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ABSTRACT 

A new algorithm is proposed for the identification and segmentation of the lumen and 

bifurcation boundaries of the carotid artery in 2D longitudinal ultrasound B-mode images. It 

uses the hipoechogenic characteristics defining the lumen of the carotid for its identification 

and echogenic characteristics for the identification of the bifurcation. The input image is 

preprocessed with the application of an anisotropic diffusion filter for speckle removal, and 

morphologic operators for the detection of the artery. This information is then used for the 

definition of two initial contours, one corresponding to the lumen and the other to the 

bifurcation boundaries, for the posterior application of the Chan-Vese level set model. 

A set of longitudinal B-mode images of the CCA was acquired, using a GE Healthcare Vivid-

e ultrasound system, with 256 gray levels. All these images include a part of the CCA and the 

bifurcation that separates the CCA into the ICA and ECA. In order to achieve robustness in 

our acquisitions, with the highest contrast and lowest speckle noise levels as possible, the 

parameter settings of the scanner were different for each acquisition according to the 

associated image characteristics. 

We were able to successfully apply a carotid segmentation technique based on cervical 

ultrasonography. The main advantage of our segmentation method relied on the automatic 

identification of the carotid lumen, overcoming the limitations of traditional methods. 

 

Keywords: Medical Imaging; Image Analysis; Image segmentation; Deformable Models; 

Chan-Vese Model; Carotid Artery 

 

 

INTRODUCTION 

The common carotid artery (CCA) is the one supplying the human head, specifically the front 

part of the brain, and neck, with oxygenated blood. It is known for its paired structure, one for 

each half of the human body. The left common carotid artery has its origin in the aortic arch, 

while the right common carotid originates in the neck, specifically in the brachiocephalic 

trunk and containing a small thoracic portion. The CCA divides in the neck, where its 

bifurcation is situated, originating the internal and the external common carotid arteries: ECA 

and ICA, respectively. The ICA is characterized by its low resistance waveforms and its 

lateral and posterior disposition, compared to the ECA. The ECA extends anteriorlly and 

medially to the ICA, supplying the face, scalp, neck and tongue with blood, being also 

characterized by its high resistance waveforms. Like other arteries, which purpose relies in the 

supply of blood to the heart (coronary arteries), the carotid is also in risk of developing 

several diseases, like atherosclerosis, known as the “hardening of the artery”. 
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Atherosclerosis is an inflammatory disease, dominant in the blood vessel, consequently after 

the accumulation of fatty substances (lipoproteins) and cholesterol in the artery walls. This 

accumulation is known as plaque and causes the narrowing (stenosis) of the artery, decreasing 

the blood supply. In the case of the carotid artery, the bifurcation (separating the external and 

internal carotid arteries) and the internal carotid artery (ICA) are the structures more 

susceptible to atherosclerosis, due to the greater hemodynamic forces found at the bifurcation 

and branching structures. 

Non-invasive ultrasound imaging is widely used in the diagnosis of cardiovascular diseases, 

like atherosclerosis, with the evaluation of the intima-media thickness (IMT), measuring the 

distance between the lumen of the carotid artery (where the blood flows) and the inner 

boundary of the adventitia. This measure, and consequent diagnosis of atherosclerosis, 

between other cardiovascular diseases, is performed with the aid of B-mode ultrasound 

imaging, requiring the detection of not only the lumen boundaries, as well as both the near 

and far adventitia. Therefore, it has been and continues to be a great interest in the 

performance of an automatic segmentation of the adventitia and lumen boundaries in B-mode 

ultrasound images of the carotid artery. According to Halenka (1999), in this type of images, 

the carotid adventitia is illustrated as two almost parallel lines, known for their echogenic 

characteristics, separated in the middle by a hipoechogenic space, known as the “double line” 

pattern (Halenka, 1999). 

