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a b s t r a c t

An important tool for the heart disease diagnosis is the analysis of electrocardiogram (ECG) signals, since
the non-invasive nature and simplicity of the ECG exam. According to the application, ECG data analysis
consists of steps such as preprocessing, segmentation, feature extraction and classification aiming to
detect cardiac arrhythmias (i.e., cardiac rhythm abnormalities). Aiming to made a fast and accurate car-
diac arrhythmia signal classification process, we apply and analyze a recent and robust supervised graph-
based pattern recognition technique, the optimum-path forest (OPF) classifier. To the best of our knowl-
edge, it is the first time that OPF classifier is used to the ECG heartbeat signal classification task. We then
compare the performance (in terms of training and testing time, accuracy, specificity, and sensitivity) of
the OPF classifier to the ones of other three well-known expert system classifiers, i.e., support vector
machine (SVM), Bayesian and multilayer artificial neural network (MLP), using features extracted from
six main approaches considered in literature for ECG arrhythmia analysis. In our experiments, we use
the MIT-BIH Arrhythmia Database and the evaluation protocol recommended by The Association for the
Advancement of Medical Instrumentation. A discussion on the obtained results shows that OPF classifier
presents a robust performance, i.e., there is no need for parameter setup, as well as a high accuracy at
an extremely low computational cost. Moreover, in average, the OPF classifier yielded greater perfor-
mance than the MLP and SVM classifiers in terms of classification time and accuracy, and to produce quite
similar performance to the Bayesian classifier, showing to be a promising technique for ECG signal
analysis.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The electrocardiogram (ECG) is the most widely used non-inva-
sive technique in heart disease diagnoses. Since it reflects the elec-
trical activity within the heart during contraction, the time it
occurs as well as it shape provide much information about the
state of the heart. (Fig. 1 shows a schematic record of a normal
heartbeat, in which we can observe the fiducial points P, Q, R, T
and U). The ECG is frequently used to detect cardiac rhythm abnor-
malities, also known as arrhythmias, which can be defined in two
ways: (i) as a unique irregular cardiac beat or (ii) as a set of irreg-
ular beats. Arrhythmias can be rare and harmless, but may also re-
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sult in serious cardiac issues. Some group of arrhythmias are life-
threatening and require immediate care and often an intervention
with defibrillator. Other types of arrhythmias, those that do not re-
quire instantaneous attention, may require treatment to prevent
further problems, and should be detected as well (University of
Maryland Medical Center, 2012).

There are several methods proposed in the literature for the
purpose of automatic arrhythmia classification in ECG signals,
and a complete system for such an aim can be divided into four
subsequent categories (preprocessing, segmentation, feature
extraction, and classification) as shown in Fig. 2, in which A, B, C
and D illustrate fictitious heartbeat classes to be analyzed.

The preprocessing phase consists mainly in detecting and atten-
uating frequencies of the ECG signal related to artifacts. Those arti-
facts can be from a biological source, like muscular activity, or
originated from an external source, such as 50/60 Hz electric net-
work frequency. It is also desired, in the preprocessing, to perform
a signal normalization and complex QRS (wave) enhancement (the
most salient part of a heartbeat), in order to help the segmentation
process.
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Fig. 1. A normal heartbeat ECG signal.

Fig. 2. A diagram of a classification system of arrhythmia.
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ECG signals segmentation consists in delimitating the part of
the signal of more interest, the QRS complex, since it reflects the
major part of the electrical activity of the heart (see Fig. 1). Once
the segmentation of QRS complex is done one can obtain many
physiological information, such as, for example, heart rate signal
acquisition, in which will be used techniques to feature selection
in order to eliminate redundant features from the primary feature
set.

Feature extraction is the key point for the final classification
performance. Features can be extracted directly from ECG wave-
form morphology in time or frequency domain. Many sophisti-
cated computational methods have been considered in order to
find features less sensitive to noise, such as the autoregressive
model coefficients (Llamedo & Martı́nez, 2011), higher-order
cumulant (higher order statistics) (Mehmet, 2004) and variations
of wavelet transform (Addison, 2005; Özbay, 2009; Sayadi & Sham-
sollahi, 2007).

This work focuses mainly on the last step of cardiac arrhythmia
analysis, i.e., ECG signal classification. A large number of ap-
proaches have been proposed for this task, and the popular ones
are statistical approaches based on Linear Discriminants (Chazal,
O’Dwyer, & Reilly, 2004), k-Nearest Neighbors (kNN) (Lanatá, Val-
enza, Mancuso, & Scilingo, 2011), Bayesian probabilities (Wiggins,
Saad, Litt, & Vachtsevanos, 2008), artificial neural networks (ANNs)
(Ceylan & Özbay, 2007; Korürek & Dogan, 2010; Özbay, 2009; Yu &
Chen, 2007; Yu & Chou, 2008), support vector machines (SVMs)
(Lin, Ying, Chen, & Lee, 2008b; Moavenian & Khorrami, 2010; Song,
Lee, Cho, Lee, & Yoo, 2005; Ye, Coimbra, & Kumar, 2010; Yu &
Choua, 2009), among others. We also find in the literature works
based on ECG signal clustering analysis (Ceylan, Özbay, & Karlik,
2009; Korürek & Nizam, 2008; Özbay, Ceylan, & Karlik, 2011;
Yeh, Chiou, & Lin, 2012), instead of classification. Once the algo-
rithm is run, the clusters are then manually or automatically
classified.

However, according to Chazal et al. (2004), Ince, Kiranyaz, and
Gabbouj (2009), Llamedo and Martı́nez (2011) few researchers
have used standard protocols to evaluate their expert system clas-
sifiers, establishing learning and testing strategies with bias their
results near the optimal ones (i.e., the perfect classification). Other
works have considered not publicly available dataset (Özbay et al.,
2011; Yeh et al., 2012) which becomes difficult any kind of com-
parison. The majority of those researchers are favored by a biased
training set (i.e., the heartbeats from the same patient are used for
both training and testing the classifiers, which makes a fair com-
parison among methods difficult) to train their classifiers. With
such strategy, the classifiers know particularities of the patients’
heartbeat which is a non realistic situation. Usually the results of
these works report effectiveness in average near 100% for heart-
beats classification. When the constraint of heartbeat from the
same patient in data division for training and testing classifiers is
imposed, it noticeable that their achieved effectiveness drop a
lot. These classification issues are intensively discussed on (Luz &
Menotti, 2011) showing that there is still to much room for
improvement.

In order to standardize comparison and overcome such difficul-
ties, The Association for the Advancement of Medical Instrumentation
(AAMI) has developed a standard (ANSI/AAMI/ISO EC57, 1998-
R2008) for testing and reporting performance results of computa-
tional techniques aiming at arrhythmia classification. The AAMI
also recommends the use of the MIT-BIH Arrhythmia Database
(Mark & Moody, 1990) for performance evaluation of arrhythmia
systems. THE MIT-BIH Arrhythmia Database is the most widely
used database for evaluation of the accuracy/sensitivity/specificity
(from now on performance) of arrhythmia classification systems.
This database was the first available for such a purpose and it
has gone through several improvements over the years to encom-
pass the broadest possible range of waveforms Moody and Mark
(2001). Here, we perform experiments following the AAMI stan-
dard and solely use the entire MIT-BIH Arrhythmia Database.

