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The two dimensional orthogonal rectangular strip packing problem is a common NP-
hard optimisation problem whereby a set of rectangular shapes must be placed on a
fixed width stock sheet with infinite length in such a way that wastage is minimised and
material utilisation is maximised. The bidirectional best-fit heuristic is a deterministic
approach which has previously been shown to outperform existing heuristic methods as
well as many metaheuristics from the literature. Here, we propose a modification to the
original bidirectional best-fit heuristic whereby combinations of pairs of rectangles are
considered generating improved results over standard benchmark sets.

1. Introduction

Cutting and packing problems arise in many areas, particularly in manufacturing
industries where a given stock material must be cut into a smaller set of shapes. The
problem addressed in this paper is the NP-hard (Garey & Johnson, 1979) two dimensional
orthogonal rectangular strip packing problem (SPP). In this problem a set of rectangular
shapes must be arranged on a given sheet of fixed width and infinite height with the
objective of minimising the highest point of any rectangle in the solution. Using the
typology of Wischer et al. (2007) the exact problem considered is a two dimensional, open
dimension problem. As all rectangular shapes may be rotated by 90° and no guillotine
cutting is required, this is referred to as the ‘RF’ (rotated, free cutting) subtype using the
categorisation of Lodi et al. (1999). More information on cutting and packing problems
can be found in a number of survey papers (Dyckhoff, 1990; Dowsland & Dowsland, 1992;
Lodi et al., 2002; Wascher et al., 2007)
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Asik & Ozcan (2009) introduced the bidirectional best-fit heuristic for solving such
problems. The bidirectional best-fit heuristic (BBF) is an elegant approach which consid-
ers both orientations of each rectangle yet to be packed when deciding which rectangle to
place. Here we consider an extension to the original bidirectional best-fit heuristic which
considers not only placing single rectangles but also placing different combinations of
pairs of rectangles. We show that considering rectangles in pairs yields improved results
over the original bidirectional best-fit heuristic and a number of metaheuristics from the
literature.

Section 2 provides an overview of the two dimensional strip packing literature outlin-
ing previously used heuristic, metaheuristic and exact methods. Section 3 describes the
original bidirectional best-fit heuristic in detail. Section 4 introduces a modified version
of the bidirectional best-fit heuristic which considers compound shapes in the form of
pairs of combined rectangles when searching for a shape to place. A number of new
policies are described which are required in the modified heuristic. Section 5 defines the
benchmarks which will be used and provides results and discussion of the application of
the new method to these instances. Finally, Section 6 draws some conclusions based on
our results.

2. The Two Dimensional Orthogonal Strip Packing Problem

2.1. Ezxact Methods

Although not the subject of our approach, there have been a large amount exact
methods used to solve strip packing problems. Gilmore & Gomory (1961) developed a
linear programming approach to solve very small strip packing problems to optimality.
Christofides & Whitlock (1977) and Beasley (1985) used methods based on tree-search to
solve the guillotine and non-guillotine variants of the strip packing problems respectively.
The approach of Christofides & Whitlock (1977) was improved by Hifi & Zissimopoulos
(1997) and further by Cung et al. (2000) however solving large instances was still im-
practical in a reasonable amount of time. Martello et al. (2003) and Lesh et al. (2004)
both proposed variations of branch and bound techniques to solve small strip packing
instances. More recently Kenmochi et al. (2009), Macedo et al. (2010), Alvarez-Valdes
et al. (2009) and Boschetti & Montaletti (2010) all proposed exact methods for two-
dimensional strip packing. Due to the difficulty in solving large problems, many heuris-
tics and metaheuristics have been used in the literature to provide good solutions in an
acceptable amount of time.