Ultrasound B-mode imaging is the most widely used technique in this type of medical image 

acquisition due to the fact of the carotid being a superficial artery and quite suitable for this 

type of imaging. However, B-mode images present difficulties, specifically in the 

segmentation step, due to several imaging characteristics, like low contrast and speckle noise, 

echo shadows and artifacts, having very poor quality and requiring the interaction of an active 

user. In ultrasound imaging, the speckle noise is presented in the form of granular texture in 

echogenic regions, where its intensity is related to the scanned tissue. Some works are found 

in the literature, where it is used several statistical distributions, like, for example, the 

Rayleigh distribution (Wagner et al., 1983; Sarti et al., 2004) and K-distribution (V. Dutt et 

al., 1994; R.C. Molthen et al., 1993), in order to deal and attenuate this granular speckle noise, 

being only applied to non-compressed signals. However, most of the signals that are actually 

used in ultrasound imaging and medical practice are known as log-compressed signals, which 

are unsuitable for the application of the distributions previously mentioned due to the reduced 

intensity range, characteristic of this type of signals. In 2006, Noble (Noble et al., 2006) 

described the success of texture segmentation techniques in the classification of breast masses 

and liver and kidney tissues specifically, in ultrasound images. However, in our specific case, 

regarding the classification of the carotid artery, it tends to be more difficult due to the 

extremely low degree of discrimination in ultrasound carotid images. 

Ultrasound imaging represents an extreme and complex challenge in the performance of an 

automatic segmentation, as for the reasons described earlier, as for the amount of edges that 

may be missing in the image, producing gaps in vessel boundaries. Also, in the case of the 

carotid anatomy, in an ultrasound B-mode acquisition, scans may correspond to different 

portions of the carotid, illustrating distinguished structures of its anatomy and due to the 

variability of its shape between subjects; a model-based segmentation procedure is not robust 

enough for this type of segmentation. Despite these difficulties, there has been a great 

increase in the interest in ultrasound imaging medical diagnosis, as consequence of the 

technological advances verified in this methodology, not only in its quality, but also because 

of its non-invasive characteristics and cheaper cost (Rui Rocha et al, 2011).  

The segmentation procedure can be considered as the logical sequence of two steps: (i) the 

definition or estimation of a region of interest (ROI) of the carotid artery in the B-mode 
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ultrasound image and (ii) the delineation of the wall boundaries, depending on the ROI 

definition, as the wall (being lumen, or intima, or adventitia) which is to target. For this 

reason, we may consider that these two steps are not independent from each other, since the 

correct delineation of the artery wall in the segmentation algorithm is strictly connected to the 

correct definition of the ROI. 

Between 1992 and 1994, occurred the first approaches for the identification and consequent 

segmentation of the carotid boundaries in B-mode ultrasound images, with the works 

developed by Touboul (1992), Gariepy (1993) and Selzer (1994) (Touboul et al., 1992; 

Gariepy et al., 1993; Selzer et al., 1994). At this time, the computing and segmentation 

techniques were not as advanced as nowadays, reason why all these works include a previous 

manual segmentation of the boundary of the carotid in order to proceed with its detection. 

This detection was performed according to only one local image feature, like the echo or the 

gradient intensities. Despite their importance, for they were the first attempts to detect the 

carotid artery, all these segmentation approaches suffer from some disadvantages: first, due to 

the enormous amount of time required for each one of these approaches, mainly due to the 

manual segmentations taken in each one of them; second, the identification of the carotid 

boundaries cannot be correctly performed based in a single image feature, since it can be 

affected to speckle noise, low contrast and possible discontinuities in the carotid boundaries. 

