
197
J Y V Ä S K Y L Ä S T U D I E S I N C O M P U T I N G

On Solving Computationally
Expensive Multiobjective

Optimization Problems with
Interactive Methods

Vesa Ojalehto

JYVÄSKYLÄ STUDIES IN COMPUTING 197

Vesa Ojalehto

On Solving Computationally
Expensive Multiobjective Optimization

Problems with Interactive Methods

Esitetään Jyväskylän yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi yliopiston Agora-rakennuksen auditoriossa 2

lokakuun 23. päivänä 2014 kello 14.30.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Information Technology of the University of Jyväskylä,
in building Agora, auditorium 2, on October 23, 2014 at 14.30 o’clock.

UNIVERSITY OF JYVÄSKYLÄ

JYVÄSKYLÄ 2014

On Solving Computationally
Expensive Multiobjective Optimization

Problems with Interactive Methods

JYVÄSKYLÄ STUDIES IN COMPUTING 197

Vesa Ojalehto

On Solving Computationally
Expensive Multiobjective Optimization

Problems with Interactive Methods

UNIVERSITY OF JYVÄSKYLÄ

JYVÄSKYLÄ 2014

Editors
Timo Männikkö
Department of Mathematical Information Technology, University of Jyväskylä
Pekka Olsbo, Ville Korkiakangas
Publishing Unit, University Library of Jyväskylä

URN:ISBN:978-951-39-5852-7
ISBN 978-951-39-5852-7 (PDF)

ISBN 978-951-39-5851-0 (nid.)
ISSN 1456-5390

Copyright © 2014, by University of Jyväskylä

Jyväskylä University Printing House, Jyväskylä 2014

ABSTRACT

Ojalehto, Vesa
On Solving Computationally Expensive Multiobjective Optimization Problems
with Interactive Methods
Jyväskylä: University of Jyväskylä, 2014, 70 p.(+included articles)
(Jyväskylä Studies in Computing
ISSN 1456-5390; 197)
ISBN 978-951-39-5851-0 (nid.)
ISBN 978-951-39-5852-7 (PDF)
Finnish summary
Diss.

In this thesis, we address the challenges encountered when solving multiobjective op-
timization problems with interactive methods. We concentrate on practical issues, that
is, we discuss structures that can be utilized when implementing an interactive method
and practicalities of connecting an interactive method with a multiobjective optimization
problem formulated e.g. in different modelling environments. As most real-world mul-
tiobjective optimization problems are computationally expensive, we also study how to
facilitate the use of interactive methods for such problems.

Even though interactive multiobjective optimization methods have been widely
discussed in the literature, their implementations are rare. In this thesis, we define a
core structure of interactive multiobjective methods, where we identify the main steps
required for implementing an interactive method. As a concrete example of utilizing the
core structure, we demonstrated the IND-NIMBUS software framework that includes
implementations of several different interactive methods.

When dealing with a real-world optimization problem, the problem is often mod-
eled with some simulator that must be connected to the optimization method implemen-
tation. In this thesis, we study how such a connection should be constructed, in order to
enable changing the interactive method or the problem being solved with as little effort
as possible. In addition, as the interactive method involves a decision maker, we propose
an algorithm, where the decision maker can be involved in verifying the model of the
multiobjective optimization problem in addition to solving it.

When solving a computationally expensive multiobjective optimization problem
with an interactive method, the decision maker may experience unfeasible waiting times.
We address this issue by introducing an agent assisted interactive algorithm, where we
replace the computationally expensive multiobjective optimization problem with a com-
putationally less-expensive surrogate problem. With the algorithm, the accuracy of the
surrogate problem is maintained by identifying the areas of the Pareto frontier that the
decision maker is interested in. The introduced algorithm is not specific to any partic-
ular method. As an example, we implement the algorithm for the interactive NIMBUS
method and PAINT surrogate method.

Keywords: Computational cost, Pareto optimality, Interactive multiobjective optimiza-
tion, NIMBUS method, software implementation

Author Vesa Ojalehto
Department of Mathematical Information Technology
University of Jyväskylä
Finland

Supervisor Professor Kaisa Miettinen
Department of Mathematical Information Technology
University of Jyväskylä
Finland

Reviewers Professor Dr. Karl-Heinz Küfer
Department of Optimization
Fraunhofer Institute for Industrial Mathematics ITWM
Germany

Professor Francisco Ruiz de la Rúa
Department of Applied Economics (Mathematics)
University of Malaga
Spain

Opponent Professor Theodor Stewart
Department of Statistical Sciences
University of Cape Town
South Africa

Manchester Business School
The University of Manchester
United Kingdom

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor Prof. Kaisa Miettinen
without whose support and advise I would not have been able to finalize this
thesis. I am grateful for the valuable feedback given by my thesis reviewers Prof.
Francisco Ruiz and Prof. Karl-Heinz Küfer. I would also like to express my ap-
preciation to the members of the industrial optimization group, both past and
present, who have maintained an inspiring research environment and whose re-
search topics have been the motivating force behind this thesis. This thesis could
not be possible without ideas, and research questions arising from the different
industrial projects that the group members have been involved in. Furthermore,
I give thanks to Prof. Marko Mäkelä for giving me the first nudge to the path
leading to this thesis.

Finally, I thank all members of my family, especially my partner Katja whose
support and patience have been invaluable for finalizing this thesis as well as my
daughter Helka, who has not yet failed to remind me of the life beyond research.

This study was financially supported by the Academy of Finland (grant
number 128495), by the Ellen and Antti Nyyssönen Foundation, by the Jyväskylä
Doctoral Program in Computing and Mathematical Sciences in Finland, by the
Antti Wihuri Foundation and by the KAUTE foundation.

LIST OF FIGURES

FIGURE 1 Illustration of Pareto frontier, ideal and nadir objective vectors
with k = 2 .. 19

FIGURE 2 Flowchart of the augmented interactive multiobjective opti-
mization algorithm ... 29

FIGURE 3 Sequence diagram of the coupling interface............................. 32
FIGURE 4 Core structure of an interactive method 35
FIGURE 5 The IND-NIMBUS software framework 40
FIGURE 6 NIMBUS classification view... 41
FIGURE 7 Visualization view .. 42
FIGURE 8 Flowchart of the agent assisted algorithm 45

LIST OF TABLES

TABLE 1 Solution process of the two-stage separation problem in [PIV] .. 51
TABLE 2 Training data for generating the NIMBUS classification 51
TABLE 3 Training data for selecting the most preferred solution 52
TABLE 4 Training data for predicting the reference point z̄4 53

CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
LIST OF FIGURES AND TABLES
CONTENTS
LIST OF INCLUDED ARTICLES

1 INTRODUCTION .. 11

2 BACKGROUND MATERIAL .. 17
2.1 Some Concept of Multiobjective Optimization............................. 18
2.2 Scalarization of the Multiobjective Optimization Problem 20
2.3 NIMBUS Method.. 21

2.3.1 NIMBUS Algorithm ... 21
2.3.2 Scalarized subproblems of the NIMBUS method............... 23

2.4 Multiagent Systems .. 24

3 FINDINGS ON SOLVING MULTIOBJECTIVE OPTIMIZATION PROB-
LEMS WITH INTERACTIVE METHODS ... 26
3.1 On Computationally Expensive Problems 26
3.2 Augmented Interactive Multiobjective Optimization Algorithm ... 28
3.3 On Connecting the Interactive Method with the Problem Model ... 30

4 CONTRIBUTION WITH RESPECT TO IMPLEMENTATION 33
4.1 Core Structure of Interactive Methods .. 34
4.2 The IND-NIMBUS Software Framework..................................... 36
4.3 Method Implementations .. 37

4.3.1 GAMS-NIMBUS Tool ... 38
4.3.2 IND-NIMBUS PAINT Module .. 39

4.4 User Interface... 40

5 A NEW AGENT ASSISTED INTERACTIVE MULTIOBJECTIVE OP-
TIMIZATION ALGORITHM ... 44
5.1 Description of the Agent Assisted Algorithm 45
5.2 Agents Used in the Algorithm ... 47

5.2.1 Preference Agents .. 47
5.2.2 Method Agents.. 48
5.2.3 Surrogate Agents ... 49

5.3 Example Implementation of the Agent Assisted Algorithm 50

6 AUTHOR’S CONTRIBUTION ... 55

7 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 57

YHTEENVETO (FINNISH SUMMARY) ... 61

REFERENCES.. 62

INCLUDED ARTICLES

LIST OF INCLUDED ARTICLES

PI Timo Laukkanen · Tor-Martin Tveit · Vesa Ojalehto · Kaisa Miettinen ·
Carl-Johan Fogelholm. An Interactive Multi-objective Approach to Heat
Exchanger Network Synthesis. Computers & Chemical Engineering, 34(6),
2010.

PII Vesa Ojalehto · Kaisa Miettinen · Timo Laukkanen. Implementation As-
pects of Interactive Multiobjective Optimization for Modeling Environ-
ments: The Case of GAMS-NIMBUS. Computational Optimization and Ap-
plications, 58(3), 2014.

PIII Markus Hartikainen · Vesa Ojalehto · Kristian Sahlstedt. Applying Ap-
proximation Method PAINT and Interactive Method NIMBUS to Multi-
objective Optimization of Operating a Wastewater Treatment Plant. Engi-
neering Optimization, to appear, DOI:10.1080/0305215X.2014.892593.

PIV Karthik Sindhya · Vesa Ojalehto · Jouni Savolainen · Kaisa Miettinen ·
Hannu Niemistö. Coupling Dynamic Simulation and Interactive Multi-
objective Optimization for Complex Problems: An APROS-NIMBUS Case
Study. Expert Systems with Applications, 41(5), 2014.

PV Vesa Ojalehto · Dmitry Podkopaev · Kaisa Miettinen. Agent-based Interac-
tive Approach for Computationally Demanding Multiobjective Optimiza-
tion Problems. Reports of the Department of Mathematical Information Tech-
nology, Series B, Scientific Computing, No. B 6/2014, University of Jyväskylä,
Jyväskylä, 2014.

1 INTRODUCTION

Many real-world optimization problems contain several conflicting objectives.
Nevertheless, when optimizing, e.g., in the field of engineering, the problem is
often modeled with a single objective. For example, objectives can be combined
into a single objective as a weighted sum, or only one of the objectives may be
selected to be optimized, while others are handled as constraints. Unfortunately,
these straightforward conversions can lose information about interdependencies
among the objectives that may affect the validity of the obtained results. Even if
optimizing a single objective function results in an optimal solution, the solution
might not be the best possible one for the original problem. A better solution
could have been found if all trade-offs between conflicting objectives had been
considered. Therefore, multiobjective optimization has been, and is, an active
research area, which has produced a wide variety of different optimization meth-
ods (see e.g. [13, 20, 55] and references therein).

For an optimization problem with several conflicting objectives, it is usu-
ally not possible to find an unique optimal solution. Instead, a multiobjective
optimization problem typically has several compromise solutions with different
trade-offs. Therefore, some additional information is needed to select the best so-
lution from the set of these so-called Pareto optimal solutions. This information is
usually obtained from the preferences of a decision maker (DM) who is an expert
in the problem domain. This means that the DM is in a very demanding position,
as (s)he is responsible for providing the information that is used to decide which
of the different solutions is the best compromise solution for the problem.

In other words, in comparison to a single objective optimization, the multi-
objective optimization does not provide the DM with a single optimal solution.
Instead, the DM is supported in exploring the different available alternative solu-
tions in order to find the solution that best corresponds to his or her preferences.
Especially when dealing with real-world applications, the overall aim of using a
multiobjective optimization is usually to find a single, final solution for the op-
timization problem. It should be noted that the final solution is not necessarily
directly provided by the optimization method, as the expert in the problem do-
main should always have the final say on the characteristics of the solution. The

12

DM or some other expert in the domain may choose to change some aspects of
the solution generated with the optimization method before an actual, real-world
product is produced.

When solving a multiobjective optimization problem, it may be difficult for
the DM to provide preference information before getting to know the possibilities
and limitations of the solutions attainable. On the other hand, generating and
comparing many Pareto optimal solutions may be computationally expensive,
i.e., time consuming, as well as exhaustive from the cognitive point of view. In the
literature (see e.g. [55]), several distinct exist approaches for supporting the DM
during the decision making process. In this thesis, we concentrate on interactive
approaches, where the most preferred Pareto optimal solution is found by asking
the DM to specify preference information in an iterative manner until the most
preferred solution is found.

When using a method based on an interactive approach, i.e., an interactive
method, the concerns related to cognitive load, and to computational expense are
lessened as the solution process consists of consecutive iterations, each dealing
with one or a small number of Pareto optimal solutions at a time. At each it-
eration, the DM provides preference information that is used to generate Pareto
optimal solutions that best correspond to the DM’s preferences. This means that
the DM can concentrate on solutions that are interesting to him or her and that
the cognitive load is distributed over several iterations. Furthermore, with the it-
erative process, the DM can learn about the interdependencies between the objec-
tives while simultaneously learning about the feasibility of his or her preferences.
In this way, the DM gains insight into the problem, which may even lead the DM
to change his or her preferences. Based on the learning process originating from
the interactive method, the DM can make informed decisions on which of the al-
ternative solutions is the best compromise for the problem. For these reasons, in
this thesis we concentrate on interactive methods.

Interactive methods have provided promising solutions in various fields
including mechanical engineering [43, 58, 65], chemical engineering [6, 12, 60],
health care [22, 68, 79, 80, 98], civil engineering [17, 69, 92], etc. Even though
many interactive methods have been proposed in the literature during the years
(see, e.g. [3, 35, 36, 47, 55, 67] and references therein), implementations of interac-
tive methods are not commonly available. In [42] it is suggested that in order to
increase the adaption of interactive methods, the technical aspects related to im-
plementing an interactive method should be separated from the methodological
issues. One aim of this thesis is to elaborate on this in order to enable the eas-
ier implementation of interactive methods by offering insights into the practical
issues encountered when following this division.

In practice, when solving a multiobjective optimization problem, it is not
enough to have access to an implementation of an optimization method. In addi-
tion, a realization of the optimization problem must exist, i.e., the problem model,
and some kind of a connection must also exist between these two. The practicali-
ties of the connection are often not considered at all, as the methods discussed in
the literature are usually applied only for a single or, at most, for a few real-world

13

problems. As one of the aims of this thesis is to support the DM when solving
multiobjective problems emerging from real-word applications, we consider the
requirements of constructing such a connection. Furthermore, the problem model
formulation is usually assumed to be correct when the optimization process is
started, but based on our experiences, this is often not the case in practice. In
light of this, we describe ways of utilizing the DM using an interactive method as
an additional means to consider the correctness of the problem model.

Real-world multiobjective optimization problems are usually computation-
ally expensive. The function evaluations may be complex, leading to computa-
tionally expensive computations or simulations (see e.g. [4, 36, 38, 93, 104]). The
computational expense may even be so high that the use of an interactive method
as described above may become infeasible due to the long waiting times needed
to generate new solutions. The DM may be forced to restrict his or her search onto
very few alternatives or, due to the time or other constraints, (s)he may stop the
solution process prematurely. This may mean that the best compromise solution
is not found or that the DM is not confident of the insight (s)he has gained during
the process.

Historically, the amount of computational resources available for an indi-
vidual engineer or a researcher has followed the so-called Moore’s Law, which
has predicted continuing increases to computing power as a result of doubling
the amount of components in a circuit every 18 months. Over several decades,
this has led to a significant increase in computational resources to be gained per
monetary costing unit (see e.g. [48]). As computational resources have increased,
it has been possible to solve existing optimization problems faster and faster. It
is quite possible that an optimization problem which was considered to be com-
putationally expensive when developed, requiring the use of optimization meth-
ods utilizing information regarding the problem characteristics when originally
solved [65], can later be considered to be computationally inexpensive, and can
be solved as a black-box problem, i.e., without using any additional information
[58]. Naturally, this means that the issues related to interactive methods when
dealing with a computationally expensive problem are overcome for those prob-
lems.

However, as the available computational resources have increased, it has
become possible to solve problems with more details so that the real-world appli-
cations can be reflected more accurately. Therefore, the complexity, and in effect
the computational expense of the problems, has also increased. This means that
one cannot assume that increases in the available computational resources would
remove the need for developing more efficient optimization methods. Instead,
other approaches should be considered.

Naturally, when dealing with computationally expensive optimization prob-
lems, one should use methods that produce good solutions using as few function
evaluations as possible. As mentioned earlier, one approach for solving computa-
tionally expensive problems is to utilize problem specific information, such as in-
formation on the derivatives of the objective functions. However, the real-world
problems are often based on complex calculations, where it is hard, or even im-

14

possible to obtain any additional information besides the values of objective (and
possibly constraint) functions and decision variables. Additional information can
be obtained for these so-called black-box problems by using, e.g., numerical dif-
ferentiation (see e.g. [21]) or automatic differentiation (see e.g. [31]). Neverthe-
less, these methods have their own trade-offs. For example, obtaining derivative
information with numerical differentiation has issues in terms of the accuracy of
the derivatives and increases the number of function evaluations. On the other
hand, use of automatic differentiation requires access to the internal details of the
problem model, which is usually not available when dealing with a black-box
problem.

Another widely used approach is to execute function evaluations in a par-
allel fashion by distributing them to different processors or computers in order
to decrease the total time needed for finding optimal solution(s) (see e.g. [5, 95]).
Again, especially when dealing with black-box problems, the problem formula-
tion may require resources that cannot be distributed. For example, the simula-
tor needed for the function evaluations may only have a limited number of li-
censes available. It should be noted that even when the problem is developed “in
house,” i.e., when all implementation details are available and can be changed,
the distribution of the function evaluations might prove to be burdensome if par-
allelism has not been considered at the beginning of the problem model formula-
tion.

Finally, one commonly used methodology for handling computationally
expensive black-box optimization problems is the use of a surrogate problem,
where the computationally expensive problem is replaced with a computation-
ally less expensive surrogate problem (see e.g. [2, 27, 74, 83, 106]). The construc-
tion of the surrogate problem may be computationally expensive, as it usually
involves generating several Pareto optimal solutions. However, as the DM is
involved only when exploring the Pareto frontier, the time-consuming calcula-
tions can be done without too large an effect on the solution process (see e.g.
[98]). It should be noted that when using a surrogate problem with an interactive
method, the Pareto optimal solutions shown to the DM are not solutions for the
actual problem. As the DM gains insight into the characteristics of the problem
based on the shown solutions, it is important that the solutions give accurate in-
formation. If the approximated solutions are not accurate, i.e., when they do not
correspond to the Pareto optimal solutions for the original problem, the DM may
develop a misleading view of the problem that can lead to wasted effort on the
part of the DM. It is even possible that the final solution selected by the DM will
not correspond to his or her preferences.

The motivation for this thesis originates from the experiences obtained from
the author’s participation in finding solutions for different optimization prob-
lems emerging from real-world applications. These have included a wide spread
of different types of optimization problems, including the optimal design of the
structure of a grapple loader [7], decision support for a housing mobility pro-
gram [41], problems in chemical process design [32], the separation of glucose
and fructose [33], the optimal control of a continuous casting of steel [57, 58], in-

15

tensity modulated radiotherapy treatment planning [79], brachytherapy for can-
cer treatment [81], the optimization of a heat exchanger network [PI, PII, 44],
optimizing configurations of an oxyfuel power plant process [100], optimizing
the concentration-dampening process in a tank [89], the optimization of an ul-
trasonic transducer [39], paper making [50], operating a wastewater treatment
plant [PIII, 35, 36], the optimization of an internal combustion engine [4], op-
timal design and control of a paper mill [93], the design of a permanent magnet
direct-driven wind generator [29], and the optimization of a two-stage separation
process [PIV, PV], among others.