2.2. Heuristic Methods

Baker et al. (1980) introduced the bottom-up left-justified heuristic (BL). BL consid-
ers items sequentially, placing each rectangle at the top right corner of the stock sheet
before moving it down to the lowest possible location and then as far left as it can without
breaking the constraints of the size of the stock sheet or overlapping rectangles already
placed. Another well recognised issue with this method is the tendency to create empty
areas during the placement process leading to wasted space. Chazelle (1983) improved
on the original BL heuristic with the bottom-left fill heuristic (BLF). BLF attempts to
fill empty areas between rectangles already placed lower down the stock sheet before
placing a rectangle at the top of the stock sheet. Although these methods are fast and
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effective at obtaining an approximation of a good packing, the quality of solution ob-
tained is highly dependent on the order in which rectangles are considered. Hopper &
Turton (2001) observed that a performance improvement of between 5% and 10% can be
obtained when using BL. and BLF by ordering rectangles by decreasing width or height.
Lesh et al. (2005) exploited this idea by randomly perturbing the order in which rect-
angles are considered. Such approaches are still somewhat limited due to the existence
of adversary instances for which no possible ordering will result in the optimal solution
when using BL and BLF. Zhang et al. (2006) described a recursive heuristic based on the
idea of divide and conquer with a worst case running time complexity of O(n3). Burke
et al. (2004) proposed the best-fit heuristic (BF) to solve RF-SPPs. Unlike traditional
traditional heuristics such as BL (Baker et al., 1980) and BLF (Chazelle, 1983) which
greedily place a rectangle in the order in which they are processed, the best-fit heuris-
tic selects the most appropriate rectangle to place at each step. The best-fit heuristic
consists of a pre-processing phase, a packing phase and a post-processing phase. In the
pre-processing phase each of the rectangles to be packed are arranged so that its width
is greater than its height and then sorted in order of descending width. In the case that
two rectangles have a shared width they are ordered by decreasing height. The packing
phase maintains a ‘skyline’ of the lowest available space at which a rectangle can be
placed consisting of a series of line segments. At each stage of the packing phase, the
lowest available line segment of the skyline is considered and widest rectangle which fits
in the current lowest segment is placed. The skyline is then updated to include the most
recently placed rectangle. Following the packing phase, a post-processing phase is carried
out to eliminate any towers which are placed at the top of the packing. Imahori & Yagiura
(2010) improved the efficiency of the best-fit heuristic from O(n?) to O(nlogn), where
n is the number of rectangles to be packed by using efficient data structures to maintain
the current skyline, store remaining rectangles to be packed and efficiently search for
the best-fit rectangle at each step. Asik & Ozcan (2009) introduced bidirectional best-fit
heuristic (BBF). BBF builds on the ideas on BF by considering both horizontal and
vertical gaps for the best placement location. This heuristic is discussed in more detail
in Section 3.

2.3. Metaheuristic Methods

Jakobs (1996) and Liu & Teng (1999) used a genetic algorithm (GA) to evolve the
ordering of rectangles to be packed using the BL heuristic. Dagli & Poshyanonda (1997)
used two hybrid approached based on neural networks however the best results obtained
suffer due to the excessive computational time required. Hopper & Turton (2001) inves-
tigated a number of metaheuristics to produce a placement ordering including Simulated
Annealing and GAs and combined them with a number of piece placement strategies such
as BL and BLF. Beltrdn et al. (2004) combined a greedy randomized adaptive search
procedure (GRASP) with variable neighbourhood search (VNS). ‘Hyper-heuristics’ are
high-level methodologies which operate on a search space of heuristics for solving complex
problems (Burke et al., 2003, 2010a,b). Terashima et al. used a GA (Terashima-Marin
et al., 2005a) and a classifier system (Terashima-Marin et al., 2005b) as hyper-heuristics
to evolve sequences of low-level strip packing heuristics. Bortfeldt (2006) implemented a
GA (SPGAL) which operates directly on a search space of complete packing, rather than
on an encoding of orderings such as those of Jakobs (1996) and Liu & Teng (1999). Burke
et al. (2009) enhanced the the BF heuristic (Burke et al., 2004) with the hybrid simulated
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annealing and BLF heuristic of Hopper & Turton (2001). Alvarez-Valdes et al. (2009)
proposed a reactive greedy randomized adaptive search procedure (reactive GRASP).
This approach contains two phases, a constructive phase and improvement phase. The
algorithm builds a solution based on a dynamically changing greedy function. Local
search is then applied to improve the solution generated in the constructive phase. Belov
et al. (2008) describe the SVC(SubKP) framework which iteratively applies a single con-
structive heuristic (SubKP) updating a number of parameters at each step. Burke et al.
(2011) used a simple squeaky wheel optimisation methodology (SWP) for the oriented
version of the strip packing problem where no rotations are allowed. Leung et al. (2011)
introduced a two-stage stochastic ‘intelligent search algorithm’ (ISA) which again relies
on a constructive phase and improvement phase based on simulated annealing resulting
in some improvement on average over reactive GRASP (Alvarez-Valdes et al., 2009) and
SVC(SubKP) (Belov et al., 2008). A simplified parameterless adaptation of this algo-
rithm (SRA) is described by Yang et al. (2013). Wei et al. (2011) proposed iterative
doubling binary search (IDBS) which when combined with tabu search outperformed
many of the approaches from the literature.

3. The Bidirectional Best-fit Heuristic (BBF)

Asik & Ozcan (2009) proposed the bidirectional best-fit heuristic (BBF) as an im-
provement to the best-fit (BF) heuristic of Burke et al. (2004). The core idea of BF is
to first find the lowest available portion of the skyline a rectangle can be placed, the
lowest horizontal gap, before searching for a rectangle that best fits that space. This
idea is extended in BBF by also considering placement of rectangles into the wvertical
niche formed between the left edge of the skyline and the expected best height of the
current instance of the strip packing problem. The ezpected best height is a simple lower
bound on the quality of solution that can be obtained for a given problem instance. The
expected best height is calculated as:

area_Of(r;)

expected_Best_Height = Z W (1)

Vi,r;€ER

where R is the set of rectangles to be packed, r; is the ith rectangle and W is the width
of the stock sheet. Once a heuristic has obtained a solution which equals the expected
best height it will return this solution. These concepts are shown in Figure 1. There are
some adversary instances for which this bound is not appropriate whereby the one side
of a single rectangle is greater than the width of the stock sheet and the expected best
height calculated using Equation 1. The bound can be improved in this case by setting
the expected best height to the length of the longest side of any rectangle in R.

