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Abstract 
This work starts from modeling the scheduling of n jobs on m machines/stages as flowshop with buffers in 

manufacturing. A mixed-integer linear programming model is presented, showing that buffers of size n-2 allow 

permuting sequences of jobs between stages. This model is addressed in the literature as non-permutation flowshop 

scheduling (NPFS) and is described in this article by a disjunctive graph (digraph) with the purpose of designing 

specialized heuristic and metaheuristics algorithms for the NPFS problem. Ant Colony Optimization (ACO) with the 

biologically inspired mechanisms of learned desirability and pheromone rule is shown to produce natively eligible 

schedules, as opposed to most metaheuristics approaches, which improve permutation solutions found by other 

heuristics. The proposed ACO has been critically compared and assessed by computation experiments over existing 

native approaches. Most makespan upper bounds of the established benchmark problems from Taillard (1993) and 

Demirkol et al. (1998) with up to 500 jobs on 20 machines have been improved by the proposed ACO. 
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1. Introduction 
A flow line is a conventional manufacturing system where all jobs must be processed on all machines with the same 

operation sequence (Figure 1). Examples of flow lines include transfer lines, assembly lines, chemical plants, logistics, 

and many more (Rossi et al., 2010). The flowshop scheduling problem occurs whenever it is necessary to schedule a set 

of n jobs on m machines so that each job visits all machines in the same order to optimize one or more objective 

functions. The job sequence of each machine remains unchanged in a permutation flowshop (PFS) scheduling, while in 

a non-permutation flowshop (NPFS) the sequence of jobs can be different on subsequent machines. 

The impact of buffers, along with machines, products and operations, on reconfiguration and performance evaluation is 

examined by Colledani and Tolio (2005). 
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Figure 1. Job Flowing: Permutation Flowshop (PFS) compared to Non-Permutation Flowshop (NPFS) on a physical flow line and on a Gantt 

diagram. 

 

In permutation flowshop no buffers are present. To achieve a feasible PFS schedule either the blocking or the no-wait 

condition should be applied. In the former case, a job completed on one machine may block that machine until the next 

downstream machine is free while in the latter the next machine must be available before a job leaves the previous one.  

Examples of flow line, which restrict feasible schedules to PFS schedules are factories with conveyors between 

machines for material transfer and assembly lines performing the final assembly of bulky products or rigid transfer 

lines.  

In non-permutation flowshop scheduling systems, interoperational or intermediate buffers between two stages are 

necessary and job passing is allowed (Figure 1). Buffers can be shared in the form of an automatic warehouse or an 

open space. In most manufacturing applications buffers are present, consequently NPFS has a wider interest. 

PFS scheduling is an NP-complete combinatorial optimization problem already for m = 3 machines (Garey et al. 1976). 

The computation complexity of permutation approaches is much lower compared with its non-permutation counterpart: 

there are n! different schedules for ordering jobs on machines in PFS, whilst the number of NPFS schedules increases 

to (n!)
m
. To reduce the computation time, permutation flowshop approaches are often preferred by the shop-floor 

manager, often applying heuristic methods to generate good solutions for practical purposes. PFS scheduler is easier to 

implement but unfortunately, this simplicity is bought at the price of drastically inferior schedules. 

Using the Graham’s notation described by a triplet α|β|γ, where field α denotes the system layout and the production 

flow type, field β indicates the operation characteristics and field γ denotes the adopted performance indices. The 

problem considered here is Fm|Bi=n-2|Cmax, where Fm stands for flowshop with m machines, Bi denotes the presence of 

buffers; a buffer of unlimited capacity (Bi=+∝) allows permutations, and consequently implies that the NPFS model is 

applied; a limited capacity Bi = n-2 is sufficient to fulfill the previous requirement, because non-permutation schedules 

are allowed if the capacity requirement of n-2 is satisfied, as it will be proven in §  3., along with a mixed-integer linear 

programming model; Cmax denotes the makespan minimization as the optimization criterion. Lower makespan implies 

other benefits, such as lower idle time, higher machine utilization and higher efficiency. 

It is well-known that the elimination of buffers has the benefit of reducing the work-in-process (WIP) and improving 

the line efficiency according to the lean manufacturing philosophy, however as shown in the Gantt diagram in Figure 

1, changing the sequence of jobs on different machines can have the benefit of shorter schedules. When buffers 

between machines are present, non-permutation schedules are likely to outperform their permutation counterparts 

(Tandon et al., 1991). Permutation schedules are dominant up to the three-machine case. In the general case with m 

(>3) machines, a permutation schedule is not necessarily optimal anymore (Potts et al., 1991). The analysis of 

theoretical upper bounds of permutation and non-permutation schedules of the well-known 120 instance benchmarks 

proposed by Taillard (1993), show that system performance are improved by NPFS scheduling (Vaessens, 1996). 

Simulations by Weng (2000) show that up to 100 jobs and 20 machines, a buffer sizes Bi ≥ 4 gives a slight gap in 



performance with respect to unlimited buffers (Bi=+∝). A possible interpretation is that efficient permutated schedules 

include permutations of jobs that are at a distance of 4 positions. Permutations of jobs that are very distant in the 

sequence produce less efficient schedules (e.g. higher makespan). It has also been found that the buffer size should be 

proportional to the number of jobs. Consequently it can be observed that non-permutation flowshop is more and more 

beneficial over permutation with higher job number. 
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Figure 2. The genesis of native Non-Permutation Flowshop Scheduling (NPFS) and alternatives from the literature to model and approach 

the flow line problem with and without buffers. 

 

In Figure 2 the logical flow of current work is summarized with alternatives from the literature, reviewed in the next § 

 2. It can be noticed that, as anticipated, scheduling on a flowline without buffers can be approached only as permutation 

flowshop (green path, left); permutation solutions can be used as input for non-permutation algorithms and produce 

non-permutation schedules (blue path, center). In §  4., the non-permutation approach (formalized in §  3.) is described 

by a disjunctive graph (digraph) to show how to select or design new heuristics or metaheuristics able to build natively 

non-permutation solutions (red path, right) as opposed to improving permutation solutions found by other heuristics or 

metaheuristics. The proposed native-NPFS approach (§  5.) is based on ant colony optimization (ACO) from Bonabeau 

et al. (2000), as discussed in detail in §  6. Native and non-native approaches are experimentally compared in §  7. 

considering the benchmarks from Taillard (1990) and Demirkol et al. (1998). 

 

2. Literature 
A new class of computation techniques is leading considerable attention: metaheuristic algorithms. Examples of 

metaheuristics in flowshop scheduling include taboo search (Nowicki and Smutniki, 1996), simulated annealing (Lin 

and Ying, 2009), immune algorithm (Li et al., 2012), and genetic algorithms (Ruiz et al., 2006). The relevant literature 

indicates that some of these metaheuristics give considerable results. 

