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This work proposes a texture descriptor based on fractal theory. The method is based on the
Bouligand-Minkowski descriptors. We decompose the original image recursively into 4 equal parts.
In each recursion step, we estimate the average and the deviation of the Bouligand-Minkowski
descriptors computed over each part. Thus, we extract entropy features from both average and
deviation. The proposed descriptors are provided by the concatenation of such measures. The
method is tested in a classification experiment under well known datasets, that is, Brodatz and
Vistex. The results demonstrate that the proposed technique achieves better results than classical
and state-of-the-art texture descriptors, such as Gabor-wavelets and co-occurrence matrix.

I. INTRODUCTION

Fractal theory plays a fundamental role as an auxil-
iary tool in the solution of problems in areas as differ-
ent as Medicine [1–3], Physics [4–6], Engineering [7–9],
among many others. Particularly, in tasks involving tex-
ture analysis, fractal geometry is a powerful modelling
tool, achieving interesting results in the description and
discrimination of such textures.

In the last two decades, some different fractal ap-
proaches to deal with texture analysis have arisen, for
instance, multifractals [10–12], the multiscale fractal di-
mension [13, 14], the fractal descriptors [15–18], among
others. Here, we are interested in the fractal descriptors
approach.

The main idea of fractal descriptors is to extract a set
of features from the estimation of fractal dimension under
different scales. Generally, the fractal dimension is based
on a power-law relation which expresses the fractality
of a structure as a function of measure scale. Unlike
the fractal dimension which is a single value, the fractal
descriptors are computed over the whole power-law curve
[? ? ].

An example that illustrates the power of fractal de-
scriptors is showed in [16]. In that solution, the values in
the power-law of Bouligand-Minwkowski fractal dimen-
sion are used to compose a feature vector to discriminate
among plant leaf textures. Actually, this method demon-
strates to be successful in the discrimination of natural
textures. Such kind of texture present an intrinsic self-
similarity property which is notedly well represented by
fractal modeling.

Despite their good results, conventional Bouligand-
Minkowski fractal descriptors present still a limitation
in the representation of textures, mainly when these tex-
tures present a higher degree of complexity. This limi-
tation is due mainly to the fact that the descriptors are
obtained from the global image, without a more specific
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treatment of local characteristics present in any real im-
age. Thus, we can obtain more information by estimating
those descriptors in different scales over the image.

Considering this assumption, the present work pro-
poses a solution to extract fractal descriptors from a tex-
ture based on Bouligand-Minkowski method. Here, we
propose the estimation of Bouligand-Minkowski descrip-
tors at different scales (decomposition levels) of the im-
age. The idea is to decompose recursively the image into
4 equal parts and, in each recursion step, we calculate
an average and a deviation of the Bouligand-Minkowski
descriptors. Thus, from both average and deviation de-
scriptors, we extract entropy measures and compose the
feature vector for the texture image.

The method is tested over well-known benchmark tex-
ture datasets in a classification task and the results are
compared to classical and state-of-the-art texture fea-
tures methods in the literature, like Gabor wavelets [19],
Laws energy [21], Gray Level Difference Matrix [22], etc.
The results confirmed the better accuracy of the proposed
technique and pointed to the possibility of using the pro-
posed method in a large number of problems involving
the description and/or discrimination of textures.

This work id divided into 7 sections, including this in-
troduction. The following provides mathematical back-
ground of fractal theory. The third section shows the
original Bouligand-Minkowski fractal descriptors. The
fourth presents the proposed method. The following ex-
plains the experiments. The sixth shows the results of
experiments and the final section does the conclusions.

II. FRACTAL GEOMETRY

The literature shows some works applying fractal ge-
ometry to solve problems related to texture analysis in
a large number of applications [1, 4, 7]. The importance
of fractals in such kind of tasks is explained by the most
flexible representation model provided by fractal theory.
In this way, the fractal representation allows the extrac-
tion of measures which may describe more faithfully the
original structure depicted in the texture image.