The bidirectional best-fit heuristic consists of a pre-processing phase and a packing
phase. The pre-processing phase is identical to the BF heuristic where all rectangles
are oriented so that their width is greater than or equal to their height and are sorted
in order of decreasing width and in the case of a common width by decreasing height.
At each step a rectangular area (or niche) is considered and an appropriate rectangle is
selected for packing in this niche. A number of placement policies are used during this
process and are summarised in Table 1. Deciding which rectangle to place at each step
of the packing phase consists of three stages; Exact Fit, Best-Fit and No Fit.
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Table 1: Summary of the placement policies used in the BBF heuristic

Id. Policy Value Brief explanation
1 Rectangle selection policy Enabled Placement into the vertical niche is con-
for exact fit into the verti- sidered during the exact fit phase
cal niche
Disabled Only placement into horizontal niche is
considered for an exact fit and Policy 3
is ignored
2 Rectangle selection policy TRE The first rectangle that fits into the
for exact fit into the hori- niche is chosen
zontal niche
NRE An exact fit into two different rectangu-
lar regions are considered consecutively,
if not possible, the tallest rectangle that
fits into the niche is chosen
3 Exact fit ordering policy eHV Possibility of an exact fit into the hor-
izontal niche is sought first, if it is not
possible, then the possibility of an exact
fit into the vertical niche is considered
eVH Opposite of eHV
4 Rectangle selection policy Enabled Placement into the vertical niche is con-
for best-fit into the verti- sidered during the best-fit phase
cal niche
Disabled Only placement into horizontal niche is
considered for an best-fit, Policy 6 and
Policy 7 are ignored
5  Horizontal (gap) best-fit BP Choose the rectangle that minimizes
policy the remaining gap
FP Choose the first fitting tallest rectangle
6 Vertical (gap) best-fit pol- FH Fix the height, choose the rectangle
icy with this height and the largest width
WR Chooses the widest rectangle that fits
into the vertical niche
7 Best-fit ordering policy bHV Possibility of a best-fit into the horizon-
tal niche is thought first, if it is not pos-
sible, then the possibility of a best-fit
into the vertical niche is considered
bVH Opposite of bBHV
8  Placement policy (hori- LM Next to the left most neighbour
zontal gap)
TN Next to the tallest neighbour
SN Next to the shortest neighbour
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Figure 1: Hlustration of horizontal gap and vertical niche

Expected

<—>
Lowest horizontal

gap

The policy definitions here vary slightly from the original definitions of Asik & Ozcan
(2009). Policy 4 has been included explicitly to clarify that the consideration of vertical
niche can be enabled or disabled independently in either the exact or best-fit stages.

3.1. Ezact Fit Stage

During this first stage the heuristic attempts to fill a gap entirely. As there are two
potential areas for placement (lowest horizontal gap and the vertical niche) an ezact
fit ordering policy (Policy 3) is used to control the order in which gaps are considered
for placement. If this policy is set to eHV a rectangle is sought to fit exactly into the
horizontal gap is sought first before the vertical niche is considered, eVH provides the
opposite considering the vertical niche first. Two rectangle selection policies (Policy 2)
are used to control which rectangle is selected for placement in a given horizontal gap.
TRE is the traditional rectangle selection method taken from the BF heuristic of Burke
et al. (2004). TRE selects and places the first rectangle from the set of rectangles yet
to be packed which fits exactly into the current gap. In BBF an additional rectangle
selection policy NRE is used. NRE attempts to increase the size of the horizontal gaps
on the skyline in order to find a placement for larger rectangles which are often difficult
to pack towards the end of a run. NRFE searches among the rectangles whose width is
exactly that of the current horizontal gap looking for a rectangle with the same height
as the tallest neighbour. If such a rectangle does not exist in the set of rectangles yet
to be packed a rectangle is sought with the same height as the shortest neighbour, if no
appropriate rectangle is found the traditional TRFE rectangle selection policy is applied.
These three potential placement areas are shown in Figure 2. It may be the case for
a particular instance that it is not beneficial to consider a vertical niche. Policy 1 is
included to dictate whether or not a vertical niche is considered at all. In the case that
Policy 1 is disabled, Policy 3 can be ignored as only placement in horizontal gaps is
possible.
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Figure 2: Potential placements into the lowest horizontal gap during the exact fit phase

(a) Exact fit next to tallest neigh- (b) Exact fit next to shortest
bour neighbour (c) Exact fit at an arbitrary level