Ruiz and Maroto (2005) and Ribas et al. (2010) give a comprehensive review of many heuristic and metaheuristic 

approaches on permutation flowshop scheduling. A total of 25 algorithms have been coded and tested by Ruiz and 

Maroto against Taillard benchmarks. As a conclusion, they state that the NEH heuristic from Nawaz et al. (1983) is the 

best heuristic with Taillard benchmarks. The performance of this heuristic, if implemented as in Taillard is outstanding, 

with CPU times below 0.5 seconds even for the largest instances.  

As opposed to the extensive reviews on PFS, there are few approaches to non-permutation flowshop scheduling 

(NPFS). Park et al. (1984) adapted a number of heuristics to flowshop scheduling without buffer constrains and 

concluded that the NEH heuristic is dominant. Afterwards, the metaheuristic performance are improved by Rajendran 



and Ziegler (2004) with an ant colony optimization (ACO) approach, Tasgetiren et al. (2007) with a particle swarm 

optimization method, Zobalas et al. (2009) by a hybrid metaheuristics, which combines the advantages of genetic 

algorithm with variable neighborhood search, Khalili and Tavakkoli-Moghaddam (2012) by an algorithm risen from 

the attraction–repulsion mechanism of electromagnetic theories, the multi-objective electromagnetism algorithm, and 

Ruiz et al. (2006) by a genetic algorithm, which is the current state-of-the-art algorithm tested against Taillard 

benchmarks. 

Among native approaches, a heuristic preference relation, developed as the basis for a heuristic so that only the 

potential job interchanges are checked for possible improvement with respect to the multicriteria objectives of 

minimizing makespan and total flowtime, has been applied on Taillard benchmarks by Rajendran (1995). Results have 

been improved by three native heuristics for the minimization of makespan derived from the minimization of total 

flowtime based on the sum of idle times on stages by Ravindran et al. (2005), which becomes the better algorithm also 

for non-native NPFS on Taillard benchmark. Among heuristics, the first native approach based on the shifting 

bottleneck procedure is from Demirkol et al. (1998), the same authors of benchmark problems. 

Koulamas (1998) has reported a new two-phase heuristic where in the first phase, it makes extensive use of Johnson’s 

algorithm. The second phase improves the resulting schedule from the first phase by allowing job passing between 

machines, i.e. by allowing non-permutation schedules. Leinsten (1990) has proposed heuristics for the flowshop 

scheduling where passing of jobs between two machines is permitted. The considered system Fm|Bi∈B|Cmax where 

B=0,1,..,+∝ involves a finite buffer capacity, but includes also no buffer capacity and unlimited buffer capacity as a 

extreme cases. 

Tandon et al. (1991) use the enumerative search and a simulated annealing approach to compare PFS and NPFS with 

the objective of minimizing the makespan. According to their computation experiments, non-permutation schedules 

usually have global optimum of 2% lower than permutation schedules; benchmarks with random processing times 

ranging from 1 to 50 (and from 1 to 500) time units were generated. This feature is also treated by Potts et al. (1991), 

who theoretically proved that there exists a family of instances for which the best permutation flowshop schedule is 

worse than that of the best non-permutation flowshop schedule by a factor of more than (m
0.5

/2). Pugazhendhi et al. 

(2003), Liao et al. (2006) and Ying et al. (2010) compare PFS and NPFS with respect to the minimization of a number 

of flowtime and due-date objectives: total completion time (ΣCi), total weighted completion time (ΣwiCi), total 

tardiness (ΣTi), and total weighted tardiness (ΣwiTi). All the authors use benchmark problems generating random 

processing time and approach the problem by simulated annealing. In particular, Pugazhendhi et al. (2003) compare 

PFS and NPFS on Fm|Bi=+∝|ΣCi and Fm|Bi=+∝|ΣwiCi by a heuristic procedure, Liao et al. (2006) evaluate NPFS on 

Fm|Bi=+∝|ΣTi by a tabu search and a genetic algorithm, and Ying et al. (2010) consider NPFS by a simulating annealing 

approach to all the objective functions, Fm|Bi=+∝|(Cmax, ΣCi, ΣwiCi, ΣTi, ΣwiTi). Their computation experience shows 

that all the proposed procedures yield better NPFS schedules than PFS. 

Metaheuristic NPFS approaches to minimize flowtime or multicriteria objectives have been proposed by Liao and 

Huang (2010) on Fm|Bi=+∝|ΣTi by a tabu search, and by Lin and Ying (2008), who propose three types of 

metaheuristics, a simulated annealing, a tabu search and a genetic algorithm. They consider sequence-dependent setup 

times among parts of different batches, Fm|STsd,b, Bi=+∝|(Cmax, ΣCi, ΣwiCi, ΣTi, ΣwiTi). More recently, Yagmahan and 

Yenisey (2010) consider a multi-objective criterion Fm|Bi=+∝|(w1Cmax + w2ΣCi) and propose an ACO. They propose an 

approach where the initial amount of pheromone on ant trails is a function of the best solution generated by the NEH 

heuristic (non-native). 

Mehravaran and Logendran (2012) consider sequence-dependent setup times and a bicriteria optimization for supply 

chain customer inventory. Aloulou and Artigues (2010) consider a general flowshop scheduling Fm|π, Bi=+∝|Cmax 

characterized by a partial sequence of jobs on each machine. The purpose of their work is to provide on-line a 

characterization of possible modifications of a predictive off-line optimal schedule while preserving optimality. 

Conversely, few approaches consider the computation experience achieved by benchmarks proposed in literature for 

the Fm|Bi=+∝|Cmax problem to objectively and quantitatively compare the performance of different algorithms. Ying, 

Lin and others test various metaheuristic approaches on Demirkol benchmarks: an ant colony system (Ying and Lin, 

2007), an iterated greedy heuristic (Ying, 2008) and a hybrid simulated annealing – tabu search method (Lin and Ying, 

2009). In their last approach, Lin and Ying use a PFS schedule as the initial solution of their tabu search (non-native). 

Brucker et al. (2003) consider Fm|Bi∈B|Cmax where B=0,1,..,+∝, a flowshop with buffers, similarly to Leinsten 

(1990). Computation experiments indicate that CPU times will be reduced and global solutions will be improved by 

increasing the buffer size. Their tabu search is tested on the Taillard dataset. The Taillard dataset is very effective for 

Fm|Bi=0|Cmax and Fm|Bi=+∝|Cmax because Taillard (1993) and Vaessens (1996) gave a method to evaluate tight upper 

bounds. Brucker et al. (2003) provide results on NPFS with limited capacity buffer and propose a local search 

procedure in their tabu search. Their approach is not native: their initial solution is for PFS evaluated by the NEH 

heuristic; next, their approach becomes non-permutated because the initial job sequences are permutated by local 

search.  

Jain and Meeran (2002) consider a multi-level hybrid approach for the general flowshop scheduling problem 

Fm|Bi=+∝|Cmax. They hybridize a scatter search and a tabu search with the neighborhood structure proposed by Nowicki 

and Smutnicki (1996) for job-shop scheduling. The initial solution is found by the insertion algorithm proposed by 

Werner and Winkler (1995). 