Finding solutions for these and other problems has involved aspects from
the problem formulation to the technical details of supporting different simu-
lator and modeling software. In this thesis, we restrict our examination to the
issues related to implementing interactive optimization methods as well as to
preparing a problem model for optimization. To provide the practical results of
our research, we reflect on these issues by supporting several DMs in solving
multiobjective optimization problems for heat-exchanger network synthesis [PI],
operating a wastewater treatment plant [PIII], and two-stage separation process
[PIV, PV]. As all three optimization problems, or their extended formulations,
can be considered computationally expensive, we also discuss an approach for
utilizing an interactive method for computationally expensive problems. All of
our research results have been implemented in the IND-NIMBUS software frame-
work [56] (http://ind-nimbus.it.jyu.fi/) for interactive multiobjective optimiza-
tion. As an interactive method for solving these problems, we have used the
interactive NIMBUS method [55, 62, 64]. The IND-NIMBUS framework contains
implementations of all of the methods discussed in this thesis, as well as the tools
for accessing the problems being solved.

This thesis consists of four articles and a manuscript. In article [PI], we de-
scribe an implementation of the interactive NIMBUS method within the GAMS
modeling environment [14]. Based on the experiences gained, in [PII] we discuss
how an interactive method can be regarded as consisting of distinct components.
We describe these components as a core structure that can be used to facilitate the
implementation of an interactive method. We demonstrate the core structure by
re-implementing the interactive NIMBUS method within GAMS. These results
are then used to support the DM in solving a multiobjective heat exchanger net-
work synthesis problem [105] modeled with GAMS.

We introduce the IND-NIMBUS PAINT module in [PIII] for solving compu-
tationally expensive problems with interactive methods. The module can be used
to construct a PAINT surrogate problem [37] that can be solved with the NIMBUS
method. The IND-NIMBUS PAINT module is demonstrated by supporting the
DM in solving the problem of operating a wastewater treatment plant.

In article [PIV], we describe a general interface for coupling an interactive
method with simulator software. The interface is then used to connect the NIM-
BUS method to the dynamic process simulator APROS [88] and the connection
is used to solve a two-stage separator process problem. In [PIV] we also discuss
how the DM can assist in revisiting of a problem model by introducing an aug-

16

mented interactive multiobjective optimization (AIMO) algorithm.
As mentioned, using a surrogate problem may lead to a wasted effort on

the part of the DM if the surrogate is not accurate enough. Therefore, in article
[PV] we suggest maintaining the accuracy of a surrogate problem by updating it
based on the preference information that the DM provides during the interactive
solution process. To this end, we introduce an algorithm that utilizes independent
and intelligent agents to observe the interactive solution process, and, based on
the observations, to update the surrogate problem for the areas of interest. The
agent assisted algorithm can also provide the DM with additional Pareto optimal
solutions in the areas that the DM has shown interest in. We demonstrate the
agent assisted algorithm by solving the two-stage separator problem introduced
in [PIV].

The contents of the rest of this thesis are as follows. First, in Chapter 2 we
provide the basic concepts related to the multiobjective optimization and briefly
describe the methods that we have used in this research. In Chapter 3, we first
define a computationally expensive problem in the context of this thesis and then
continue with the author’s contribution to this thesis.

In Chapter 3, we consider the experiences gained from solving different
multiobjective optimization problems and suggest some practices for applying
interactive methods in real-world applications. Chapter 4 is devoted to pre-
senting the observations and hints on implementation issues of the interactive
methods gathered during the research related to this thesis. In Chapter 5, we de-
scribe the new agent assisted algorithm developed for assisting the DM in solving
computationally expensive multiobjective optimization problems with interac-
tive methods. The author’s contribution to the four articles and to the manuscript
included in this thesis is described in Chapter 6. Finally, in Chapter 7, we provide
some concluding remarks and discuss future research topics.

2 BACKGROUND MATERIAL

In this chapter, we discuss the background material used in this thesis. Besides
providing the formulation and the main concepts of the multiobjective problem
considered, we briefly give details on interactive methods in general, concen-
trating on the interactive NIMBUS method that has been the main method used
during the preparation of this thesis. Finally, we give a short overview of multi-
agent systems that are utilized by the agent assisted algorithm introduced in this
thesis.

In this thesis, we also refer to the PAINT method [37] and to the Pareto
Navigator method [27] developed for computationally expensive problems. The
Pareto Navigator method is suitable only for convex problems, and as the prob-
lem models discussed in this thesis are nonconvex, here we use the PAINT method.
When using either of these methods, the original, computationally demanding
optimization problem is replaced with a computationally less demanding sur-
rogate problem. The surrogate problem is constructed in such a way that it ap-
proximates the original problem, while allowing new solution candidates to be
produced faster than when using the original.

When using the PAINT method, the surrogate problem is constructed by
interpolation of a pre-computed set of Pareto optimal solutions. Here this set
is referred to as a constructing set. The constructing set can be generated with
any multiobjective optimization method that generates many Pareto optimal so-
lutions (see e.g. [85, 55, 13]). After constructing the surrogate problem, it can
be used to replace the original problem. The Pareto optimal solutions obtained
when using the surrogate problem are called approximate Pareto optimal solutions.
More details of the PAINT method can be found in [37].

18

2.1 Some Concept of Multiobjective Optimization

In this thesis, we consider multiobjective optimization problems of the form

minimize { f1(x), f2(x), . . . , fk(x)}
subject to x ∈ S,

(1)

where fi : S → R are k (≥ 2) conflicting objective functions, and x = (x1, x2, . . . ,
xn)T is the decision variable vector bounded by constraints that form the feasible
set S ⊂ Rn. Objective vectors f(x) = (f1(x), f2(x), . . . , fk(x))

T consist of objective
function values calculated at x. If some objective function is to be maximized, the
objective function values can be multiplied by −1 to get a function to be mini-
mized.

A decision vector x̂ and the corresponding objective vector f(x̂) are called
a Pareto optimal if there does not exist any other feasible x so that f j(x) ≤ fi(x̂)
for all i = 1, ..., k and f j(x) < f j(x̂) for least one j = 1, ..., k. The objective vector
f(x̂) is called Pareto optimal solution to problem (1), and a set of Pareto optimal
solutions is called a Pareto optimal set [55] or Pareto frontier.

For solving multiobjective objective optimization problems there exist sev-
eral different optimization methods. A solution process is the overall process to find a
solution for the problem (1). Depending on the method used during the solution
process, the solution to a multiobjective optimization problem can be a single
Pareto optimal solution or a set of Pareto optimal solutions. In practice, only a
single solution is desired to be implemented and in this thesis such a solution is
referred to as the final solution.

During a solution process, it is often useful to obtain information on the
possible ranges of the objective function among the Pareto optimal solutions. An
ideal (objective) vector z� ∈ Rk is the vector representing the best objective function
values, and a nadir (objective) vector znad ∈ Rk represents the worst values. Due to
issues related to method implementation, an utopian (objective) vector z�� is some-
times needed. The utopian vector is a vector whose components are strictly better
than those of z�.

These frequently used concepts of multiobjective optimization are illustrated
in Figure 1. In the figure, there are two objective functions, f1 and f2, and the fea-
sible set S. The ideal objective vector is shown as the point z� and nadir objective
vector as the point znad. The Pareto frontier is marked with a bold line.

The components of the ideal objective vector can be determined by opti-
mizing each objective function fi individually subject to the feasible set S. For
multiobjective optimization problems with more than two objectives, obtaining a
nadir objective vector is a more complex task. One approach of obtaining an es-
timate of the nadir objective vector values is to use a pay-off table [10, 55] which
can be formed after determining the ideal objective vector. Obtaining more accu-
rate values for the nadir objective vector is still an ongoing topic, see e.g. [25].

In order to an optimization problem to be solved, there must exist some
mathematical description of it. That is, some model that represents the different

19

f2

f1

S

z�

znad

FIGURE 1 Illustration of Pareto frontier, ideal and nadir objective vectors with k = 2

mathematical relations which describe functions of some physical phenomenon
or system. To solve this mathematical model with a computer, it must be imple-
mented as a computer program. In this thesis, a problem model refers to such a
program and the purpose of a problem model is to study a phenomenon or sys-
tem without need for physical example of it. The problem models considered in
this thesis are implemented either with a simulator software or with a modeling
language. Here, a simulator is a computer program that can be used to imitate
physical phenomena or systems. A modeling language is a definition of how math-
ematical expressions describing a physical phenomena or system so that it can
be interpreted with a modeling environment. In addition to interpreting problem
models, the modeling environment contains an optimization method to solve the
models. For further details on simulation and modeling environments see e.g.
[28, 73, 91].

As there exist multiple Pareto optimal solutions for any problem (1) with
conflicting objectives, some additional information is needed in order to select a
single or a set of most preferred Pareto optimal solutions. This is usually done
with the help of a decision maker (DM), who can provide information on his or her
preferences in relation to the problem being solved. In addition to the DM, the
solution process may involve an analyst. The analyst is a person who is familiar
with the method used during the solution process and helps the DM during its
use. In addition, the analyst may formulate the problem model, or the model may
by modeled by a modeler.

The role of the DM is so important that multiobjective optimization methods
are often classified according to the role of the DM (see, e.g., [55]) to four distinct
classes. When a multiobjective optimization problem is solved by a no preference
method, the DM’s preferences are not taken into account. If preference informa-
tion is provided by the DM before the solution process, the method is referred
to as an a priori method. When using an a posteriori method, the DM is provided
with a representative set of Pareto optimal solutions, from which (s)he selects the

20

solution (s)he prefers the most. Lastly, with an interactive method the DM partici-
pates in an iterative process, where (s)he is shown Pareto optimal solution(s) and
asked to provide preference information in relation to those solutions. Then the
DM is provided with new Pareto optimal solution(s) which should correspond to
his or her preferences.

With the interactive solution process, the DM can study the relationships
between the objective functions by obtaining an understanding on how changes
in some objective functions affect the others. By specifying the preference infor-
mation, the DM can guide the search process to the areas of interest, allowing
the DM to concentrate on a small set of Pareto optimal solutions. By learning the
behavior of the problem, the DM can adjust his or her preferences to reflect the
gained understanding.

One of the commonly used ways of solving a multiobjective optimization
problem is to formulate a single objective optimization problem that uses prefer-
ence information specified by the DM to generate a Pareto optimal solution. Such
a single objective optimization problem is referred here as a scalarized subproblem
and the objective function of the subproblem is called a scalarizing function. In the
next section we will give short description of scalarized subproblems.

2.2 Scalarization of the Multiobjective Optimization Problem

Interactive methods considered in this thesis are based on the scalarization of
the multiobjective optimization problem. As defined in the previous section, the
scalarization means that the problem is converted to a single objective optimiza-
tion problem. This is achieved by constructing a single objective scalarizing func-
tion and, in some cases, by adding new constraint functions to the subproblem.
This subproblem can then be solved by an appropriate single objective optimiza-
tion method.

The scalarizing function should be constructed in such a way that it can be
used to generate any Pareto optimal solution and all solutions generated are en-
sured to be Pareto optimal [55]. In addition, the scalarized subproblem typically
includes some preference information in order to generate satisfactory solutions
for the DM. As there exist several different ways of constructing the scalarizing
function, it is possible to generate different Pareto optimal solutions using the
same preference information (see e.g. [16, 63]).

In addition to using different scalarizing functions, the scalarized subprob-
lems can differ on what kind of preference information is used and how the pref-
erence information is specified by the DM. For example, the DM may be asked to
specify his or her preferences by providing aspiration levels, i.e., values of objec-
tive functions that (s)he would like to obtain, or (s)he could be asked to do pair-
wise comparisons between Pareto optimal solutions in order to indicate which
solutions (s)he prefers.

21

2.3 NIMBUS Method

As mentioned, in this thesis we utilize the interactive NIMBUS method [55, 64] as
the interactive method for solving multiobjective optimization problems. The im-
plementations of the NIMBUS method used here are realized in the IND-NIMBUS
software framework [58], along with the other methods researched in this the-
sis. In addition IND-NIMBUS, there exist a WWW-NIMBUS optimization sys-
tem, that has been available for free on the Internet for academic teaching and
research purposes since 1995 (wwwnimbus.it.jyu.fi) [62]. The WWW-NIMBUS
system is not considered in this thesis.

The NIMBUS method has been used for solving a wide array of multi-
objective optimization problems, including chemical process design [32], opti-
mal shape design of ultrasonic transducers [39], separation of glucose and fruc-
tose [33], continuous casting of steel [57, 58, 65] intensity modulated radiother-
apy treatment planning [79], brachytherapy for cancer treatment [81], optimiza-
tion of heat exchanger network [44], optimizing configurations of an oxyfuel
power plant process [100], wastewater treatment plant simulation and optimiza-
tion [35, 36], dynamic optimization of a two-stage separation process [PIV] and
for concentration control problem [89].

Next we describe the algorithm of the interactive NIMBUS method and the
scalarized subproblems used in the NIMBUS method to generate Pareto optimal
solutions. Originally (see [55, 61]), the NIMBUS method utilized only a single
scalarized subproblem, but in the so-called synchronous NIMBUS method [64]
three additional subproblems were introduced. Therefore, when using the NIM-
BUS the DM is provided up to four different Pareto optimal solution for each
preference information (s)he specifies.

2.3.1 NIMBUS Algorithm

The central idea of the NIMBUS method is that the DM is provided with the ob-
jective function values of the current Pareto optimal decision vector. The DM is
then asked to specify his or her preferences by classifying the objective functions
into up to five classes. This means that the DM is asked to indicate how the ob-
jective function values should be changed, in order to obtain a more satisfactory
solution. The classes are functions fi whose values

• should be improved (i ∈ I<),

• should be improved to some aspiration level ẑi < fi(x
c) (i ∈ I≤),

• are satisfactory at the moment (i ∈ I=),

• are allowed to impair up till some bound εi > fi(x
c) (i ∈ I≥),

• are allowed to change freely (i ∈ I�).

22

As solutions presented to the DM are Pareto optimal, there does not exist any
Pareto optimal solutions whose all objective function values could be better than
those of the solution shown to the DM. Therefore, the classification must be done
so that at least one objective function value should be improved, and at least one
is allowed to impair.

Based on the classification information specified by the DM, up to four dif-
ferent scalarized subproblems are constructed. As solutions to these subproblems
we obtain new Pareto optimal solutions to be presented to the DM. It should be
noted that it is possible that different subproblems do not all produce different
Pareto optimal solutions for the same classification information [63].

The NIMBUS method is described in Algorithm 1.

Algorithm 1 NIMBUS method algorithm

1: Calculate ranges of the objective functions and generate an initial Pareto op-
timal solution and set it as the current solution.

2: Ask the DM to specify the classification information at the current solution.
3: Ask the decision maker to select the number (one to four) of new Pareto opti-

mal solutions to be generated.
4: Generate new Pareto optimal solutions.
5: Present the new Pareto optimal solutions to the DM.
6: Ask the DM to choose the most preferred solution among the set of previously

generated the Pareto optimal solutions or the current solution.
7: If the DM wants to continue, go to step 2. Otherwise, stop.

In addition to steps presented in Algorithm 1, the DM can decide to generate
intermediate solutions between any two Pareto optimal solutions at any point
of the algorithm. This is done by generating as many evenly spaced objective
vectors as the DM desires between the two selected Pareto optimal solutions. The
resulting objective vectors are projected to the Pareto frontier and then presented
to the DM.

The initial Pareto optimal solution can either be given by the DM to be pro-
jected to the Pareto frontier, or it can be some neutral compromise solution be-
tween the nadir and ideal vectors [64]. The solution process is continued itera-
tively until the DM does not want to improve any objective function value, is not
willing to let any objective value impair or does not wish to generate additional
intermediate solutions.

By following the algorithm, the DM can move along the Pareto frontier, in
effect searching for the most satisfactory solutions available for the problem. Dur-
ing this search, the DM can learn about the problem and adjust one’s preferences
and finally to find a Pareto optimal solution that (s)he can be confident of being
the most satisfactory solution for the problem. For more details on the NIMBUS
method, see [64].

23

2.3.2 Scalarized subproblems of the NIMBUS method

As mentioned, there are up to four different single objective scalarized subprob-
lems used in the NIMBUS method. In the original NIMBUS method [62], there
was a single subproblem, a so-called standard subproblem. The standard NIM-
BUS subproblem is of the form

minimize max
i∈I<
j∈I≤

[
fi(x)− z�i
znad

i − z��i
,

f j(x)− ẑj

znad
j − z��j

]
+ ρ

k

∑
i=1

fi(x)

znad
i − z��i

subject to fi(x) ≤ fi(x
c) for all i ∈ I< ∪ I≤ ∪ I=,

fi(x) ≤ εi forall i ∈ I≥,
x ∈ S.

(2)

where xc represents the decision variable vector of the current solution. The lat-
ter part of the objective function is an augmentation term that guarantees that the
generated solutions are Pareto optimal (see [55, 63]) and ρ > 0 is a so-called aug-
mentation coefficient. The aspiration levels and bounds are given as ẑi and εi,
respectively. Here (and in the following formulations) we assume that all object
functions are to be minimized.

As different subproblem formulations typically generate different Pareto
optimal solutions [63], the current, so-called synchronous NIMBUS method [64]
has three additional, reference point based subproblems. These subproblems as-
sume that instead of a classification information, the DM has specified his or her
preferences as a reference point, marked here as z̄i ∈ Rk. If we know the ranges
of the objective functions in the Pareto frontier, the classification information can
be easily convert to a reference point. To do the conversion, it is possible to set
z̄i = z�i for i ∈ I<, z̄i = ẑi for i ∈ I≤, z̄i = fi(x

c) for i ∈ I=, z̄i = εi for i ∈ I≥ and
z̄i = znad

i for i ∈ I�.
Next we will present the three reference point based subproblems used in

the NIMBUS method. Of these, the first subproblem uses the achievement scalar-
ization function [102]

minimize max
i=1,...,k

[
fi(x)− z̄i

znad
i − z��i

]
+ ρ

k

∑
i=1

fi(x)

znad
i − z��i

subject to x ∈ S.
(3)

It should be noted that an objective vector can be projected to the Pareto frontier
by setting it as a reference point to problem (3). For example, in the NIMBUS
method, problem (3) is used to generate the intial Pareto optimal solution and
intermediate solutions.

The scalarization function of the satisficing trade-off method (STOM) [70] is
used in the second reference point based subproblem

minimize max
i=1,...,k

[
fi(x)− z��i

z̄i − z��i

]
+ ρ

k

∑
i=1

fi(x)

z̄i − z��i
subject to x ∈ S.

(4)

24

And finally, the scalarization function of the last subproblem is based on the
GUESS method [15]

minimize max
i=1,...,k

[
fi(x)− znad

i

znad
i − z̄i

]
+ ρ

k

∑
i=1

fi(x)

znad
i − z̄i

subject to x ∈ S.
(5)

The subproblems presented above are nondifferentiable as they involve sin-
gle objective min-max functions. The multiobjective optimization problems con-
sidered in articles [PI, PII] are differentiable, and therefore the original nondif-
ferentiable subproblems were modified to their differentiable equivalents. This
was done by adding a new decision variable α to the problem, and treating the
min-max functions as constraints. As an example, the differentiable version of
subproblem (2) is

minimize α + ρ ∑k
i=1

fi(x)

znad
i −z��i

subject to
fi(x)− z�i
znad

i − z��i
≤ α for all i ∈ I<,

f j(x)− ẑj

znad
j − z��j

≤ α for all j ∈ I≤,

fi(x) ≤ fi(x
c) for all i ∈ I< ∪ I≤ ∪ I=,

fi(x) ≤ εi for all i ∈ I≥,
x ∈ S.