3.2. Best Fit Stage

If no rectangle can be found to fit exactly into the lowest horizontal gap or the vertical
niche this stage seeks to find the best fitting rectangle from the set of rectangles left to
pack. Again a number of policies are required to manage the selection and placement
of the next rectangle. Policy 4 is similar to Policy 1 and controls whether or not a
vertical niche is considered in the best-fit stage. If Policy 4 is disabled, Policy 6 and
Policy 7 are ignored. As with the exact fit stage an ordering policy (Policy 7) is used
to determine the order in which gaps are considered for placement. bHV will attempt
to find an appropriate rectangle to fit into the lowest horizontal gap before the vertical
niche (and vice versa for bVH). Two rectangle selection policies BP and FP (Policy 5)
are used to select a rectangle for placement in a given horizontal gap. BP is another
policy taken from the original BF heuristic which finds the rectangle which minimises
the gap remaining once it has been placed. FP places the first fitting rectangle from the
sorted list of rectangles yet to be placed in the lowest horizontal gap. For the case of a
vertical niche under consideration two rectangle selection policies are also used (Policy
6). FH fixes the height of potential rectangles to be placed to the height of the vertical
niche, selecting the widest rectangle of this fixed height. WR selects the widest rectangle
which will fit in the vertical niche. An additional placement policy (Policy 8) is required
if a rectangle has been selected to fit into the lowest horizontal gap. Once the rectangle
which best fits the lowest horizontal gap has been decided, a decision must be made as
to which part of this gap it is placed in. LM (Figure 3(a)), TN (Figure 3(a)) and SN
(Figure 3(b)) place a rectangle next to the leftmost, tallest and shortest neighbour of the
current gap respectively.

—~

3.3. No Fit Stage

If a suitable rectangle can not be found for placement in the first two stages the lowest
horizontal gap is raised to be equal to the level of its shortest neighbour.

4. Modified Bidirectional Best-fit Heuristic

So far the bidirectional best-fit heuristic has been used to place a simple set of rect-
angles onto a fixed with strip of a given stock material. Here we propose a modification
of the BBF heuristic which also considers compound polygons consisting of combinations
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Figure 3: Potential placements into the lowest horizontal gap during the best-fit phase

(a) Next to tallest (leftmost) neighbour (b) Next to shortest neighbour

Rectangle to Rectangle to

be placed be placed

/ /

Tallest Neighbour

Shortest Neighbour

Figure 4: Possible combinations of two shapes X and Y

a) b)

c) d)

of two rectangles during the packing phase. A simple method to do this is to pair up
two rectangles of equal length or height to form a larger rectangle. The drawback of this
approach is that in the worst case where no any two rectangles have one side of equal
length, the algorithm works exactly the same as the original bidirectional best-fit algo-
rithm. During the pre-processing phase of the modified BBF, a second BST is created
containing the set of combined shapes created from each pair of original rectangles in
the set to be packed. For each pair of rectangles X and Y, four new shapes are produced
as shown in Figure 4. In 4a X remains the same and Y is rotated by 90 degrees, in 4b
both X and Y are rotated by 90 degrees, both rectangle X and rectangle Y remain the
same in 4c¢ and in 4d X is rotated by 90 degrees and Y remains the same. A notion of
‘blank area’ is also introduced to order combined shapes with equal width and height.
Rectangles are again sorted in order of decreasing width and in the case of equal width
in order of decreasing height. In the case that both the width and the height of the
combined rectangles are equal they are ordered by increasing size of blank area.

In addition to the four possibilities outlined previously if rectangle Y is on the left
hand side four more rectangles could be produced. This creates the need for an extra
policy to be defined (Policy 9) to manage how rectangles are combined. LL places the
rectangle with the longest side on the left hand side of the new shape whilst LR places
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Figure 5: Possible rectangle order policies when combining shapes

(a) Longest rectangle on the left (LL) (b) Longest rectangle on the right (LR)
Blank area Blank area
A A A K
Height Height
Width g Width

the rectangle with the longest side on the right as shown in Figure 5.

A number of new policies must also be introduced into the packing phase to manage
the selection and placement of the combined rectangles. In addition to the original
options for Policy 2 TREC, NREC, SBE and LBFE are defined. TREC is an extension
the original TRE which selects and places the first rectangle which fits exactly into the
current gap considering both single rectangles and combined rectangles. If both a single
rectangle and a combined rectangle exist which fit exactly into the current gap the tallest
of the two is placed. NREC first searches for a single rectangle which fits exactly into the
current gap with the same height as the tallest neighbour before searching for combined
rectangles meeting this criteria. If no shape is selected the same process is performed
to find a rectangle which fits exactly into the current gap with the same height as the
shortest neighbour. If a suitable shape is still not found TREC is applied. SBE first
tries to find a single rectangle which fits exactly into the current gap before considering
combined rectangles. If a placing a combined rectangle is necessary to fill the gap exactly
the combined rectangle with the smallest blank area is chosen. LBE first seeks to place a
combined rectangle with the largest blank area exactly into the gap, if this is not possible
a single rectangle which fits exactly into the gap is sought.