In the context, a recent and powerful expert system classifier,
proposed in Papa, Falcão, and Suzuki (2009) and customized in
Papa, Falcão, de Albuquerque, and Tavares (2012), named opti-
mum-path forest (OPF) classifier, arises for the automated detec-
tion of specific problems and has been shown to be very
effective, with excellent results compared to ANN and SVM (Papa
et al., 2009). The OPF classifier has been used in some applications
as, for example, petroleum well drilling monitoring (Guilherme



Fig. 3. Fiducial points and important interval of a cardiac heartbeats. Extracted
from (Clifford et al., 2006, Chapter 3).
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et al., 2011), characterization of graphite particles in metallo-
graphic images (Papa, Nakamura, de Albuquerque, Falcão, & Tav-
ares, 2013), classification of remote sensing images (Santos,
Gosselin, Philipp-Foliguet, Torres, & Falcão, 2012), nontechnical
losses detection (Ramos, Souza, Papa, & Falcão, 2011), segmenta-
tion and classification of human intestinal parasites from micros-
copy images Suzuki, Gomes, Falcão, Papa, and Shimizu (2012),
among others, achieving promising results due to its advantages
on other classifiers regarding efficiency (mainly computational
cost), which is an important factor in ECG arrhythmia signal classi-
fication. In the hospitals, the equipments used to accomplish the
arrhythmia signal classification task, such as bed side monitors
and defibrillators, often have limited resources. Despite of that
OPF classifier has shown effectiveness compatible, and faster for
training than other classifiers (Papa et al., 2012).

The aim of this work is to evaluate the OPF classifier perfor-
mance focusing mainly on the last step of the cardiac arrhythmia
analysis, i.e., ECG signal classification, considering mainly the com-
putational cost, accuracy, sensitivity, and specificity. The perfor-
mance is compared to the ones of three other well-known
classifier algorithms widely used in the pattern recognition and
machine learning literature (i.e, SVM with radial basis-function
kernel, multi-layer perceptron neural network (MLP) and Bayesian
expert system classifiers). Besides following the AAMI recommen-
dation and using the MIT-BIH Arrhythmia Database for producing
results reliable to clinic analysis, in order to perform our compari-
son, on non normalized datasets, we re-implement six approaches
(Chazal et al., 2004; Güler & Übeyli, 2005; Song et al., 2005; Ye
et al., 2010; Yu & Chen, 2007; Yu & Chou, 2008) we consider quite
representative of the ECG signal feature extraction domain. These
feature selection processes are reproduced as faithfully as possible
to their description using Matlab. Each feature extraction set is
then submitted to each considered expert system classifier.

The remainder of this work is organized as follows. The feature
extraction approaches used in this work are briefly summarized in
Section 2. The OPF classifier and the other three expert system clas-
sifiers are described in Section 3. The experimental results are
shown in Section 4, and discussed in Section 5. Finally, in Section 6,
the conclusions are pointed out.
2. Feature extraction

In this section, the six feature extraction approaches used in this
work for the comparison of classifiers are described. Observe that
each approach comes from a work/paper which was used for
arrhythmia classification, obviously using a classifier algorithm
which is disregarded here. These approaches are chosen because
they bring techniques widely used in literature and yet, the values
of accuracy, sensitivity, sensibility reported are high compared to
other published methods.

Notice that the six methods described here and used in our
experiments and discussion are re-implemented as faithfully as
possible to their description using Matlab.1
2.1. Chazal et al. (2004)

The most common feature found in the literature for ECG signal
classification is computed from the cardiac rhythm (heartbeat
interval) a.k.a. RR interval. The RR interval is the time between
the heartbeat R peak (the most important fiducial point) regarding
another R peak, which can be its predecessor or successor. In Fig. 3,
it is illustrated the RR interval and others also used in the litera-
1 The source code of implementations are available at http://code.google.com/p/
eswa-arrhythmia-classification/.
ture. Except for patients who use pacemakers, the perceived varia-
tions in the RR interval width are correlated with variations in the
morphology of the ECG signal curve, usually caused by arrhythmias
(Clifford, Azuaje, & McSharry, 2006). Features from the RR interval
reveal great discriminatory capabilities for heartbeat classes and
have been used in several works in the literature, specially in Cha-
zal et al. (2004).

From the RR interval, we can extract four features which are
used in Chazal et al. (2004): the RR interval between the current
and its predecessor heartbeat (RR-predecessor), the RR interval be-
tween the current and its successor one (RR-posterior), the average
of all RR interval containing in a full record (e.g., 30 min for in-
stance) and also the average of ten RR interval around the current
heartbeat.

Other features extracted from the cardiac beat intervals are also
used in em (Chazal et al., 2004). These features are composed of
distances between fiducial points in a heartbeat, as we can see in
Fig. 3. Among them, the QRS interval, or the QRS-complex duration,
is quite popular in the literature and also is use in (Chazal et al.,
2004). Besides the length of QRS-complex, another time segment
is used as feature in that work, i.e., the T wave length. The author
also used the information about the presence/absence of P-wave.
The algorithm used for fiducial point extraction in Chazal et al.
(2004) is proposed in Laguna, Jané, and Caminal (1994) and is also
used in this work here.

Nonetheless, the best classification results achieved in the liter-
ature have used features extracted from the RR interval and time
segments of the heartbeat along with features extracted in the
time/frequency domain (Chazal et al., 2004; Llamedo & Martı́nez,
2011). The simplest form to extract features in the time domain
from the ECG signal curve is using its own sampled points as fea-
tures (Wen, Lin, Chang, & Huang, 2009; Özbay & Tezel, 2010)
(see Fig. 4). However, using samples from the ECG curve as features
is not a such effective technique, due to both (1) the dimension of
the feature vector produced is high (it depends on the amount of
samples used to represent the heartbeat), (2) it suffers with several
problems regarding scale and displacement related to the central
point (the R peak). In order to decrease the feature vector size
and avoid the aforementioned problems, in Chazal et al. (2004),
the authors used the interpolation of the ECG signal such that
the final time representation is composed of 18 and 19 samples ob-
tained from 250 samples (approximately 600 ms of curve/signal

http://code.google.com/p/eswa-arrhythmia-classification/
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Fig. 4. ECG signal extracted from MIT-BIH AR database, sampled at 360 Hz.

Fig. 5. Reduction of the number of samples/features using interpolation. Extracted
from Chazal et al. (2004).
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initially sampled at 360 Hz – see Fig. 5). This process is applied in
the two leads available in the dataset used. Then, for that work, a
feature vector composed of the 52 best features reported is used.