(6)

The differentiable formulations of the three other subproblems used in the NIM-
BUS method are straightforward, and therefore they are not presented here.

2.4 Multiagent Systems

Next, we will give a short overview of the agents and multiagent systems used
in this thesis. For the past few decades, agent-based computational intelligence
approaches have been widely applied in several areas of computational sciences
[71]. There does not exist any clear, universally agreed definition of an agent,
but to put briefly, an agent is an autonomous computational unit that can observe
its environment and take actions to fulfill its purpose in reaction to the observa-
tions. Agents are usually combined to form a multiagent system, where individual
agents can communicate between themselves in order to share information on
the environment and results of their actions.

Previously, agent-based technologies have been used for single (see e.g. [8,
46, 84, 86] and multiobjective (see e.g. [9, 23, 26, 45, 87, 90] optimization. In the
previous research on agent-based multiobjective optimization, the focus has been
on enhancing existing a posteriori methods or on studying a new agent-based a
priori methods. To our knowledge, research conducted in [PV] is the first agent-

25

based approach to a combine multiagent system with an interactive method to
support the DM in solving multiobjective optimization problems.

For the needs of our research, we have defined an agent to have the follow-
ing six properties:

Emergent : agents solve problems with a set of simple rules.
Autonomous : agents have control of their inner state and they can take actions

without human intervention.
Reactive : agents take actions based on their environment.
Goal-oriented : agents aim at achieving some goal with their actions.
Communal : agents are able to communicate with other agents, be they human

or artificial.
Fault tolerant : agents can attempt to recover from a failure, e.g., a failure in reach-

ing their goal.

With relatively simple agents fulfilling these properties, it is possible to construct
complex multiagent systems that can be utilized for solving complex problems.
Even tough the efficiency of utilizing multiple agents has been widely discussed
in the literature (see e.g. [24, 51]), the research has concentrated on empirical stud-
ies, where the performance of agent-based optimization technologies is compared
with more traditional methods. Nevertheless, it has been noted that by combin-
ing different methods, for example as a multiagent system, it is possible to ensem-
ble structures where weaknesses on some parts are compensated by strengths in
others [96]. Furthermore, in [99] it has been shown that the use of agent-based
optimization should not decrease the efficiency of the underlying optimization
method.

As multiagent-based systems have been widely used since 1990’s, there ex-
ist several software frameworks for implementing multiagent systems and han-
dling the communication issues between the agents. For this research, we have
used the SPADE framework [30], following the FIPA communication model [71].
For further information on agents and multiagent systems, see e.g. [82, 103].

3 FINDINGS ON SOLVING MULTIOBJECTIVE

OPTIMIZATION PROBLEMS WITH INTERACTIVE

METHODS

As mentioned earlier, the main research questions of this thesis have originated
from the direct need to solve multiobjective optimization problems emerging
from several different fields. These problems have usually been complex, result-
ing in computationally expensive problem models. In addition, the complexity
of the problems has often raised issues concerning the problem model’s validity.
In this chapter, we first give a definition of a computationally expensive problem
model in the context of this thesis, i.e., when solving a problem with an interac-
tive method. We then start by describing the author’s contribution in this thesis
by giving some insight into issues that can be encountered when solving such
problems. We continue with the author’s contribution by discussing how the in-
volvement of the DM can be taken into account for revising the problem model
when using interactive methods. Finally, as a problem model must be connected
to an implementation of a method before it can be solved, we discuss how such a
connection can be achieved.

3.1 On Computationally Expensive Problems

As mentioned earlier, the multiobjective optimization problems that have mo-
tivated this thesis have commonly been what we consider as computationally
expensive. In the context of this thesis, a multiobjective optimization problem is
considered to be computational expensive, if providing a solution for the prob-
lem is time consuming. For the problems that we have dealt with, the demands
on time have been due to the time needed for performing complex calculations
to evaluate the objective (and constraint) function values (see e.g. [36, 93]).

In our experience, when solving a computationally expensive problem with
an interactive method, the time consumed may prove to be so high that the DM

27

is unable or unwilling to finish the solution process. It is also possible that the
analyst involved in the solution process has only limited time available. There-
fore, the process can be stopped even if some of the participants feel that there
may be areas of the problem that have not yet been thoroughly explored. If so,
the prematurely selected final solution may not be the most preferred solution,
or the DM may not be confident that his or her preferences have been taken fully
into account.

In this thesis, we approach solving a computationally expensive problem
with an interactive method by replacing the problem with a computationally less
expensive surrogate problem. When the DM has found the set of solutions for
the surrogate problem that best corresponds to his or her preferences, these so-
lutions can be projected to the Pareto frontier of the original problem and shown
to the DM. In [PIII] we replace the computationally expensive wastewater treat-
ment problem with a surrogate problem constructed with the PAINT method
[37]. However, as discussed in [PV], such a surrogate problem may be inaccu-
rate in the areas that the DM is interested in, and the solution process may lead
to misleading results. Furthermore, it is possible that the surrogate problem may
be accurate for some areas of the problem, but not for others. Therefore, the ac-
curacy all of the solutions to the surrogate problem must be checked. Overall,
when using a surrogate problem, the DM should be given an indication of how
accurate the found solutions are. If the accuracy information is not provided by
the method used for constructing the surrogate problem, the DM can be shown
the differences between the solutions for the surrogate problem and the solutions
obtained by projecting them onto the Pareto frontier of the original problem in re-
lation to the ideal and nadir vector component values of the problem so that (s)he
can gain some idea on as to how accurate the solutions to the surrogate problem
might be.

The total time consumed to obtain the Pareto optimal solutions with an in-
teractive method depends ultimately on the problem being solved. Nevertheless,
the DM is the final arbitrator on deciding if the solution process is computation-
ally expensive, i.e., if it is taking a “long” time, or not. Therefore, it is difficult
to define a general distinction between a computationally expensive and an in-
expensive problem, and the DM should be given the choice regarding “if and
when” to use a surrogate problem. The DM should be given information on the
accuracy of the surrogate problem, as if the surrogate problem is unacceptably
inaccurate, then the whole solution process may prove to be a waste of effort on
the part of the DM.

In general, if the inaccuracies cannot be adequately addressed, we suggest
that the use of the surrogate problem should not be the default approach when
solving computationally expensive problems with interactive methods. How-
ever, if the solution process cannot be made more efficient, i.e., faster, with other
approaches such as parallelization, the use of a surrogate problem may be the
only feasible option. In Chapter 5, we propose dealing with the accuracy of the
surrogate problem by updating the accuracy in the areas that the DM is interested
in.

28

In any case, the method implementation should be constructed so that the
DM has an option to pause the solution process at any point (s)he so wishes. This
means that the implementation should take note of the preference information
provided by the DM and the Pareto optimal solutions obtained, and should allow
the DM to study them, even after some period of time.

3.2 Augmented Interactive Multiobjective Optimization Algorithm

Even though in this thesis we do not consider how an optimization problem is
modeled, the problem model is an integral part of our research. When exploring
the problem model with an interactive method, the DM usually notices if any
discrepancies exist in the trade-offs between conflicting objectives. In this section,
we will consider how this aspect of interactive methods can be utilized during the
solution process.

Based on the experiences of the author, and as discussed in [PIV], it is sur-
prisingly common that the model for the optimization problem to be solved is not
complete when an optimization method is initially used for finding the optimal
solution(s). Even though the model validation is an important part of the process,
it is usually not discussed in the literature. Instead, it is assumed that the model
representing the optimization problem is formulated correctly without further
comments. On the other hand, the possible inconsistent and erratic behaviors
arising from the incomplete model can usually be easily observed when a prob-
lem is solved with an interactive method. When exploring the Pareto frontier,
the DM can easily see if the interdependencies between the objective functions or
their values do not correspond to his or her expectations. Similarly, the analyst
can notice issues with the sensitivity of the problem model during the solution
process.

Ideally, the correctness of the problem model should be verified before start-
ing the solution process. In practice, this is often not the case, due to the com-
plexity of the model, the time constraints imposed on the problem modeler, etc.
In [PIV] we have presented AIMO algorithm, where we take advantage of the
involvement of the DM in the interactive solution process by giving him or her
an opportunity to revise the problem model. In Figure 2, we present a slightly
simplified version of the algorithm.

A more detailed description of the AIMO algorithm is described in Algo-
rithm 2. In Algorithm 2, new solutions are generated with an interactive method
as described in Section 2, but the DM is given an option to provide information
on the correctness of the problem model. If (s)he feels that the problem model
is not correct, the modeler should revise the problem model, taking into account
the comments made by the DM. Naturally, after each formulation, the modeler
should also verify the correctness of the model.

In practice, the AIMO algorithm has been utilized when solving several dif-
ferent multiobjective optimization problems, including the problems in [PIII, PIV,

29

1. Formu-
late the
problem

2. Is
problem
model
valid?

3. Com-
pute new
solution(s)

4. Re-
validate?

5. Is the
solution
satisfac-

tory?

6. Stop

no

yes

yes

no

yes
no

FIGURE 2 Flowchart of the augmented interactive multiobjective optimization algo-
rithm

Algorithm 2 Augmented interactive multiobjective optimization algorithm

1: Formulate the problem model.
2: Verify the correctness of the problem model. If verification fails, go to step 1,

otherwise continue.
3: Compute the initial solution to be shown to the DM.
4: Ask the DM to specify the preference information.
5: Compute new solution(s) to be shown to the DM.
6: If the DM wishes to revise the problem model, go to step 1, otherwise con-

tinue.
7: If the DM finds his or her preferred solution, continue, otherwise go to step 4.
8: The solution process is stopped.

30

PV], although it was described for the first time in [PIV]. For example, as reported
in [PIV], an example of successful validation of the problem model by applying
the AIMO algorithm can be found in [89], but the AIMO algorithm is not men-
tioned there. In [89], mistakes in the problem model formulation were detected
immediately when the AIMO algorithm was applied, yet regardless of that, the
problem model was previously solved with several different a posteriori meth-
ods. When using the posteriori method, the set of Pareto optimal solutions was
shown to the DM, but he was not provided with any support in choosing the most
preferred solution from the set. When using the interactive method, the DM was
forced to consider the trade-offs when providing his preferences in step 4 of the
AIMO algorithm and when the obtained Pareto optimal solutions did not follow
his expectations, the question of problem model validity was brought up. The
author has had similar experiences with other studies, but they have not been
reported beyond [PIV, 89] and this thesis.

To summarize, we propose to use the AIMO algorithm to take advantage
of the DM’s expertise regarding the problem being solved. As the DM explores
the trade-offs between objective functions, (s)he can detect any discrepancies and
suggest that the problem model might be incorrectly formulated.

3.3 On Connecting the Interactive Method with the Problem Model

In this thesis we assume that a problem model exists that can be utilized in the so-
lution process. Naturally, when solving an optimization problem it is not enough
to have a valid problem model as the model must somehow be connected to
an implementation of an optimization method. Next, we will discuss some ap-
proaches for building such a connection between a multiobjective optimization
problem model and an interactive method.

In [PII], we give a short overview of how an existing model of an optimiza-
tion problem can be prepared to be solved with an interactive method in a model-
ing environment (such as GAMS [14], AMPL [28] and AIMMS [11]). In [PIV], we
consider how to build a more general interface to enable communication between
an implementation of an interactive method and the software utilized (referred
as to simulator software in what follows) for modeling the optimization prob-
lem. To this end, we consider two different alternatives: (i) including the interac-
tive method as a part of the simulator software, or (ii) defining the optimization
method and the simulator software as two independent components connected
with a communications layer.

For the first alternative, the most simplistic approach is to connect the im-
plementation of an optimization method very tightly to the simulator software to
form a single software package. With such a tight coupling, any changes either in
the problem model or in the implementation of the interactive method require the
reconstruction of the whole software package. This usually cannot be done with-
out full access to both. The connection can be loosened, for example by utilizing

31

so-called call-back functions, where instead of directly connecting the implemen-
tation of the optimization method to the simulator software, a part of the other
component is passed to the other component. The relevant part can then be used
whenever needed by the receiving component. For example, the implementation
of the optimization method can be provided with information on the location of
the machine code used for calculating the objective and constraint function val-
ues in the computer’s memory. By providing this machine code with information
on the decision variable values, the function values can be calculated whenever
needed by the implementation of the method. By clearly defining the format
of the passed information, the implementation of the optimization method and
the simulator software can be easily replaced with some other implementation
or software. However, even with this approach, the interactive method and the
simulator software are combined to form a single software package and replacing
either part of the package can prove to be difficult.

Furthermore, when using the call-back function approach, the implementa-
tion of the optimization method and the simulator software share the process and
memory space with each other. This makes it difficult to distribute different parts
of the software package between different processors or computers. As distribut-
ing the calculations is a commonly used technique for dealing with computation-
ally expensive problems, in [PIV] we suggest loosening the connection between
these components with the second proposed alternative, i.e. with a communica-
tions layer. In this way, we can separate the implementation of the optimization
method from the simulator software into clearly distinct components. This layer
can be as simple as a predefined format for input and output files that are written
and read by the different components as needed. Using such files still restricts
the available options when operating in a distributed environment. Therefore,
in [PIV] we have developed a socket based communications layer, referred to in
this thesis as a coupling interface that can be used for communication between the
implementation of the optimization method and the simulator software in varied
environments.

The sequence diagram of the coupling interface can be seen in Figure 3.
Here, the problem model side of the interface offers two requests, i.e., getProb-
lem() and evaluate(). When called, the getProblem request returns a problemDe-
scription object that contains the description of the optimization problem, includ-
ing problem dimensions (such as the number of objective functions and decision
variables) and information on the problem characteristics (such as if decision
variables are continuous or discrete). If the problem model is not defined, or
incomplete, the getProblem request can cause an invalidProblem message to be
sent. This message must then be processed by the interactive method implemen-
tation, for example by notifying the DM of the error and stopping the solution
process.

After the interactive method implementation has obtained problem descrip-
tion, it can formulate the scalarized subproblem(s) and start the single objective
optimization. The objective and constraint function values for the optimization
are obtained by the evaluate() request of the problem model. By passing the deci-

32

Interactive method Problem model

getProblem()
problemDescription

invalidProblem

evaluate()

runResult

runFailure

LoopLoop optimization

FIGURE 3 Sequence diagram of the coupling interface

sion variable values with the evaluate request to the problem model, the imple-
mentation of the interactive method can obtain the function values as a runResult
object. The evaluate requests are continued in an optimization loop until the opti-
mization finishes. It is possible for the evaluation to fail during the optimization,
for example, if some of the functions could not be evaluated for the given decision
variable values. If so, the problem model sends a runFailure message. Naturally,
the implementation of the method must then consider if the optimization loop
must be interrupted or if the evaluate requests should be repeated with other
decision variable values.

When utilizing the coupling interface as suggested in [PIV], the problem
model is clearly separated from the implementation of the optimization method.
This means that as the access to the optimization problem model is available only
through the coupling interface, the problem model can be changed without any
modifications to the implementation of the method. Similarly, if the tools used
for formulating the problem model use the coupling interface, using an imple-
mentation of another interactive method for solving the problem model should
be a straightforward task.

In this chapter we have given an insight into how to utilize interactive meth-
ods for computationally expensive problems. We have noted that the DM in-
volved with the interactive solution process can provide information on the va-
lidity of the problem model. We have described how this information could be
utilized by proposing the AIMO algorithm. Finally, we have introduced the cou-
pling interface that can be used for building a flexible connection between an op-
timization method and a problem model. In the next chapter, we continue with a
further discussion on the issues related to implementing an interactive method.

4 CONTRIBUTION WITH RESPECT TO

IMPLEMENTATION

Several interactive multiobjective optimization methods have been discussed in
the literature (see, e.g. [47, 55, 67] and references therein), but t not that many
implementations of them exist (see e.g. [75, 101]). This can be considered to be
somewhat surprising, as these interactive methods have been successfully used
to solve multiobjective optimization problems for various topics, including reser-
voir management [3], operating a wastewater treatment plant [35, 36], the con-
struction of bridges [69] and analyzing air pollution [92], among others.

In this chapter, we present observations and hints gathered during this re-
search for enabling the easy implementation of interactive methods. In our re-
search, we have identified a set of core steps that can be used as a framework
when building practical implementation of an interactive multiobjective opti-
mization method. We consider this an important topic, as without a practical
implementations of methods it is not possible to apply new methods for solving
multiobjective optimization problems.

In what follows, we first describe a core structure that has been formed by
using the identified steps. Then we briefly provide details on how, by following
the core structure, we have constructed the IND-NIMBUS software framework
that includes several interactive method implementations as well as tools for con-
necting problem models to the implementations. One can see IND-NIMBUS as
a concrete example of how the core structure can be utilized in implementing in-
teractive methods. We continue by providing details of the GAMS-NIMBUS Tool
and the IND-NIMBUS PAINT module developed in this thesis. We finish this
chapter with a short overview of the user interface the different DMs have used
while solving the problems considered during the research of this thesis.

34

4.1 Core Structure of Interactive Methods

In this section we describe the characteristics common to scalarization-based in-
teractive multiobjective optimization methods. The given description is intended
as a general guideline on building an implementation of an interactive multi-
objective optimization method. We do not consider one particular method; the
characteristics apply for all scalarization-based interactive methods.

As described in Chapter 2, the solution process of an interactive multiobjec-
tive optimization method is iterative. The DM is first shown the objective func-
tion values of a Pareto optimal solution and is then asked to specify his or her
preferences in relation to that solution. This preference information is used to
generate new, more satisfactory Pareto optimal solution(s). The process is contin-
ued with the DM specifying preferences for the new Pareto optimal solution (or
for a previous one, if the DM did not find the new solution(s) satisfactory). By
following this process, the DM can direct the exploration of the Pareto frontier
in the directions that (s)he is interested in. The aim of this solution process is to
support the DM to find a single Pareto optimal solution that (s)he considers the
most preferred of the solutions found in the Pareto frontier (see, e.g. [67]). Thus,
the iterative process is continued until the DM feels that such a Pareto optimal
solution has been found.

Even though the solution process described above seems to be quite straight-
forward, previous experiences have shown that such a literal description does
not necessarily offer enough insight into different components and their roles
for researchers who are not familiar with interactive methods to enable them
to construct an implementation of an interactive method successfully. Based on
the results presented in [PI], it is evident that a need exists for a more formal
presentation of the structure of interactive multiobjective optimization methods
. By following the general interactive approaches described in [47, 78], in [PII]
we present a core structure of an interactive multiobjective optimization method.
The core structure describes the steps needed for implementing an interactive
method, as well as the information flow between different components of the
structure. Naturally, each interactive method includes different details, which
implies there are various needs for each implementation. Nevertheless, the core
structure presented here offers an insight into how an interactive method can be
implemented, simplifying the process, especially when constructing a software
tool including different interactive methods.

In general, an interactive multiobjective optimization method can be con-
sidered to be constructed from the following six steps:

1. Initialize, e.g., calculate the ideal and nadir objective vectors.

2. Solve a method-specific subproblem to generate an initial Pareto optimal
solution to be used as a current solution.

3. Ask the DM to provide preference information related to the current solu-
tion.

35

FIGURE 4 Core structure of an interactive method

4. Generate new solution(s) based on the preference information by solving
appropriate subproblem(s).

5. Ask the DM to select the best solution of the previously generated solutions
and denote it as the current solution.

6. If the selected current solution is satisfactory, stop. Otherwise continue from
step 3.

As noted in [PII], two distinct parts can be identified from the core structure: the
user interface part (steps 3 and 5) and the algorithm part (steps 1, 2 and 4). The
information flow between different components of the core structure can be seen
in Figure 4. As can be seen, steps 1 and 2 of the core structure do not need in-
formation from the DM and can be combined into a single initialization model.
The initialization model produces the initial Pareto optimal solution (in addi-
tion to other possible initialization routines specified by the interactive method
in question) that is conveyed to step 3. The DM is then asked to specify his or her
preferences, which are provided to step 4 of the core structure.