Similarly for the best-fit stage of the packing phase a number of additional options
are required for selecting a rectangle to place (Policy 5). SBB finds the rectangle which
minimises the gap remaining once it has been placed considering both single rectangles
and combined rectangles giving combined rectangles priority in the case of equal width.
If more than one combined rectangle exists which minimise the current gap the combined
rectangle with the smallest blank area is placed. LBB is similar to LBFE and seeks to
place the combined rectangle with the largest blank area which minimises the current
horizontal gap before searching for a single rectangle which minimises the gap if this
a combined rectangle does not exist. As all of the original policies are included in the
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Table 2: Additional polices required when compound shapes are considered

Id. Policy Value  Brief explanation

2 Rectangle selection TREC The first rectangle that fits into the niche is
policy for exact fit chosen considering both single rectangles and
into the horizontal combined shapes
niche

NREC An exact fit into two different rectangular re-
gions are considered consecutively, single rect-
angles are considered before combined shapes.
If this is not possible TREC is applied

SBE The first single rectangle that fits into the
niche is chosen, if failed, the first combined
rectangle that fits into the niche is chosen

LBE The combined rectangle with the largest blank
area that fits into the niche is chosen, if failed,
the first single rectangle that fits into the niche

is chosen
4  Horizontal (gap) SBB Choose the shape which minimizes the re-
best-fit policy maining gap considering both single rectangles

and combined shapes

LBB Choose the combined rectangle with largest
blank area that minimizes the remaining gap,
if none exist choose the single rectangle that
minimizes the remaining gap

9 Compound shape LL Longest rectangle on the left
rectangle order
policy
LR Longest rectangle on the right

modified version of the BBF heuristic, it will always produce a solution at least as good
as the original BBF heuristic. As this is a deterministic method the same solution will
always be obtained from multiple runs. This is unlike many metaheuristic techniques
from the literature which are measured in terms of average performance over a number
of runs due to their stochastic nature. The new policies introduced for the modified BBF
are summarised in Table 2.

5. Experimentation and Results

A number of datasets from the literature are used to test the modified BBF and
compare it to both the original BBF heuristic and other methods from the literature and
are summarised in Table 3. J1 and J2 are two small instances taken from Jakobs (1996)
with known optimum heights. Ramesh Babu & Ramesh Babu (1999) introduced a single
problem instance. The instances provided by Hopper & Turton (2001) are grouped into
seven categories each with three instances. Each set of three instances share a common
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width and optimal height but sometimes vary slightly in the number of rectangles to
pack. The Valenzuela & Wang (2001) dataset contains two different types of problem
instance. The ‘nice’ instances consist of rectangles which are all of similar size whereas
in the ‘path’ instances the size of one half of the rectangles differs vastly from the other
half. Rectangle values in the ‘nice’ and ‘path’ problems are defined as floating point
values so a scaling factor is used to convert these to integer values. The instances of
Burke et al. (2004) (N1-N13) are a set of randomly generated problems of various sizes.
All experiments were carried out on an Intel Core i7 3.20 GHz CPU with 16GB of RAM.

5.1. Comparison of the Bidirectional Best-fit Heuristic and Modified Bidirectional Best-
fit Heuristic with existing heuristics

Table 4 compares the results of the original BBF and the modified BBF with packing
heuristics from the literature when applied to the instances of Jakobs (1996), Ramesh Babu
& Ramesh Babu (1999) and Hopper & Turton (2001). Included in this table are results
for the Bottom Left and Bottom Left Fill heuristics considering rectangles in order of
decreasing height (BL-DH and BLF-DH) as presented by Asik & Ozcan (2009) and the
Best-Fit heuristic (BF) of Burke et al. (2004). Ayy results which are unavailable are
marked ‘-’. As mentioned in Section 4 BBFM will always obtain a solution at least as
good as the original BBF as all of the policy combinations included in the BBF are also
in BBFM. BBF was shown by Asik & Ozcan (2009) to outperform all of the traditional
packing heuristics. The modified BBF heuristic (BBFM) achieves an improvement over
the original BBF in 17 of the 24 instances in these sets. Table 5 shows the results of
the original BBF with the modified BBF when applied to the instances of Valenzuela
& Wang (2001) and Burke et al. (2004). The modified BBF heuristic (BBFM) achieves
an improvement over the original BBF in 16 of the 25 instances in these sets. It can be
seen from Table 4 and Table 5 that the runtime for BBFM is longer than for the original
BBF. Much of this is attributed to the larger search space of shapes to be considered.
Another factor is the larger number of policy combinations to be tested. The original
BBF only has to test 288 policy combinations whereas due to the extra policies needed
for the modified BBF (BBFM) 6912 policy combinations must be tested. Note that this
is a constant factor and is not affected by the size of instance currently being solved.