2.2. Song et al. (2005)

In Song et al. (2005), instead of interpolating the ECG signal as
done in Chazal et al. (2004), the authors used the wavelet trans-
form to extract 15 features from the heartbeat. It is important to
note that, the majority of works in the literature use the wavelet
transform in the feature extraction process, because it allows the
extraction of information in both time and frequency domain. Also,
several works supports that this method is the best for feature
extraction from ECG signals (Güler & Übeyli, 2005; Lin, Du, & Chen,
2008a; Mehmet, 2004).

In that work (Song et al., 2005), the heartbeat is represented as a
400 ms sampled window of the ECG signal centered at the R peak
(144 samples). These samples are decomposed into seven levels
using the wavelet transform, however only the detail coeffi-
cients/sub-bands are used. Along with these feature, RR interval
features (RR-predecessor and RR-posterior) are included in the fi-
nal feature vector.

2.3. Güler and Übeyli (2005)

In Güler and Übeyli (2005), the authors also used the wavelet
transform to decompose the ECG signal (approximately 700 ms
around the R peak) into 256 coefficients of the four first levels com-
bining 247 from details and 18 from approximation sub-bands. In
order to reduce the feature vector dimensionality, the authors used
simple statistical measures: the average power, the mean, and the
standard deviation of the coefficients in each wavelet sub-band,
and also the ratio of the absolute mean values of adjacent of sub-
bands. The authors highlighted that the choice of the mother wave-
let function used in the feature extraction process is critical to the
final effectiveness of the classification. As a consequence of this
claim, all the feature extraction processes using the wavelet trans-
form studied in the work here were carefully reproduced taking
into account the mother wavelet function suggested by the authors
of each work.

2.4. Yu and Chen (2007)

In the work proposed in Yu and Chen (2007), the authors used
statistical techniques directly on heartbeat samples and, also, in
three wavelet sub-bands: details of the first level of wavelet trans-
form decomposition and approximation and details of the second
level one. It is also used the AC power of the original signal, the
AC power of each wavelet sub-band, the AC power of the autocor-
relation function of the coefficients of each sub-band, and the ratio
between the maximum and minimum values in each sub-band,
adding up to 10 features. Besides these 10 statistical features, the
authors also used the RR interval (RR-predecessor).

2.5. Yu and Chou (2008)

In Yu and Chou (2008), the independent component analysis
(ICA) is used to extract 100 coefficients from a heartbeat composed
of 200 samples centered at the R peak. The ICA coefficients are
computed using the Fast-ICA algorithm, proposed in Hyvärinen
(1999), and only the first 33 coefficients are finally used. According
to the authors, the ICA is used to decompose the ECG signal in a
weighted sum of the basic components which are mutually statis-
tically independent. To these coefficients, the RR interval (RR-pre-
decessor) is added.

2.6. Ye et al. (2010)

Ye et al. (2010) combined several feature extraction techniques
presented in the literature to generate their feature vector. Their
features are extracted from 300 samples surrounding the R peak,
being 100 before and 200 after the R peak. The wavelet transform
is applied to the sampled ECG signal and 118 coefficients are ex-
tracted from detail sub-bands of the third and fourth levels and
approximation sub-band of the fourth level of the wavelet decom-
position. Along with these features, eighteen coefficients extracted
using the ICA (also using the algorithm proposed in Hyvärinen
(1999)). This set of feature is named as morphological by the
authors.

Four features extracted from the RR interval, named as dynam-
ical by the authors, are also used: RR-predecessor, RR-posterior,
the average of all RR intervals of a record of a patient, and the aver-
age of the 10 RR intervals surrounding (and centered to) the cur-
rent heartbeat. In order to reduce the dimension of the obtained
morphological feature vector to 26, the authors employed the prin-
cipal components analysis (PCA) technique. This process is applied
to the two ECG leads available on the MIT-BIH heartbeat record
dataset, producing a final feature vector in which its dimension
is twice than for a single lead.
3. Expert system classifiers

In this section, the four learning algorithms used in our compar-
ison are presented. Special attention is given to the OPF classifier
since to the best of our knowledge it is the first time that such algo-
rithm is used for arrhythmia classification in ECG signals.
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3.1. Optimum-path forest classifier

The optimum-path forest (OPF) is a framework to the design of
pattern classifiers based on optimal graph partitions Papa et al.
(2009, 2012), in which each sample is represented as a node of a
complete graph, and the arcs between them are weighted by the
distance of their corresponding feature vectors. The idea behind
OPF is to rule a competition process between some key samples
(prototypes) in order to partition the graph into optimum-path
trees (OPTs), which will be rooted at each prototype. We have that
samples that belong to the same OPT are more strongly connected
to their root (prototype) than to any other one in the optimum-
path forest. Prototypes assign their costs (i.e., their lowest weight
path or the maximum arc-weight along a path) for each node,
and the prototype that offered the optimum path-cost will conquer
that node, which will be marked with the same prototype’s label.

Let Z = Z1 [ Z2 be a dataset labeled with a function k, in which Z1

and Z2 are, respectively, a training and test sets such that Z1 is used
to train a given classifier and Z2 is used to assess its accuracy. Let
S # Z1 a set of prototype samples. Essentially, the OPF classifier
creates a discrete optimal partition of the feature space such that
any sample s 2 Z2 can be classified according to this partition. This
partition is an optimum path forest (OPF) computed in Rn by the
image foresting transform (IFT) algorithm (Falcão, Stolfi, & Lotufo,
2004).

The OPF algorithm may be used with any smooth path-cost
function which can group samples with similar properties (Falcão
et al., 2004). Particularly, we used the path-cost function fmax,
which is computed as follows:

fmaxðhsiÞ ¼
0 if s 2 S;

þ1 otherwise;

�

fmaxðp � hs; tiÞ ¼maxffmaxðpÞ;dðs; tÞg; ð1Þ

in which d(s, t) means the distance between samples s and t, and a
path p is defined as a sequence of adjacent samples. In such a
way, we have that fmax(p) computes the maximum distance be-
tween adjacent samples in p, when p is not a trivial path.

The OPF algorithm assigns one optimum path P⁄(s) from S to
every sample s 2 Z1, forming an optimum path forest P (a function
with no cycles which assigns to each s 2 Z1nS its predecessor P(s) in
P⁄(s) or a marker nil when s 2 S). Let R(s) 2 S be the root of P⁄(s)
which can be reached from P(s). The OPF algorithm computes for
each s 2 Z1, the cost C(s) of P⁄(s), the label L(s) = k(R(s)), and the
predecessor P(s).

The OPF classifier is composed of two distinct phases: (i) train-
ing and (ii) classification. The former step consists, essentially, in
finding the prototypes and computing the optimum-path forest,
which is the union of all OPTs rooted at each prototype. Then, we
take a sample from the test sample, connect it to all samples of
the optimum-path forest generated in the training phase and we
evaluate which node offered the optimum path to it. Notice that
this test sample is not permanently added to the training set, i.e.,
it is used only once. The next sections describe in details this
procedure.

3.1.1. Training
We say that S⁄ is an optimum set of prototypes when the OPF

algorithm minimizes the classification errors for every s 2 Z1. S⁄

can be found by exploiting the theoretical relation between mini-
mum-spanning tree (MST) and optimum-path tree for fmax (Allène,
Audibert, Couprie, Cousty, & Keriven, 2007). The training essen-
tially consists in finding S⁄ and an OPF classifier rooted at S⁄.