Tabu search in general requires a good initial solution as input, e.g. produced by outer heuristics, but is unable to 

generate solutions autonomously: results produced with this technique cannot be used for comparison with native 

approaches. 

ACO has been considered to solve some PFS scheduling systems with the objective to minimize the makespan 

(Alaykyran et al., 2007; Rajendran and Ziegler, 2004; Ying and Liao, 2004).  
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Figure 3. Disjunctive graph (digraph) for flowshop scheduling, with processing times p i j at nodes O i j for n (=4) jobs on m (=4) machines or 

stages (top). Bottom: an intermediate step of the list scheduling heuristic. Candidate arcs to connect candidate nodes are colored. The 

completion time of an operation is the longest path that connects dummy 0 and its node. 

 

Figure 3 shows the representation of a feasible schedule by a digraph. In ACO, the digraph is an internal shared 

memory where, in analogy with nature, artificial ants following trails of pheromone direct disjunctive arcs. Each trail 

from source and destination nodes represents a possible solution of the problem. Rossi and Dini (2007) describe this 

mechanism in detail for job-shop scheduling with effective results and integrating a number of features in their digraph: 

schedules with routing flexibility, sequence-dependent setup and transportation times. Ying and Lin (2007) represent 

the NPFS problem by a disjunctive graph and use an ant colony system to reach a fully native approach. They adopt a 

multi-heuristic function of visibility based on a set of schedules achieved by dispatching rules. In ACO the visibility of 

an ant represents the heuristic desirability, that together with the pheromone amount, drives the selection (and the 

direction) of a disjunctive arc of the digraph to generate a nest-food path. To the best of our knowledge a native-NPFS 

approach with the objective of minimizing the makespan is applied only by Ying and Lin (2007) on Demirkol 

benchmark. 

The digraph is a general-purpose tool to represent (§  4.) and design (§  5.) native NPFS algorithms. The example for an 

ACO is detailed in §  6. 

 

 

3. Non-Permutation Flowshop Scheduling (NPFS) problem 
This section formalizes the NPFS problem by a mixed-integer linear programming model (MILP), showing its 

relationship with PFS and the buffer requirement. 

In current model, n jobs i = 1,..,n are given, to be processed on m machines M1,.., Mm and m-1 buffers Bj between 

machines Mj and Mj+1 with a capacity of bj units for j = 1,.., m − 1. The buffer size for machine j = m is n (i.e. the output 

buffer contains up to n jobs). Each job i consists of m operations Oi j (j = 1,.., m) and operation Oi j has to be processed 

on machine Mj without preemption (job interruption to process higher priority jobs) for pi j ≥ 0 time units. Between the 

operations of each job there are precedence relations in the form of a linear routing Oi1 → Oi2 → .. → Oim. 



A feasible job schedule is given by assigning start times Si j (and, thus, completion times Ci j = Si j + pi j) to operations 

Oi j (i = 1,..,n; j = 1,..,m) such that: 

1. the precedence relations between jobs are respected (Ci j ≤ Si+1,j), 

2. each machine processes only one job at any time ([Si j, Ci j[∩[Skj, Ckj[= 0 for j≠ k), 

3. no machine is kept idle when it could start processing some operations (non-delay schedule), 

4. in each buffer Bi at most n-2 jobs may be stored at the same time, and 

5. no blocking conditions are applied. 

 

Blocking occurs when job i completely processed on machine Mj, which could start on Mj+1 (i.e. Ci j < Si j+1), finds 

buffer Bj completely filled by other jobs and machine Mj+1 is still busy; job i has to wait on machine Mj. While waiting 

on Mj, job i blocks this machine, so that no other job can be processed on Mj during this time. A job leaving the buffer 

may be replaced by job i. Since all jobs in buffer Bj have to be processed on machine Mj+1, jobs may leave buffer Bj 

only when machine Mj+1 becomes available. 

The relaxation of the blocking condition at point 5. imposes to job i, which finishes processing on machine Mj, before it 

can start on Mj+1 (i.e. Ci j < Si,j+1), to wait on machine Mj or within buffer Bj during time period [Ci j, Si,j+1]. 

 

Lemma 

�  The flowshop scheduling with n jobs and m machines is Bi=+∝ if and only if the buffer size for machine j (1 ≤ j ≤ m-

1) is at least (n-2) �  

� In the worst case, all the jobs wait for the same machine. Let j (2 ≤ j ≤ m) be the machine for which the jobs wait for 

and let i the last job processed on Mj-1. Because only non delay schedules are considered (constraint 3.), job i waits on 

Mj for the machine Mj+1 which is busy. Hence (n-2) jobs necessarily wait in buffer Bj between machines Mj and Mj+1 � 

 

The mixed-integer linear programming (MILP) model for the NPFS problem is the following: 

l and l’ = the sequence positions, l, l’ = 1,2,. . .,n  

BigM = a sufficiently large positive value 

Z i l j = 1, if job i is assigned to sequence position l on machine j; 0 otherwise 

Objective function 

max Min C  (1) 

 

Subject to the following constraints: 
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Constraint (2) ensures that each job is assigned to exactly one position of the job sequence on every machine. 

Constraint (3) states that each position of the job sequence processes exactly one job on every machine. Constraint (4) 
states that, considering all the machine sequences, each job can be at most m times in the same position and at least one 

of these can be less than m times in the same position (non-permutation constraint). Constraint (5) denotes the starting 

times of the first job on every machine. Constraint (6) ensures that the (l + 1)
th

 job in the sequence of machine j does 

not start until the l
th

 job in the sequence of machine j has completed. Constraint (7) assures that the starting time of job 

i, which is assigned to position l in the sequence on machine j + 1 is not earlier than its finish on machine j. Constraint 

(8) ensures that the buffer size for machine j (2 ≤ j ≤ m) is at least (n-2). 



The proposed formulation limits the difference between NPFS and PFS to a single constraint of the MILP, the non-

permutation constraint (4). In the PFS formulation, expression (4) is an equality, because each job needs to stay in the 

same position for all the machine sequences. 

 

 

4. Digraph approach for non-permutation flowshop 
scheduling 

The digraph in Figure 3 used to approach this problem is represented by: 

 

DG = (N, A, Ej, WN) (91) 

 

where N is the set of operations plus the dummy start and finishing operations represented by the symbols 0 and *; A is 

the set of conjunctive arcs between every pair of operations on a job routing, between 0 and every first operation on a 

routing, and between every last operation on a routing and *; Ej is the set of disjunctive arcs between pairs of 

operations, O*j, that have to be processed on the machine at stage j (j=1,..,m); it also includes disjunctive arcs between 0 

and O*j, between O*j and * and between 0 and * for all Ej; WN is the weight on nodes, represented by the processing 

time of related operations Oi j, WN(Oi j)=ti j. 

