 86.97
/o/ 46.20 28.40 54.54 42.42
/u/ 31.60 21.40 31.51 59.39
/b/ 45.20 39.60 58.48 62.12
/d/ 08.80 09.00 59.69 10.61
/p/ 55.60 45.20 04.85 78.18
/t/ 48.60 58.40 31.21 31.82

Average 54.02 43.96 49.86 59.16

3.3. Bvaluation with hidden Markov models

In this work we have raised the hypothesis that, by using a simple classifier
in the optimization, the class separability would be maximized and this could
also be beneficial to a more sophisticated classifier, like HMM [53]. In order
to verify this, the performance of an-HMM based classifier was evaluated for
each of the representations in Table 4. This classifier is based on a continuous
HMM, using Gaussian mixtures with diagonal co-variance matrices for the
observation densities, as common in ASR [54]. We used a three state model
with mixtures of four gaussians, constructed with the tools provided in the
HMM Toolkit (HTK) 47} These tools use the Baum-Welch algorithm [55]
to train the HMM parameters, and the Viterbi algorithm [53] to search for
the most likely state sequence. This classifier was evaluated in a ten-fold
cross-validation process with random partitions, each of which consisted of
2484 and 621 patterns for training and testing, respectively. It is important
to point out that, because of the nature of HMM, in the evaluation of this
classifier all the successive frames composing a phoneme were used. While,
for the LV(Q based classifier, only the central frame was used for a particular
phoneme.

For the features based on DWT the training of the HMM classifier could
not converge, which is mainly because the gaussian mixtures are not able
to adequately model the probability densities of these coefficients [56]. An-
other problem for training the models with DW'T coefficients is due to the
high dimensionality of this representation. Then, a post-processing based on
principal component analysis (PCA) [57] was applied in order to obtain a rep-
resentation of lower dimensionality, with probability densities more similar to

13



Table 5: Classification results obtained with an HMM based classifier.

Phoneme Cepstral coeflicients Wavelets
MFCC(13) Slaney(18) DWT+PCA(134) GWP(104)

/a/ 59.70 58.26 49.71 54.21
/e/ 67.55 64.21 45.50 60.30
/i/ 59.00 63.49 62.02 76.82
/o/ 31.74 27.53 27.38 34.78
/u/ 37.68 51.02 37.82 58.99
/b/ 43.76 26.08 42.61 30:59
/d/ 30.72 16.52 22.45 26.81
/p/ 36.96 40.00 36.37 49.44
/t/ 71.46 60.00 59.43 53.33

Average 48.74 45.24 42.60 49.48

gaussians. The best result for DWT+PCA was-ebtained when preserving the
99% of the variance, giving a representation of 134 dimensions. Even though
our optimized representation is also based on wavelets, and the same prob-
lem could be expected, no post-processing was necessary for GWP. Thus, we
can assume that the band integration, besides reducing dimension, produced
coefficients with probability densities more appropriate to gaussian mixture
modeling.

Table 5 shows the phoneme classification results obtained with HMM,
comparing GWP and other state-of-the-art speech representations. The op-
timized representation is the same from Table 4, which was evolved using an
LVQ-based classifier. It can be noticed that the best results are those ob-
tained by means of the optimized representation and MFCC, similar to the
case of the validation with LVQ (Table 4). Even though the fitness was mea-
sured by means of an LVQ based classifier in the optimization, the evolved
representation provided satisfactory results when using HMM. This means
that the optimized representation captures information which is relevant for
the diserimination, regardless of the type of classifier. Moreover, using this
low-cost classifier, we have successfully saved significant computational time
in the optimization. It should be taken into account that if we had used
an HMM based classifier and, therefore, considered all the possible frames
within a phoneme example, the evaluation of each individual would have
taken approximately ten times more.

It is also important to note that the proposed GWP representation, which
yielded the best classification result when using an LVQ based classifier, pro-
vides relatively lower performance with HMM. This is because, as explained

14



before, the probability densities of the coefficients provided in wavelet based
representations are not entirely suitable for gaussian mixture models [56].
Then, different alternatives remains to be explored besides band integration
and PCA post-processing, in order to obtain coefficients more suitableto
gaussian mixture models. Also, it should be considered that the dimension-
alities of the wavelet based representations are much higher than those of
the cepstral representations, which makes the training of the classifier more
difficult.