In step 4, the preference information is used to formulate a scalarized sin-
gle objective subproblem. As mentioned earlier, the scalarized subproblem, i.e.,
the scalarization model, is formulated in such a way that the generated solution
is Pareto optimal and corresponds to the preferences specified by the DM. Dif-
ferent interactive methods ask the DM to specify the preference information in
different ways, and naturally different methods use different scalarizations when
formulating the subproblem (see, e.g. [15, 64, 67, 70, 78, 102]).

The Pareto optimal solution obtained with the scalarized subproblem is then
conveyed to step 5 of the core structure. The DM then selects a new current solu-
tion and either continues to step 3 in order to specify new preference information
or selects the current solution as the final solution for the problem (as per step 6).

36

The core structure has been used as a guideline by the author for imple-
menting several different interactive methods. By following the core structure
and the coupling interface described in Chapter 3, we were able to construct the
IND-NIMBUS software framework that we have used as the foundation for the
research conducted in this thesis.

4.2 The IND-NIMBUS Software Framework

One of the main aims of this thesis has been finding ways of increasing the use
of interactive methods for solving multiobjective optimization problems. To this
end, the applicability of the results presented in this thesis has been demonstrated
by software implementations and by utilizing the implementations for solving a
wide array of multiobjective optimization problems. The main apparatus for this
has been the IND-NIMBUS software framework.

The IND-NIMBUS software framework is a multi-platform framework pro-
viding tools for implementing different interactive multiobjective optimization
methods. The design of the IND-NIMBUS framework follows the core struc-
ture of the interactive methods described in Section 4.1; that is, the framework
has been clearly separated into the user interface, algorithm and problem model
parts. Therefore, the IND-NIMBUS software framework can be utilized for imple-
menting several different interactive multiobjective optimization methods in the
same environment. As an example of such methods, the IND-NIMBUS frame-
work contains implementations of the NIMBUS [64] and the Pareto Navigator
[27] methods as well as the PAINT surrogate method [37]. These implementa-
tions reuse the user interface and algorithm components in different methods.
This has led to an environment where new methods can be implemented conve-
niently and in a timely manner.

The IND-NIMBUS framework does not support formulating multiobjective
optimization problems. Instead, problems modeled with different simulators or
programming languages can be connected to the framework with different in-
tegration tools. Examples of the use of such integration tools include the MAT-
LAB® environment used for radiotherapy treatment planning [79, 80], the Balas®
process simulation software for chemical process design [32, 34], the Numerrin
environment used in optimal shape design [39], the GAMS environment used for
optimization of a heat exchanger network [PI, 44] and an oxyfuel power plant
process [100], the GPS-X™ simulator used for the optimization of operating a
wastewater treatment plant [PIII, 35, 36], the APROS dynamic process simula-
tor used for optimization of a two-stage separation process [PIV] and for plant
automation [89] and almost any programming language, such as C, C++, and
Fortran [40, 49, 58, 65].

The IND-NIMBUS software framework has been invaluable for this thesis.
As the framework follows the core structure, it has offered a convenient basis
for different interactive methods. By utilizing the coupling interface described

37

in Section 3.3 it has been possible to use different interactive methods for solv-
ing the same multiobjective optimization problem without the need to adapt the
problem. In addition, the clear definition of the coupling interface has enabled a
convenient way for connecting the interactive methods implemented within the
IND-NIMBUS framework with different simulation and modeling tools.

The results presented in this thesis have been obtained with methods and
tools implemented in the IND-NIMBUS framework. Without the possibility of
being able to utilize this framework, the research undertaken in this thesis would
have taken a greater effort, and in part, could have been impossible to carry out.
In the next section, we provide brief description of the implementations of the
different methods used in this research.

4.3 Method Implementations

As mentioned earlier, the IND-NIMBUS software framework has been imple-
mented following the core structure described in [PII], where the algorithm part
of the interactive multiobjective optimization method is clearly separated from
the user interface part as well as from the underlying multiobjective optimiza-
tion problem. In this section, we will briefly describe the different methods im-
plemented within the IND-NIMBUS software framework during the research of
this thesis. These include an implementation of the NIMBUS method [64] for the
GAMS modeling environment as well as an implementation of the PAINT surro-
gate method [37].

In addition to the implementations described here, the IND-NIMBUS frame-
work includes another implementation of the NIMBUS method, called the NIM-
BUS Kernel, and an implementation of the Pareto Navigator method [27, 97].
As mentioned earlier, the Pareto Navigator method is suitable only for convex
problems and is not discussed in this thesis. The NIMBUS Kernel is an imple-
mentation of the NIMBUS method that traces it roots to the WWW-NIMBUS op-
timization system operating on the Internet [62]. Originally, the NIMBUS Kernel
did not follow the core structure described in [PII], but later on it was refactored
(on refactoring, see e.g. [54] and references therein) to reflect the core structure.
The NIMBUS Kernel is utilized for the research carried out in article [PV] in-
cluded in this thesis, but here we concentrate on the more recent implementation
of the GAMS-NIMBUS Tool. Nevertheless, it should be noted that in addition to
the scalarized subproblems of the NIMBUS method described in Section 2.3, the
NIMBUS Kernel contains several single objective optimization methods that can
be used for solving the subproblems. These include global optimization methods
such as differential evolution [94], a controlled random search [77] and genetic
algorithm [66], as well as local optimization methods such as COBYLA [76] and a
proximal bundle method if the subgradient information is available [72]. As they
are not considered in this thesis, they are not discussed further.

Next, we will describe the GAMS-NIMBUS Tool that has been implemented

38

following the steps given in the core structure. Then we will describe the IND-
NIMBUS PAINT module that can be used for solving computationally expensive
problems with a surrogate problem constructed by the PAINT method using the
NIMBUS method.

4.3.1 GAMS-NIMBUS Tool

The GAMS modeling environment [14] is a widely used modeling system for
mathematical optimization. It is aimed at solving single objective optimization
problems, but GAMS has been applied to problems with several, conflicting ob-
jectives (e.g. [1, 53]). To our knowledge, no implementations existed for inter-
active multiobjective optimization methods for the GAMS modeling environ-
ment prior to the implementation of the interactive NIMBUS method proposed
in [PI, PII].

In [PI], we consider the multiobjective heat exchanger network synthesis
(synheat) problem that was originally solved using the weighted sum method
[105]. The problem model was reformulated for [PI] by adding the GAMS for-
mulations of scalarized subproblems needed by the NIMBUS method and by re-
moving the formulations related to the originally used weighted sum method.
This resulted in a Synheat-NIMBUS GAMS model, which is a combination of
the synheat problem model and of the NIMBUS method. The Synheat-NIMBUS
model is constructed manually, which is a laborious and error-prone process, and
the NIMBUS method was only partially implemented. For example, it contained
only the standard scalarized subproblem of the NIMBUS method and generated
only a single solution per iteration instead of the (up to) four generated by the
NIMBUS method. Furthermore, the formulations contained minor errors and
some of the obtained solutions were not Pareto optimal.

In addition, the Synheat-NIMBUS model is specific to the heat exchanger
network synthesis problem and cannot be directly utilized for solving different
multiobjective optimization problems. Due to this, and other issues identified in
[PI], we decided to give a detailed description of how to solve the dilemma of
implementing an interactive method in [PII]. This resulted in the core structure
described in Section 4.1. Based on the core structure, in [PII] we provide insights
into how to further develop the Synheat-NIMBUS model in order construct a tool
that can be used to solve almost any multiobjective optimization problem mod-
eled in a GAMS modeling environment with the interactive NIMBUS method.
This research resulted in the GAMS-NIMBUS Tool.

As per the core structure described in Section 4.1, in the GAMS-NIMBUS
Tool the GAMS models describing the subproblems of the NIMBUS method are
separated from the GAMS problem model into distinct scalarization models. Due
to this separation, it is possible to modify the problem model without modifying
the method-specific subproblem models, and vice versa. This means that even
though the GAMS-NIMBUS Tool is motivated by solving the heat exchanger net-
work synthesis problem described in [PI], it can be easily used for solving differ-
ent problem models. In [PII], we demonstrate this by using the GAMS-NIMBUS

39

Tool to solve a power generation problem [52] modeled with GAMS in addition
to the heat exchanger network synthesis problem.

With the GAMS-NIMBUS Tool, we can provide the GAMS community with
a well-studied interactive method, as well as with mature user interface for using
the method. In [PII], we have demonstrated how to apply the steps of the core
structure when implementing the GAMS-NIMBUS Tool, and by following simi-
lar steps it should be possible to implement other interactive methods either for
GAMS or for any other environment such as with other modeling (i.e. AMPL [28]
or AIMS [11]) or programming languages. Such implementation would allow for
utilizing the advantages of the interactive multiobjective optimization methods
for solving problems modeled in the environment. On the other hand, the imple-
mentation would also allow the scalarization-based interactive methods to gain
the benefit of being able to solve scalarized subproblems with the efficient single
objective optimization methods included in the environment.

4.3.2 IND-NIMBUS PAINT Module

As mentioned in Section 3.1, when solving computationally expensive multiob-
jective optimization problems with an interactive method, a fruitful approach
may be to replace the original problem with a computationally less expensive
surrogate problem. To accomplish the use of surrogate problems in the IND-
NIMBUS software framework, in [PIII] we implement the PAINT method [37]
for the framework. With this so-called IND-NIMBUS PAINT module, we can
construct a surrogate problem that can be solved with the interactive NIMBUS
method.

As described in [PIII], when a problem is solved with the IND-NIMBUS
PAINT module, the module constructs a surrogate problem based on a set of
Pareto optimal solutions generated with an a posteriori method. Then the pref-
erences specified by the DM are used to generate approximate Pareto optimal
solutions, i.e., the Pareto optimal solutions for the surrogate problem. At any
point during the solution process, the DM can decide to project an approximate
solution onto the Pareto frontier of the original problem using the achievement
scalarization function [102], as described in e.g. [PII].

As the IND-NIMBUS PAINT module follows the coupling interface described
in Section 3.3 and the core structure described in Section 4.1, it is not attached to
any distinct problem model and a surrogate problem can be constructed for any
problem model on the IND-NIMBUS framework. Furthermore, the surrogate
problem can be used with any interactive method included in the framework.
Similarly, the PAINT method of the IND-NIMBUS PAINT module can be replaced
with any other method that uses a set of Pareto optimal solutions to construct the
surrogate problem.

In [PIII], the IND-NIMBUS PAINT module is utilized for constructing a sur-
rogate problem for the computationally expensive problem of operating a waste-
water treatment plant. The surrogate problem was explored by the DM using the
interactive NIMBUS method, producing solutions for the surrogate problem. Af-

40

FIGURE 5 The IND-NIMBUS software framework

ter projecting these solutions onto the Pareto frontier of the original problem, the
DM deemed them to be satisfactory for the problem. Nevertheless, for some of
the projected solutions, the errors between the solution for the surrogate problem
and projected solutions seemed to be very high in relation to the ideal and nadir
values. Therefore, the IND-NIMBUS PAINT module was further studied in [PV],
where the accuracy of the PAINT surrogate problem is increased in the areas that
the DM is interested in. Unfortunately, due to licensing issues, the problem of
operating wastewater treatment plant could not be considered in [PV]. It should
be noted that the problem was previously solved in [35, 36] with the NIMBUS
method, and as the NIMBUS implementation utilizes the same coupling interface
as the IND-NIMBUS PAINT module, the problem could be used for this research
without any additional effort.

4.4 User Interface

In addition to the implementations of different interactive methods and coupling
interfaces for connecting problem models to the framework, the IND-NIMBUS
software framework contains several graphical user interfaces. Currently, the
IND-NIMBUS framework contains two different graphical user interfaces for spec-
ifying the classification information for the NIMBUS method as well as two dif-
ferent graphical user interfaces for navigating the Pareto frontier with the Pareto
Navigator method. As mentioned earlier, the Pareto Navigator is only suitable
for convex problems, and therefore we do not consider it in this thesis. As the

41

FIGURE 6 NIMBUS classification view

functionality of the two NIMBUS method user interfaces is more or less identical,
we give a brief description of only the most commonly used classification view.

The initial view of the IND-NIMBUS software framework can be seen on
Figure 5. In the figure, the DM has opened a problem model with three objectives
and then used the NIMBUS method to produce six Pareto optimal solutions for
the problem. The user interface of the NIMBUS method is located on the left side
of the figure, where the objective function values of the current solution can be
seen. The six generated Pareto optimal solutions can be seen in the right side of
the figure. Here each bar-chart corresponds to a single Pareto optimal solution.

When using the interactive method, the DM first specifies his or her prefer-
ences on the right side. The new Pareto optimal solution(s) can then be requested
by pressing the “play” button shown at the bottom of the figure. At any point,
the DM can decide to stop the current calculations by pressing the “stop” but-
ton. When the new Pareto optimal solution is generated, it is set as the current
solution and shown on the left side. In addition, it is added to the set of Pareto
optimal solutions shown on the right. The DM can then continue with the current
solution, or select another solution as the current solution from the right side. On
the IND-NIMBUS toolbar (located at the top of the figure), the DM can decide
which subproblems of the method (s)he would like to utilize and by which single
objective optimization method the subproblem(s) is to be solved.

As mentioned earlier, the IND-NIMBUS framework includes several differ-
ent interactive methods. In Figure 5, this is reflected by the tab leaflets below the
toolbar. In the tab leaflets, names of the NIMBUS, PAINT and Pareto Navigator
methods can be seen. When a problem model has been opened in the frame-
work, the DM can change the used method simply by clicking the tab leaflet for
the method (s)he would like to use.

In Figure 6, we give an example of how the NIMBUS classification is spec-
ified by the DM when using the NIMBUS method of the IND-NIMBUS frame-
work. Here, the DM is shown the current Pareto optimal solution for which (s)he
is asked to provide his or her preferences. The problem being solved has four ob-
jective functions, each of which is represented by one of the four horizontal bars

42

FIGURE 7 Visualization view

on the figure. The first three of the objective functions are to be maximized, as
indicated by the placement of the bar on the right side. The fourth objective func-
tion is to be minimized. The ranges and current values of the objective functions
are given as numbers below each objective function bar.

The classification view differs slightly from the presentation of the NIMBUS
method given in Section 2.3. The IND-NIMBUS classification view does not refer
to the five different NIMBUS classes. Instead, the DM is simply asked to click
the different parts of the objective function bar to indicate how (s)he would like
to change the shown Pareto optimal solution. If the DM wishes to decrease the
objective function value, (s)he clicks the arrow pointing to the left. If instead
(s)he wishes for an increase, the DM clicks the arrow pointing to the right. If
the DM wishes to obtain some particular value, (s)he click the bar itself, and the
corresponding value is then shown in the box next to the objective function bar,
where the value can be edited. If the DM deems the current objective function
value suitable, (s)he clicks the arrow pointing downwards. For more details on
the classification view, see [PII]. When using the NIMBUS method with the IND-
NIMBUS PAINT module described in [PIII], the DM uses the same classification
view as shown in Figure 6.

In addition to the graphical user interfaces of the interactive methods, the
IND-NIMBUS framework contains tools for examining and comparing the Pareto
optimal solutions. The framework contains tools for the graphical visualization
of the Pareto optimal solutions, including different bar charts, a spider web chart,
value path, whisker plot, petal diagram, and a multi-way dot. An example of the
value path visualization can be seen in Figure 7 where the DM is examining eight
Pareto optimal solutions for the problem shown in Figure 6. For more details on
visualizations available in the IND-NIMBUS framework, see [59]). In addition to
the included graphics, the Pareto optimal solutions can be visualized by export-
ing the objective function and decision variable values to an external software,
such as Microsoft Excel.

43

To organize the Pareto optimal solutions, the DM can filter the solutions
based on the values of the objective and constraint functions as well as decision
variables. For example, the DM may decide to have a look at only those solutions
where the first objective function has values above a certain limit. There is also
the possibility of being able to review the solutions by iterations, i.e., to only show
the solutions generated from the same preference information. It is also possible
to step back in the solution process, i.e., to view the previous iterations. At any
point, the DM can store the best solution candidates in a specific list that can be
considered separately. Any undesirable solution can be deleted from the set of
solutions. In addition, the DM can view the objective function and decision vari-
able values in a table, and (s)he can change the parameters of the single objective
optimization methods if so desired.

In the following chapter we describe how the DM can be supported when
solving a computationally expensive problem with an interactive method. We
utilize the coupling interface described in Chapter 3 and the IND-NIMBUS frame-
work with the IND-NIMBUS PAINT module along the user interface of the NIM-
BUS method described in this chapter to construct an agent assisted algorithm
that can overcome some of the obstacles encountered when solving a computa-
tionally expensive problem with an interactive method.

5 A NEW AGENT ASSISTED INTERACTIVE

MULTIOBJECTIVE OPTIMIZATION ALGORITHM

As mentioned earlier, when solving a computationally expensive multiobjective
optimization problem with an interactive method, the waiting times imposed on
the DM may affect the solution process negatively. This can be alleviated by
replacing the original problem with a computationally less expensive surrogate
problem. However, when using an interactive method with a surrogate problem,
the DM is not provided with Pareto optimal solutions. Instead, (s)he is provided
with approximate Pareto optimal solutions, i.e., Pareto optimal solutions for the
surrogate problem, and they must be projected to obtain Pareto optimal solutions
for the original problem (for more details, see [PIII]). Naturally, it is possible that
the surrogate problem is not accurate enough to provide the DM with approxi-
mate Pareto optimal solutions that are close to the actual Pareto frontier. In the
worst case, if the surrogate problem is too inaccurate for the specific areas that
the DM is interested in, the approximated Pareto optimal solutions may give the
DM misleading information of the actual Pareto frontier. In this case, the effort
spent to find the approximate Pareto optimal solutions may be wasted.

In order to minimize the effect of an inaccurate surrogate problem, in [PV]
we propose a new approach for utilizing a surrogate problem when solving com-
putationally expensive multiobjective optimization problems with an interactive
method. In the new approach, we use intelligent agents to update the surro-
gate problem based on the preference information specified by the DM during
the solution process. In this manner we are able to acknowledge the information
provided by the DM even if the approximated Pareto optimal solutions have not
been accurate enough (for the DM) and increase the accuracy of the surrogate for
the areas that are of interest to the DM.

In what follows, we briefly describe the main details of the algorithm. We
first presented the agent assisted algorithm as a general set of steps that can be
used to extend an interactive method when it is used alongside with a surrogate
problem. We then continue with details of the different agents used in the agent
assisted algorithm. We finish this chapter by giving a concrete example, where we
combine the existing implementation of the NIMBUS method described in Chap-

45

Construct
the

surrogate
problem

Interactive
solution
process

Update
the

surrogate
problem

Method
agents

Preference
agents

Surrogate
agents

observe

construct

update

FIGURE 8 Flowchart of the agent assisted algorithm

ter 2 with the IND-NIMBUS PAINT module introduced in [PIII] to construct an
agent assisted algorithm for solving computationally demanding multiobjective
optimization problem..

5.1 Description of the Agent Assisted Algorithm

The main idea of the agent assisted algorithm is to extend an interactive method
so that the waiting times experienced by the DM are minimized. This is achieved
by utilizing a surrogate problem during the interactive solution process and up-
dating the surrogate problem based on the DM’s preferences, but without involv-
ing (him or her in the update process. In addition, the agent assisted algorithm
strives to decrease the cognitive load of the DM by decreasing the amount of
preference that is information asked for.