By computing a MST in the complete graph (Z1,A) (Fig. 6a), we
obtain a connected acyclic graph whose nodes are all samples of
Z1 and the arcs are undirected and weighted by the distances d be-
tween adjacent samples (Fig. 6b). The spanning tree is optimum in
the sense that the sum of its arc weights is minimum as compared
to any other spanning tree in the complete graph.

Algorithm 1. OPF training algorithm
In the MST, every pair of samples is connected by a single path
which is optimum according to fmax. That is, the minimum-span-
ning tree contains one optimum-path tree for any selected root
node. The optimum prototypes are the closest elements of the
MST with different labels in Z1 (i.e., elements that fall in the frontier
of the classes). Algorithm 1 implements the training procedure for
OPF.

The time complexity for training is h(jZ1j2), due to the main
(lines 7–15) and inner loops (lines 10–15) in Algorithm 1, which
run h(jZ1j) times each.

After that, we have a collection of OPTs, each one of them rooted
at each prototype, as one can see in Fig. 6c. This geometry of the
feature space gives the name to the classifier.

3.1.2. Classification
For any sample t 2 Z2, we consider all arcs connecting t with

samples s 2 Z1, as though t were part of the training graph
(Fig. 6d). Considering all possible paths from S⁄ to t, we find the
optimum path P⁄(t) from S⁄ and label t with the class k(R(t)) of
its most strongly connected prototype R(t) 2 S⁄. This path can be
identified incrementally by evaluating the optimum cost C(t) as

CðtÞ ¼minfmaxfCðsÞ;dðs; tÞgg; 8s 2 Z1: ð2Þ

Let the node s⁄ 2 Z1 be the one that satisfies Eq. (2) (i.e., the pre-
decessor P(t) in the optimum path P⁄(t)). Given that L(s⁄) = k(R(t)),
the classification simply assigns L(s⁄) as the class of t (Fig. 6e). An
error occurs when L(s⁄) – k(t). Algorithm 2 implements this
procedure.
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Algorithm 2. OPF classification algorithm
In Algorithm 2, the main loop (lines 1–9) performs the classifi-
cation of all nodes in Z2. The inner loop (lines 4–9) visits each node
kiþ1 2 Z01; i ¼ 1;2; . . . ; Z01

�� ��� 1 until an optimum path pkiþ1
� hkiþ1; ti

is found.
Fig. 6. OPF pipeline: (a) complete graph, (b) MST and prototypes bounded, (c)
optimum-path forest generated at the final of training step, (d) classification
process and (e) the triangle sample is associated to the white circle class. The values
above the nodes are their costs after training, and the values above the edges stand
for the distance between their corresponding nodes.
3.2. Bayesian classifier

Let p(xi—x) be the probability of a given pattern x 2 Rn to be-
long to class xi, i = 1,2, . . . ,c, which can be defined by the Bayes
Theorem (Jaynes, 2003):

pðxijxÞ ¼
pðxjxiÞPðxiÞ

pðxÞ ; ð3Þ

where p(xjxi) is the probability density function of the patterns that
compose the class xi, and P(xi) corresponds to the probability of
the class xi itself.

A Bayesian classifier decides whether a pattern x belongs to the
class xi when:

pðxijxÞ > pðxjjxÞ; i; j ¼ 1;2; . . . ; c; i – j; ð4Þ

which can be rewritten as follows by using Eq. (3):

pðxjxiÞPðxiÞ > pðxjxjÞPðxjÞ; i; j ¼ 1;2; . . . ; x; i – j: ð5Þ

As one can see, the Bayes classifieŕs decision function di(x) =
p(xjxi)P(xi) of a given class xi strongly depends on the previous
knowledge of p(xjxi) and P(xi), "i = 1,2, . . . ,c. The probability val-
ues of P(xi) are straightforward and can be obtained by calculating
the histogram of the classes. However, the main problem is to find
the probability density function p(xjxi), given that the only infor-
mation available is a set of patterns and its corresponding labels.
A common practice is to assume that the probability density func-
tions are Gaussian ones, and thus one can estimate their parame-
ters using the dataset samples (Duda, Hart, & Stork, 2000). In the
n-dimensional case, a Gaussian density of the patterns from class
xi can be calculated using:

pðxjxiÞ ¼
1

ð2pÞn=2jCij1=2 exp �1
2
ðx� liÞ

T C�1
i ðx� liÞ

� �
; ð6Þ

in which li and Ci correspond to the mean and the covariance ma-
trix of class xi. These parameters can be obtained by considering
each pattern x that belongs to class xi using the following
equations:
li ¼
1
Ni

X
x2xi

x; ð7Þ

and

Ci ¼
1
Ni

X
x2xi

xxT � lil
T
i

� �
; ð8Þ

in which Ni means the number of samples from class xi.

3.3. Support vector machines classifier

One of the fundamental problems of the learning theory can be
stated as: given two classes of known objects, assign one of them
to a new unknown object. Thus, the objective in a two-class pat-
tern recognition is to infer a function (Schölkopf & Smola, 2002):

f : X! f�1g; ð9Þ

regarding the input–output of the training data.
Based on the principle of structural risk minimization (Vapnik,

1999), the SVM optimization process is aimed at establishing a
separating function while accomplishing the trade-off that exists
between generalization and over-fitting.

Vapnik (1999) considered the class of hyperplanes in some dot
product space H,

hw; xi þ b ¼ 0; ð10Þ

where w; x 2H; b 2 R, corresponding to decision function:

f ðxÞ ¼ sgnðhw; xi þ bÞ; ð11Þ

and, based on the following two arguments, the author proposed
the Generalized Portrait learning algorithm for problems which are
separable by hyperplanes:
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1. Among all hyperplanes separating the data, there exists a
unique optimal hyperplane distinguished by the maximum mar-
gin of separation between any training point and the
hyperplane.

2. The over-fitting of the separating hyperplanes decreases with
increasing margin.

Thus, to construct the optimal hyperplane, it is necessary to
solve:

minimize
w2H;b2R

sðwÞ ¼ 1
2
kwk2

; ð12Þ

subject to:

yiðhw;xii þ bÞP 1 for all i ¼ 1; . . . ;m; ð13Þ

with the constraint (13) ensuring that f(xi) will be +1 for yi = +1 and
�1 for yi = �1, and also fixing the scale of w. A detailed discussion of
these arguments is provided by Schölkopf and Smola (2002).

The function s in (12) is called the objective function, while in
(13) the functions are the inequality constraints. Together, they
form a so-called constrained optimization problem. The separating
function is then a weighted combination of elements of the train-
ing set. These elements are called support vectors and characterize
the boundary between the two classes.

The replacement referred to as the kernel trick (Schölkopf &
Smola, 2002) is used to extend the concept of hyperplane classifi-
ers to nonlinear support vector machines. However, even with the
advantage of ‘‘kernelizing’’ the problem, the separating hyperplane
may still not exist.