In 1996, Kozich proposed a more robust approach, based on the minimization of a cost 

function by dynamic programming. Unlike Touboul (1992), Gariepy (1993) and Selzer 

(1994), Kozich (1996) integrated multiple image features for the development of his cost 

function. Not only had he considered the echo intensity and its gradient, like the previous 

works, but also a local constraint in order to originate a smoothed contour of the carotid 

boundaries. Each feature or constraint considered in Kozich’s work is represented by a cost 

term, usually a constant, representing the importance, or in other words, the weight of each 

feature in the development of the contour. Because of these cost terms, this model produced a 

more robust segmentation, when comparing to the ones developed in previous studies, with 

much less human intervention and time consuming. However, kozich’s model is also related 

to certain disadvantages: for example, its performance is directly affected by the presence of 

plaques, and so it is unsuitable for the correct detection of the carotid boundaries in patients 

with atherosclerosis; also, with this type of models, there is frequently needed some human 

intervention for contour correction when the image quality is lower. It is also required an 

intense search, for the optimal values of each image feature or constraint, where they have to 

be searched differently for images acquired with distinct ultrasonic equipments in some cases. 

More recent studies showed great improvements with these problems, with the development 

of a different type of algorithms, called deformable models. These models center in the 

optimization of a cost function, in the search of a compromise between some of the 

methodologies applied by Kozich (1996) and even by Touboul (1992), Gariepy (1993) and 

Selzer (1994), typically defining the smoothness and continuity of the contour through 

adjacent points of the model, with the incorporation of an external force, attracting the 

contour towards the closest image edge. Deformable models can be distinguished in two 

classes: Parametric models, comprising the active contours, also known as Snakes; and 

Geometrical models, usually known as Level Sets. 

There are studies published in the literature, especially those developed by Cheng (1999 and 

2002), Schmidt (2001) and Jiaoying (2011), Matsakou (2011), Izquierdo (2011), for the 

specific segmentation of the common carotid artery using active contours. However, it can be 

also found the application of this methodology in the segmentation of other structures in 

ultrasound imaging, like the bladder and liver, as well as in other imaging acquisitions, like 

MRI and CT. Despite this, parametric snakes may not be the best choice for the automatic and 
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correct segmentation of the carotid artery wall. This happens because the parametric snakes 

propagation force is based on intensity gradients and so, they tend to become stuck in local 

regions with minimal solutions, usually between the snake active contour and the real 

boundary and characterized by speckle noise, false edges or wall gaps the intensity gradient is 

extremely low or even null. Also, parametric snakes normally require manual initialization, 

with the design of the initial contour in the close vicinity of the carotid boundaries, implying a 

constant human intervention. 

On the other hand, geometrical models present several advantages when compared to 

parametric models. The simple generalization when they are converted from two spatial 

dimensions to three or even more, as well as their easy treatment on the image regions with 

topological changes in the propagating fronts, in cases where there is a join in the contours or 

even when they are pressed towards each other. There are also several works for the 

segmentation of the common carotid artery based on geometrical models, where it can be 

distinguished the studies performed by Petroudi (2011) and Cheng (2011). Petroudi et al 

(2011) developed an algorithm which uses parametrical snakes, combined with active 

contours without edges, also known as the Chan-Vese geometrical deformable model, in order 

to detect the intima-media boundary of the carotid. On the other hand, Cheng et al (2011) 

made a comparison between three different geometric models on the detection of 

atherosclerosis carotid plaques. Cheng (2011) tested the Geodesic Active Contour (GAC) 

Model, the Chan and Vese Model and the Localizing Region-Based Active Contour Model. It 

was concluded that, when the initial contour of the deformable model was close to the 

boundary of interest, the localizing region-based model was the most suitable for the detection 

of atherosclerosis carotid plaques from ultrasound images of the CCA. Both studies of 

Petroudi (2011) and Cheng (2011) proof that geometric models are capable of performing a 

reasonable detection of the carotid wall boundaries, not only in healthy patients, but also for 

patients with atherosclerotic carotid plaques, with the proper use of some of these models. 

The time required for this type of segmentation is also suitable, and significantly reduced 

compared to the one required by parametric snakes. 