Despite the previous considerations, the results from Tables 4 and 5 show
that the proposed method is useful for the optimization of wavelet based rep-
resentations. Moreover, the results obtained with the GWP features shown
that using this evolutionary methodology it is possible to improve the per-
formance of the classical representations in ASR.

3.4. Fvaluation in noise conditions

In order to evaluate the robustness of the optimized representation, white
noise was added to the original utterances. The tests were made at several
noise levels, and the mismatch training and test (MMTT) condition was
considered, which means that the classifiers were trained with clean signals
and tested with noisy signals: In general, the input of an ASR system would
consist on speech signals with different SNR to those in the training set.
For this reason, the evaluation of the recognition performance in MMTT
conditions is more realistic than the case where the SNR is the same in both
training and test sets.

Each test_consisted in a ten-fold cross-validation process with random
partitions, which consisted of 2484 and 621 patterns for training and testing,
respectively: The process of training and testing was repeated for these ten
partitions and results were averaged, ensuring that the resultant accuracy
would not be biased because of a particular data partition. Figure 5 shows
the average results, as well as the estimated standard deviations, showing
that the GWP improves the MFCC in all cases. At 0 and 5 dB SNR the
DWT+PCA representation gives better results, however, for most of the
noise conditions its performance is noticeably worse than GWP. It can be
noticed that, on average, the results given by GWP are significantly better
when compared to the other representations.

In order to evaluate the statistical significance of these results, we estima-
ted the probability that GWP is better than each of the reference representa-
tions for the given tasks. To perform this test, statistical independence of the
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Figure 5: Classification results obtained with an HMM based classifier evaluated in MMTT
conditions.

classification errors for each phoneme has been assumed, and the binomial
distribution of the errors was approximated by means of a Gaussian distri-
bution. Table 6 shows the statistical significance of the classification rates
obtained with the HMM based classifier: results improved by GWP with
statistical significance higher than 97% are indicated with the superscript
A. Tt canbe noticed that most of the classification improvements obtained
with the proposed optimized representation are statistically significant. For
instance, the probability that GWP performs better than the cepstral coef-
ficients ‘obtained with Slaney’s filterbank is higher than 0.99 for all SNRs.
Table 7 shows more detailed information about the classification perfor-
mance comparing MFCC and GWP, for the case of 40 dB SNR in MMTT
conditions. In these confusion matrices, the rows correspond to the actual
phoneme and the columns to the predicted phoneme, while the percentages of
correct classification are on the diagonal. These matrices show coincidences
between the phonemes which are most confused with MFCC and the ones
that are confused with GWP. For example, in both cases phoneme /t/ was
confused with /p/ and vice versa, which is reasonable as these two plosive
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Table 6: Statistical significance of classification results obtained with an HMM based
classifier evaluated in MMTT conditions. Superscript A indicates that the statistical
significance of the improvement of GWP is higher than 97%.

SNR Cepstral coefficients Wavelets
MFCC(13) Slaney(18) DWT+PCA(134) GWP(104)

clean 48.74 45.24% 42.60° 49.48
40 dB 48.58% 45.154 43.40% 50.19
30 dB 47.38 43.82% 41.18% 47.77
20 dB 40.42% 43.64% 42.23% 46.72
15 dB 39.124 39.194 41.084 42.93
10 dB 33.774 23.45% 36.10 36.11
5 dB 23.324 12.55% 27.78 25.05
0dB 12.84% 11.17% 22.34 16.42