Figure 3 (top) shows an example of digraph for flowshop scheduling. Each operation O* j is connected with disjunctive 

arcs of Ej only, because the related operation can be processed by a machine at stage j. In general, a non-permutation 

flowshop problem is represented by n×m operations and an operation is connected with (n+1) disjunctive arcs. 

If no cycle is present in a conjunctive graph achieved by directing some disjunctive arcs to include all the operations, 

the conjunctive graph becomes acyclic and related sequences on machines are feasible schedules. In an acyclic 

conjunctive graph, the makespan of the feasible schedule is the length L(C) of the critical path, the longest path 

between the dummy start and finishing operations. 

Figure 3 (bottom) shows an example of acyclic conjunctive graph at an intermediate step, achieved by directing 

disjunctive arcs. Empty nodes are to be selected. The weighted path (full node) is obtained by adding processing times 

along the selected path and selecting the highest completion time of all arcs that end to it. The completion time of an 

operation is the longest path that connects dummy 0 and its node.  

 

 

5. Native Non-Permutation Flowshop Scheduling heuristic 
The native non-permutation flowshop algorithm generates an acyclic digraph by visiting every operation one and only 

one time. Disjunctive arcs connecting any visited node are immediately directed towards the node. A fast O(n×m) 

approach to generate an acyclic digraph is proposed by Rossi and Dini (2007) considering the list scheduler heuristic 

for the flexible job-shop scheduling. The list scheduler heuristic is originally proposed by Giffler and Thompson 

(1960). The behavior of the list scheduling heuristic is to connect exactly one ending and one starting arc for every 

operation by directing (n×m) of the (n
2×m) initial disjunctive arcs. 

The following heuristic designed for the native non-permutation flowshop scheduling modifies the list scheduling 

heuristic in order to generate a feasible schedule with completion times of all operations assigned to nodes. 

A Native Non-Permutation Flowshop Scheduling (native-NPFS) heuristic 

Input: a digraph DG = (N, A, EM, WN) 

O ← {Oi j  i=1,..,n; j=1,..,m} 

for each w = 1 to |Ο| do 

1111.... Initialization of Candidate Nodes: build the allowed list ALw for current step w: ALw ← {Oi j ∈ O  

Oi j-1 ∩ O = ∅} 

2. Restriction: restriction of the allowed list by means of optimality criteria (i.e. active or non-delay 

schedule); let the candidate list CLw be the restricted allowed list 

3. Initialization of Feasible Moves: mark as a feasible move each disjunctive arc (Oi’j, Oi j) of EM where 

Oi j ∈ CLw and Oi’j is the last operation of the sequence of resource j 



4. Move Selection: select a feasible move (Oi’j, Oi j) of EM by directing the related disjunctive arc (Oi’j 

=dummy 0, if j = 1) 

5. Arcs Removal: remove all the remaining disjunctive arcs connected to Oi’j, i.e. no other operation 

outside of Oi j can be immediately subsequent to Oi’j at stage j 

6. Transferring weight: the weight ti j on the node is moved onto the related arc and onto the arc of the 

job routing (arc of A) that ends at Oi j; also, the completion time t(Oi j) = Si j + ti j is assigned as a mark 

inside the node Oi j, where the starting time of the operation is the maximum between the completion 

time of the previous operation in the routing and the previous operation in the sequence at stage j: Si j 

= max{t(Oi (j-1)), t(Oi’j)} 

7. Updating Structures: update O by removing operation Oi j 

end for 

9. Directing the remaining disjunctive arcs: i.e. arcs connected to the dummy operation * 

Output: the non-permutation schedule C 

The native-NPFS heuristics performs as many steps as the number of nodes (operations). The dummy operation 0 is the 

start of all machine sequences. For each node, a set of feasible moves is initialized. A feasible move is a disjunctive arc 

that connects the current node, already inserted in the machine sequence, to a next node that represents an operation not 

already scheduled. A feasible move to connect the related operations is selected by means of the heuristic desirability. 

This desirability is termed visibility (e.g. shortest processing or setup time, nearest due date etc.). Machine sequences 

are non-permutated because the native-NPFS heuristic allows a random selection of the feasible move and because the 

selected disjunctive arc can be directed in either the directions. After a feasible move is selected, all disjunctive arcs 

connected with the starting node are removed to prevent cycles. The weight of the ending node is updated with the 

maximum distance from the source, evaluated by the following two alternatively paths: 

i.) the path that crosses the previous node on the routing; 

ii.) the path that crosses the previous operation in the machine sequence. 

This guarantees that the weight on the dummy finishing operation is the longest path that starts from the dummy start 

operation, i.e. the L(C). 

 

 

6. Proposed Ant Colony Optimization (ACO) algorithm 
Ant colony systems, a subset class of ACO, are an emerging class of biologically inspired research dealing with 

artificial or swarm intelligence: it exploits the experience of an ant colony as a model of self-organization in co-

operative food retrieval (Dorigo and Gambardella, 1997). 

The main goal of the ACO mechanism is to generate optimal solutions by constructive schedules. The concept is 

similar to “divide et impera”, because the stigmergy progressively concentrates the search in a low number of very 

small promising regions. Differently to local search, this fact makes the algorithm intrinsically parallel and may take 

advantage of modern processors. 

This section describes an ant colony system (ACS), which makes use of the heuristic designed above by the digraph 

method and which fulfills all the problem constraints (2) to (8) to generate native non-permutation flowshop schedules. 

The proposed native-NPFS ACO based on the list scheduling heuristics described guides ants to select the most 

desirable move into nest-food path by using the function of visibility (as for native-NPFS heuristics). Pheromone 

amount laid on the disjunctive arcs mitigate the impact of heuristic desirability because it drives ants to select the 

optimal move within the set of feasible moves (step 4. of the native-NPFS heuristic). At the start, the pheromone is 

randomly deposited; consequently, the node selection is random as in pure list scheduling algorithms. As epochs 

evolve, the deposited pheromone drives the arc selection. 

The ant runs the nest-food path by a probabilistic selection of nodes according to the following properties: 

i) diversification in order to produce promising alternative paths; 

ii) intensification to select a node in the vicinity of the current best path C*. 

As soon as all the paths of the ants in the colony are generated, the best epoch ant deposits on the arcs of it path Cbe a 

further amount of pheromone proportional to the path length L(Cbe) and a pheromone decay routine is performed to 

prevent the stagnation in local optima solutions. The pheromone trail is the basic mechanism of communication among 



real ants and it is mimicked by the ant colony system in order to find the shortest path, connecting source and 

destination on a weighted graph, which represents the optimization problem. 

The following mechanisms have been implemented in the proposed ACO and are described in detail: 

� path generation, to transform the digraph in an acyclic conjunctive graph by a stochastic process based on the 

amount of pheromone; 

� candidate list construction, to select operations, not only to achieve feasible schedules, but also in order not to 

exceed the idle time more than a predefined value; 

� local search, to better improve the best found solution. 