In order to allow some examples to violate (13), the slack vari-
ables n P 0 are introduced (Schölkopf & Smola, 2002), which leads
to the constraints:

yiðhw;xii þ bÞP 1� ni for all i ¼ 1; . . . ;m: ð14Þ

A classifier that generalizes efficiently is then found by control-
ling both the margin (through kwk) and the sum of the slack vari-
ables

P
ini. As a result, a possible accomplishment of such a soft

margin classifier is obtained by minimizing the objective function:

sðw; nÞ ¼ 1
2
kwk2 þ C

Xm

i¼1

ni; ð15Þ

subject to the constraint in (14), where the constant C > 0 deter-
mines the balance between over-fitting and generalization. Due to
the tuning variable C, these kinds of SVM based classifiers are nor-
mally referred to as C-Support Vector Classifiers (C-SVC) (Cortes &
Vapnik, 1995).

3.4. Multi-layer perceptron neural network classifier

In this work we used an multi-layer perceptron neural networks
(ANN-MLP) from fast artificial neural network library (FANN), in
Nissen (2003), which is a free open source ANN library, which
implements ANN-MLP in C and supports both fully and sparsely
connected networks. The ANN-MLP is a combination of Perceptron
layers aiming to solve multi-class problems Haykin (2007). The
neural network architecture is composed of neuron layers, such
that each output feeds the input neurons at the follows layer.
The first layer, denoted by A, has NA neurons, where NA has the
same dimensionality of the feature vector, while the last layer, de-
noted by Q, has NQ neurons, which stands for the number of the
classes. This neural network assigns a pattern vector x to a class
xm if the mth output neuron achieves the highest value.

Each input layer corresponds to a weighted sum of the previous
layer. Let J � 1 be the previous layer of J, such that each input IJ

j in J
is given by
IJ
j ¼

XNK

k¼1

wjkOJ�1
k ð16Þ

and

OJ�1
k ¼ / IJ�1

k

� 	
; ð17Þ

where j = 1,2, . . . ,NJ, being NJ and NK the amount of neurons at the
layer J and J � 1, respectively, and wjk stands for the weights that
modify the kth output of layer J � 1, i.e., OJ�1

k .
The backpropagation algorithm is usually employed to train

MLP (Russell & Norvig, 2009). This algorithm minimizes the mean
squared error between the desired outputs rq and the obtained out-
puts Uq of each node of the output layer Q. Therefore, the idea is to
minimize the equation bellow:

EQ ¼
1

NQ

XNQ

q¼1

ðrq �UqÞ2; ð18Þ

in which NQ is the number of neurons at the output layer Q.

4. Experiments and results

In this work, we propose the use of a recent and powerful pat-
tern recognition technique, the OPF classifier, for heartbeat ECG
signal classification. In Section 2, we surveyed six feature selection
approaches widely used in the literature for this purpose, in which
all were re-implemented. In Section 3, we described the OPF clas-
sifier along with the other three classifiers, i.e., SVM, MLP, and
Bayesian, which will be used in our experiments presented in this
section. These features extraction approaches and classifier algo-
rithms are combined to yield intelligent systems with high accu-
racy and low computational cost.

The experiments works as follows. Initially we describe the
dataset used, the suggested recommendations by the AAMI stan-
dards to analyze and classify cardiac arrhythmia using ECG signals
which recommends, and, finally, an explanation on how the MIT-
BIH Arrhythmia Dataset is divided for creating the training
(denominated in this work as DS1) and testing (denominated of
DS2) sets as suggested in Chazal et al. (2004). After, we present
the measures used to evaluate the effectiveness of the expert sys-
tem classifiers proposed in this work.

4.1. Database description and AAMI standards

The MIT-BIH Arrhythmia Database contains 48 half-hour
recordings, sampled at 360 Hz, and eighteen types of heartbeats
are classified and labeled. To comply with the AAMI recommenda-
tions, only 44 recordings from the MIT-BIH Arrhythmia Database
should be used for evaluation of cardiac arrhythmia signal classifi-
cation methods, excluding the four recordings that contain paced
beats. The ANSI/AAMI EC57:1998/(R)2008 standard AAMI (2008)
recommends to group those heartbeats into five classes: (1) nor-
mal beat (N), (2) supraventricular ectopic beat (SVEB, here just
S), (3) ventricular ectopic beat (VEB, here just V), (4) fusion (F) of
a V and a N, and (5) unknown beat type (Q), as shown in Table 1.

Recently, in Llamedo and Martı́nez (2011), it is proposed a
shorter group of classes. Since the AAMI Q class (unclassified and
paced heartbeats) is marginally represented in the database (corre-
sponding to 0.015% of all database), it is discarded. Also, due to its
morphologic similarity to the V AAMI class, the fusion (F) AAMI
class, instead of being discarded, are merged together creating a
new ventricular class, here represented as V0. This modification is
referred as AAMI2 labeling. It is important to note that this reduc-
tion in the group of classes is mainly motivated by the non repre-
sentative amount of samples of the AAMI Q and the featureless



Table 1
Mapping the MIT-BIH Arrhythmia types to the AAMI classes.

The AAMI heartbeat
class

N SVEB VEB F Q

Description Any heartbeat not in the S,
V, F, or Q class

Supraventricular ectopic
beat

Ventricular ectopic beat Fusion beat Unknown beat

MIT-BIH heartbeat
types (code)

Normal beat (N) Atrial premature beat (A) Premature ventricular
contraction (V)

Fusion of ventricular and
normal beat (F)

Paced beat (P)

Left bundle branch block
beat (L)

Aberrated atrial
premature beat (a)

Ventricular escape beat
(E)

Fusion of paced and
normal beat (f)

Right bundle branch block
beat (R)

Nodal (junctional)
premature beat (J)

Unclassified beat (U)

Atrial escape beat (e) Supraventricular
premature beat (S)

Nodal (junctional) escape
beat (j)

Table 2
MIT-BIH Arrhythmia Dataset division scheme of the heartbeats.

Dataset N S V F Q Total #Rec

DS1 45,844 943 3788 415 8 50,998 22
DS2 44,238 1836 3221 388 7 49,690 22
Totals 90,082 2779 7009 803 15 100,688 44

Table 3
The division of records of patients’ heartbeats of the MIT-BIH Arrhythmia Dataset for
training (DS1) and testing (DS2).

Record (patient number) of heartbeats

DS1 DS2

101 114 122 207 223 100 117 210 221 233
106 115 124 208 230 103 121 212 222 234
108 116 201 209 105 123 213 228
109 118 203 215 111 200 214 231
112 119 205 220 113 202 219 232
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values achieved by the AAMI F class in the works reported in the
literature (Chazal et al., 2004; Llamedo & Martı́nez, 2011; Mar,
Zaunseder, Martínez, Llamedo, & Poll, 2011) and also in this work.
Also observe that the N AAMI class is dominant representing
89.46% of all heartbeats’ dataset. So attention has to be given in
the effectiveness analysis of the results related to N AAMI class,
since an optimal performance in only in that class means a final
accuracy of almost 90%. Sensibility and specificity are measures
that can capture the effectiveness performance of each class and
are explained further in this section.