The overall progress of the agent assisted algorithm can be seen in Figure
8. As can be seen, the algorithm consists of three main phases. First, a surrogate
problem is constructed and then an interactive method is used by the DM to find
the most preferred solution for the surrogate problem. Finally, the surrogate prob-
lem is updated to increase its accuracy for the areas of the Pareto frontier that the
DM is interested in. As the DM is not involved in the first and the third phases,
they are called offline phases (o.p.) and the second phase is called a decision phase
(d.p). In Figure 8, the components of the offline phase have darker (red) back-
grounds, while the decision phase components have lighter (blue) backgrounds.

As can be seen in the flowchart presented in Figure 8, the agent assisted al-
gorithm utilizes three different types of agents (pictured as ellipses). In the deci-
sion phase, the agent assisted algorithm involves the preference agents that observe

46

the preference information expressed by the DM in order to build a preference
model. At the same time, the method agents collect information on how the inter-
active method is used to generate new Pareto optimal solutions. The third type
of agents, i.e. the surrogate agents, operate during the offline phase and are respon-
sible for generating new Pareto optimal solutions used to construct the surrogate
problem.

To provide more detail, the agent assisted algorithm can be further divided
into the following six steps:

1. (o.p.) The surrogate method constructs the surrogate problem using all pre-
viously generated set of Pareto optimal solutions

2. (d.p.) The DM starts using the interactive method and specifies preference
information as per the used interactive method.

• Set decision phase iteration t = 1.

• Preference agents collect the preference information to build a model
of the DM’s preferences.

3. (d.p.) The interactive method generates approximate Pareto optimal solu-
tion(s) to the surrogate problem to be shown to the DM.

• The method agents collect information on how approximate Pareto op-
timal solutions are generated.

4. (d.p.) The DM selects one approximate Pareto optimal solution either

(a) as the new starting solution for the next iteration, set t = t + 1 and
continues with step 2, or

(b) as the most preferred solution for the surrogate problem and continues
to step 5.

5. (o.p.) The surrogate agents generate new Pareto optimal solutions for the
original problem based on the information collected by the method agents
and the preference agents.

6. The preference agents select Pareto optimal solutions that are shown to the
DM with information on solution accuracy, if available. The DM either

(a) continues with step 1, or

(b) selects one as the most preferred solution for the original problem and
stops.

By ensuring that the operations done in the decision phase are computationally
inexpensive we can provide the DM with approximate Pareto optimal solutions
in a timely fashion. At the same time, the computationally expensive operations,
such as constructing the surrogate problem and generating Pareto optimal so-
lutions for the original, computationally expensive problem are handled in the
offline phases without requiring the involvement of the DM, and are then shown
to the DM when (s)he so wishes.

47

5.2 Agents Used in the Algorithm

Next we provide details on the three types of agents utilized in the agent assisted
algorithm. It should be noted that each individual agent can be implemented
using different approaches, and here we outline the main features of the agents
implemented in [PV]. In addition, here we present only the general features of
the agents without method-specific details, even though details of different agent
implementations depend on the specific interactive method and surrogate prob-
lem used, i.e., the NIMBUS method and the PAINT surrogate problem in [PV].

It should be noted that the fourth type of agents, i.e., the optimization agents
presented in [PV], are specific to the problem being solved. In this thesis we deal
with interactive multiobjective optimization methods, and while the methods
that we are concerned with do produce new Pareto optimal solutions by solving
single objective optimization problems, the single objective optimization meth-
ods and their parameters are usually selected based on the characteristics of the
problem. The optimization agents used in [PV] were suitable for that particular
problem, but we did not study their applicability in general. For other optimiza-
tion problems, the optimization agents can simply be replaced by a suitable single
objective optimization method.

5.2.1 Preference Agents

One of the central parts of the agent assisted algorithm is the model of the DM’s
preferences, i.e., the model that is used to identify the areas of the Pareto frontier
that are interesting to the DM. In what follows, the model of the DM’s preferences
is called a preference model. The preference model is constructed by observing the
preferences specified by the DM during the interactive solution process. This
learning process is called preference learning, for short. It should be noted that
we cannot assume that the DM is able to undertake hundreds of iterations of
the solution process, and therefore the selected preference modeling technique
cannot depend on large amounts of data.

The objective of a preference agent is to use the preference model to gener-
ate new preference information that should correspond to the preferences of the
DM without requiring additional input from the DM. That is, after the prefer-
ence model has been constructed, an interactive method can be utilized for solv-
ing a multiobjective problem without the involvement of the DM by using the
preference agent in place of the DM. Naturally, the accuracy of the preference
model determines how well the preference information generated by the prefer-
ence agent corresponds to the DM’s preferences and ultimately how satisfactory
the solutions that are generated are to the DM.

As mentioned earlier, when using an interactive method, the DM will con-
tinue until (s)he finds the solution (s)he prefers the most. During the solution
process, the DM can change his or her preferences, based on the Pareto optimal
solutions shown to him or her. Ideally, the DM continues until (s)he is confident

48

that the final solution is the best solution. Therefore, no clearly defined point exits
at which the preference learning has been completed. In the agent assisted algo-
rithm as described in [PV], the preference agents continue the preference learn-
ing until the DM decides to stop the decision phase. Nevertheless, the preference
agents can be used for generating new preference information at any point during
the algorithm. For example, during the decision phase the DM could be provided
with Pareto optimal solutions that are generated based on the preference infor-
mation provided by the preference agents. If the preference model is accurate,
these solutions could be of interest to the DM, even if they are concerned with
areas that (s)he has not yet considered.

In [PV] we identified two different preference learning approaches. First,
when utilizing a computer learning approach, we assume that the DM has a more
or less unchanging preference model for the duration of the interactive solu-
tion process. When utilizing human learning, we assume that the DM learns and
adapts his or her preferences during the interactive solution process. In [PV],
we have implemented agents following both of these approaches, as it cannot be
known in advance whether the DM is following a computer or a human learning
approach or some mixture of them.

As the interactive method consists of selecting the most suitable Pareto op-
timal solution and then specifying classification information in relation to that
solution, in [PV] we further divided the preference agent into two subtypes, i.e.,
into selecting and classification preference agents.

In the agent assisted algorithm, the preference agents are utilized for gener-
ating new Pareto optimal solutions in the second offline phase by replacing the
DM in the interactive solution process for solving the original problem instead of
the surrogate problem. That is, the approximate Pareto optimal solutions gener-
ated during the decision phase are projected onto the Pareto frontier. Then the
selecting preference agents are used to select the most preferred of them and the
classification preference agents are used to provide preference information for
those solutions. The interactive process can be continued with the agents until
they do not generate new preference information or until a preset time limit has
been reached.

5.2.2 Method Agents

The method agents are used to find Pareto optimal solutions that correspond to
the preference information specified either by the DM during the decision phase
or by the preference agents. These solutions are solutions to the original mul-
tiobjective optimization problem that is assumed to be computationally expen-
sive. As one of the main aims of the agent assisted algorithm is to reduce waiting
times imposed on the DM when using an interactive method, the method agents
should be used only during the offline phase of the agent assisted algorithm and
the new Pareto optimal solutions should be presented to the DM only after the
offline phase has been finished.

In practice, when using the preference information specified by the DM, the

49

method agent solves the same scalarized subproblem during the offline phase
for the original problem that was solved for the surrogate problem during the
decision phase. In effect, if the surrogate problem is accurate enough, the method
agent finds the solution that the DM would have found if (s)he had not used the
surrogate problem. In addition, the method agents can be used for projecting
the approximate Pareto optimal solutions onto the Pareto frontier of the original
problem.

Therefore, the method agents may produce two different Pareto optimal
solutions for the original problem per each approximate Pareto optimal solution.
When the offline phase has finished, both of these solutions can be shown to the
DM, but if the DM has iterated for a high number of decision phases, this may
lead to a very high number of solutions. In such a case, the selecting preference
agent can be used to choose the solutions to be shown to the DM.

5.2.3 Surrogate Agents

One of the aims of the agent assisted algorithm is to update the surrogate problem
intelligently for those areas that are of interest to the DM. How this is achieved
naturally depends on how the surrogate problem is constructed. If, as in [PV],
the surrogate problem is constructed from a set of Pareto optimal solutions, the
accuracy of the surrogate can be increased by generating new Pareto optimal so-
lutions that are located in the areas that the DM is interested in and then updating
the surrogate problem using all of the obtained solutions.

The initial set of Pareto optimal solutions, i.e., the construction set that is
used to construct the surrogate problem in step 1 of the agent assisted algo-
rithm can be generated with any a posteriori-type of multiobjective optimization
method that generates many Pareto optimal solutions (see e.g. [13, 55, 85]). After
the first decision phase, the surrogate agents update the construction set based
on the gathered information. For this purpose, we have identified two types of
surrogate agents. The projecting surrogate agents utilize method agents to gener-
ate new Pareto optimal solutions of the original problem as described in Section
5.2.2. On the other hand, the decision surrogate agents repeat the decision phase
of the agent assisted algorithm using the selecting and classification preference
agents as the DM. That is, for each iteration of the decision phase, a decision sur-
rogate agent uses a selecting agent to choose a Pareto optimal solution from the
set of Pareto optimal solutions generated by the method agents and then speci-
fies preference information in relation to the chosen solution with a classification
preference agent.

Depending on the technique used for preference agents, it is possible that
the new preference information, and therefore the new Pareto optimal solutions,
will not correspond to the DM’s preferences. As the new solutions are Pareto
optimal, the accuracy of the surrogate should not be affected even if the new so-
lutions are generated for the wrong area of the Pareto frontier. On the other hand,
an excessive number of Pareto optimal solutions can increase the computational
cost of constructing or updating the surrogate problem, but as this is done during

50

the offline phases, it should not affect the decision phase. Therefore, the increase
in the computation cost during the surrogate construction, and in effect the time
taken, is acceptable, as the aim of the agent assisted algorithm is to reduce time
demands on the part of the DM.

5.3 Example Implementation of the Agent Assisted Algorithm

Now that we have described the agent assisted algorithm as a general structure
that does not depend on any specific methods, we give details of an example
implementation of the agent assisted algorithm used in [PV] for solving a com-
putationally expensive two-stage separation process problem. In [PV], we imple-
ment the agent assisted algorithm using the NIMBUS implementation available
from the IND-NIMBUS software framework [PII] as the interactive method and
the PAINT method [37] for constructing the surrogate problem. To implement
the multiagent system and learning features of the agents, we use libraries com-
monly available for the Python programming language. As these libraries are not
relevant to this thesis, they are not further described here.

In what follows, we give detailed examples of three different preference
agents utilized during the solution process described in [PV]. We first describe
how two preference agents utilizing computer learning can be used to select the
most preferred solution from a set of solutions and then to specify preference
information in relation to the selected solution. We continue by showing how
a preference agent utilizing the human learning approach generates new prefer-
ence information based on the preferences specified by the DM. We also provide
numerical examples for both of these approaches.

The solution process of the NIMBUS method for solving the two-stage sep-
aration problem in [PIV] is shown in Table 1. Here, in each iteration, the DM is
first shown the current Pareto optimal solution and is then asked to provide a
NIMBUS classification in relation to that solution. The DM is then shown two to
three new Pareto optimal solutions and is asked to select the most preferred so-
lution from among them. The most preferred solution is then used as the current
Pareto optimal solution for the next iteration. The final solution is shown on the
last row of the table. Next we will give an example of how this solution process
can be used to create selecting and classification preference agents, which can be
used for a new solution process without involving a human DM. Naturally, how
well the selection follows the DM’s preferences depends on the amount of train-
ing data and on the features of the used learning technique. In practice, agents
cannot be used to replace the human DM, as this would require the DM to iterate
for an impractical number of iterations.

As described in Section 4.1, the first step taken by the DM in the interac-
tive solution process is to provide preference information for the current Pareto
optimal solution. With the agent assisted algorithm, this is achieved by the clas-
sification preference agent. As an example, we next give details on the classifi-

51

TABLE 1 Solution process of the two-stage separation problem in [PIV]

Iter Issue Max Min Min
Permeate (kg) Impurity Energy (kJ)

z1 2222 11.02 16842
1 Classif1 I≥=2000 I≤=2.30 I≤=9500

z2 1732 3.92 12402
z3 1483 2.02 14632
z4 2096 3.39 16155
z3 1483 2.02 14632

2 Classif1 I≤=1900 I≥=2.35 I≤=9600.000

z5 950 6.84 11606
z6 1240 2.06 14939
z6 1240 2.06 14939

3 Classif1 I≤=1500 I≥=2.40 I≤=12000

z7 1348 2.14 9329
z8 1236 2.07 9339
z9 1234 1.85 9857

Pref. z7 1348 2.14 9329

TABLE 2 Training data for generating the NIMBUS classification

Input Output
[]{2222, 11.02, 16842} {2000, 2.30, 9500}
[]{1483, 2.02, 14632} {1900, 2.35, 9600}
[]{1240, 2.06, 14939} {1500, 2.40, 12000}

cation preference agent using the computer learning approach utilizing epsilon-
support vector regression (see e.g. [19]) for building the DM’s preference model.
The preference model is built by converting the solution process shown in Table
1 to the training data for the support vector machine used by the agent. In the
demonstrated approach, the solution shown to the DM in each iteration is used
as the input data, and the preference information specified by the DM is used
as the output data. Before the training, the NIMBUS classification information
is converted to reference points (as reasoned earlier), i.e. z̄1 = (2000, 2.3, 9500),
z̄2 = (1900, 2.35, 9600) and z̄3 = (1500, 2.4, 12000). The training data for an agent
corresponding to the solution process given in Table 1 is shown in Table 2.

Next, the interactive method generates new Pareto optimal solution(s) and
the DM selects the most preferred from among them. In with the agent assisted
algorithm the selection is done by a selecting preference agent. Here we demon-

52

TABLE 3 Training data for selecting the most preferred solution

Input Output Selection⎡
⎣

⎤
⎦{1732, 3.92, 12402}

{1483, 2.02, 14632}

⇒ {1236, 2.07, 9339}

{1483, 2.02, 14632}
{2096, 3.39, 16155}[]
{950, 6.84, 11606}

{1240, 2.06, 14939}
{1240, 2.06, 14939}⎡

⎣
⎤
⎦{1348, 2.14, 9329}

{1348, 2.14, 9329}{1236, 2.07, 9339}
{1234, 1.85, 9857}

strate an approach used in the example implementation where the selecting pref-
erence agent is implemented with an epsilon-support vector regression. In this
approach, the agent is given a set of Pareto optimal solutions presented to the DM
at each NIMBUS iteration as the input data, and the solution selected by the DM
is used as the output data. If the DM does not select any of the solutions in an
iteration, the iteration is ignored. The input and output data pairs corresponding
to the solution process shown in Table 1 are given in Table 3. As the solution pro-
cess involves three NIMBUS iterations, the training data consists of three input
and output data pairs.

After the preference agents are trained, they can be used to replace a DM
during a solution process. Naturally, if the agents are used for replicating the so-
lution process used for training the agents, the actions are the same and therefore
trained agents should be used for a modified solution process. For example, the
selecting preference agent can be used to select the most preferred solution from
among all solutions zl, l ∈ [1, 9]l from Table 1. In Table 3, the selected solution
for the given training data is shown on the third column. As can be seen, the
agent selects solution z8. On the other hand, if the agent would be used to se-
lect the most preferred solution among solutions of the iteration 3, i.e. {z7, z8, z9},
it would select the solution z7 selected also by the DM. Naturally, if the select-
ing preference agent were to include training data where the DM has selected a
solution from among all of the solutions, then the agent would then select the
same solution as the DM. After a solution is selected, the trained classification
preference agent can be used to give new preference information. For solution
z7, a classification preference agent trained with the data given in Table 2 would
specify a NIMBUS classification where I≤= 1860, I≥= 2.34 and I≥= 9960.

In the example implementation used in [PV], the preference agents described
here were used during the offline phase of the agent assisted algorithm as de-
scribed in Section 5.2.1. That is, the approximate Pareto optimal solutions were
projected onto the Pareto frontier of the original problem, and then the selecting
and classification preference agents were used as a DM in an interactive solution
process to find new solutions for the original problems. These solutions were

53

TABLE 4 Training data for predicting the reference point z̄4

Input Output Prediction[] }
z̄4

1
{2000, 2.3, 9500, 1900, 2.35, 9600, 2.4, 12000} 1500 ⇒ 1435.34{2000, 2.3, 9500, 2.35, 9600} 1900[] }

z̄4
2

{2000, 2.3, 9500, 1900, 2.35, 9600, 1500, 12000} 2.4 ⇒ 2.20{2000, 2.3, 9500, 1900, 9600} 2.35[] }
z̄4

3
{2000, 2.3, 9500, 2.35, 1900, 2.35, 2.4, 1500} 12000.0 ⇒ 12299{2000, 2.3, 9500, 2.35, 2.35, 2.4} 9600

then used as the construction set for updating the surrogate problem and some
of them were selected to be shown to the DM.

Both preference agents described above are considered to be using the com-
puter learning approach for building the preference model, as they consider the
solution process iteration by iteration. Next, we demonstrate how new prefer-
ence information can be obtained when using the human learning approach. In
the demonstrated approach, we first convert the preference information to ref-
erence points (as reasoned earlier), and then consider the preferences specified
by the DM as a multivariate time series. We then generate new preference in-
formation, i.e., a reference point, by predicting what would be the next value in
the series (see e.g. [18]). In the implementation of the agent assisted algorithm,
the components of the reference points are joined to form t − 1 time series for k
objectives. Here t is the number of iterations. The last value of each of the time
series is considered as the output data, and the other values are used as the input
data. The time series are ordered in the following way:

Input Output⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

{z̄[1,t−1]
n

⋃
z̄t

m} z̄t
j

⇒ z̄t+1
j , for all n ∈ {k}, m ∈ {k} \ j

{z̄[1,t−2]
n

⋃
z̄t−1

m } z̄t−1
j

...
...

{z̄1
n

⋃
z̄2

m} z̄2
j

(7)

As a numerical example, let us consider the preference information speci-
fied by the DM in [PIV] for the two-stage separation problem. The solution pro-
cess for solving the two-stage separation problem with the NIMBUS method is
shown in Table 1.

The time series used for predicting a new reference point is shown in the
“Input” and “Output” columns of Table 4. Here the classification information
is converted to reference points, as in Table 2. The reference points are then
used to form three time series following the ordering given in (7). The formed
training data is then used to train a feed-forward multi-layer neural network.
After training, the neural network can predict what the next reference point in

54

the series should be. The prediction is shown in the last column of Table 4, i.e.
z̄4 = (1435.34, 2.2, 12299). In Table 1, there are only three NIMBUS iterations,
and therefore there are only two input and output training data pairs. With more
iterations, the number of training data pairs would naturally increase.

In addition to the preference agent implementations described here, the
example implementation of the agent assisted algorithm consists of preference
agents using different underlying machine learning tools, method agents for the
NIMBUS method, and a surrogate agent for constructing the PAINT surrogate
problem. As their implementations only add technical details to the descriptions
given earlier, they are not described here in detail. In addition, as commented
on [PV], the example implementation of the agent assisted algorithm contains so-
called optimization agents, but as they are utilized for solving the single objective
subproblems of the NIMBUS method, they are beyond the scope of this thesis.

It should be noted that the problem has been previously solved in [PIV],
without the use of a surrogate problem. In [PIV], the DM was able to obtain only
two sets of new Pareto optimal solutions per day, and the DM was involved in the
process for more than a week to obtain ten Pareto optimal solutions. When us-
ing the agent assisted algorithm, the DM obtained approximated Pareto optimal
solutions immediately after specifying his preferences, and the decision phase of
the solution process took less than 30 minutes. This allowed the DM to explore
the problem with 19 approximated Pareto optimal solutions. The agent assisted
algorithm then generated Pareto optimal solutions based on the preference model
constructed during the decision phase and it selected four of the solutions to be
shown to the DM. From the set of these solutions, the DM was able to find a final
solution for the two-stage separation process that was more satisfactory than the
final solution found in [PIV].