Table 7: Confusion matrix obtained from the validations with MFCC and GWP in MMTT
conditions and 40 dB SNR.
MFCC GWP
/a/ /e/ /i/ /o/ /u/ /v/ /d/ /p/ /t/ " [a/ [e/ /i/ /[o/ /u/ /b/ /d/ /p/ /t/
/a/ 617 08.8 00.2 11.9 02.8 04.5 09.6 00.3 00.3 57.8 08.3 00.0 13.2 11.6 05.1 04.1 00.0 00.0
/e/ 11.0 66.4 06.5 04.8 03.9 03.7 03.8 00.0 00.0 = 09.1 61.0 08.4 04.4 01.2 02.8 11.7 00.3 01.2
/i/  00.2 24.6 60.9 02.6 06.0 03.8 02.0 00.0 00.0 = 00.2 06.8 77.5 00.7 03.1 00.6 09.4 00.7 01.0
/o/ 15.5 17.1 03.2 323 13.6 13.3 03.5 00.3 01.2 08.6 10.3 01.2 35.7 29.3 05.5 05.7 02.6 01.3
/u/  04.8 04.2 07.4 19.6 38.0 15.9 09.0 00.9 00.3 02.3 01.8 02.9 16.1 57.1 13.8 04.1 02.1 00.0
/b/  04.7 01.3 03.4 09.9 05.9 452 18.6 09.9 01.3 04.5 00.3 00.0 11.5 25.8 29.7 17.0 06.2 05.1
/d/ 06.1 37.0 00.9 03.1 02.8 07.4 27.8 05.7 09.4 06.1 23.2 09.4 05.4 07.7 05.4 26.8 07.4 08.7
/p/ 00.0 00.4 00.0 00.0 01.3 06.0 16.7 34.1 41.6 00.0 00.0 00.0 00.2 00.7 03.2 10.0 52.5 33.5
/t/ 00.0 00.0 02.3 00.2 00.2°02.6 07.0 16.8 71.0 00.0 01.0 00.7 00.4 00.9 00.6 12.0 30.7 53.6
Average: 48.58% Average: 50.19%

consonants sharé many spectral features. In a similar way vowels /o/ and
/u/, which are close in the formants map, are quite confused in both cases.
Similarly, Table 8 shows the confusion matrices obtained in the classification
with MFCC and GWP in the case of 15 dB SNR and MMTT conditions.
It can be noticed that the vowels /a/ and /u/ are mostly misclassified with
MFECC, but they are significantly better distinguished with GWP. The op-
timized features also introduced an important improvement for the vowel
/i/, which is confused with the phoneme /d/ when using MFCC. It is also
interesting to note that the phonemes which have their classification rates
most affected by noise when using MFCC and GWP do not match. Though,
when the noise level is increased, the number of confusions between phonemes
/t/ and /d/ increases for both MFCC and GWP. Similarly, the number of
confusions between phonemes /t/ and /p/ is also increased in both cases.
Another interesting remark is that, for both representations, phoneme /t/ is
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Table 8: Confusion matrix obtained from the validations with MFCC and GWP in MMTT

conditions and 15 dB SNR.
MFCC GWP

/a/ /e/ /i/ /o/ /u/ /v/ /d/ /p/ /t/ /a/ /e/ /i/ [o/ /u/ /b/ /d/ /p/ /t/
/a/ 045 31.0 00.0 20.1 00.0 03.2 32.8 08.1 00.3 43.8 17.3 00.5 18.1 09.8 03.4 07.3 00.0 00.0
/e/ 00.0 80.6 03.3 00.0 00.0 00.3 15.8 00.0 00.0 04.2 60.3 17.7 03.5 01.3 00.9 11.0 00.0.01.2
/i/  00.0 19.1 53.1 00.0 00.2 00.2 24.4 00.0 03.2 00.0 11.0 825 01.2 03.4 00.3 01.7 00.0 00.0
/o/ 00.0 25.2 01.8 26.7 01.3 09.6 24.6 05.4 05.5 07.1 13.6 00.8 31.9 29.6 02.5 12.5 00.2 02.1
/u/  00.0 08.4 11.6 16.8 03.6 27.8 29.4 01.3 01.0 02.3 04.4 06.1 19.1 57.5 05.2 05.4 00.0 00.0
/b/  00.0 03.7 04.1 03.5 00.4 12.0 56.7 08.7 11.0 01.5 09.3 08.6 18.1 29.9 09.6 14.9 01.6 06.7
/d/ 00.0 29.6 01.2 00.6 00.0 02.8 49.0 03.4 13.6 04.5 27.7 12.3 02.1 11.4 00.9 275 02.2 11.5
/p/ 00.0 00.5 00.0 00.0 00.0 00.0 05.1 48.1 46.4 00.0 00.5 06.8 01.6 08.7 01.6 19.4 12.0 49.4
/t/ 00.0 00.0 00.0 00.0 00.0 00.0 13.3 12.2 745 00.0 01.9 06.7 00.0 03.2 00.7 15.7 10.6 61.3