In this paper, a method is proposed for the automatic identification of the lumen region and 

consequent segmentation of the lumen boundaries in longitudinal B-mode images of the 

CCA. The proposed method search for hipoechogenic structures in the input image and 

through mean intensities and standard deviation calculations, the lumen region of the CCA is 

identified. Consequently, the lumen and bifurcation boundaries of the carotid artery are 

identified through the application of a geometrical model, in particular, the Chan-Vese level 

set model. The method is robust to speckle noise, with no human interaction and the 

segmentation can adjust the contour with great flexibility, according to the shape of the lumen 

boundaries. 

 

METHODS 

 

The approach developed is depicted in the block diagram shown in Figure 1. The result is an 

estimation of the lumen and bifurcation boundaries. The method starts by isolation the 

ultrasound image environment from the rest of the image features (like acquisition menus, 

etc.), followed by the definition of two 2D histograms, representing the mean intensities and 

standard deviation values of a 10x10 neighborhood for each image pixel. With the application 

of a Gaussian low-pass filter, kernel size of 40x40 pixels and σ=10, for speckle noise 

reduction, the combining of this information with the two 2D histograms will allow the 

identification of the lumen region of the carotid artery by its hipoechogenic characteristics. A 
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Figure 1: Main steps of the method developed. 

 

The edges of the lumen and bifurcation of the carotid artery are detected, using an anisotropic 

diffusion filtering, histogram width threshold and Sobel operator application for edge 

detection. Afterwards, with the edge estimation information, two initial masks are created for 

the lumen and bifurcation boundaries identification. Combining these two masks with the 

SDF, two initial contours are defined in order to be used for the application of a geometric 
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model, using the Chan-Vese energy minimization, for the identification of the lumen and 

bifurcation boundaries of the carotid artery. 

Data set: A set of 5 longitudinal B-mode images of the CCA was acquired using a GE 

Healthcare Vivid-e ultrasound system, with 256 gray levels. All these images include a part of 

the CCA and the bifurcation that separates the CCA into the ICA and ECA. In order to 

achieve robustness in our acquisitions, with the highest contrast and lowest speckle noise 

levels as possible, the parameter settings of the scanner were different for each acquisition, 

according to the characteristics of each image. 

 

Identification of the image area and consequent reduction of image size: As a first step, our 

goal is to reduce the image area, eliminating any possibility of detecting unwanted features, 

which did not belong to the ultrasound data. This procedure also reduces the time required for 

the performance of the posterior steps of image pre-processing and segmentation task. The 

reduction of the image area was based on the work developed by Golemati et al. (2007) and it 

consists on the definition of a rectangular area, involving the carotid artery. With this in mind, 

one proceeds with the definition of four points, based on the following procedure: (1) 

Morphological opening of the original image, based on a disk with a radius of 15 pixels, 

filtering unwanted structures such as letters; (2) Thresholding, replacing all pixels with 

luminance greater than 0.1 with the value 1 (corresponding to the white color in a binary 

image) and all others with 0 (black color), thus reducing the areas lying around the ultrasound 

image; (3) Finally, comes the definition of the four points, corresponding to the first and last 

nonzero lines and columns of the binary image. These four points will be the vertices of the 

rectangular area, where all the pre-processing and segmentation tasks will be performed. 

 

Lumen region identification: This procedure was based on the study performed by Liboni et 

al. (2007), where it was developed a computer-based tracing of the carotid artery. According 

to Liboni et al. (2007), the carotid characteristics in an ultrasound image can be considered as 

a model of variable intensity distributions over the carotid’s structure. It is precisely this 

ideology that is to be used in the automatic identification of the lumen of the carotid artery.  

Pixels belonging to the lumen region of the carotid artery will be those characterized by both 

low mean and standard deviation values. In order to proceed with this identification, this step 

of our work was based in Liboni et al. (2007) method, with the construction of a 2D 

histogram. For each pixel of the cropped image, it was considered a 10x10 neighborhood, 

calculating for each one, the mean and standard deviation values. Both these values were 

posteriorly normalized and grouped into 50 classes with a 0.02 interval value. In our images, 

the results showed that lumen pixels had a mean intensity value belonging to the first five 

classes, while the standard deviation belonged to the first seven. Consequently, it was defined 

that a pixel of the cropped image would possibly belong to the lumen of the carotid artery if 

its 10x10 neighborhood intensity was lower than 0.1 and standard deviation below 0.14. 