When using the agent assisted algorithm, the offline phases of the algorithm
took more than two weeks to generate the Pareto optimal solutions. Therefore,
with the agent assisted algorithm the whole solution process took significantly
more time than the solution process of the initial research, but, on the other hand,
the main aim of the agent assisted algorithm is to lower the time required from
the DM. When compared to [PIV], where the DM was involved in the solution
process for five days, the 30 minutes needed when using the agent assisted algo-
rithm was a significant improvement. Furthermore, the agent assisted algorithm
was capable of finding Pareto optimal solutions with minimal guidance from the
analyst, and, in effect, the amount of effort required from the analyst was also
smaller.

6 AUTHOR’S CONTRIBUTION

In article [PI], the author developed the Synheat-NIMBUS model for solving the
heat exchanger network synthesis problem. The model was developed specifi-
cally to the network synthesis problem and could not be utilized generally. The
author’s main contribution in [PI] was in formulating the NIMBUS method’s in-
tegration with the GAMS modeling system and supporting the DM in solving the
network synthesis problem. This work was continued in [PII], where the author
presented an approach for implementing interactive methods. In this approach,
referred to as the core structure of an interactive method, the interactive method is
divided into three distinct parts. By using the division, implementing an interac-
tive method is a straightforward process, while simultaneously ensuring that the
implementation can be applied when solving a set of multiobjective optimization
problems instead of some specific problem. In addition, in this article the author
gives an insight into the details related onto the implementation issues encoun-
tered while implementing an interactive multiobjective optimization method. As
an example of utilizing the core structure, the author implemented and intro-
duced the new GAMS-NIMBUS Tool integrating the NIMBUS method with the
GAMS modeling system. In [PI] the author also briefly described how a multi-
objective optimization problem could be formulated with the GAMS modeling
language.

The multiobjective optimization problems discussed in this thesis can be ei-
ther considered as computationally expensive or they can be expanded to contain
more features, resulting in a computationally expensive problem. In this thesis,
the solution process for computationally expensive multiobjective optimization
problems was first studied in paper [PIII]. There, the author implemented the
IND-NIMBUS PAINT module that combines the PAINT method for construct-
ing a surrogate problem with the interactive NIMBUS method. In addition, the
author tested the IND-NIMBUS PAINT module and participated in the solution
process of the wastewater treatment problem. The author further developed the
IND-NIMBUS PAINT module for the research conducted in [PV].

In article [PIV], the author tackled the issue of connecting an interactive
method to an external simulator. For this purpose the author gathered the re-

56

quirements needed for building the connection and implemented the connection
as a coupling interface. This coupling interface was then demonstrated by utilizing
it while solving the multiobjective optimization problem of a two-stage separa-
tion process implemented in the APROS dynamic simulator software with the
interactive NIMBUS method. The author then acted as the analyst during the
solution process of the two-stage separation process problem.

In the author’s experience, problem model validation is an integral part of
the solution process. Therefore, in [PIV], the author introduced an AIMO algo-
rithm, in order to take into account how the DM’s expertise regarding the prob-
lem could be utilized when validating a model for a multiobjective optimization
problem. The author proposed that as the DM explores the Pareto frontier when
using an interactive method, (s)he can observe if the obtained objective function
values do not correspond to his or her expectations. This could then lead to a
reformulation of the problem model

In article [PV], the author developed a new approach for solving computa-
tionally expensive multiobjective optimization problems with interactive meth-
ods. To this end, the author introduced an agent-based interactive algorithm to
approach the issue of surrogate problem accuracy and of how to increase that ac-
curacy specifically in the areas that the DM is interested in. The author achieved
this by utilizing several different kinds of independent agents that observe the
actions taken by the DM during the interactive solution process, and based on
these observations, the agents construct and update a surrogate problem for the
areas that the DM is interested in. The author implemented an example of an
agent-based algorithm using the previously implemented NIMBUS method and
the IND-NIMBUS PAINT module to solve the two-stage separation problem pre-
sented in [PIV], providing significantly improved solutions for the problem.

7 CONCLUSIONS AND FUTURE RESEARCH

DIRECTIONS

The research ideas for this thesis have arisen during the author’s involvement in
the implementation of different optimization methods for solving several multi-
objective optimization problems. The methods involved have been mainly inter-
active multiobjective optimization methods, and in general, the problems being
solved have been computationally expensive. Therefore, this research has had
two main goals. Firstly, this research describes the procedures that should be
used when implementing interactive multiobjective optimization methods. Sec-
ondly, this research introduces new approach for solving computationally expen-
sive multiobjective optimization problems with interactive methods in practice.

Even though interactive multiobjective optimization methods are evidently
suitable for solving multiobjective optimization problems, only a few of their im-
plementations are available. In this thesis, we have described a core structure
for implementing scalarization-based interactive methods. With this structure
we have identified the different components that are necessary to construct an
implementation of an interactive method. This should facilitate easy implemen-
tation. The structure has been utilized for designing the IND-NIMBUS software
framework, enabling the framework to be used for implementing several differ-
ent interactive methods.

We demonstrated the use of the core structure by constructing the GAMS-
NIMBUS Tool and by utilizing the tool for solving power generation and heat ex-
changer network synthesis problems. With the GAMS-NIMBUS Tool it is possible
to solve multiobjective optimization problems modeled with the GAMS model-
ing language using the interactive NIMBUS method. To our knowledge, inter-
active methods have not previously been used with modeling languages, but by
following the instructions given in [PII], implementing a scalarization based in-
teractive method for a modeling environment should be a straightforward task.

We have also studied how the connection between a model of a multiob-
jective optimization problem and an implementation of an interactive method
can be handled. Based on the results, we have described a general approach for
building a coupling interface between the two. When using the coupling inter-

58

face, the problem model can be solved with different interactive methods without
any changes to the model itself. We have demonstrated the coupling interface by
connecting the NIMBUS method with the APROS dynamic process and utiliz-
ing the interface for solving a two-stage separation process problem in [PIV] and
[PV]. The coupling interface also allows for changing the optimization method
used for solving the problem model. In [PIII] we further demonstrated this by
utilizing the coupling model when solving the problem of an operating wastew-
ater treatment plant, previously solved with the NIMBUS method, with the new
IND-NIMBUS PAINT module.

In our experience, it is quite common that the problem model is not com-
plete when the interactive solution process is started, even though this is usually
at least implicitly assumed. We noted that when using an interactive method, the
DM is able to discover that the obtained results do not follow his or her expec-
tations. If so, it should not be blithely assumed that this is always a part of the
learning process that the DM experiences when exploring the problem. While
this is possible, especially in the beginning of the interactive solution process,
the option for revisiting the problem model should not be disregarded. To em-
phasize this, in [PIV] we have introduced an AIMO algorithm where the DM
can conveniently revise the problem model. In our experience, the importance of
well formulated problem models cannot be overstated, as we have encountered
several problems that have been previously solved with non-interactive methods
but the fact that the problem was not modeled correctly has only been brought
up when an interactive method is involved.

When solving a computationally expensive problem with an interactive met-
hod, the involvement of the DM may lead the solution process to a final solution
that the DM cannot be certain of as being the best compromise solution to the
problem. Therefore, the computational cost of a problem model must be handled
somehow. If all other approaches have proven to be unfruitful, we propose that
a computationally expensive problem should be replaced with a less expensive
surrogate problem. To this end, we introduced a combination of the PAINT and
NIMBUS methods as the so-called IND-NIMBUS PAINT module. With the mod-
ule it is possible to replace a computationally expensive problem with a less ex-
pensive surrogate problem, and thus decrease the waiting times experienced by
the DM. As the IND-NIMBUS PAINT module follows the core structure, it can
easily take advantage of the implementation of the NIMBUS method developed
in earlier work. More importantly, due to the combination of the core structure
and the coupling interface, the IND-NIMBUS PAINT module can be utilized for
solving problem models without any additional work required to connect the
problem with the module. We demonstrated the IND-NIBMUS PAINT module
by solving the problem of operating wastewater treatment plant in [PIII].

In this thesis we note that the inaccuracy of the surrogate problem may lead
the solution process to an undesired final solution. To address this issue, we
utilized the NIMBUS method and the IND-NIMBUS PAINT module as compo-
nents of the agent assisted algorithm to construct a new optimization tool for
solving computationally expensive problems with an interactive multiobjective

59

optimization method. As the IND-NIMBUS PAINT module and the NIMBUS
method implementations follow the core structure described in Section 4.1 as well
as the coupling interface described in Section 3.3 for utilizing the problem model,
the implementation of the new optimization tool was a straightforward task. By
using the agents, it is possible to update the PAINT surrogate problem for the
areas that the DM has shown interest in. Furthermore, the agents can provide the
DM with Pareto optimal solutions for areas that the DM has not yet explored but
which still could be interesting to him or her, without the DM providing addi-
tional preference information. The agent assisted algorithm was demonstrated in
[PV] by solving the two-stage separation process problem.

With the research results presented in this thesis we have been able to pro-
duce clear instructions regarding how an interactive multiobjective optimization
method can be implemented. We have discussed the importance of careful con-
sideration regarding how a problem model is connected to the model, as well
as the importance of model validation and how an interactive method can be
utilized for the validation. We have also combined our research to introduce a
new agent assisted algorithm that can be used to handle some of the issues en-
countered when solving computationally expensive problems with an interactive
method.

During the research conducted for this thesis, we encountered several inter-
esting topics not considered here. As mentioned in Section 3.3, the IND-NIMBUS
software framework has been applied for solving several different multiobjec-
tive objective optimization problems implemented with different tools, such as
with different simulator software or programming languages. One interesting
approach for extending this work would be to study how different modeling tools
could be combined together in order to form an aggregate problem model. For
example, by studying the requirements for the coupling interface when combin-
ing objective functions for the same problem implemented with different tools,
e.g. with MATLAB and the GAMS modeling language.

In Section 3.2, we suggested that during an interactive solution process the
DM is able to suggest that the problem model should be revisited. In the pro-
posed AIMO algorithm we assume that the DM provides the modeler with infor-
mation on the problem aspects where (s)he feels the formulation is incorrect, but,
in practice, the revision process can be successful only if the modeler receives
accurate information concerning how the problem model should be changed.
Therefore, step 6 of the AIMO algorithm should require the DM to provide the
information in a structured way, e.g., to determine whether any of the objective
functions are too sensitive, or if some of the problem constraints should be refor-
mulated.

In addition, it might be useful to include some additional validation pos-
sibilities to the interactive solution process. For example, the AIMO algorithm
could be extended to contain sensitivity analysis of the Pareto optimal solutions
before showing them to the DM. This, and previous research related to the aug-
mented algorithm could be combined with the agent assisted algorithm, so that
during the initial offline phase the validation could be conducted at least partially

60

without feedback from the analyst.
As far as the coupling interface discussed in Section 3.3 is concerned, the

DM could be provided with additional information for the problem model, i.e.,
information that is not directly related to the optimization process. For example,
the coupling interface could offer the DM the possibility of studying the problem
model with visualizations that are specific to the simulator software used.

While the agent assisted algorithm described in Chapter 5 did produce pro-
mising results for the case under consideration, it was applied only to a single
multiobjective optimization problem with a single DM. Therefore, it should be
applied to different multiobjective optimization problems and with different DM.
Especially the preference agents used in this thesis need further study, as they
were built with general machine learning based regression models. Furthermore,
the preference agents are general in their nature and are suitable for any reference
point based interactive methods, and are not limited to the characteristics of the
NIMBUS method. By examining the information provided by classification in
more detail, the preference agent could build a more accurate model of the DM’s
preferences.

On a more general level, we feel that utilizing computational intelligence
for optimizing computationally expensive multiobjective problems is a fruitful
research topic, and that it should be further explored. We do not feel that the
DM should be replaced with some form of artificial intelligence; instead, we feel
that computational intelligence could offer the DM assistance during the solution
process. With such assistance, we could reduce the time requirements imposed
on the DM as well as diminish the cognitive load associated with the use of inter-
active methods.

61

YHTEENVETO (FINNISH SUMMARY)

Optimoinnin tarkoituksena on löytää paras mahdollinen ratkaisu johonkin ongelmaan.
Yleensä ongelmaan ei ole löydettävissä yksiselitteistä ratkaisua, vaan sen sijaan paras
ratkaisu määräytyy tekemistämme valinnoista jotka voivat johtaa uusien valintojen te-
kemiseen. Esimerkiksi lyhin työmatka jalkaisin voi kulkea vilkasliikenteisen tien ylitse
turvallisemman reitin kiertäessä suojatien kautta. Tai käytettäessä autoa reitti on aivan
erilainen, mutta lyhyin mahdollinen reitti voi olla ruuhka-aikana hitain.

Ongelmaa ratkaistessamme joudummekin yleensä pohtimaan mikä on tavoitteem-
me. Haluammeko että matka on lyhyt, nopea, turvallinen tai vaikkapa miljööltään miel-
lyttävä? Jos nämä tavoitteet ovat keskenään ristiriitaisia, esimerkiksi jos lyhin reitti on
turvaton, ongelmaan pyritään löytämään kompromissiratkaisu. Tällaisia ongelmia kut-
sutaan monitavoiteoptimointiongelmiksi.

Tässä väitöskirjassa käytämme monitavoiteoptimointiongelmien ratkaisemiseen ns.
interaktiivisia menetelmiä. Tällaisia menetelmiä käytettäessä päätöksentekijälle esitetään
ratkaisu ja häntä pyydetään määrittelemään kuinka ratkaisua tulisi muuttaa jotta se olisi
hänen mielestään parempi. Ratkaisua pyritään muuttamaan toivotulla tavalla ja päätök-
sentekijälle näytetään uusi ratkaisu arvioitavaksi. Tätä jatketaan kunnes löydetään päätök-
sentekijää tyydyttävä ratkaisu.

Väitöskirjassani keskityn interaktiivisiin menetelmiin liittyviin käytännön kysy-
myksiin, erityisesti ratkottaessa teollisuuden prosesseista nousevia optimointiongelmia.
Käytännössä tällaisten ongelmien ratkaiseminen vaatii ongelman muotoilemista tieto-
koneella toteutettuna numeerisena mallina. Väitöskirjani alkuosassa kuvaan kuinka täl-
laista mallia voidaan hyödyntää käytettäessä interaktiivisia menetelmiä. Esittelen myös
uuden lähestymistavan, missä päätöksentekijän osallistumista ongelman ratkaisemiseen
hyödynnetään myös mallin luomisen yhteydessä. Jatkan väitöskirjaani esittelemällä in-
teraktiivisten menetelmien perusrakenteen jonka avulla menetelmien toteuttaminen sekä
liittäminen numeerisiin malleihin on mahdollisimman helppoa. Esimerkkinä tämän pe-
rusrakenteen hyödyntämistä esittelen IND-NIMBUS -monitavoiteoptimintiohjelmiston.

Numeerinen malli saattaa sisältää ajallisesti pitkäkestoisia laskentoja, joista johtuen
päätöksentekijä voi joutua odottamaan uusia ratkaisuja tuntien, päivien tai jopa kuukau-
sien ajan. Tällöin alkuperäinen numeerinen malli voidaan korvata laskennallisesti vähem-
män vaativalla sijaismallilla. Tyypillisesti sijaismallilla tuotetut ratkaisut eivät kuitenkaan
vastaa täysin alkuperäisen mallin ratkaisuja. Käytettäessä interaktiivisia menetelmiä
tämä voi osoittautua ongelmalliseksi, sillä päätöksentekijä joutuu tällöin tekemään val-
intoja epätarkkoihin tietoihin perustuen. Tämän epätarkkuuden vaikutuksen vähen-
tämiseksi esittelen uuden lähestymistavan sijaismallien käyttämiseen. Tässä lähestymis-
tavassa koneälyllä varustetut agentit tarkkailevat päätöksentekijän tekemiä valintoja ja
pyrkivät tarkentamaan sijaismallia siten että päätöksentekijälle esitetyt ratkaisut olisivat
mahdollisimman tarkkoja.

Väitöskirjaani liitetyissä artikkeleissa olen osallistunut usean eri optimointiongel-
man ratkaisemiseen. Olen soveltanut näiden tehtävien ratkaisemisessa esittelemääni
interaktiivisten menetelmien perusrakennetta. Lisäksi olen hyödyntänyt sijaismalleja
päätöksentekijän kokemien odotusaikojen lyhentämiseen sekä jätevesilaitoksen toiminta-
suunnitelman optimoinnissa että kaksivaiheisen suodatusprosessin suunnittelussa, jossa
käytin agentteja sijaistehtävän tarkentamiseen.

62

REFERENCES

[1] A. Abiola, E. S. Fraga, and P. Lettieri. Multi-objective design for the con-
sequential life cycle assessment of corn ethanol production. In S. Pierucci
and G. B. Ferraris, editors, 20th European Symposium on Computer Aided Pro-
cess Engineering, volume 28 of Computer Aided Chemical Engineering, pages
1309–1314. Elsevier, 2010.

[2] H. Ackermann, A. Newman, H. Röglin, and B. Vöcking. Decision-making
based on approximate and smoothed pareto curves. Theoretical Computer
Science, 378(3):253–270, 2007.

[3] P. J. Agrell, B. J. Lence, and A. Stam. An interactive multicriteria decision
model for multipurpose reservoir management: The Shellmouth Reservoir.
Journal of Multi-Criteria Decision Analysis, 7(2):61–86, 1998.

[4] T. Aittokoski and K. Miettinen. Cost effective simulation-based multiobjec-
tive optimization in performance of internal combustion engine. Engineer-
ing Optimization, 40(7):593–612, 2008.

[5] E. Alba. Parallel Metaheuristics: A New Class of Algorithms. John Wiley &
Sons, Inc., New Jersey, 2005.

[6] N. Asprion, S. Blagov, O. Ryll, R. Welke, A. Winterfeld, A. Dittel, M. Bortz,
K.-H. Küfer, J. Burger, A. Scheithauer, and H. Hasse. Decision support for
process development in the chemical industry. Chemical Engineering Trans-
actions, 24:301–306, 2011.

[7] P. Auvinen, M. Mäkelä, and J. Mäkinen. Structural optimization of forest
machines with hybridized nonsmooth and global methods. Structural and
Multidisciplinary Optimization, 23(5):382–389, 2002.

[8] F. B. Aydemir, A. Günay, F. Öztoprak, Ş. İker Birbil, and P. Yolum. Multia-
gent cooperation for solving global optimization problems: An extendible
framework with example cooperation strategies. Journal of Global Optimiza-
tion, 57(2):499–519, 2013.

[9] S. Bechikh, L. Ben Said, and K. Ghedira. Negotiating decision makers’ ref-
erence points for group preference-based evolutionary multi-objective op-
timization. In 2011 11th International Conference on Hybrid Intelligent Systems
(HIS), pages 377–382, 2011.

[10] R. Benayoun, J. de Montgolfier, J. Tergny, and O. Laritchev. Linear program-
ming with multiple objective functions: Step method (STEM). Mathematical
Programming, 1:366–375, 1971.

[11] J. Bisschop and R. Entriken. AIMMS The Modeling System. Paragon Decision
Technology, 1993.

63

[12] M. Bortz, J. Burger, N. Asprion, S. Blagov, R. Böttcher, U. Nowak, A. Schei-
thauer, R. Welke, K.-H. Küfer, and H. Hasse. Multi-criteria optimization in
chemical process design and decision support by navigation on pareto sets.
Computers & Chemical Engineering, 60:354–363, 2014.