Most of such measures is based on the concept of frac-
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tal dimension (FD). The importance of FD is due to the
fact that it captures the complexity of a fractal object
or still, its spatial occupation. Furthermore, these prop-
erties are also related to the visual aspect of a texture.
Thus, fractal geometry enables a link between the math-
ematical relations inside a pixel structure and the subjec-
tive concept of visual distinction. This link turns fractals
into a particularly interesting tool for texture represen-
tation and description.

The original definition of fractal dimension is also
known as Hausdorff-Besicovitch dimension dimH . It is
calculated for a set X ∈ <n by

dimH(X) = inf {s : Hs(X) = 0} = sup {Hs(X) =∞} ,
(1)

in which Hs(X) is the s-dimensional Hausdorff measure,
defined through:

Hs(X) = lim
δ→0

inf

{ ∞∑
i=1

|Ui|s : Ui is a δ-cover of X

}
,

(2)
where ‖‖ corresponds to the diameter in <n, that is,
|U | = sup|x− y| : x, y ∈ U .

In most practical applications, we are interested in cal-
culating the fractal dimension of objects which are not
exactly fractals. This is the case here where we are con-
sidering texture surfaces, which may be only approxi-
mated to fractal objects, if we weaken the infinite self-
similarity criterion. A serious drawback in the above frac-
tal dimension definition is that it cannot be applied to
these cases where we have not a real fractal. To solve this
issue, the literature presents a lot of estimation meth-
ods, which compute a fractal dimension value for the
real world object, approximating the original fractal di-
mension concept. Most of such methods is based on the
general expression:

D(X) = lim
ε→0

log(N(ε))

log( 1
ε )

, (3)

where N(ε) is a specific measure (depending on the esti-
mation method) of the object and ε is a scale parameter
under which the measure is taken [? ].

We may find a large number of fractal dimension es-
timation methods [? ], like box-couting, Bouligand-
Minkowski, Fourier, etc. The present work is focused
on Bouligand-Minkowski method.

III. BOULIGAND-MINKOWSKI FRACTAL
DESCRIPTORS

The Bouligand-Minkowski fractal dimension is ob-
tained by replacing N(ε) in 3 by a dilation volume V (r).
So, in this approach, initially, we map the grayscale im-
age Img ∈ [1 : M ]× [1 : N ]→ < onto a 3D surface:

Surf = {i, j, f(i, j)|(i, j) ∈ [1 : M ]× [1 : N ]}, (4)

where:

f(i, j) = {1, 2, ...,max gray}|f = Img(i, j), (5)

in which max gray is the maximum pixel intensity.
Thus, the mapped surface is summited to a dilation

process, by a dilation radius r. Essentially, this oper-
ation consists in draw spheres with radius r and with
center in each point of Surf . The dilation volume V (r)
corresponds to the total amount of points pertaining to
the union of the spheres. The Bouligand-Minkowski di-
mension is calculated from the curve log(V (r))× log(r).
The Figure 1 illustrates the process.

(a)

(b)

(c)

Figure 1. Bouligand-Minkowski fractal dimension estimation.
a) Original texture. b) The gray-level image is mapped onto
a surface in x-y-z coordinates. c) Each point in the surface is
dilated through a sphere with radius r.

Another possible interpretation for the dilation volume
is that it corresponds to the number of points with a dis-
tance at most r from the original object, in our case, the
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surface. In this way, the exact Euclidean distance trans-
form (EDT) [? ] is used to optimize the computation of
V (r).

The EDT is a transform which maps each point in
the 3D space to the distance of this point to a subset
of the space. This subspace corresponds to the object
of interest, defined by the user. Here, this subset is the
mapped surface and the EDT for each point outside Surf
is defined through:

EDT (p) = min{d(p, q)|q ∈ Surf c}, (6)

where d represents the euclidean distance.
In digital images like here, we use the exact EDT and

the distances present discrete values E:

E = 0, 1,
√

2, ..., l, ..., (7)

where

l ∈ D = {d|d = (i2 + j2)1/2; i, j ∈ N} (8)

The dilation volume is obtained through:

V (r) =

r∑
i=1

Q(i), (9)

where

Q(r) = (x, y, z)|gk(P )− [gr(P ) ∩ ∪r−1
i=0 gi(P )], (10)

where:

gr(P ) =
(x, y, z)|[(x− Px)2 + (y − Py)2

+(z − Pz)2]1/2 = E(r); i, j ∈ N , (11)

where

P = (x, y, z)|f(x, y, z) ∈ Surf (12)

The Bouligand-Minkowski fractal descriptors, defined
in [16] correspond to the values of V (r). The Figure
2 shows an example of Bouligand-Minkowski extracted
from different textures and the discrimination power of
such features.