Local and off-line pheromone update rules are mechanisms of, respectively, ant paths diversification and ant paths 

intensification. They are implemented by the standard procedures described in Dorigo and Gambardella (1997). 

 

6.1. Digraph model 
The disjunctive graph is able to implement pheromone trails. The  

 

WDG = (N, A, Ej, WN, WE)  (10) 

 

has the new component WE, which represents the weight on disjunctive arcs (pheromone amount). The weight on 

disjunctive arcs (Oi’j, Oi j) of Ej is represented by the pair WE(Oi’j,Oi j) = (τ[Oi’j, Oi j], τ[Oi j, Oi’j]). The first component 

array τ[Oi’j, Oi j] provides an index of desirability in order to add the feasible move [Oi’j, Oi j] to the list of jobs to be 

processed by machine j. The pheromone trail WE is a two-dimensional array of [m×n×(n+1)] elements (considering that 

the number of disjunctive arcs among all the n operations to be processed on machine j that can be replicated is [n×(n-

1)/2]). Hence, the internal shared memory of the proposed ant colony system is O(n
2×m). 

 

6.2. Path generation 
To generate a feasible schedule Ca, each ant a visits every operation on WDG one and only one time in order to 

transform the digraph in an acyclic conjunctive graph. Path generation is a stochastic process where an ant starts from 

the dummy 0 and selects the next node from a subset of allowed operations, the candidate list CL. It uses the following 

transition probability rule of the pheromone trail as a function of both the heuristic function of desirability, η (the 

visibility function), and the amount of pheromone τ on the edge (Oi j, J), with J ∈ CL and such that 
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The non-negative parameters α and β represent the intensity of respectively, the amount of pheromone and the 

visibility included in the transition probability function. The non-negative parameter q0 is the cutting exploration, a 

mechanism that restricts the selection of the next operation from the candidate list CL. If a random number q is higher 

than the cutting exploration parameter q0 (0 ≤ q0 ≤ 1), the candidate operation is selected examining all the candidate 

operations in probability, proportionally to pheromone amount α)(τ JO ,ji

 and visibility β)(η JO ,ji

; otherwise the most 

desirable operation is taken, i.e. the arc with the highest amount of pheromone and the highest visibility. 

The role of cutting exploration is explicitly splitting the search space in order to achieve a compromise between the 

probabilistic mechanism adopted for q ≤ q0 or the further intensification mechanism of exploring near the best path so 

far, which corresponds to an exploitation of the knowledge available about the problem. By tuning parameter q0 near 1, 

cutting exploration allows the activity of the system to concentrate on the best solutions (exploitation activity) instead 

of letting it explore constantly (exploration activity, achieved by tuning parameter q0 near 0). In fact, when q0 is close to 

0, all the candidate solutions are examined in probability, whereas when q0 is close to 1, only the local optimal solution 

is selected by the second expression in (11). Scheduling problems have many local minima so higher randomization is 

used when the algorithm starts. 

A freezing function similar to the one proposed by Kumar et al. (2003) is considered. It progressively freezes the 

system by tuning q0 from 0 to 1, in order to favor the exploration in the initial part of the algorithm according to the 

expression 
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where epoch is the current iteration and n_epochs is the total number of iterations of the ant colony system from the 

stability condition defined below. 

The heuristic function of desirability η is a critical component of ant colony systems. Generally, it is implemented by 

dispatching rules, as in Ying and Lin (2007). A comparison among a number of dispatching rules to implement the 

visibility function has been performed by Blum and Sampels (2004). In the proposed ACO the earliest starting time 

(EST) heuristic, i.e. the best heuristic tested by Blum and Sampels (2004), is used. 

 

6.3. Candidate list construction 
The candidate list does not include all the operations that can be selected at a given construction step of the algorithm. 

In fact, it is well known that the optimal schedule is always an active schedule, i.e. a feasible schedule in which no 

operation could be started earlier without delaying some other operations or breaking a precedence constraint. Thus, the 

search space can be safely limited to the set of all active schedules. An important class of active schedules is the non-

delay schedule: these are schedules in which no machine is kept idle when it could start processing some operations. As 

no all-optimal schedules are non-delay, the concept of parameterized non-delay schedules is used. This type of 

schedule consists of schedules in which no machine is kept idle for more than a predefined value δ if it could start 

processing some operations. As the minimum starting time of a candidate operation is 
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All the operations O* that can start if no machine is kept idle for more than a predefined value δ verify the condition 
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A strategy that relaxes the expression (14) is considered by using the following parametric value of δ 
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where rf is the restricted factor. If the restriction is maximum, i.e. rf → +∞, the predefined value δ(rf) tends to zero and 

we obtain a non-delay schedule, i.e. CL=AL; on the contrary, if rf is set higher than 0, the property of non-delay 

schedule is relaxed; finally, if rf = 0 the candidate list does not differ from the allowed list, i.e. no restriction to AL 

occurs. To sum up, the following candidate list is used 
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where a restricted factor rf = 3 from the cited literature is selected. 

 

6.4. Local search 
When a path is generated, the solution is taken to its local optimum by a local search routine. The mechanism 

considered is a steepest descent algorithm where the current best solution is replaced with an improved solution 

included in the neighbor of current best. The performance of the local search depends on the neighborhood structure, 

and has been derived from the state-of-the-art local search for job-shop scheduling: the neighborhood structure 

proposed by Nowicki and Smutnicki (1996) for their fast tabu search algorithm. 

 

6.5. Stability condition 
In iterative algorithms, the stop criterion is sometimes a fixed epoch number or computation time. Instead, to stop the 

algorithm we use a stability condition, corresponding to a fixed number of epochs (3000), with error reduction of at 

least one makespan time unit per epoch. 

 



6.6. The native approach 
A metaheuristic algorithm is considered as a native approach if the initial solution is a feasible solution achieved by 

dispatching rules. Generally, a dispatching rule is selected within a complete set of known rules. Recently, the behavior 

of an algorithm to be native is considered in computation science to demonstrate the superiority of the single 

component algorithm of hybrid metaheuristic under study. A native-NPFS approach builds autonomously an initial 

feasible schedule, which includes different permutations of jobs between machines. Starting with a native (inner) initial 

sequence, the unbiased performance of the system can be evaluated, because they are not affected by the performance 

of (outer) heuristics. 

According to this definition of native, hybrid approaches cannot be considered native.  

A number of metaheuristics approaches are tailored on the digraph. A feasible native schedule can be built by a 

disjunctive graph approach. Biologically inspired general-purpose optimization algorithms are capable to deal with 

large job-size problems and with the exponential increase in search space with the number of machines and jobs. In this 

paper ant colony optimization is considered, because ACO uses a basic mechanism (diversification) to generate non-

permutated sequences of jobs. The proposed digraph approach builds natively non-permutation sequences by the path 

generation mechanisms. In this stochastic process, each artificial ant selects probabilistically the next node (move 

selection) according to the amount of pheromone on the connecting arc (learned desirability). By design, non-

permutation schedules are achieved by directing arcs differently at each stage. Cmax is evaluated from the weights on the 

critical path. At each epoch, as soon as all the paths of the ants in the colony are generated, the best ant (lowest Cmax) 

deposits on its arcs an amount of pheromone proportional to the path length (pheromone updating). A pheromone 

decay routine is also performed to prevent stagnation in local optima solutions (evaporation ρ = 0.12). The two inverse 

mechanisms are achieved by negative and positive pheromone deposition, respectively through the local update rule 

and off-line pheromone update rule. Diversification by the local update rule pushes towards permutated schedules and 

is the core mechanism to generate natively non-permutation solutions. 