Average: 39.12% Average: 42.93%

better classified when the SNR is 15 dB than whencit is 40 dB. These results
show that the classification performance of the ‘classical representation can
be improved. This suggest that, by means of this GWP methodology, ad-
ditional robustness against white noise can be provided to a state-of-the-art
ASR system.

In order to perform a qualitative analysis of the optimized representation,
the tiling of the time-frequency plane was constructed from the selected de-
composition using the criteria proposed in [58]. The result is shown in Fig-
ure 6, where each decomposition level is depicted separately for an easier
interpretation. Each ellipse represents a selected group from the integration
scheme (Table 1), then their widths and time localizations are determined
by the time-frequeney atoms corresponding to the integration group (Figure
3). Therefore, each element in the tiling represents a time-frequency atom
that was obtained by adding the original wavelet atoms, according to the
integration scheme. This explains why the atoms for levels 1 and 2 are the
same time width, as the number of coefficients integrated in the groups for
level 1 are twice the number of coefficients in the groups for level 2 (Figure
3).. Thesame explanation applies for the width of the atoms in levels 5 and
6. Note that the whole time-frequency tiling is obtained by the superposi-
tion of these six sub-figures, yielding great overlapping between atoms from
different decomposition levels. A first observation is that the optimization
of the WPT-based decomposition led to a highly redundant non-orthogonal
representation, which has been able to exploit this redundancy in order to
increase robustness against additive noise. However, the optimized repre-
sentation uses only 50% of the total of the coefficients obtained from the
integration of the whole WPT-tree. This also suggest that it could be pos-
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sible to achieve still further redundant and robust representations. It is also
interesting to note that there are some selected atoms concentrated at the
center of the time axis, which could be related to how the phonemes were
sampled from the speech corpus, as only the frames extracted from the center
of each utterance were considered for the optimization. Also, there are some
atoms concentrated at the side parts of the time axis, which could he related
to the plosive phonemes.

4. Conclusion and future work

A wrapper optimization strategy has been proposed; taking advantage
of the benefits provided by evolutionary computation techniques, in order
to carry on the search for an advantageous wavelet-based speech representa-
tion. The results, obtained in the classification of & group of nine phonemes
from spanish, shown that the optimized representation provides important
improvements in comparison to the classical features. This suggests that the
task of a classifier is simplified when using this optimized representation, due
to a better class separation in the features space. Therefore, the proposed
strategy provides an alternative feature set for speech signals, which allows
to improve the classification results in the presence of noise.

In future work we would design more specific genetic operators, so that
more information about the problem in hand could be incorporated to the
search. Pursuing the<objective of finding a representation more suitable for
HMM with gaussian mixture modeling, one interesting idea is to incorpo-
rate some measure about the gaussianity of the probability densities of the
GWP coeffigients to the fitness function. Besides, we would study different
alternatives to the proposed band integration scheme and the use of tempo-
ral information, in regard to successive speech frames, like first and second
derivatives.

In order to obtain a representation which allows to improve the results in
a continuous speech recognition system, future experiments will include more
phonemes in the data-sets used for the optimization. Also, the robustness
of the representation will be evaluated in comparison with different state-of-
the-art robust representations, considering different noise types.
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*Highlights (for review)

> A set of features based on wavelet packets was optimized for speech recognition. > A wrapper for
feature selection was desingned by means of a genetic algorithm. > A non-orthogonal representation
was obtained, which allowed to increase classification performance. > The optimized features
improved the classification results in noise conditions.