The AAMI standards also recommend dividing the recordings
into two datasets: one for training and another for testing such that
heartbeats from one recording (patient) are not used simulta-
neously for both training and testing the classifier. As claimed be-
fore and shown in Luz and Menotti (2011), when this constraint is
not imposed for building the datasets for training and testing the
classifiers achieve very high performance. However, such practice
is not valid for considering realistic clinical results, since the clas-
sifier is not trained with the data heartbeat of a patient to be ana-
lyzed. Usually the heartbeats of a new patient does not belong to
the training set, requiring the use of expert system classifiers more
robust.

Then train (DS1) and test (DS2) sets are created, in order to
accomplish AAMI recommendations and approximate to real world
situation. As one can see from the values in Table 2 an effort to bal-
ance the amount of samples/heartbeat per class in the datasets is
also noticed in such division. Note that #Rec stands for the number
of records (patients) and DS1 and DS2 are suggested in Chazal et al.
(2004) and not in ANSI/AAMI EC57:1998/(R)2008 standard AAMI
(2008). Moreover, analyzing the experiments performed on the
six works we studied here used for collect their feature representa-
tion (presented in Section 2), (Chazal et al., 2004) is the one to fol-
lows the AAMI standards, while the others use different heartbeats
of a same patient to be used in training and testing due to the high
effectiveness they report in their works. This claim is show in Luz
and Menotti (2011).

The two partitions should be composed of the records of pa-
tients’ heartbeats shown in Table 3, in which the numbers indicate
a code for the recording of 30 min of heartbeat of each patient.
Chazal et al. (2004) claims that the record numbered 1## and
2## belongs to two class of patients (Mark & Moody, 1990), i.e.
the first range are intended to serve as a representative sample
of routine clinical recordings, while the second one contains com-
plex ventricular, junctional, and supraventricular arrhythmias, so
they decided to balance the presence of these records in each set
such that the classifier has the larger diversity as possible for both
training and testing, making these datasets the less biased as
possible.

Observe that in such data division scheme heartbeats of a same
patient are not present in both datasets, complying to the AAMI
standards. That means that the heartbearts of a same patient are
solely used to either (and not both) train or test the systems. The
reasons for this constraint is to report the predictive effectiveness
of ECG signal classification systems compatible in a real clinical
trial.

All composition of feature extraction approaches and classifier
algorithms are training in DS1 dataset and tested in DS2 following
the scheme proposed in Chazal et al. (2004).
4.2. Performance evaluation measures

In order to analyze the expert system classifiers, we present the
three measures employed: accuracy, sensitivity, and specificity.

Accuracy (Acc) is defined as the ratio of total beats correctly
classified and the number of total beats,

Accuracy ¼ beats correctly classified
number of total beats

: ð19Þ

Sensitivity (Se) can be defined as the ratio of correctly classified
beats of one class and the total beats classified as that class, includ-
ing the missed classification beats,

Sensitivity ¼ true positives
true positivesþ false negatives

ð20Þ

in which true positives and false negatives stand for the number of
heartbeats of a given class correctly and incorrectly classified,
respectively.



Table 4
Computing the classifiers effectiveness from the confusion matrix. This scheme is extracted from Chazal et al. (2004) and adapted.

Abbreviation: Acc: Accuracy, F: F AAMI class, N: N AAMI Class, Q: Q AAMI Class, Se: Sensitivity, Sp: Specificity, S: S AAMI class, V: V AAMI class.
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Specificity (Sp) stands for the ratio of correctly classified beats
among all beats of a specific class,

Specificity ¼ true negatives
true negativesþ false positives

ð21Þ

in which true negatives stands for number of the heartbeats not
belonging to a given class classified as not belonging to the consid-
ered class, while false positives stands for the number of heartbeats
incorrectly classified as belonging to a given class. Observe that
these last two measures are based on the data of each class.

Furthermore, we also propose the use of a Harmonic mean (Hm)
between sensitivity and specificity, mathematically express by:
Table 5
Training and testing time (in seconds) for MIT-BIH Arrhythmia Dataset following AAMI re

Features Classifiers

SVM OPF

Train Test Total Train Test

Chazal et al. (2004) 192.92 181.08 374.00 609.71 895.78
Güler and Übeyli (2005) 078.01 059.99 138.00 216.69 220.87
Song et al. (2005) 095.07 057.75 152.81 205.64 229.02
Yu and Chen (2007) 107.38 069.65 177.02 250.40 222.31
Yu and Chou (2008) 066.00 049.02 115.01 187.80 176.81
Ye et al. (2010) 162.12 130.51 292.63 450.53 586.49

Table 6
Training and testing time (in seconds) for MIT-BIH Arrhythmia Dataset following the labe

Features Classifiers

SVM OPF

Train Test Total Train Test

Chazal et al. (2004) 190.36 173.56 363.92 609.98 891.14
Güler and Übeyli (2005) 077.90 058.93 136.83 205.76 216.58
Song et al. (2005) 101.63 057.27 158.90 216.65 228.14
Yu and Chen (2007) 115.23 068.12 183.35 249.83 224.41
Yu and Chou (2008) 068.37 049.81 118.18 188.00 177.98
Ye et al. (2010) 158.11 129.90 288.02 443.63 581.69
HM ¼ 2� Se� Sp
Seþ Sp

: ð22Þ

These measures can be computed from a confusion matrix
which can be obtained by comparing the expected classification
(reference data) which the ones predicted by a classifier. Table 4
shows in details how to compute these measures, obtained and
firstly discussed by Chazal et al. (2004). In Table 4(a) and (b), in
dark gray (vertical highlighted lines), we illustrate how to compute
the false positives for V and S AAMI classes, respectively, while in
gray (horizontal highlighted lines), we illustrate how to compute
the false negative for V and S AAMI classes, respectively. To com-
pute Se’s e Sp’s for N, F, and Q AAMI class we can proceed in a sim-
ilar way to the ones of V and S AAMI classes.
commendations (5 classes).

Bayesian MLP

Total Train Test Total Train Test Total

1505. 49 90.79 2324.32 2415.11 3838.67 0.22 3838.89
0437.56 18. 80 0352.53 0371.33 1923.06 0.13 1923.19
0434.66 18. 24 0375.44 0393.68 1942.65 0.13 1942.78
0472.71 22. 80 0500.50 0523.29 2078.85 0.14 2078.99
0364.61 14. 47 0278.40 0292.87 1846.67 0.13 1846.80
1037. 02 62.35 1572.71 1635.06 3083.42 0.18 3083.61

ling suggestion from Llamedo and Martı́nez (2011) (AAMI2-3 classes).