[13] J. Branke, K. Deb, K. Miettinen, and R. Slowiński, editors. Multiobjective Op-
timization: Interactive and Evolutionary Approaches. Springer-Verlag, Berlin,
Heidelberg, 2008.

[14] A. Brooke, D. Kendrick, A. Meeraus, and R. Raman. GAMS – A User’s Guide.
GAMS Development Corporation, 2008.

[15] J. Buchanan. A naive approach for solving MCDM problems: The GUESS
method. Journal of the Operational Research Society, 48(2):202–206, 1997.

[16] J. Buchanan and L. Gardiner. A comparison of two reference point meth-
ods in multiple objective mathematical programming. European Journal of
Operational Research, 149(1):17–34, 2003.

[17] J. Cabello, M. Luque, F. Miguel, A. Ruiz, and F. Ruiz. A multiobjective
interactive approach to determine the optimal electricity mix in andalucía
(spain). TOP, 22(1):109–127, 2014.

[18] K. Chakraborty, K. Mehrotra, C. K. Mohan, and S. Ranka. Forecasting the
behavior of multivariate time series using neural networks. Neural Net-
works, 5(6):961–970, 1992.

[19] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2(3):27:1–27:27, 2011.

[20] V. Chankong and Y. Y. Haimes. Multiobjective Decision Making Theory and
Methodology. North-Holland, New York, 1983.

[21] S. C. Chapra and R. P. Canale. Numerical Methods for Engineers. McGraw-
Hill Higher Education, New York, 2010.

[22] B. Cobacho, R. Caballero, M. GonzáÂ¡lez, and J. Molina. Planning federal
public investment in mexico using multiobjective decision making. Journal
of the Operational Research Society, 61(9):1328–1339, 2010.

[23] D. Cvetković and I. Parmee. Agent-based support within an interactive
evolutionary design system. Artificial Intelligence for Engineering Design,
Analysis and Manufacturing: AIEDAM, 16(5):331–342, 2002.

[24] P. Davidsson, J. A. Persson, and J. Holmgren. On the integration of
agent-based and mathematical optimization techniques. In N. T. Nguyen,
A. Grzech, R. Howlett, and L. C. Jain, editors, Agent and Multi-Agent Sys-
tems: Technologies and Applications, pages 1–10. Springer Berlin Heidelberg,
2007.

64

[25] K. Deb, K. Miettinen, and S. Chaudhuri. Towards an estimation of nadir ob-
jective vector using a hybrid of evolutionary and local search approaches.
IEEE Transactions on Evolutionary Computation, 14(6):821–841, 2010.

[26] R. Drezewski and L. Siwik. Agent-based co-operative co-evolutionary algo-
rithm for multi-objective optimization. In L. Rutkowski, R. Tadeusiewicz,
L. Zadeh, and J. Zurada, editors, Artificial Intelligence and Soft Computing–
ICAISC 2008, pages 388–397. Springer Berlin Heidelberg, 2008.

[27] P. Eskelinen, K. Miettinen, K. Klamroth, and J. Hakanen. Pareto naviga-
tor for interactive nonlinear multiobjective optimization. OR Spectrum,
32(1):211–227, 2010.

[28] R. Fourer, D. M. Gay, and B. W. Kerninghan. AMPL: A Modeling Language
for Mathematical Programming. Duxbury Press/Cole-Thomson Publishing
Company, Pacific Grove, CA, 2003.

[29] X.-Z. Gao, T. Jokinen, X. Wang, S. J. Ovaska, and A. Arkkio. A new harmony
search method in optimal wind generator design. In 2010 XIX International
Conference on Electrical Machines (ICEM), pages 1–6, 2010.

[30] M. E. Gregori, J. P. Cámara, and G. A. Bada. A jabber-based multi-agent
system platform. In Proceedings of the Fifth International Joint Conference on
Autonomous Agents and Multiagent Systems, AAMAS ’06, pages 1282–1284,
New York, NY, USA, 2006. ACM.

[31] A. Griewank. On automatic differentiation. In M. Iri and K. Tanabe, editors,
Mathematical Programming: Recent Developments and Applications, pages 83–
107. Kluwer Academic Publishers, 1989.

[32] J. Hakanen, J. Hakala, and J. Manninen. An integrated multiobjective de-
sign tool for process design. Applied Thermal Engineering, 26(13):1393–1399,
2006.

[33] J. Hakanen, Y. Kawajiri, K. Miettinen, and L. Biegler. Interactive multi-
objective optimization for simulated moving bed processes. Control and
Cybernetics, 36(2):282–320, 2007.

[34] J. Hakanen, K. Miettinen, M. M. Mäkelä, and J. Manninen. On interac-
tive multiobjective optimization with NIMBUS in chemical process design.
Journal of Multi-Criteria Decision Analysis, 13(2-3):125–134, 2005.

[35] J. Hakanen, K. Miettinen, and K. Sahlstedt. Wastewater treatment: new in-
sight provided by interactive multiobjective optimization. Decision Support
Systems, 51(2):328–337, 2011.

[36] J. Hakanen, K. Sahlstedt, and K. Miettinen. Wastewater treatment plant
design and operation under multiple conflicting objective functions. Envi-
ronmental Modelling & Software, 46(1):240–249, 2013.

65

[37] M. Hartikainen, K. Miettinen, and M. M. Wiecek. PAINT: Pareto front in-
terpolation for nonlinear multiobjective optimization. Computational Opti-
mization and Applications, 52:845–867, 2012.

[38] M. Hasenjäger and B. Sendhoff. Crawling along the Pareto front: Tales from
the practice. In The 2005 IEEE Congress on Evolutionary Computation (IEEE
CEC 2005), pages 174–181, 2005.

[39] E. Heikkola, K. Miettinen, and P. Nieminen. Multiobjective optimization of
an ultrasonic transducer using NIMBUS. Ultrasonics, 44(4):368–380, 2006.

[40] J. Hämäläinen, K. Miettinen, P. Tarvainen, and J. Toivanen. Interactive solu-
tion approach to a multiobjective optimization problem in paper machine
headbox design. Journal of Optimization Theory and Applications, 116(2):265–
281, 2003.

[41] M. P. Johnson and A. P. Hurter. Decision support for a housing mobility
program using a multiobjective optimization model. Management Science,
46(12):1569–1584, 2000.

[42] I. Kaliszewski. Out of the mist–towards decision-maker-friendly multiple
criteria decision making support. European Journal of Operational Research,
158(2):293–307, 2004.

[43] P. Kere, M. Lyly, and J. Koski. Using multicriterion optimization for
strength design of composite laminates. Composite Structures, 62(3-4):329–
333, 2003.

[44] T. Laukkanen, T.-M. Tveit, V. Ojalehto, K. Miettinen, and C.-J. Fogel-
holm. Bilevel heat exchanger network synthesis with an interactive multi-
objective optimization method. Applied Thermal Engineering, 48(1):301–316,
2012.

[45] H. Li and H. Ding. Agent-based evolutionary algorithms applied to con-
strained multi-objective optimization problems. Applied Artificial Intelli-
gence, 26(10):941–951, 2012.

[46] I. Lobel, A. Ozdaglar, and D. Feijer. Distributed multi-agent optimiza-
tion with state-dependent communication. Mathematical Programming,
129(2):255–284, 2011.

[47] M. Luque, F. Ruiz, and K. Miettinen. Global formulation for interactive
multiobjective optimization. OR Spectrum, 33:27–48, 2011.

[48] C. Mack. Fifty years of moore’s law. Semiconductor Manufacturing, IEEE
Transactions on, 24(2):202–207, 2011.

[49] E. Madetoja, K. Miettinen, and P. Tarvainen. Issues related to the computer
realization of a multidisciplinary and multiobjective optimization system.
Engineering with Computers, 22(1):33–46, 2006.

66

[50] E. Madetoja, E.-K. Rouhiainen, and P. Tarvainen. A decision support system
for paper making based on simulation and optimization. Engineering with
Computers, 24(2):145–153, 2008.

[51] T. Máhr, J. Srour, M. de Weerdt, and R. Zuidwijk. Can agents measure
up? a comparative study of an agent-based and on-line optimization ap-
proach for a drayage problem with uncertainty. Transportation Research Part
C: Emerging Technologies, 18(1):99–119, 2010.

[52] G. Mavrotas. Generation of efficient solutions in multiobjective mathe-
matical programming problems using GAMS. Technical report, School of
Chemical Engineering, National Technical University of Athens, 2006.

[53] G. Mavrotas. Effective implementation of the ε-constraint method in multi-
objective mathematical programming problems. Applied Mathematics and
Computation, 213(2):455–465, July 2009.

[54] T. Mens and T. Tourwe. A survey of software refactoring. Software Engi-
neering, IEEE Transactions on, 30(2):126–139, 2004.

[55] K. Miettinen. Nonlinear Multiobjective Optimization. Kluwer Academic Pub-
lishers, Boston, 1999.

[56] K. Miettinen. IND-NIMBUS for demanding interactive multiobjective op-
timization. In T. Trzaskalik, editor, Multiple Criteria Decision Making ’05,
pages 137–150. The Karol Adamiecki University of Economics in Katowice,
Katowice, 2006.

[57] K. Miettinen. Interactive multiobjective optimization method NIMBUS ap-
plied to continuous casting of steel. In N. Bandyopadhyay, P. Chattopad-
hyay, and S. Chattopadhyay, editors, International Workshop on Neural Net-
work and Genetic Algorithm in Materials Science and Engineering, Proceedings,
pages 58–72, New Delhi, 2006. Tata McGraw-Hill Publishing Company.

[58] K. Miettinen. Using interactive multiobjective optimization in continuous
casting of steel. Materials and Manufacturing Processes, 22(5):585–593, 2007.

[59] K. Miettinen. Survey of methods to visualize alternatives in multiple crite-
ria decision making problems. OR Spectrum, 36(1):3–37, 2014.

[60] K. Miettinen and J. Hakanen. Why use interactive multi-objective optimiza-
tion in chemical process design. In G. P. Rangaiah, editor, Multi-objective
Optimization: Techniques and Applications in Chemical Engineering, pages 153–
188. World Scientific, 2008.

[61] K. Miettinen and M. M. Mäkelä. Interactive bundle-based method for non-
differentiable multiobjective optimization: NIMBUS. Optimization, 34:231–
246, 1995.

67

[62] K. Miettinen and M. M. Mäkelä. Interactive multiobjective optimization
system WWW-NIMBUS on the Internet. Computers & Operations Research,
27(7-8):709–723, 2000.

[63] K. Miettinen and M. M. Mäkelä. On scalarizing functions in multiobjective
optimization. OR Spectrum, 24(2):193–213, 2002.

[64] K. Miettinen and M. M. Mäkelä. Synchronous approach in interac-
tive multiobjective optimization. European Journal of Operational Research,
170(3):909–922, 2006.

[65] K. Miettinen, M. M. Mäkelä, and T. Männikkö. Optimal control of continu-
ous casting by nondifferentiable multiobjective optimization. Computational
Optimization and Applications, 11:177–194, 1998.

[66] K. Miettinen, M. M. Mäkelä, and J. Toivanen. Numerical comparison of
some penalty-based constraint handling techniques in genetic algorithms.
Journal of Global Optimization, 27(4):427–446, 2003.

[67] K. Miettinen, F. Ruiz, and A. P. Wierzbicki. Introduction to multiobjective
optimization: Interactive approaches. In J. Branke, K. Deb, K. Miettinen,
and R. Slowinski, editors, Multiobjective Optimization: Interactive and Evolu-
tionary Approaches, pages 27–57. Springer-Verlag, Berlin, Heidelberg, 2008.

[68] M. Monz, K. Küfer, T. Bortfeld, and C. Thieke. Pareto navigation – algo-
rithmic foundation of interactive multi-criteria IMRT planning. Physics in
medicine and biology, 53(4):985, 2008.

[69] H. Nakayama, K. Kaneshige, S. Takemoto, and Y. Watada. Application of a
multi-objective programming technique to construction accuracy control of
cable-stayed bridges. European Journal of Operational Research, 87(3):731–738,
1995.

[70] H. Nakayama and Y. Sawaragi. Satisficing trade-off method for multiobjec-
tive programming. In M. Grauer and A. P. Wierzbicki, editors, Interactive
Decision Analysis, pages 113–122. Springer-Verlag, Berlin, 1984.

[71] M. Niazi and A. Hussain. Agent-based computing from multi-agent sys-
tems to agent-based models: a visual survey. Scientometrics, 89(2):479–499,
2011.

[72] M. M. Mäkelä and P. Neittaanmäki. Nonsmooth Optimization Analysis and
Algorithms with Applications to Optimal Control. World Scientific, Singapore,
1992.

[73] P. Y. Papalambros and D. J. Wilde. Principles of Optimal Design: Modeling and
Computation. Cambridge University Press, Cambridge, 2000.

68

[74] M. Pilat and R. Neruda. Meta-learning and model selection in multi-
objective evolutionary algorithms. In Machine Learning and Applications
(ICMLA), 2012 11th International Conference on, volume 1, pages 433–438,
2012.

[75] S. Poles, M. Vassileva, and D. Sasaki. Multiobjective optimization soft-
ware. In J. Branke, K. Deb, K. Miettinen, and R. Slowinski, editors, Multiob-
jective Optimization: Interactive and Evolutionary Approaches, pages 329–348.
Springer-Verlag, Berlin, Heidelberg, 2008.

[76] M. J. D. Powell. A direct search optimization method that models the ob-
jective and constraint functions by linear interpolation. In S. Gomez and
J. Hennart, editors, Advances in Optimization and Numerical Analysis, pages
51–67. Kluwer Academic Publishers, 1994.

[77] W. Price. Global optimization by Controlled Random Search. Journal of
Optimization Theory and Applications, 40(3):333–348, 1983.

[78] F. Ruiz, M. Luque, and K. Miettinen. Improving the computational effi-
ciency in a global formulation (GLIDE) for interactive multiobjective opti-
mization. Annals of Operations Research, 197(1):47–70, 2012.

[79] H. Ruotsalainen, E. Boman, K. Miettinen, and J. Tervo. Nonlinear interac-
tive multiobjective optimization method for radiotherapy treatment plan-
ning with Boltzmann transport equation. Contemporary Engineering Sci-
ences, 2(9):391–422, 2009.

[80] H. Ruotsalainen, K. Miettinen, and J.-E. Palmgren. Interactive multiobjec-
tive optimization for 3D HDR brachytherapy applying IND-NIMBUS. In
D. Jones, M. Tamiz, and J. Ries, editors, New Developments in Multiple Objec-
tive and Goal Programming, pages 117–131. Springer-Verlag, Berlin, Heidel-
berg, 2010.

[81] H. Ruotsalainen, K. Miettinen, J.-E. Palmgren, and T. Lahtinen. Inter-
active multiobjective optimization for anatomy-based three-dimensional
HDR brachytherapy. Physics in Medicine and Biology, 55(16):4703–4719, 2010.

[82] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, New Jersey, 2003.

[83] S. Ruzika and M. M. Wiecek. Approximation methods in multiobjective
programming. Journal of Optimization Theory and Applications, 126(3):473–
501, 2005.

[84] R. A. Sarker and T. Ray. Agent based evolutionary approach: An introduc-
tion. In R. A. Sarker and T. Ray, editors, Agent-Based Evolutionary Search,
pages 1–11. Springer Berlin Heidelberg, 2010.

[85] Y. Sawaragi, H. Nakayama, and T. Tanino. Theory of Multiobjective Optimiza-
tion. Academic Press, Inc., Orlando, Florida, 1985.

69

[86] J. D. Siirola, S. Hauan, and A. W. Westerberg. Toward agent-based process
systems engineering: Proposed framework and application to non-convex
optimization. Computers & Chemical Engineering, 27(12):1801–1811, 2003.

[87] J. D. Siirola, S. Hauan, and A. W. Westerberg. Computing Pareto fronts
using distributed agents. Computers & Chemical Engineering, 29(1):113–126,
2004.

[88] E. Silvennoinen, K. Juslin, M. Hänninen, O. Tiihonen, J. Kurki, and
K. Porkholm. The APROS software for process simulation and model de-
velopment. Technical report, VTT, Espoo, Finland, 1989.

[89] K. Sindhya, V. Ojalehto, J. Savolainen, H. Niemistö, J. Hakanen, and K. Mi-
ettinen. APROS-NIMBUS: Dynamic process simulator and interactive mul-
tiobjective optimization in plant automation. In A. Kraslawski and I. Tu-
runen, editors, Proceedings of the 6th International Conference on Simulation,
Modelling and Optimization, pages 871–876, 2013.

[90] K. Socha and M. Kisiel-Dorohinicki. Agent-based evolutionary multiobjec-
tive optimisation. In Proceedings of the 2002 Congress on Evolutionary Compu-
tation, 2002. (CEC ’02), volume 1, pages 109–114, 2002.

[91] J. A. Sokolowski and C. M. Banks. Principles of Modeling and Simulation: A
Multidisciplinary Approach. John Wiley & Sons, Inc., Hoboken, NJ, USA.,
2009.

[92] A. Stam, M. Kuula, and H. Cesar. Transboundary air pollution in Eu-
rope: An interactive multicriteria tradeoff analysis. European Journal of Op-
erational Research, 56(2):263–277, 1992.

[93] I. Steponavice, S. Ruuska, and K. Miettinen. A solution process for
simulation-based multiobjective design optimization with an application
in paper industry. Computer-Aided Design, 47:45–58, 2014.

[94] R. Storn and K. Price. Differential evolution – a simple and efficient heuris-
tic for global optimization over continuous spaces. Journal of Global Opti-
mization, 11(4):341–359, 1997.

[95] E.-G. Talbi. Metaheuristics: From Design to Implementation, volume 74. John
Wiley & Sons, Inc., Hoboken, NJ, USA, 2009.

[96] S. Talukdar, L. Baerentzen, A. Gove, and P. De Souza. Asynchronous teams:
Cooperation schemes for autonomous agents. Journal of Heuristics, 4(4):295–
321, 1998.

[97] S. Tarkkanen, K. Miettinen, J. Hakanen, and H. Isomäki. Incremental user-
interface development for interactive multiobjective optimization. Expert
Systems with Applications, 40:3220–3232, 2013.

70

[98] C. Thieke, K.-H. Küfer, M. Monz, A. Scherrer, F. Alonso, U. Oelfke, P. E. Hu-
ber, J. Debus, and T. Bortfeld. A new concept for interactive radiotherapy
planning with multicriteria optimization: First clinical evaluation. Radio-
therapy and Oncology, 85(2):292–298, 2007.

[99] J. Tsitsiklis, D. Bertsekas, and M. Athans. Distributed asynchronous deter-
ministic and stochastic gradient optimization algorithms. IEEE Transactions
on Automatic Control, 31(9):803–812, 1986.

[100] T. Tveit, T. Laukkanen, V. Ojalehto, K. Miettinen, and C. Fogelholm. Inter-
active multi-objective optimisation of configurations for an oxyfuel power
plant process for CO2 capture. Chemical Engineering Transactions, 29:433–
438, 2012.

[101] H. R. Weistroffer, C. H. Smith, and S. C. Narula. Multiple criteria decision
support software. In Multiple Criteria Decision Analysis: State of the Art Sur-
veys, pages 989–1009. Springer Science + Business Media, Inc, New York,
2005.

[102] A. Wierzbicki. A mathematical basis for satisficing decision making. Math-
ematical Modelling, 3:391–405, 1982.

[103] M. Wooldridge. An Introduction to MultiAgent Systems. John Wiley & Sons,
Inc., 2002.

[104] L. Xu, T. Reinikainen, W. Ren, B. P. Wang, Z. Han, and D. Agonafer. A
simulation-based multi-objective design optimization of electronic pack-
ages under thermal cycling and bending. Microelectronics Reliability,
44(12):1977–1983, 2004.