IV. PROPOSED METHOD

Here, we propose the decomposition of the original
texture image into decreasing cell sizes, followed by
the calculus of Bouligand-Minkowski descriptors in each
cell. The idea is in some way similar to that found in
some classical multiscale approaches, like discrete wavelet
transform or Gauss pyramid.

The essential idea is to divide recursively the image
into 4 equal parts. Each step in this process constitutes
a decomposition level. At each decomposition level, we
take the average and the standard deviation of descrip-
tors in each cell. Thus, we construct a feature vector from

the entropy measure of such descriptors. Finally, we ap-
ply a simple attribute selection approach to the feature
vector to compose the final descriptors.

Thus, we start with a digital image I : [N ×N ] → <.
This image is decomposed into levels l|1 ≤ l ≤ lmax,
where lmax is the maximum possible level in the image,
given by lmax = ceil(log2(N)). In each decomposition
level, the image is partitioned into equal regions Rljk:

Rljk = {x, y|(j−1)∗2l ≤ x ≤ (j)∗2l, (k−1)∗2l ≤ x ≤ (k)∗2l}.

In each region R, we apply the procedure described in
the above section and obtain the Bouligand-Minkowski
descriptors Dljk. For each level l, we obtain the average
descriptors DM

l and deviation descriptors Dσ
l :

DM
l =

∑
jkDljk

2l
,

Dσ
l =

∑
(Dljk −DM (l))2.

In the following, we extract entropy features from both
average and deviation descriptors in each level. Iniatially,
for each component (index) i of Bouligand-Minkowski av-
erage descriptors at all levels, we construct another vector
~ϕ(i), that is:

~ϕ(i) = [DM
1 (i)DM

2 (i)DM
3 (i)...DM

lmax
(i)].

In the same fashion, we construct the vectors ~ψ(i), from
deviation descriptors:

~ψ(i) = [Dσ
1 (i)Dσ

2 (i)Dσ
3 (i)...Dσ

lmax
(i)].

Then, we compute one Shannon entropy value for each
vector. In order to simplify the notation, we call u a
generic vector. The entropy is estimated through:

K(u) =

N∑
i=1

u(i) log(u(i)),

where N is the length of u.

The entropy feature vector ~EFV is given by:

~EFV = [K( ~ϕ(1))K( ~ϕ(2))...K( ~ϕ(n))K( ~ψ(1))K( ~ψ(2))...K( ~ψ(n))],

where n is the number of components in average and
deviation descriptors.

The final step consists in applying a basic feature selec-
tion approach to increase the performance and reduce the
number of descriptors. We developed a selection based
on the classifier method. Therefore, we computed the

classification success rate S for each component of ~EFV
vector and sorted the success rates in descending order.
We are particularly interested in the vector of sorting

indices ~I:

~I = index(sort(S( ~EFV (i)))).
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Figure 2. Discrimination power of Bouligand-Minkowski fractal descriptors. At left, three classes with two textures in each
one. At right, the fractal descriptors curves in a same graph. Observe the visual distinction among classes.

Finally, we compose the proposed Multilevel Descriptors

MLD by indexing ~EFV through the first n indices in ~I,
where n is the minimum necessary number of components
to provide the best possible result. Formally, we have:

MLD = maxi(S(
~

EFV (~I(1..i)))).

The Figure 3 shows a diagram depicting the whole pro-
cess. The Figure 4 illustrates the power of the proposed
method in discriminating among textures from 3 classes
in Brodatz benchmark dataset.