5.2. Comparison to previous metaheuristic approaches

Table 6 compares the results of BBFM to a number of other approaches from the
literature over the dataset provided by Hopper & Turton (2001). These results are
presented in terms of %-gap distance from the optimal solution calculated as:

Solution Found—OptimalSolution
100 OptimalSolution (2)

The number of optimal solutions found by each technique are also included. The
techniques from the literature are: Best-fit (BF) (Burke et al., 2004), Best-fit with simu-
lated annealing (BF-SA) (Burke et al., 2009), squeaky wheel optimisation (SWP) (Burke
et al., 2011), SVC(SubKP) (Belov et al., 2008), GRASP (Alvarez-Valdes et al., 2009),
an ‘intelligent search algorithm’ (ISA) (Leung et al., 2011) and iterative doubling binary
search (IDBS) (Wei et al., 2011). In the case that an approach is stochastic, the average
performance reported is used to calculate %-gap to compare to our deterministic method.
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Table 3: Summary of the datasets used in these experiments where n is the number of
rectangles, Opt is the known optimal height and W is the width of the stock sheet

Source Problem Name n Opt %4
Jakobs (1996) J1 25 15 40
J2 50 15 40
Ramesh Babu & Ramesh Babu (1999) RB 50 375 1000
Hopper & Turton (2001) C1 16-17 20 20
(3 instances per set) C2 25 15 40
C3 28-29 30 60
C4 49 65 60
C5 72-73 90 60
C6 97 120 80
c7 196-197 240 160
Valenzuela & Wang (2001) nice0025 25 1000 1000
nice0050 50 1000 1000
nice0100 100 1000 1000
nice0200 200 1000 1000
nice0500 500 1000 1000
nice1000 1000 1000 1000
path0025 25 1000 1000
path0050 50 1000 1000
path0100 100 1000 1000
path0200 200 1000 1000
path0500 500 1000 1000
path1000 1000 1000 1000
Burke et al. (2004) N1 10 40 40
N2 20 50 30
N3 30 50 30
N4 40 80 80
N5 50 100 100
N6 60 100 50
N7 70 100 80
N8 80 80 100
N9 100 150 50
N10 200 150 70
N11 300 150 70
N12 500 300 100

N13 3152 960 640
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Table 4: Comparison between BL-DH, BLF-DH, the Bidirectional Best-fit Heuristic
(BBF) and Modified Bidirectional Best-fit Heuristic (BBFM) when applied to datasets
of Jakobs (1996), Ramesh Babu & Ramesh Babu (1999) and Hopper & Turton (2001)

Instance | Opt | BL-DH | BLF-DH | BF | BBF | Time(s) | BBFM | Time(s)
J1| 15 - - - 16 0.006 15 0.134
J2 | 15 - - - 16 0.017 15 0.541

RB | 375 - - 400 | 400 0.064 375 0.092
Cl.1| 20 23 22 21 21 0.003 20 0.001
C1.2 | 20 22 22 22 21 0.003 21 0.292
C1.3 | 20 21 21 24 21 0.003 21 0.242
C2.1| 15 17 17 16 16 0.006 16 0.543
C2.2| 15 26 26 16 17 0.006 15 0.014
C23| 15 17 17 16 16 0.006 16 0.585
C3.1| 30 33 33 32 32 0.007 30 0.148
C3.2 | 30 33 32 34 33 0.007 31 0.733
C3.3 | 30 34 34 33 33 0.008 32 0.687
C4.1| 60 67 66 63 62 0.017 62 2.333
C4.2 | 60 68 63 62 63 0.017 61 2.207
C4.3 | 60 64 63 62 62 0.016 61 2.205
C5.1 | 90 94 94 93 91 0.028 91 4.853
C5.2 | 90 99 95 92 92 0.029 91 4.839
C5.3 | 90 97 94 93 92 0.029 91 4.883
C6.1 | 120 130 126 123 | 123 0.042 121 8.631
C6.2 | 120 130 123 122 | 123 0.045 122 8.728
C6.3 | 120 131 128 124 | 123 0.047 121 8.763
C7.1 | 240 252 249 247 | 243 0.129 242 38.468
C7.2 | 240 264 247 244 | 242 0.124 242 38.885
C7.3 | 240 257 249 245 | 243 0.126 241 38.787
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Table 5: Comparison between the Bidirectional Best-fit Heuristic (BBF) and Modified
Bidirectional Best-fit Heuristic (BBFM) when applied to datasets of Valenzuela & Wang

(2001) and Burke et al. (2004)