 

6.7. Implementation 
The following pseudo-code gives a high-level description of an Ant Colony System for Native Non-Permutation 

Flowshop Scheduling. 

 

Input: a weighted digraph WDG = (N, A, Ej, WN, WE) 

// Initialization  

for each disjunctive arc (Oi’j’,Oi j) of EA, deposit a small constant amount of pheromone WE(Oi’j’,Oi j) = (τ0, τ0) where 
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epoch ← 1; not_improve ← 0; 

// Main Loop 
while(not_improve < stability_condition) do 

// Epoch Loop 

for each ant a, a=1 to ps do 

// Path Generation  

Ca ← ∅; 

1. O ← {Oi j  i=1,..,n; j=1,..,m}; 

2. Initialization of Candidate Nodes: AL1 ← {Oi j i=1,..,n; j=1}; 

for each w = 1 to n×m do 

3. Restriction: restrict ALw to the candidate list CLw by means of expression (16); 

4. Initialization of Feasible Moves (i.e. the disjunctive arcs connected to operation of CLw); 



5. Move Selection: select a feasible move (Oi’j, Oi j) of Ej, where Oi j ∈ CL, by means of the 

transition probability rules (11); directing the related disjunctive arc (Oi’j = dummy 0, if j = 

1); 

6. Arc Removing: remove all disjunctive arcs connected to Oi’j (i.e. no other operation can be 

immediately subsequent to Oi’j in the machine sequence); 

7. Path length evaluation: the length L(Oi j) of the longest path that connects Oi j to the dummy 

0 is evaluated by L(Oi j) = t(Oi j) + maxL(Oi’j), L(O(i-1) j) and is placed as a mark near the 

scheduled operation; 

8. Local Updating: apply the local update rule to the arcs (Oi’j, Oi j) ∈ WE as in Dorigo and 

Gambardella (1997); 

9. Update Allowed List: remove the scheduled operation from the allowed list 

ALw ←  ALw ∪ {Oi (j+1)} / {Oi j}, if j ≤ m-1; 

←  ALw / {Oi j}, otherwise; 

end for 

10. Directing the remaining disjunctive arcs (these arcs are connected to dummy *) 

11. Local Search: Apply the local search with the neighbor structure from Nowicki and Smutnicki 

(1996) to Ca; 

12. Best Evaluation: if [L(Ca) < L(Cbe] 

then [L(Cbe)  ← L(Cbe) and Cbe ← Ca] 

end if 

end for 

Global Updating: Apply the global update rule as in Dorigo and Gambardella (1997); 

Best Ant Evaluation: if [L(Cbe) < L(C*)] 

then [L(C*) ← L(Cbe); C* ← Cbe and epoch ← 0] and 

        not_improve ← 0; 

else epoch ++ and not_improve ++; 

end if 

end while 

Output: C* 

The main parameters of the two ACO approaches are listed in Table 1. The parameters considered in other ant colony 

systems for NPFS are also listed. 

 



Table 1. Parameters from different ACO approaches, including the proposed native Non-Permutation Flowshop 

Scheduling ACO. 

 

Parameter Yagmahan and Yenisey (2010) Ying and Lin (2007) native-NPFS ACO 

problem non-native native native 

population size 20 5 8 

candidate list 15 - 
self complied 

(parameterized non-delay) 

α 2 0.1 2 

β 0.5 2.0 0.3 

local search 
Adjacent Pair-wise 

Interchange 
- 

Borderline Critical Path Blocks 

Interchange 

q0 0.9 0.1 
self complied  

(freezing function) 

ρ 0.2  0.9 0.12 

τ0 [ ] 1−× NEHCn  [ ] 1−×× UBmn  
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η SPIRIT rule Multi-Heuristic Desirability Earliest Finishing Time 

stop condition 1000 epochs 5000 epochs stability condition 

stability condition 

(n_epochs) 
- - 3000 epochs 

firmware platform 
2 GHz Intel® Pentium® 

M760, RAM 1024 MB DDR-2 

1.5 GHz Intel® Pentium® 4 

RAM N.A. 

3 GHz 32 bit Intel® Pentium® 4 

RAM 2 GB 

 

 

7. Computation experiments 

7.1. Benchmarks 
Benchmark problem sets allows researchers to compare their proposed algorithms with those of other researchers using 

an identical test problem set. Benchmark instances are arrays bn×m of processing times of each job on all m machines 

ordered by routing originally generated random. Each benchmark can be synthesized by its makespan, i.e. the 

processing time obtained as the addition of the n×m operations of each job on all machines ordered by routing (plus idle 

times). Two reference makespan values are considered by researchers: non trivial lower (LB) and upper bound (UB). 

The lower (upper) bound is the maximum (minimum) known theoretical minimum (maximum) attainable makespan. A 

lower bound (LB) can be obtained for each instance by relaxing the capacity constraints on all but one machine, and 

solving for optimality the resulting single machine problem of minimizing makespan with release and delivery times 

(Pinedo, 1995). The upper bound can be reduced by improved solutions. If it coincides with the lower bound, the 

optimum has been reached. 

 



Table 2. Benchmark sets considered. 

 

 Taillard (1993)  Demirkol et al. (1998) parameter 

(index) 

job number 20, 50, 100, 200, 500 20, 30, 40, 50 n (i) 

machine number 5, 10, 20 15, 20 m (r) 

processing times random[1,99] random[1,200]  

n to m ratio 1 – 100 1 – 3.3  

# operations (n×m) 100 – 10,000 300 – 1,000 N 

# sets (n×m combinations) 12 8  

# instances per set 10 10  

# instances considered per set 10 5  

# instances total 120 40  

# instances (individual data) considered 

by other authors for comparison  

28, Table 3 40, Table 4  

# sets (aggregated data) considered by 

other authors for comparison 

3, Table 5 8, Table 5  

competitors approaches Rajendran (1995), Ravindran et 

al. (2005), Yagmahan and 

Yenisey (2010) 

Demirkol et al. (1998), Ying 

and Lin (2007), Lin and Ying 

(2009) 

 

most recent LBs and UBs Vaessens (1996), mirrored in 

Lanzetta (2012) + competitors 

above 

see competitors above  

 

The proposed native heuristic has been tested by computation experiments on well-known benchmark problem sets 

established by Taillard (1993) and by Demirkol et al. (1998) characterized in Table 2. These combinations yield a 

problem set that is not based on a specific application.  