V. EXPERIMENTS

In order to verify the efficience of the proposed method,
we compared its performance with other texture descrip-
tors in the classification of well known texture data sets.

In the first experiment we used the Brodatz data set
[25]. This is composed by 111 images photographed from
an architecture book. In the database, each image is di-
vided into 10 windows 200×200 and the images corre-
spond to the classes. Brodatz data is broadly used as a
benchmark set in computer vision and pattern recogni-
tion techniques, given the variety of characteristics found
in its images, like variations in luminance, geometrical
configurations, fidelity to real world textures, among oth-
ers.

In the following, we classified the Vistex database [26],
a set of natural color textures, composed by 54 classes
with 16 samples in each class. Each sample is represented
in a 128×128 image. Here, we used the gray-level version
of the texture images.

For a fair comparison, we extracted some different clas-
sical and state-of-the-art texture descriptors found in
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Figure 3. Illustration of the composition of feature vector in
the proposed technique.
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Figure 4. Discrimination power of the proposed descriptors. At left, three classes with two textures in each one. At right, the
curves of proposed descriptors in a same graph.

the literature and applied to the classifier. The com-
pared methods are Gabor wavelets [19], Co-occurrence
matrix [27], Laws energy [21], Gray Level Difference Ma-
trix (GLDM) [22], multifractal spectrum [10] and orig-
inal Bouligand-Minkowski fractal descriptors [16]. We
used the Linear Discriminant Analysis (LDA) classifier
[28] and adopted the hold-out technique as a statistical
training and validating scheme.

VI. RESULTS

The following Tables II and III show the results in
terms of correctness rate and some other statistical met-
rics in the classification of the benchmark datasets. We
employed the following metrics: Correctness Rate (CR),
Kappa index (κ), Average Correctness Reliability (ACR),
Average Error Reliability (AER), Average Error type 1
(AE1) and Average Error type 2 (AE2). The Table I
shows a brief description of each metric. More details
about each one may be found in [16]. We also show the
number of descriptors (ND) employed by each compared
approach.

The first point to be observed is that the proposed
technique has overcome all the classical and state-of-the-
art descriptors. Although in Brodatz data the margin
to improve the classification rate is small, we may notice
that the proposed technique provided a more robust re-
sult and with a significant advantage over the other meth-
ods. Relative to the other statistical measures, we notice

that they confirm the correctness efficiency. Particularly,
the proposed method also presents a minimum error (1
and 2) and a perfect reliability (until the significance level
adopted), both in correct and wrong classifications. We
see that, although Bouligand-Minkowski shows similar
values, it presents a significantly lower AER value, imply-
ing that the classifier confuses descriptors from a relevant
number of classes.

Vistex dataset is a more complicated case once it was
developed for color analysis approaches. Thus, the use
of gray level descriptors is waited to present a defficient
result. Nevertheless, even not using color properties,
the multi-level descriptors achieved a good classification
result, mainly relatively to other gray level texture ap-
proaches. Again, as in Brodatz set, the other statistical
metrics support the correctness rate. Also, again, the
AER in Gabor descriptors is meaningly lower than that
of MLD descriptors.

Generally speaking, we observe in both datasets
that the proposed descriptors have presented a perfor-
mance even better than Bouligand-Minkowski approach.
Bouligand-Minkowski method has already demonstrated
to be an efficient tool for the discrimination of natural
textures. Such performance is explained by the dila-
tion process in that method. As the surface points are
dilated, some wavefronts start to emerge. The distri-
bution of these wavefronts provide a rich description of
the original arrangement of pixel intensities in the im-
age. Moreover, it still gives information about physical
characteristics, like luminance, roughness and even ma-
terial composition. On the other hand, here we proposed
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Metric What measures

CR Percentage of elements correctly classified

κ Precision gain relative to a hypothetical random classification

ACR Average a posteriori probability of correctly classified elements

AER Average a posteriori probability of misclassified elements

AE1 Probability of elements classified as being from any class j 6= i when pertain to the class i

AE2 Probability of elements classified as being from the class i when pertain to any other class j 6= i

Table I. A brief summary of statistical measures employed in the performance analysis of methods.