A row-wise intensity distribution graphic must be constructed for each column of the cropped 

ultrasound image, so one can identify the pixels corresponding to each frame of the carotid 

artery. However, before this step, the image must first pass through a pre-processing using a 

Gaussian low-pass filter, kernel size of 40x40 pixels and σ=10, for speckle noise and 

attenuating high intensity noisy points of the intensity distribution. Afterwards, during the 

processing it was considered that the top row of the cropped would correspond to the lowest 

row, while the bottom one would correspond to the lowest. As mentioned previously, pixels 

belonging to the lumen region of the carotid artery are those characterized by their low mean 

intensities and standard deviation values. Having this into consideration, those pixels can be 

identified in the intensity distribution graphics as being those correspond to the minimum 
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values of that graphic, and usually between local maxima, corresponding to the near and far 

adventitia layers, or corresponding to the walls of the ICA and ECA, or even in the interval 

between these two frames, if it is considered a column of the image containing pixels 

belonging to the carotid bifurcation. As such, and based on Liboni et al. (2007) method, it was 

chosen to start the identification process from the bottom of the cropped image (highest row 

value) and will moving upwards along the row, decreasing the row value in, order to correctly 

identify the first pixel of the first maxima as possibly corresponding to the far adventitia of 

the carotid, usually associated to the brightest frame of the ultrasound image of the carotid 

artery. Having the estimation of this first pixel, as possibly belonging to the far adventitia, for 

the lumen identification, the algorithm continues moving upwards and searching for a pixel 

possible belonging to the lumen region. Taking into account the row of the pixel 

corresponding to the far adventitia, the pixel possibly belonging to the lumen will be the first 

minima point after the far adventitia pixel. Also, its neighborhood mean intensity and 

standard deviation, must match the chosen criteria of the 2D histogram, with a 10x10 

neighborhood mean intensity and standard deviation lower than 0.1 and 0.14, respectively. 

 

Lumen edges identification: Having the correct identification of a class of pixels belonging 

to the lumen of the carotid artery, the construction of a suitable mask for a level set 

segmentation is now possible. First, a few processing techniques must be applied to the 

cropped image, in order to raise the robustness of our algorithm in the mask construction. 

Initially, a conventional anisotropic diffusion filter must be applied to the image, in order to 

attenuate the great amount of speckle noise that is present in the image. For this step, it was 

chosen the filter proposed in (Perona and Malik, 1990) with a 2D network structure of 8 

neighboring nodes for diffusion conduction. Then, it is applied of a morphological closing 

operator to the image, merging small “channels” and “openings”. Thirdly, it was performed a 

threshold based on the image’s histogram width, using the value corresponding to its first 

15%. This threshold will result in a binary image, on which is applied the Sobel gradient 

operator in order to identify the edge points. The posterior result of this edge detection is also 

a binary image having 1s at edge locations. The binary image acquired with the application of 

the Sobel gradient operator, combined with the information relevant to the pixels that belong 

to the lumen region of the carotid, will allow the identification of the edges correspondent to 

the superior and inferior wall of the lumen of the carotid artery. Figure 2E shows that 

combination, where it can be considered the pixel of the lumen candidates string with the 

highest column value (placed more to the right of the image), and it can be searched in the 

binary image resulted from the Sobel operator application, the pixels above and below (in the 

same column) with value 1 (one). Having the row and column of these two pixels, one 

belonging to the superior lumen edge and the other to the inferior one, it is possible to trace 

the rest of the edge in the Sobel binary image and save the coordinates of each pixel in a 

string. As a result, two strings are originated, having the coordinates of each pixel belonging 

to the superior and inferior lumen edges. Posteriorly, the definition of a new string takes 

place, containing the pixels belonging to the bifurcation edge in the binary image, knowing 

that the bifurcation is localized between the superior and inferior walls of the carotid. Finally, 

it is processed to the definition of two different masks, for posterior application of the 

geometrical model of Chan-Vese for the segmentation of both bifurcation and common 

carotid artery walls, as shown in Figure 4. 