Instance | Opt | BF | BBF | Time(s) | BBFM | Time(s)
nice0025 | 1000 | 1074 | 1083 | 0.086 1069 2.249
nice0050 | 1000 | 1085 | 1079 0.14 1068 5.09
nice0100 | 1000 | 1070 | 1067 | 0.241 1063 14.089
nice0200 | 1000 | 1053 | 1053 | 0.439 1038 47.298
nice0500 | 1000 | 1035 | 1033 | 1.026 1024 | 307.285
nicel000 | 1000 | 1037 | 1037 | 2.317 1012 | 1497.162
path0025 | 1000 | 1101 | 1091 | 0.088 1091 2.499
path0050 | 1000 | 1138 | 1074 | 0.157 1074 5.215
path0100 | 1000 | 1073 | 1073 | 0.262 1073 15.040
path0200 | 1000 | 1041 | 1053 | 0.486 1053 49.968
path0500 | 1000 | 1037 | 1032 | 1.105 1031 | 305.560
path1000 | 1000 | 1028 | 1028 2.191 1026 1519.160
N1 | 40 45 40 0.003 40 0.000
N2 | 50 53 52 0.006 50 0.008
N3 | 50 52 52 0.009 52 0.760
N4 | 80 83 82 0.016 82 1.468
N5 | 100 | 105 | 103 0.022 102 2.360
N6 | 100 | 103 | 102 0.025 101 3.195
N7 | 100 | 107 | 106 0.037 105 4.596
N8 | 80 84 82 0.035 81 5.639
N9 | 150 152 152 0.057 151 9.184
N10 | 150 152 151 0.204 151 39.322
N11 | 150 152 151 0.337 150 15.297
N12 | 300 | 306 | 302 0.821 302 282.628
NI13 | 960 | 964 | 964 8.557 960 422.601
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Table 6: Performance in terms of %-gap and number of optimal results found of tech-
niques from the literature over Hopper & Turton (2001) instances

Instance | BF BBF BF-SA BBFM SWP SVC GRASP ISA IDBS
CL.1 500 500 0.00  0.00 000 000 000 000 0.00
C1.2 10.00 500 000 500 500 500 000  0.00 0.00
C1.3 2000 5.00 000 500 0.00 000 000 000 0.00
C2.1 6.67 667 667 667 6.67 000 000 000 0.00
C2.2 6.67 13.33  6.67  0.00 0.00 000 000 0.00 0.00
2.3 6.67 6.67 667 667 0.00 000 000 000 0.00
C3.1 6.67 6.67 333 000 0.00 000 000 000 0.00
C3.2 13.33 10.00 333 333 333 333 333 333 0.00
C3.3 10.00 10.00 333  6.67 000 0.00 000  0.00 0.00
C4.1 500 333 167 333 167 167 167 167 0.0
C4.2 333 500 167 167 1.67 167 167 167 0.00
C4.3 333 333 167 167 1.67 167 167  1.67 0.0
C5.1 333 111 111 111 111 111 111 111 0.00
C5.2 222 222 111 111 111 111 111 111 0.00
C5.3 333 222 222 111 111 111 111 111 0.00
C6.1 250 250 167 083 1.67 083 167 083 0.00
C6.2 1.67 250 083 167 083 0.83 1.67 083 0.00
C6.3 333 250 167 083 1.67 083 167 083 0.0
C7.1 292 125 167 083 125 0.83 167 083 0.00
C7.2 1.67 083 167 083 083 0.83 1.25 042 0.00
C7.3 208 1.25 208 083 1.25 083 125 083 0.00
Average | 570 459 234 232 147 1.03 099  0.77 0.00
#ofOpt| 0 0 3 3 6 7 8 8 21

BBFM has similar performance many of the techniques in the literature in terms of %-
gap including SVC(SubKP) (Belov et al., 2008) and GRASP (Alvarez-Valdes et al., 2009)
which up until recently were considered state of the art. Although the performance in
terms of %-gap initially looks poor, using such a metric for comparison can be misleading
when working with instances with varied optimal solution values. For example, obtaining
a solution with height 1 greater than the optimal for an instance in C1 gives %-gap of
5% whereas in C7 this would be 0.42%. This is unfortunate for methods such as ours
which excel in the larger instances of the set. When compared directly, BBFM has equal
performance SVC(SubKP) (Belov et al., 2008) in 10 instances, outperforms SVC in 5
instances and is outperformed by SVC in 6 instances showing very similar performance.
When compared to the second best metaheuristic, BBFM matches the performance of
ISA (Leung et al., 2011) in 13 of the 21 instances. The only method which finds more
optimal solution in this set of instances is the IDBS approach of Wei et al. (2011) which
finds optimal results for all 21 instances. Note that BBF and BBFM are deterministic
unlike many of the metaheuristic techniques whose performance is often reported as an
average of multiple runs, here the performance of our algorithm is guaranteed.