All jobs are available at time zero, and generated by a discrete uniform distribution. The most used flowshop 

benchmark set is by Taillard and is listed in Table 3. All Taillard instances in each set are considered by authors, 

instead Demirkol et al. ranked the instances in decreasing order of percentage gap, defined in (17), between the upper 

and lower bounds for each combination of n and m to obtain a more compact and challenging set of test problems. Only 

the first five instances for each combination were finally presented. Thus, the test bed comprised a total of 40 test 

instances, which are listed in Table 4. 

Vaessens (1996) determined the lower bounds for non-permutation for Taillard benchmarks with a method similar to 

the mentioned Pinedo (1995). As the size and complexity of the instances make exact solutions impractical, Demirkol 

et al. (1998) solved each instance by five different constructive heuristics and three versions of the shifting bottleneck 

procedure and reported the highest makespan value obtained as a lower bound in each instance. All algorithms were 

run on Unix with 50 MHz SUN SPARC server 1000 Model 1104. The upper bound (UB) for each instance was the best 

solution found by any of the algorithms. The computation time was recorded by the method that provided the best 

solution. If more than one algorithm found the best solution, then the algorithm with the shortest computation time was 

selected.  

Before this work, it seems that no author has compared the performance of their proposed approach on both sets, so the 

results of current approach are presented for each set separately. 

 

7.2. Performance measures 
The proposed native-NPFS ACO has been run 10 times with the parameters in Table 1. The best and average solutions 

have been reported in Table 3 and in Table 4.  

Metrics for algorithm performance are: 1) the number of benchmark instances where the minimum makespan 
xyta

bestC
0

of 

the Taillard benchmark instance ta0xy, y=1,..,9; x=0,1,2 is found with respect to the other native approaches; 2) the n×m 

aggregate relative distances from the upper bound or the best known solution evaluated by the relative distance 
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Analogous measure is evaluated for each array n×m of the 10 Demirkol benchmarks. 

 



Table 3. Benchmark problems by Taillard (1993), state-of-the-art solutions and results of computation experiments for 

one non-native and three native NPFS approaches. Yagmahan and Yenisey (2010) is an ant colony system, Rajendran 

(1995) and Ravindran et al. (2005) are two native heuristics and native-NPFS ACO is the ant colony system proposed 

in this paper. In bold the best performing native algorithm. 

 

Approach Benchmark Non-native Approach Native Approach 

Algorithm �  
Yagmahan and Yenisey 

(2010) 

Rajendran 

(1995) 

Ravindran et al. 

(2005) 
native-NPFS ACO 

Instance � 
UB/Best 

Known 
Cbest (10 runs) Cbest Cbest Cbest (10 runs) Caverage 

ta001 1278 1297 1359 1297 1290 1293.1 

ta002 1358 1383 1378 1373 1389 1389.0 

ta003 1073 1203 1230 1206 1100 1112.5 

ta004 1292 1377 1393 1402 1344 1352.2 

ta005 1231 1311 1307 1334 1250 1258.7 

ta006 1193 1245 1282 1238 1217 1224.3 

ta007 1234 1303 1387 1322 1258 1259.6 

ta008 1199 1265 1344 1287 1235 1242.5 

ta009 1210 1303 1335 1307 1258 1275.3 

20x5 

ta010 1103 1179 1191 1195 1127 1145.5 

ta011 1560 1681 1711 1774 1693 1729.6 

ta012 1644 1749 1916 1791 1785 1799.5 

ta013 1486 1554 1617 1643 1583 1596.5 

ta014 1368 1490 1533 1531 1452 1478.3 

ta015 1413 1455 1588 1557 1516 1526.7 

ta016 1369 1564 1565 1612 1445 1468.3 

ta017 1428 1590 1622 1594 1524 1544.5 

ta018 1527 1595 1800 1631 1650 1663.8 

ta019 1586 1689 1717 1769 1659 1681.1 

20x10 

ta020 1559 1719 1831 1744 1670 1677.7 

ta021 2293 2428 2610 2491 2396 2414.9 

ta022 2092 2281 2301 2491 2225 2239.5 

ta023 2313 2515 2411 2422 2446 2464.5 

ta024 2223 2299 2471 2567 2346 2360.8 

ta025 2291 2473 2427 2420 2439 2460.5 

ta026 2221 2339 2466 2557 2331 2346.5 

ta027 2267 2378 2174 2448 2428 2454.0 

20x20 

ta028 2183 2418 2418 2464 2321 2345.6 

 



Table 4. Benchmark problems by Demirkol et al. (1998), state-of-the-art solutions and results of computation 

experiments for one non-native and three native NPFS approaches. Lin and Ying (2009) is a hybrid simulated 

annealing – tabu search, Demirkol et al. (1998) is a shifting bottleneck heuristic, Ying and Lin (2007) is an ant colony 

system and native-NPFS ACO is the ant colony system proposed in this paper. In bold the best performing native 

algorithm. 

 

Approach Benchmark Non-native Approach Native Approach 

Algorithm �  
Lin and Ying 

(2009) 

Demirkol et al. 

(1998) 