 

Segmentation of the lumen and bifurcation boundaries of the carotid artery, using the 

Chan-Vese geometrical model: Using the two masks created in the previous step, as initial 

contours, the Chan-Vese level set becomes a powerful segmentation method to detect the 
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lumen boundaries of the carotid artery. It is known for its great flexibility and accuracy as a 

region-based model and independent of gradients. This independence makes the segmentation 

extremely robust in cases of small gaps in the boundaries of the carotid. The segmentation 

performed on both the lumen and bifurcation boundaries of the carotid artery is based on the 

work developed by Lankton and Tannenbaum (2008) where it was defined a local-based 

framework, where the active contour moves according to an internal energy, defined by Chan 

and Vese , using a constant intensity model. The framework starts with the input of an initial 

contour (in this case, it is chosen one of the masks created in the previous step, and a signed 

distance function (SDF) is created, based on the following equation: 

 

, (1) 

where  is SDF, m represents the initial contour as a binary image and  is the Euclidean 

distance transform of a considered binary image, assigning for each pixel, the distance 

between them and the nearest nonzero value. The Euclidean distance between two points 

, , is given by: 

 

, (2) 

where C represents a closed contour as the zero level of SDF, i.e., , 

which interior and exterior will be expressed respectively by: 

,   (3) 

 

    (4) 

The area surrounding C, just in its neighborhood, is specified by derivating equation (3): 

 

, (5) 

Considering  and  as independent variables, representing the coordinates of a single point 

in the domain Ω of an ultrasound image, the following equation represents a function defining 

a circular region of interest (ROI) of radius  and center , with value 1 (one) inside and 0 

(zero) outside: 

. (6) 

With eq. (6), the energy functional can finally be defined as: 

 

. (7) 

 

In this equation,  prevents the development of new contours, ensuring that C does not 

undergo sudden changes in its geometry. On the other hand, it will allow certain parts of the 

contour C to separate or combine within each other. Each point  in this term, it is masked to 

 ensuring that only the local information surrounding C will be used. 

The smoothness of the contour C curve is kept, through the application of a new 

regularization term, penalizing its arc length. The weight of this penalty is controlled by the 

parameter  in the new equation of the energy functional: 
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  (8) 

Next, Lanktom and Tannenbaum (Lanktom and Tannenbaum, 2008) tested the introduction of 

specific energies to the generic framework described previously, including the Chan-Vese 

energy, expressed by the equation: 

, (9) 

where  and  are global mean intensities of the interior and exterior of C and from which the 

modeling of the contour is based. These global mean intensities are given by: 

,  (10) 

. (11) 

 

The corresponding internal energy function of the Chan-Vese energy is based in the local 

mean intensities  and , instead of  and : 

 

,   (12) 

,       (13) 

.    (14) 

Equation (12) can now be substituted in the energy functional of the framework (eq. (8)), 

defining a localized energy. To obtain the curvature’s flow regularization term, equation (12) 

must first be derivated and substituted in equation (8), as demonstrated below in equations 

(15) and (16), respectively: 

 

, (15) 

 

  

            (16) 

 

The Chan-Vese energy function finds its minimum when the interior and exterior of the 

curve are closer to the global mean intensities  and , while in the localized version the 

minimum is obtained when they are closer to the local mean intensities  and . 