Method ND CR (%) κ ACR AER AE1 AE2

Gabor 20 90.09 0.90 0.98 0.84 0.08 0.10

Co-occurrence 84 92.07 0.92 0.99 0.91 0.07 0.08

GLDM 20 84.14 0.84 0.94 0.79 0.15 0.16

Laws 15 87.03 0.87 0.93 0.68 0.11 0.13

Multifractal 101 37.48 0.37 0.92 0.86 0.63 0.62

Bouligand-Minkowski 85 98.92 0.99 1.00 0.88 0.01 0.01

Proposed method 62 99.28 0.99 1.00 1.00 0.01 0.01

Table II. Correctness rate for Brodatz dataset. The best result is underlined.

Method ND CR (%) κ ACR AER AE1 AE2

Gabor 20 88.19 0.88 0.96 0.79 0.11 0.12

Co-occurrence 24 79.63 0.79 0.95 0.79 0.17 0.20

GLDM 20 67.36 0.67 0.84 0.67 0.31 0.33

Laws 15 84.03 0.84 0.87 0.63 0.15 0.16

Multifractal 101 32.41 0.32 0.89 0.82 0.63 0.68

Bouligand-Minkowski 85 86.81 0.87 0.98 0.91 0.12 0.13

Proposed method 101 92.82 0.93 0.99 0.94 0.06 0.07

Table III. Correctness rate for Vistex dataset. The best result is underlined.

an improvement to the original Bouligand-Minkowski ap-
proach. The present technique shows three main addi-
tions to the original method. The first is the multiscale
decomposition. In this way, we are able to capture local-
ized spatial details with a greater accuracy. The second
is the use of deviation descriptors. Actually, Bouligand-
Minkowski descriptors are in some sense similar in their
general aspect. The deviation allows a more highlighted
representation of patterns embedded in the original de-
scriptors and, as a consequence, increases the power of
the classifier technique. A third point is the use of en-
tropy measure. Shannon entropy is a classical method to
measure the information content in a data. In this way,
here, the entropy plays the role of attenuating possible
redundancies and describe the original texture with the
minimum necessary number of descriptors.

Finally, the Figures 5 and 6 exhibit the confusion ma-
trices for the 4 methods which presented the greater cor-
rectness rates in each dataset. In both figures, the ma-
trix is represented through a surface in which the heights
correspond to the number of samples classified to class
i and pertaining to class j. In these surfaces, a good
method is represented through a diagonal with a wall as-
pect (with a minimum amount of “holes”) and with a
minimum number of peaks outside the diagonal. In this
sense, for Brodatz dataset, we observe that the MLD ma-
trix shows only one protuberant peak in the lower half of

the matrix. In the case of Vistex, we also see a reduced
number of peaks outside the diagonal.
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Figure 5. Surface representation of confusion matrices in Bro-
datz dataset. a) Co-occurrence. b) Gabor. c) Bouligand-
Minkowski. d) Proposed method.
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Figure 6. Surface representation of confusion matrices in Bro-
datz dataset. a) Laws. b) Gabor. c) Bouligand-Minkowski.
d) Proposed method.

VII. CONCLUSIONS

This work develops and study a new approach for tex-
ture descriptors based on fractal geometry, more specif-
ically, on Bouligand-Minkowski fractal descriptors. The

technique computes the Bouligand-Minkowski descrip-
tors of an image under different decomposition levels and
for each level we estimate the average and deviation de-
scriptors. Thus, we extract statistical measures for each
average and deviation. These measures compose the fea-
ture vector of the texture.

The method was tested on a classification task of
benchmark texture datasets and compared to other clas-
sical texture descriptors approaches. The results demon-
strated the higher accuracy of multi-level descriptors in
this task. These results also illustrates the importance
of a decomposition step in the application of Bouligand-
Minkowski descriptors and the relevance of the deviation
descriptors in the discrimination of more complex texture
datasets.

Finally, this outcome suggests that the present tech-
nique is a powerful approach to describe and discriminate
gray-level textures. This also points to the possibility of
using the proposed method in a large number of problems
involving texture analysis and related issues.
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