Bayesian MLP

Total Train Test Total Train Test Total

1501. 12 90.17 1393.75 1483.92 3682.04 0.21 3682.25
0422.34 18. 75 0209.50 0228.25 1790.11 0.13 1790.24
0444.78 18. 16 0226.17 0244.33 1794.33 0.13 1794.46
0474.24 22. 60 0302.08 0324.69 1947.38 0.14 1947.51
0365.98 14. 41 0168.84 0183.25 1700.25 0.12 1700.37
1025. 32 62.24 0944.93 1007.17 2951.61 0.18 2951.78



F
Q

/S
p/

H
M

H
M

Se
/S

p/
H

M

90
5j

83
6

38
4j

97
4j

55
1

0j
10

00
j0

05
j5

63
00

5j
98

5j
01

0
0j

10
00
j0

91
4j

84
1

07
5j

97
5j

13
9

0j
10

00
j0

74
j7

56
16

8j
96

7j
28

6
0j

10
00
j0

71
j8

45
03

9j
99

1j
07

4
0j

10
00
j0

96
8j

90
8

18
3j

96
9j

30
8

0j
10

00
j0

88
1j

65
6

00
0j

10
00
j0

00
0j

10
00
j0

95
0j

51
0

00
0j

10
00
j0

00
0j

10
00
j0

96
2j

89
1

12
6j

09
76
j2

24
0j

10
00
j0

95
2j

76
8

00
0j

10
00
j0

00
0j

10
00
j0

98
2j

89
9

04
9j

09
91
j0

93
0j

10
00
j0

99
6j

70
2

16
2 j

09
74
j2

78
0j

10
00
j0

3570 E.J.S. Luz et al. / Expert Systems with Applications 40 (2013) 3561–3573
Although the accuracy is the most important measure for decid-
ing the choice of an expert system classifier, the sensitivity and
specificity are measures quite important as well in this context,
since the number of heartbeats for each class in the MIT-BIH
Arrhythmia Database is very imbalanced and a single class (e.g.,
the normal beats) could represent most of the total accuracy, while
the sensitivity and specificity directly depend on the number of
samples for each class.

Besides these measures for evaluating and comparing the effec-
tiveness performance of the expert system classifiers, we also com-
pute the training and testing time, which are also very important
measures in ECG arrhythmia signal classification depending on
the application.
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5. Discussion

Our analysis and discussion of the results reported in this work
are divided into two parts: efficiency and effectiveness. Note that
all experiments reported here used a PC Intel i7 at 2.8 GHz and
4 Gb of RAM on a Linux Ubuntu operational system.
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5.1. Efficiency

The run times obtained by the ECG signal expert system algo-
rithms for learning the model from the entire training set (DS1)
and for classifying the testing set (DS2) using the AAMI protocol
(five classes) following the scheme proposed in Chazal et al.
(2004) and the AAMI protocol with the shorter groups of classes
(three classes) suggested by Llamedo and Martı́nez (2011) are re-
ported in Tables 5 and 6, respectively.

Regarding the training time, in average, the Bayesian classifiers
achieved the best time, followed by the SVM classifier being in
average almost four time slower than the Bayesian classifier. The
OPF classifier presented the third best time being in average
around 10 times greater than the one of the Bayesian classifier.
In average, the MLP classifier is the slower one for learning the
models, due to convergence criterion setup. However, the SVM
classifier achieves the highest time for learning in two situations
(both for the features extracted by Song et al. (2005)). It is impor-
tant to note that the grid search time for the SVM’s c and C param-
eters definitions are not taken into account in the training phase. It
can be noticed that for the three classifiers, SVM, OPF and Bayesian,
the changes in training time were not significant for 3 or 5 classes,
but the MLP classifier obtained a significant training speed gain,
reaching a time about 8% faster for three classes classification.

Analyzing the testing time, due to its nature, as we can observe
from these tables, the MLP classifier is the fastest one on the test
set. Being four orders of magnitude slower, the SVM appears in sec-
ond place for run on the testing data. The OPF classifier arises as
the third fast one being in average one order of magnitude slower
than SVM, and the slower classifier for the testing data in the most
of the cases is the Bayesian classifier. It is important to note that
only in three experiments (Table 6) the Bayesian classifier per-
formed the testing task faster than the OPF classifier, due to the
significant testing time decreasing caused by the reduction of the
number of classes of the AAMI2 datasets. This reduction seem to
affect most of all the Bayesian classifier speeding up its testing
time up to 40%. Also observe that the testing time for the features
extracted by Chazal et al. (2004) for all the classifiers is greater
than to other features. This can be explained due to the higher vec-
tor dimensionality of this feature representation.

Concerning the full run average time taken in our experiments,
the SVM classifier is faster, being followed by the Bayesian, OPF
and MLP classifiers. However, the time to define the parameters
cost (C) = 5 and Gamma (c) = 0.001 was not considered. These val-



Table 8
Accuracies, sensitivities and specificities (in 0.1%) for MIT-BIH Arrhythmia Dataset following the labeling suggestion from Llamedo and Martı́nez (2011) (AAMI2-3 classes).

Features Classifiers

SVM OPF

Acc N S V0 Acc N S V0

Se/Sp/HM Se/Sp/HM Se/Sp/HM Se/Sp/HM Se/Sp/HM Se/Sp/HM

Chazal et al. (2004) 910 0979j360j526 0j1000j 0 517j0978j677 810 845j537j657 010j971j020 773j880j823
Güler and Übeyli (2005) 895 0999j053j100 0j1000j 0 080j0999j147 804 864j349j497 023j971j046 469j896j616
Song et al. (2005) 894 1000j031j060 0j1000j 0 046j1000j087 814 848j658j741 183j954j306 722j888j796
Yu and Chen (2007) 890 1000j000j000 0j1000j 0 000j1000j000 868 925j497j646 030j978j059 605j941j736
Yu and Chou (2008) 916 0998j257j409 0j1000j 0 371j0997j541 909 957j593j732 177j988j300 700j963j811
Ye et al. (2010) 921 0998j329j495 0j1000j 0 447j0994j617 895 932j618j743 121j994j216 824j938j877

Bayesian MLP

Chazal et al. (2004) 810 845j538j657 011j971j022 774j879j823 903 948j775j853 014j0993j028 792j929j855
Güler and Übeyli (2005) 803 863j350j498 023j972j046 471j894j617 893 981j184j310 001j0999j001 273j982j427
Song et al. (2005) 815 849j658j742 183j955j306 724j888j798 864 906j641j751 035j0985j067 768j911j834
Yu and Chen (2007) 871 928j495j645 027j978j053 605j943j737 887 957j332j493 002j1000j003 484j958j643
Yu and Chou (2008) 912 959j592j732 171j989j291 708j965j817 927 972j585j730 056j0993j106 819j977j891
Ye et al. (2010) 895 932j620j744 120j994j214 827j938j879 893 998j035j 67 000j1000j000 053j998j100

Table 9
Confusion matrix for SVM classifying the Yu and Chen (2007) dataset.

Class Algorithm

N S V F Q

True N 43905 0 0 0 0
S 01823 0 0 0 0
V 03197 0 0 0 0
F 00388 0 0 0 0
Q 00007 0 0 0 0

Table 10
Confusion matrix for SVM classifying the Song et al. (2005) dataset.