For the segmentation of the bifurcation boundaries, the mask illustrated in Figure 3g was 

chosen as the initial contour. The level set for the segmentation of these boundaries must be 

flexible in order to reach the limit of the bifurcation walls, so in this case, for the penalty of 

the arc length of the contour C, a control parameter  of value 0.3 and a circular ROI  and 

of 5 pixels radius were chosen. On the other hand, for the segmentation of the lumen 

boundaries, the mask illustrated in Figure 3f was selected and the control parameter  of the 

penalty of the arc length of C was higher , since the development contour C has to 

be properly controlled and somehow attenuated, in order to prevent its development towards 

other structures or vessels near the carotid artery. The circular ROI  was also chosen to 
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be smaller, this time with a radius of only 1 pixel, to prevent larger intensity variations during 

the contour C development with the Chan-Vese energy minimization. 

Contour smoothness: Finally, as a final step, the obtained contours must be smoothed. In this 

procedure, the contour smoothing is done: Firstly, through a cubic spline interpolation and 

secondly, by projecting all the resulting points of the contour towards the local regression 

line. Once again, for each point of the contour, a ROI is defined, defining the number of 

points in the neighborhood of the contour that will contribute for the computation of the local 

regression line. In this procedure, for each pixel of the contour there is the definition of an 8-

connected-neighborhood pixel for this computation. 

 

RESULTS 

A complete demonstration of the approaches described in the previous sections, which 

compose our method, is represented in Figures 2, 3, 4 and 5.Figure 2, shows an example of 

the first procedure aiming to identify automatically a rectangular area enclosing the 

ultrasound environment of the input image. 

 

    

    

Figure 2: Automatic identification and consequent isolation of image area: (a) Original image; (b) After the 

morphological opening; (c) After Thresholding, and definition of a rectangular area, based on the first and last 

nonzero lines and columns; (c) Resulted image. 

 

Figure 3 shows an example of the identification of the lumen region of the CCA, in one of the 

acquired ultrasound images of the carotid artery. Figures 3a and 3b illustrate the 2D histogram 

of the mean intensities and standard deviation values according to the 50 classes from which 

the standard deviation and mean values corresponding to the two 2D histograms were 

(a) (b) 

(c) (d) 
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grouped, from which they were separated; Figure 3c illustrates the cropped image after the 

application of the Gaussian low-pass filter; All the possible pixel candidates for the lumen 

region of the CCA are represented by the value 1 (white color) in a binary image in Figure 3d; 

Finally, Figure 3e illustrates the pixels that were identified as belonging to the lumen region 

of the CCA and as being closer to the lumen boundaries of the CCA and which will be used in 

the definition of the initial contour for the application of the Chan-Vese algorithm. 

 

   
 

 

    
 

 

 
 

 
Figure 3: Automatic identification of the lumen region of the CCA in one of the acquired ultrasound images of 

the carotid artery (a); (b) 2D histogram representation of each pixel 7x7 neighborhood mean intensities and 

standard deviations, separated in 50 different classes with a 0.02 value interval; (c) Cropped image after the 

application of a Gaussian low-pass filter, with kernel size of 40x40 pixels and σ=10; (d) Binary image with the 

illustration of all possible pixel candidate for the lumen region of the CCA with value 1 (white color); (e) 

Cropped image, with the pixels identified as belonging to the lumen of the CCA in blue color. 

(a) 

(b) 

(c) (d) 

(e) 

(b) 
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Figure 4 despites all the described procedures used for the identification of the lumen edges. 

Figure 4a illustrates the cropped image in double (intensities from 0 to 255, corresponding 0 

to the black and 255 to white), while Figure 4b illustrates the same image after the application 

of the anisotropic filter proposed by Perona and Malik (1990) for speckle removal. After the 

threshold based on the first 15% of the histogram width, the image illustrated in Figure 4c is 

obtained and with the application of the Sobel operator for edge detection, it is obtained the 

image illustrated in Figure 4d. Figure 4e illustrates in green, the pixels detected in the binary 

image after the Sobel operator application as belonging to the superior and inferior walls of 

the carotid artery and to its bifurcation. Finally, Figures 4f and 4g illustrate the two masks that 

will serve as an input for the definition of an initial contour in the Chan-Vese level set 

segmentation. 