Ying and Lin 

(2007) 
native-NPFS ACO 

Instance � LB Cbest (5 runs) Cbest Cbest (5 runs) Cbest (10 runs) Caverage 

flcmax_20_15_3 3354 3873 4437 4420 4047 4113.4 

flcmax_20_15_6 3168 3761 4144 4044 3950 3977.5 

flcmax_20_15_4 2997 3518 3779 3786 3692 3730.6 

flcmax_20_15_10 3420 4051 4302 4265 4176 4221.7 

20x15 

flcmax_20_15_5 3494 3913 4373 4310 4097 4124.9 

flcmax_20_20_1 3776 4525 4821 4819 4790 4826.9 

flcmax_20_20_3 3758 4435 4779 4723 4694 4715.7 

flcmax_20_20_9 3902 4527 4944 4922 4720 4775.4 

flcmax_20_20_2 3881 4499 4886 4847 4731 4781.3 

20x20 

flcmax_20_20_10 3823 4361 4717 4715 4554 4607.6 

flcmax_30_15_3 4020 4568 5226 5210 4927 5032.2 

flcmax_30_15_4 4080 4649 5304 5284 5033 5092.4 

flcmax_30_15_9 4022 4568 5079 5075 4912 4968.6 

flcmax_30_15_8 4490 4836 5605 5593 5220 5320.2 

30x15 

flcmax_30_15_6 4184 4761 5147 5149 5097 5158.5 

flcmax_30_20_3 4806 5376 6183 5987 5794 5846.9 

flcmax_30_20_1 4772 5698 6037 5989 6179 6221.8 

flcmax_30_20_6 5004 5752 6241 6195 6039 6133.9 

flcmax_30_20_10 4899 5464 6095 5923 5888 5967.7 

30x20 

flcmax_30_20_2 4757 5369 5822 5840 5842 5886.1 

flcmax_40_15_5 5560 5958 6986 6972 6521 6594.1 

flcmax_40_15_9 5119 5692 6351 6310 6244 6303.3 

flcmax_40_15_2 5290 5877 6506 6532 6302 6395.6 

flcmax_40_15_10 5596 5896 6845 6712 6413 6445.2 

40x15 

flcmax_40_15_8 5576 6054 6783 6771 6526 6611.7 

flcmax_40_20_3 5693 6508 7154 7132 7208 7274.5 

flcmax_40_20_9 5998 6676 7528 7496 7388 7484.7 

flcmax_40_20_6 5990 6798 7469 7476 7455 7553.1 

flcmax_40_20_7 6170 6766 7608 7588 7405 7473.5 

40x20 

flcmax_40_20_5 6011 6508 7219 7217 7326 7399.4 

flcmax_50_15_6 6290 6836 7673 7631 7559 7606.8 

flcmax_50_15_5 6355 6672 7679 7496 7317 7368.4 

flcmax_50_15_1 6198 6580 7416 7402 7205 7303.8 

flcmax_50_15_8 6312 6799 7548 7558 7348 7468.7 

50x15 

flcmax_50_15_2 6531 6954 7750 7712 7547 7644.8 



flcmax_50_20_2 6740 7682 8838 8836 8436 8684.4 

flcmax_50_20_1 6736 7313 8539 8521 8064 8189.7 

flcmax_50_20_7 6756 7622 8417 8425 8370 8526 

flcmax_50_20_8 6897 7480 8590 8536 8430 8509.2 

50x20 

flcmax_50_20_4 6830 7726 8493 8502 8538 8625.1 

 

Table 5. Aggregated results on Taillard and Demirkol benchmarks of size n×m. Yagmahan and Yenisey (2010) is an 

ant colony system, Lin and Ying (2009) is a hybrid simulated annealing – tabu search; Rajendran (1995) and Ravindran 

et al. (2005) are two native heuristics, Demirkol et al. (1998) is a shifting bottleneck heuristic; Ying and Lin (2007) is 

an ant colony system. Native-NPFS ACO is the ant colony system proposed in this paper. In bold the best performing 

native NPFS approach. 

 

Approach Non-native Approach Native Approach 

Algorithm � 

Aggregate Instance � 

Yagmahan and 

Yenisey (2010) 

Lin and 

Ying, 2009 

Rajendran 

(1995) 

Ravindran 

et al. 

(2005) 

Demirkol 

et al. 

(1998) 

Ying 

and 

Lin 

(2007) 

native-NPFS 

ACO 

20×5 Taillard 6.49 - 8.50 5.71 - - 2.44 

20×10 Taillard 11.42 - 13.12 7.67 - - 6.94 

20×15 Taillard 11.06 - 7.80 6.98 - - 5.87 

20×15 Demirkol - 0.0 - - 10.04 8.94 4.43 

20×20 Demirkol - 0.0 - - 8.05 7.51 5.11 

30×15 Demirkol - 0.0 - - 12.74 12.53 7.73 

30×20 Demirkol - 0.0 - - 9.83 8.23 7.53 

40×15 Demirkol - 0.0 - - 13.55 12.96 8.58 

40×20 Demirkol - 0.0 - - 11.19 10.98 10.60 

50×15 Demirkol - 0.0 - - 12.48 11.70 9.26 

50×20 Demirkol - 0.0 - - 13.36 13.21 10.62 

 

 

7.3. Results and discussion 
Based on the results presented in Table 3 to Table 5 using expression (17), the proposed ACO performs better than 

others native approaches examined for both Taillard and Demirkol datasets. 

Table 3 shows that only few benchmarks are left to the competitors approaches: three to the heuristic of Ravindran et 

al. (2005) and one to the heuristic of Rajendran (1995). In the other 24 of 28 Taillard sets, it is incumbent. 

The 
averagegap%  calculated as in (18) for all sets ranges within 2.2%. 

Table 4 shows that the proposed native approach performs better in 35 Demirkol benchmark problems leaving only 

five to the competitors approaches, particularly three sets to Ying and Lin (2007) and two sets to Demirkol et al. 

(1998).  

Here, the 
averagegap%  ranges like Taillard benchmark except for one problem that exceeds 2.9%. 

Table 4 also shows the difference of performance from the non-native approaches considered. Due to a lack of tight 

upper bounds similar to those evaluated by Vaessens (1996), the upper bound of Demirkol benchmark coincide with 

the best known solution. Thus, Yagmahan and Yenisey (2010) is not close to the upper bound whilst Lin and Ying 

(2009) is right the current best-known solution. 

Also, native-NPFS ACO performs better in 75% of Taillard benchmark problems than the current best non-native 

approach, the ACO with pheromone trails initialized by the NEH heuristic, from Yagmahan and Yenisey (2010), 

making the proposed algorithm a very competitive ant colony system. The non-native hybrid SA – tabu search from 

Lin and Ying (2009) performs better than other native approaches. Considering that the hybrid metaheuristic of 

Zobolas et al. (2009) is the state-of-art permutation flowshop (PFS) approach, hybridization is more performing than 

the individual components. This was also confirmed by Rossi and Boschi (2009) by a Kruskall–Wallis H test statistics 

on a hybrid ACO – genetic algorithm compared to the two individual components. 



However, hybridization is intrinsically opposite of native approach because it is the result of two or more native 

approaches combined. 

Possible reasons for improvements over existing native ACO approaches are inferred from the analysis of Table 1, 

from self complied parameterized non-delay candidate list and freezing function, and stability condition and from other 

parameters, closer to Yagmahan and Yenisey (2010), which is non-native, than to Ying and Lin (2007). 

Table 5 shows the good performance over a wide range of problems has defined by the two benchmarks in Table 2 in 

terms of size (# operations) and configuration (n to m ratio). Individual and aggregated results on all Taillard sets, not 

listed in Table 4 because not available from other authors, are available from Lanzetta (2012), where benchmarks are 

also mirrored, for future benchmarking. 

 

 

8. Conclusion 
Among the main merits of current work is modeling the scheduling of a flow line with buffers as non permutation 

flowshop, which has also been characterized by a MILP. Alternative approaches and implications have been reviewed 

in order to map existing metaheuristics approaches to the examined manufacturing problem. The digraph approach 

described in the paper has the additional merit of being a powerful design tool for native non-permutation algorithms. 

ACO has been shown to fulfill such design requirements by the pheromone mechanism. The proposed ACO is natively 

non-permutation as opposed to other authors who apply a local search to permutation solutions. The few existing 

approaches have been compared using well-known benchmarks. This proposed approach shows the best performance 

in non-permutation flowshop configuration, particularly on larger instances (available as additional material) and is 

very close to state-of-the-art metaheuristics, also for non-native. Computation experiments have shown promising 

performance of such general-purpose optimization tool, regardless of the problem complexity increase in the examined 

range, from 100 to 10,000 operations and job to machine ratios from 1 to 100. 
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