Class Algorithm

N S V F Q

True N 44212 0 006 0 0
S 01831 0 005 0 0
V 03064 0 155 0 0
F 00387 0 001 0 0
Q 00007 0 000 0 0
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ues were reported in the literature in Bhardwaj, Choudhary, and
Dayama (2012), in which is analyzed a graph between accuracy
and cost keeping gamma constant, and, further, accuracy v/s gam-
ma keeping C constant. When the parametrization of this values is
considered in the train phase, the SVM classifier is much slower
than the OPF and Bayesian classifiers, as can be seen in Papa
et al. (2009), Guilherme et al. (2011), Papa et al. (2013), Santos
et al. (2012), Ramos et al. (2011), for example.

One can note that the Bayesian classifier was slower than OPF
for two datasets, containing data of 5 classes extracted by Chazal
et al. (2004) and Ye et al. (2010) due its high dimensional feature
vector. This statement is not true for three classes feature repre-
sentations (datasets), where there is a speed gain in the testing
time explained before.
5.2. Effectiveness

The effectiveness evaluation measures obtained, the Accuracy,
Sensitivity, Specificity, and HM, by the ECG signal expert system
algorithms trained on the training set (DS1) for classifying the test-
ing set (DS2) containing 5 and 3 classes (similarly to the efficiency
analysis) are shown in Tables 7 and 8, respectively. Due to page
width limits the floating points of the numbers in these table are
omitted, and the figures in the tables represent percentages rang-
ing from 000.0% to 100.0%.

As claimed before, the accuracy is the main important measure
for analyzing the effectiveness of a ECG signal classification algo-
rithm. Observing the accuracies values in Tables 7 and 8, it is
noticeable that the SVM classifier obtained the highest accuracy
in all feature representations used, regardless the amount of clas-
ses in the training set (5 or 3), followed by MLP classifier, which ob-
tained the second best performance also in all feature
representations. OPF and Bayesian classifiers showed very close
performances, varying less then 0.4% and presenting together the
worst overall accuracies.

Further in this section, it will be shown that most of the good
accuracy obtained by SVM and MLP classifiers are due to a good
performance only for the N class. This happens because the N class
is the most representative class in the set, grouping more than 89%
of the entire set.

As sensitivity and specificity of all classes take into account false
negatives and positives, respectively, and HM is a combination of
both, this parameter is an important one in our analysis of the
capability of the method to differentiate the classes, and most of
all the arrhythmic ones (S, V, V0, Q, and F). Due to this, we consider
on our analysis these parameters.

A false negative for the N class means a false alarm, that is, the
classifier detect an arrhythmic beat when its true class is normal,
while a false positive for the N class means that an arrhythmic beat
takes place and the classifier detect it as a normal beat. In some sit-
uations, we prefer less false negatives (greater sensitivity than
specificity) than false positives, and in other situations the oppo-
site, that is why the Hm analysis is important which is defined as
the harmonic mean of sensitivity and specificity to perform our
analysis of the effectiveness in terms of sensitivity and specificity.

Then, our analysis of the effectiveness for classes is concen-
trated on the Harmonic mean values (Hm). Observing the values
presented in Tables 7 and 8, we can see that, despite of the best
accuracy performance obtained by SVM and MLP classifiers, their
performance as a differentiation tool between classes lacks effi-
ciency. One can observe from the confusion matrices shown in Ta-
bles 9 and 10, from the worst HM feature representation for SVM
classifier, in this case Yu and Chen (2007) and Song et al. (2005),
respectively that this classifier, SVM, tends to fail on classifying
samples for arrhythmic classes, prevailing the most numerous
class, in this case the N class. This is a major problem, considering
the purpose of the classification, where great part of the arrhyth-
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mic samples are classified as normal samples. This indicates that
for this kind of classification, even with the best accuracy rates,
the SVM classifier represents the worst result. The same analysis
can be done for other feature representations and for three classes
representations. It is clear also that the SVM classifier completely
fails on classifying the S class, decreasing its HM on all datasets
tested.

In our analysis, we also observed that the same problem occurs
with the MLP classifier, in a smaller degree, specially on classes S
and F for most of the feature representations on both, 3 and 5 clas-
ses analysis. On the other hand, we can note on the OPF and Bayes-
ian classifiers HM results, a very much better performance,
showing to be more robust, despite of their lower accuracy rates.
Moreover, the results obtained by both are very similar, allowing
us to say they have almost the same performance on classifying
arrhythmic classes. This ability to evaluate samples provided by
potential diseased patients and differentiate it is the most impor-
tant in our analysis, due to the goal of the classification system
in detecting possible heart diseases.

So, from these analyses we can conclude that the OPF and
Bayesian classifiers produce similar results and the best balance
among classification of normal and arrhythmic classes when com-
pared to the SVM and MLP classifiers.

Observe that the effectiveness achieved for class Q in Table 7 by
the classifiers with all feature representations are negligible. The Q
class almost always achieves zero value for sensitivity, leading to
an HM 0. The performance on classifying F class are also weak per-
formances, than the other classes, due to its nature of being a fu-
sion between two other classes. Due to the non representative
amount of beats of class Q (less than 0.015% of the database) and
to the difficult of the majority works in the literature and also
those shown here in classifying the F class, the protocol called
AAMI2 was proposed, in which the Q class was removed and the
classes V and F class were fused into V0 class. By observing the Har-
monic mean values (Hm) for the V class in Table 7 and V’ class in 8,
we can see that the fusion of V and F classes to V class does not im-
pact the results for the V0 and S classes when the OPF and Bayesian
classifier are used. For SVM and MLP classifiers, there is an slightly
impact but without leading to a better classification overall. This is
a very important result for classification using Bayesian classifier,
which was highly affected by the number of classes, in terms of
speed. The problem with the number of classes, does not occur
with the OPF classifier, since the training and testing time where
not significantly affected, showing a great robustness of this
classifier.
6. Conclusions

In this work, we investigated the use of the OPF classifier for the
task of Arrhythmic ECG signal classification. To the best of our
knowledge, it is the first that the OPF classifier is applied to ECG
signal classification. Moreover, we studied and implemented six
feature representation from works in the literature (Chazal et al.,
2004; Güler & Übeyli, 2005; Song et al., 2005; Yu & Chen, 2007;
Yu & Chou, 2008; Ye et al., 2010) which in our opinion are quite
representative. Besides applying these feature representation ap-
proaches to learn model with the OPF classifier, we also employ
the use of other three well-know learning algorithms: support vec-
tor machines, multi-layer perceptron neural network (MLP), and
Bayesian expert system classifiers.

The experiments reported here shown that the MLP classifier is
the fastest one for the testing task, while the learning task is best
performed by the SVM classifier. Nonetheless, in average, the OPF
classifier has shown an efficiency performance not being five times
worst than SVM classifiers. On the other hand, the OPF classifier to-
gether with the Bayesian one have shown the best balance for clas-
sifying the arrhythmic classes, despite the best accuracy
performance yielded by the MLP and SVM classifier which biased
the classification towards the normal class failing to classify the
arrhythmic classes.
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