 

 

    
 

 

    
 

 

 
 

    
 

(a) (b) 

(d) 

(e) 

(f) (g) 

(c) 
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Figure 4: Lumen edges identification: (a) Cropped image in double; (b) Resulted image after the application of 

an anisotropic diffusion filter for speckle removal; (c) Threshold based on the first 15% of the image’s histogram 

width; (d) Sobel operator for edge detection; (e) Cropped image, where there can be identified in green, the 

pixels detected in the binary image after the Sobel operator application as belonging to the superior and inferior 

walls of the carotid artery; (f and g) Two binary images, defining the masks, based on the information of the 

lumen walls and the bifurcation of the carotid artery. 

 

    
 

 
Figure 5: Geometric model level set using the Chan-Vese energy minimization: (a) Identification of the 

bifurcation boundaries of the carotid artery; (b) Identification of the lumen boundaries of the carotid artery. 

 

The smoothed contours of the lumen and bifurcation boundaries are combined in the same 

image, and the result is illustrated in Figure 6. 
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Figure 6: Identification of lumen and bifurcation boundaries of the carotid artery. Each image illustrates the 

carotid artery of a different ultrasound acquisition for each one of the tested healthy subjects 

 

DISCUSSION 

 
The proposed method provides a fully automatic segmentation of the arterial lumen and 

bifurcation sections of the carotid artery in longitudinal ultrasound images. Its main advantage 

relies on the automatic identification of the carotid lumen, through its hipoechogenic 

characteristics, overcoming the limitations of traditional methods. 

As showed in Figure 4b, the application of the anisotropic diffusion filter developed by 

Perona and Malik (1990) was satisfactory, allowing the correct distinction of the carotid 

artery from other near vessels and small features, which greatly facilitated the detection of the 

boundaries of the carotid for the definition of a initial contour for the application of the Chan-

Vese energy model. 

In the tested images, the initial contour of the Chan-Vese model has been successfully set, 

very close to the true lumen and bifurcation boundaries of the carotid artery, which is an 

advantage in the proposed method, since it greatly increases the robustness of the 

segmentation procedure. 

(c) (d) 

(e) 
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Regarding the results of the proposed method, illustrated in Figure 6, we can consider them to 

be satisfactory. As it can be seen in the images presented, in general, there was a correct 

targeting and segmentation of the boundaries of the lumen and bifurcation of the carotid 

artery. The segmentation with the greatest degree of success was the one illustrated in Figure 

6a, since although it is the case where the lumen, intima-media and adventitia boundaries are 

best defined in terms of contrast, hipoechogenic characteristics and noising, the contours that 

were obtained are highly smoothed, picturing perfectly the surface of the carotid artery. The 

bifurcation is also very well defined in this image. The same is not happening, for example, in 

the carotid illustrated in Figure 6d, where it is clear that the contrast of the bifurcation of this 

carotid artery is really very poor and with a high level of noise and gaps in its interior. Both 

this case and others where the boundaries of the lumen are not well defined and with higher 

noise level, due to the difficulty in acquiring good images during an ultrasound acquisition, 

represent the next steps of our work, where it will be improved the segmentation robustness of 

the proposed method, taking into account these weaknesses for a greater number of images of 

carotid arteries, with different structures, for both normal and patients with atherosclerosis. 

Then, the manual segmentation by a specialist will be performed, for the statistical 

comparison with the automatic segmentation and posterior validation of the algorithm, in 

order to proceed to the 3D modeling of these carotid arteries. 

 

CONCLUSIONS 

 
We were able to successfully apply a carotid segmentation method on cervical 

ultrasonography images. The main advantage of our segmentation method relied on the 

automatic identification of the carotid lumen, overcoming the limitations of traditional 

methods. 

In the future, we will proceed to the 3D modelling of the carotid. These 3D models will be 

important for testing hypotheses and address practical clinical vascular problems related to 

carotid diseases. 
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