Table 7 shows the performance of the same nine techniques over the benchmark set
provided by Burke et al. (2004). Again the performance of BBFM is close to that of
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Table 7: Performance in terms of %-gap and number of optimal results found of tech-
niques from the literature over Burke et al. (2004) instances

Instance | BF BBF BF-SA BBFM GRASP SWP SVC ISA [IDBS
N1 12.50  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
N2 6.00  4.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
N3 4.00 4.00 2.00 4.00 2.00 0.00 0.00 0.00 0.00
N4 3.75  2.50 2.50 2.50 1.25 1.25 1.25 0.00 0.00
N5 5.00  3.00 3.00 2.00 2.00 1.00 1.00 1.00 0.00
N6 3.00  2.00 2.00 1.00 1.00 1.00 1.00 1.00 0.00
N7 7.00  6.00 4.00 5.00 1.00 1.00 1.00 0.00 0.00
N8 5.00  2.50 2.50 1.25 1.25 1.25 125 1.25 0.00
N9 1.33  1.33 1.33 0.67 0.67 0.67 0.67 0.67 0.00
N10 1.33  0.67 1.33 0.67 0.67 0.67 0.67 0.67 0.00
N11 1.33  0.67 2.00 0.00 0.67 0.67 0.67 0.67 0.00
N12 2.00 0.67 2.00 0.67 1.33 1.33 033 033 0.00
N13 042 0.42 0.42 0.00 0.52 0.63 0.31 0.00 0.00
Average | 4.05 2.13 1.78 1.37 0.95 0.73 0.63 043 0.00
# Opt 0 1 2 4 2 3 3 6 13

some of the best metaheuristics in the literature. BBFM finds more optimal solutions
in this set than the previously state-of-the-art SVC(SubKP) (Belov et al., 2008) and
GRASP (Alvarez-Valdes et al., 2009) approaches. In terms of optimal solutions, only
ISA (Leung et al., 2011) and IDBS Wei et al. (2011) are able to find more optimal
solutions than BBFM. BBFM is the only technique other than the state-of-the-art IDBS
able to find optimal packings for the instances N11 and N13 from this set. Figure 6 and
Figure 7 show the optimal packings for these two instances.

Finally, the performance over the benchmark of Valenzuela & Wang (2001) is pre-
sented in Table 8. Here we see BBFM perform poorly when compared to metaheuristic
techniques. This may be due to these instances creating a landscape which is difficult
for a constructive heuristic to traverse.

6. Conclusions

The bidirectional best-fit heuristic is a deterministic heuristic which has previously
been shown to outperform existing packing heuristics in the literature when applied to
the two dimensional orthogonal rectangular strip packing problem. We have presented
a modified version of the bidirectional best-fit heuristic which also considers placement
of rectangles in pairs. We have shown that modifying the heuristics behaviour in such a
way leads to improved performance in over two-thirds of the instances tested. As this is
an extension to the original heuristic performance is equal in all other cases. The cost
of this improvement is an increase in runtime due to a increase in the number of policy
combinations to be tested. Future work will include investigating whether it is possible
to ‘learn’ which policies perform well on which instances and decide in advance a subset
of policy combinations to apply. In addition to outperforming existing heuristics we have
shown that the performance of this method is comparable to many of the state-of-the-art
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Figure 6: Optimal packing found by BBFM for instance N11 from Burke et al. (2004)
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Figure 7: Optimal packing found by BBFM for instance N13 from Burke et al. (2004)
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Table 8: Performance in terms of %-gap of techniques from the literature over Valenzuela
& Wang (2001) instances

Instance BF BBF BBFM BF-SA SWP GRASP ISA SVC IDBS
nice0025 | 7.40  8.30 6.90 4.00 3.70 3.40 4.10 3.70  0.30
nice0050 | 8.50  7.90 6.80 4.40 4.90 4.70 4.70 3.80 230
nice0100 | 7.00  6.70 6.30 5.00 4.60 4.10 3.70 3.50  2.00
nice0200 | 5.30  5.30 3.80 4.70 3.80 3.70 3.10 260 1.40
nice0500 | 3.50  3.30 2.40 3.50 3.30 2.40 1.50 1.70  0.50
nicel000 | 3.70  3.70 1.20 3.80 2.90 2.00 1.10 1.40 0.20
path0025 | 10.10 9.10 9.10 3.10 6.90 4.20 420 4.20 0.60
path0050 | 13.80 7.40 7.40 3.40 1.70 1.90 1.50 1.40 1.00
path0100 | 7.30 7.30 7.30 3.00 2.90 2.70 230 220 230
path0200 | 4.10 5.30 5.30 3.40 2.00 2.30 1.80 1.80 2.10
path0500 | 3.70  3.20 3.10 3.50 3.20 3.40 2.00 220 1.50
path1000 | 2.80 2.80 2.60 2.90 2.80 2.60 1.10 1.80 0.70
Average 6.43 5.86 5.18 3.73 3.56 3.12 259 253 124

metaheurstics taken from the literature. Unlike many of these techniques, the modified
bidirectional best-fit heuristic is a deterministic method which results in the same best
packing for each run.
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