[105] T. Yee and I. Grossmann. Simultaneous optimization models for heat inte-
gration. Computers & Chemical Engineering, 14(10):1165–1184, 1990.

[106] Y. Yun, M. Yoon, and H. Nakayama. Multi-objective optimization based
on meta-modeling by using support vector regression. Optimization and
Engineering, 10(2):167–181, 2009.

ORIGINAL PAPERS

PI

AN INTERACTIVE MULTI-OBJECTIVE APPROACH TO HEAT
EXCHANGER NETWORK SYNTHESIS

by

Timo Laukkanen · Tor-Martin Tveit · Vesa Ojalehto · Kaisa Miettinen ·
Carl-Johan Fogelholm 2010

Computers & Chemical Engineering, 34(6)

Reproduced with kind permission of Elsevier.

PII

IMPLEMENTATION ASPECTS OF INTERACTIVE
MULTIOBJECTIVE OPTIMIZATION FOR MODELING

ENVIRONMENTS: THE CASE OF GAMS-NIMBUS

by

Vesa Ojalehto · Kaisa Miettinen · Timo Laukkanen 2014

Computational Optimization and Applications, 58(3)

Reproduced with kind permission of Springer.

PIII

APPLYING APPROXIMATION METHOD PAINT AND
INTERACTIVE METHOD NIMBUS TO MULTIOBJECTIVE

OPTIMIZATION OF OPERATING A WASTEWATER
TREATMENT PLANT

by

Markus Hartikainen · Vesa Ojalehto · Kristian Sahlstedt

Engineering Optimization, to appear, DOI:10.1080/0305215X.2014.892593

Reproduced with kind permission of Taylor & Francis.

PIV

COUPLING DYNAMIC SIMULATION AND INTERACTIVE
MULTIOBJECTIVE OPTIMIZATION FOR COMPLEX

PROBLEMS: AN APROS-NIMBUS CASE STUDY

by

Karthik Sindhya · Vesa Ojalehto · Jouni Savolainen · Kaisa Miettinen · Hannu
Niemistö 2014

Expert Systems with Applications, 41(5)

Reproduced with kind permission of Elsevier.

PV

AGENT-BASED INTERACTIVE APPROACH FOR
COMPUTATIONALLY DEMANDING MULTIOBJECTIVE

OPTIMIZATION PROBLEMS

by

Vesa Ojalehto · Dmitry Podkopaev · Kaisa Miettinen 2014

Reports of the Department of Mathematical Information Technology, Series B,
Scientific Computing, No. B 6/2014, University of Jyväskylä, Jyväskylä

Reports of the Department of Mathematical Information Technology
Series B. Scientific Computing
No. B6/2014

Agent-based Interactive Approach for

Computationally Demanding Multiobjective

Optimization Problems

Vesa Ojalehto Dmitry Podkopaev

Kaisa Miettinen

University of Jyväskylä
Department of Mathematical Information Technology

P.O. Box 35 (Agora)
FI–40014 University of Jyväskylä

FINLAND
fax +358 14 260 2771

http://www.mit.jyu.fi/

Copyright c© 2014
Vesa Ojalehto and Dmitry Podkopaev and Kaisa Miettinen

and University of Jyväskylä

ISBN 978-951-39-5814-5
ISSN 1456-436X

Agent-based Interactive Approach for
Computationally Demanding Multiobjective

Optimization Problems

Vesa Ojalehto

Dmitry Podkopaev

Kaisa Miettinen

Abstract

We generalize the applicability of interactive methods for solving computa-
tionally demanding, that is, time-consuming, multiobjective optimization prob-
lems. For this purpose we propose a new agent assisted interactive algorithm.
It employs a computationally inexpensive surrogate problem and four different
agents that intelligently update the surrogate based on the preferences speci-
fied by a decision maker. In this way, we decrease the waiting times imposed
on the decision maker during the interactive solution process and at the same
time decrease the amount of preference information expected from the decision
maker.

The agent assisted algorithm is not specific to any interactive method or sur-
rogate problem. As an example we implement our algorithm for the interactive
NIMBUS method and the PAINT method for constructing the surrogate. This
implementation was applied to support a real decision maker in solving a two-
stage separation problem.
Keywords: Multiple objective programming, interactive methods, agent-based
optimization, surrogate problem, NIMBUS, PAINT

1 Introduction

In the modern society, it has become more and more important to support decision
makers in finding solutions which take several conflicting objectives into account
and optimize the objectives simultaneously. For such problems, it is not possible to
find a single optimal solution because of the conflicting nature of the objectives. In-
stead of a single optimal solution, these multiobjective optimization problems have

1

several so-called Pareto optimal solutions with different trade-offs between the ob-
jectives.

When dealing with real-world optimization problems, it is usually needed to find
a single or few Pareto optimal solutions to be implemented which are called most
preferred solutions. In order to select such a solution(s), some additional information
is needed, such as how a solution should be changed in order it to get a more pre-
ferred solution for the problem, what kind of trade-offs are acceptable or what are
desirable values for objective functions. This preference information can be obtained
from a human decision maker (DM) having expertise in the problem domain. Sev-
eral methods have been developed for finding the most preferable solution (see, e.g.,
[5, 25] and references therein).

In this paper, we concentrate on so-called interactive methods (see, e.g., [25, 31]
and references therein), where the solution process makes progress iteratively by
asking the DM to specify preference information until most preferred one is found.
By exploring Pareto optimal solutions in this manner, the DM can learn about the
trade-offs between the conflicting objective functions and, thus, gain insight about
the problem. In addition, the DM can learn about how feasible his or her prefer-
ences are by comparing the expectations to the Pareto optimal solutions found. This
means that the DM can even change his or her preferences during the solution pro-
cess, if desired. Based on the learning the DM is able to make informed decisions on
what kind of Pareto optimal solutions would best satisfy his or her preferences.

Interactive methods have given promising results for solving real-world opti-
mization problems involving wide variety of engineering fields. These problem
include optimal control of a continuous casting of steel [26, 27], intensity modu-
lated radiotherapy treatment planning [37], optimizing configurations of an oxyfuel
power plant process [53], operating wastewater treatment plant [17, 15], optimal
design and control of a paper mill [49], among others. For more examples of use of
interactive methods in various fields see [33] and references therein.

Real-world multiobjective optimization problems can be computationally de-
manding. The function evaluations may depend, for example, on time-consuming
computations or simulations [15, 18, 49, 58]. If this is the case, an interactive multi-
objective optimization process as outlaid above may become infeasible by the long
waiting times needed to generate new Pareto optimal solutions according to the
preference information specified by the DM. In other words, the interactive nature
of the solution process suffers and the most preferred solutions may not be found.
For example, the DM may be restricted to examining only very few Pareto optimal
solutions and may stop the solution process prematurely.

One approach to solving computationally demanding problems is to replace com-
putationally expensive functions by simplified ones. However, if the problem is
simulation-based, that is, involves a simulator, it can be a so called black-box prob-
lem without any additional information about the problem besides decision vari-
able and objective (and possibly constraint) function values. Another widely used
approach is to utilize parallelization techniques to decrease the computation time.
But it is possible that the problem is implemented in a way that does not allow for

2

parallelization, e.g., the used simulator may have only a limited number of licenses
available.

To summarize, when solving a computationally demanding multiobjective opti-
mization problem using an interactive method, it is quite possible that the method
requires more time to generate new Pareto optimal solutions than there is to spare.
If other approaches cannot be utilized or they do not provide enough improvement
in the time available, a natural way of handling such problems is to replace the com-
putationally demanding problem with a computationally less demanding surrogate.
In practice, this means that the DM is shown approximate rather than Pareto opti-
mal solutions during the interactive solution process. However, applying the surro-
gate problem in multiobjective optimization has significant limitations and has been
elaborated only in few studies (see e.g. [11]).

A good accuracy of the surrogate problem is important in order to avoid mislead-
ing the DM. Because the preference information specified by the DM indicates what
kind of solutions he or she is interested in, this information can be used to update
the surrogate in an intelligent way. This means that the accuracy of the surrogate
varies and is most accurate near the interesting solutions.

It has been reported in the literature that solution processes with interactive
methods often take quite few iterations (see e.g. [12, 25, pp. 134–135]). One rea-
son for this may be the cognitive load set on the DM. The load could be decreased if
the amount of the preference information expected from the DM was smaller.

In this paper, we combine an interactive multiobjective objective method and a
surrogate problem in an intelligent way to support the DM in order to decrease the
waiting times experienced by the DM and in addition to increase the accuracy of
the surrogate problem. We propose to enhance the solution process with agents, i.e.,
entities that try to achieve some pre-defined goals by autonomous and intelligent
actions. In the proposed algorithm, we utilize the agents to update the surrogate
problem near solutions that are interesting to the DM, to minimize waiting times
imposed on the DM and to decrease the amount of preference information expected
from the DM. We describe the proposed method as a general algorithm, as it does
not depend on any specific methods or techniques. In addition to the interactive
method and to the surrogate problem construction technique, the introduced agent
assisted algorithm employs four different types of agents, each having their own
goals.

To give more concrete ideas of how to implement agents, we demonstrate the
agent assisted algorithm implemented with the classification-based NIMBUS method
[25, 28, 29] selected as the interactive method and the PAINT method [16] selected
as the surrogate problem construction technique. Furthermore, we apply the agent
assisted algorithm involving the two above-mentioned methods to solve a com-
putationally demanding two-stage separation problem and discuss the advantages
achieved.

The rest of this paper is organized as follows. In Section 2, we present the
concepts and background material utilized. This includes the interactive NIMBUS
method and the PAINT surrogate construction technique that are used as examples.

3

In addition, we include an brief overview of agent studies in relation to this research.
We introduce the new agent assisted interactive algorithm in Section 3. In Section
4, we describe the four different agents employed by the algorithm in more detail.
We demonstrate the advantages of the new algorithm by giving an example of sup-
porting a DM in solving a multiobjective two-stage separation problem in Section 5.
Finally, the paper is concluded by a discussion and concluding remarks in Sections
6 and 7, respectively.

2 Background

Next we discuss the background material used in this paper. First we briefly de-
scribe the notations used and then provide information on the methods used, that is,
on the interactive NIMBUS method for multiobjective optimization and the PAINT
method for constructing the surrogate problem. We finish this section by defining
agents in relation to our research.

2.1 Interactive Multiobjective Optimization

In this paper, we consider multiobjective optimization problems of the form

minimize or maximize {f1(x), f2(x), . . . , fk(x)}
subject to x ∈ S,

(1)

where fi : S → R are k (≥ 2) conflicting objective functions, and x = (x1, x2, . . . ,
xn)

T is the decision (variable) vector bounded by constraints that form the feasible
set S ⊂ R

n. Objective vectors f(x) = (f1(x), f2(x), . . . , fk(x))
T consist of objective

function values calculated at x.
A decision vector x̂ and the corresponding objective vector f(x̂) are called Pareto

optimal if there does not exist any other feasible x so that fi(x) ≤ fi(x̂) for all
i = 1, ..., k and fj(x) < fj(x̂) for least one j = 1, ..., k. Such objective vectors are
called Pareto optimal solutions to problem (1), and a set of Pareto optimal solutions
is called a Pareto frontier [25]. Finding the most preferred Pareto optimal solution
to problem 1 is called a solution process. For the solution process discussed in this
research, the most preferred Pareto optimal solution is found by utilizing the DM’s
preferences, i.e. information about how a solution should be changed in order to get a
more preferred solution for the problem, what kind of trade-offs between objectives
are acceptable for the DM or what are desirable values for objective functions.

The ranges of objective function values in the set of Pareto optimal solutions
can be shown to the DM to give general understanding about attainable solutions.
The k-dimensional ideal objective vector contains the best values of objective values
whereas the worst objective function values form a nadir objective vector. Compo-
nents of the ideal objective vector are obtained by minimizing each of the objective
functions individually subject to S whereas calculating the nadir objective vector

4

necessitates knowing the whole set of Pareto optimal solutions and thus, usually
estimated values are used (for further information, see e.g. [3, 21, 25]).

Interactive methods typically convert the original problem with the preference
information specified by the DM into single objective subproblems [25, 31]. By se-
lecting the subproblems well and solving them with appropriate single objective
optimization methods we get Pareto optimal solutions reflecting the preferences.

The agent assisted algorithm proposed can be used with different interactive
methods following the general core structure of interactive multiobjective optimiza-
tion methods [33]. The core structure can be described as follows:

1. Initialize the process, e.g., calculate ideal and nadir objective vectors.

2. By solving a method-specific subproblem generate an initial Pareto optimal
solution to be used as a starting solution.

3. Ask the DM to specify preference information related to the starting solution
(in the method-specific way).

4. Generate new solution(s) based on the preference information by solving ap-
propriate subproblem(s).

5. Ask the DM to select the most preferred solution of the previously generated
solutions and denote it as the new starting solution.

6. If the selected solution is satisfactory, stop. Otherwise continue from step 3.

It should be noted that in addition to the interactive approach described here and
utilized in this research, there exists several other approaches for solving multiob-
jective optimization problems. When classifying different approaches by the role of
the DM, in addition to the interactive methods where the the DM’s preferences are
specified in an iterative process, there exist three other classes of methods [25]. If
the DM’s preferences are not taken available, the method is referred to as a no prefer-
ence method. When using an a priori method, the DM’s preferences are asked before
starting the solution process. An a posteriori method generates a representative set of
Pareto optimal solutions, that is shown to the DM. As justified in the introduction,
in this research, we consider only interactive methods.

2.2 The Interactive NIMBUS Method

In this research we use the NIMBUS method [25, 28, 29] as the interactive method.
The NIMBUS method is based on the classification of the objective functions. At
each iteration, the DM considers the objective function values of a starting Pareto
optimal solution xc, and is asked to classify objective functions into up to five dif-
ferent classes. The classes indicate what kind of changes in the objective function
values would provide a more satisfactory solution than xc.

For simplicity, we present the classes for functions to be minimized. The classes
are for functions fi whose values

5

should be improved (i ∈ I<),

should be improved to some aspiration level ẑi < fi(x
c) (i ∈ I≤),

are satisfactory at the moment (i ∈ I=),

are allowed to impair up till some bound εi > fi(x
c) (i ∈ I≥),

are allowed to change freely (i ∈ I�).

Based on the classification information, up to four single objective subproblems
are formed. By solving these subproblems we obtain four new Pareto optimal so-
lutions, each following the classification in a slightly different way. These solutions
are shown to the DM, and he or she can select one of them or one of the previously
generated Pareto optimal solutions as the most preferred solution or as a starting
solution of a new classification. For a more detailed description of the NIMBUS
method, see [28, 29, 33].

2.3 The PAINT Surrogate Method

In this research, by a surrogate problem we refer to a problem that can be used to
replace the original, usually computationally expensive problem for the duration of
the interactive solution process. The surrogate problem is constructed in such a way
that it can be solved significantly faster than the original problem while producing
optimal solutions that approximate the solutions of the original problem. Using a
surrogate problem eliminates the issue of DM’s waiting time during the interactive
solution process but, on the other hand, poses new challenges such as controlling
the accuracy.

In this research, we use the PAINT method [16] to construct a surrogate prob-
lem of a computationally demanding multiobjective optimization problem. In the
PAINT method, the surrogate problem is constructed based on a pre-computed set
of Pareto optimal solutions. Here we refer to this set as a constructing set.

The constructing set can be generated with any multiobjective optimization method
that generates many Pareto optimal solutions (see e.g. [40, 25, 5]). We utilize PAINT
as it is applicable in both convex and nonconvex problems. More details of the
PAINT method can be found in [16].

2.4 Multiagent Systems

There does not exist a single, universally agreed definition of an agent, as their us-
age varies from field to field. But on a general level, an agent is some entity, located
in an some environment, where the agent tries to reach some pre-defined goal by
automatic and intelligent actions [38]. Furthermore, the environment typically con-
tains several agents interacting with each other [57]. Such an environment is called
a multiagent system.

6

Agent-based computational intelligence technologies have been widely studied
(see e.g. [38, 57]) and applied in many areas of science dealing with complex sys-
tems. Agent-based technologies were initially applied in information and commu-
nication, but later they have been applied in different fields related to engineering
and manufacturing, such as production planning and resource allocation [42]. In
addition, they have been used for single (see e.g. [2, 23, 39, 43]) and multiobjective
optimization but, to our knowledge, they have not been applied in interactive mul-
tiobjective optimization discussed in this research. In [44], agents are utilized for
generating Pareto optimal solutions by solving optimization problems that are sim-
ilar to the subproblems used in interactive methods, but there the DM’s preference
information is not taken to account. In [10, 14, 22, 45, 47, 48], agents are utilized
in enhancing existing evolutionary multiobjective optimization methods, where the
purpose is to find a representative set of Pareto optimal solutions, that is, in an a
posteriori fashion. In [4], multiple agents are utilized for supporting several DMs
when solving a multiobjective optimization problem with preference-based evolu-
tionary method. In the proposed method, agents negotiate a single reference point
that should best correspond to the reference points provided by all DMs. Further-
more, in [8] agents are utilized to reduce the number of questions asked from the
DM when utilizing a priori method.

In these approaches, unlike in the approach discussed in this research, the DM
does not interact with the solution process in order to learn about the problem char-
acteristics or to modify his or her preferences. Furthermore, the previous research
mostly concentrates on producing either all or a representative set of Pareto optimal
solutions, without discussion on how to select the most preferred Pareto optimal
solution that can be the basis for practical implementation of the product or process
being designed.

In our research agents directly use preference information and actively assist the
DM in the interactive process of finding the most preferred solution. We define an
agent to have following properties:

Emergent: agents are able to solve complex problems with a set of simple rules.

Autonomous: agents have control of their inner state and they can take actions with-
out human intervention.

Reactive: agents take actions based on their environment.

Goal-oriented: agents aim at achieving some goal with their actions.

Communal: agents are able to communicate with other agents, be they human or
artificial.

Fault tolerant: agents can attempt to recover from a failure, e.g. a failure in reaching
their goal.

In the literature, it has been noted that by using multiple autonomous agents that
utilize several different methods it is possible to obtain optimal solutions for com-
plex optimization problems more efficiently in comparison to using only a single

7

agent (see e.g. [9, 24, 51]). This effect is usually demonstrated with empirical stud-
ies, but it has been shown that the use of multiagent systems should not adversely
affect convergence properties of the optimization methods [52]. Therefore we use
four different agents in our algorithm.

After having defined the main concepts to be used and introduced necessary
background material, in the next section we can introduce the new agent assisted
algorithm.

3 Agent Assisted Interactive Multiobjective Optimiza-

tion Algorithm

The aim of this research is to provide the DM with assistance when solving a com-
putationally demanding multiobjective optimization problem with an interactive
method. As mentioned earlier, interactive methods are iterative, involving the DM
in each iteration. In this section we introduce an agent assisted interactive multiob-
jective optimization algorithm for this purpose.

3.1 Introduction to the Agent Assisted Algorithm

An interactive method shows new Pareto optimal solution(s) to the DM, who stud-
ies it/them and then specifies information on his or her preferences. Then the DM
is shown new solution(s). With this iterative procedure the DM can learn about the
characteristics of the problem to form a firm idea of the Pareto optimal solutions
that can be attained, and which of these solutions best match with his or her prefer-
ences. At the same time the DM can adjust one’s preferences. As motivated in the
introduction, waiting times can become an issue with computationally demanding
problems. In this section we present the background for the new algorithm which
can provide new Pareto optimal solutions without waiting times.

One approach for providing the DM with new solutions in a timely manner is
to replace the computationally demanding problem with a surrogate problem, as
described in Section 2.3. This approach consists of the following three phases.

1. Construction phase. The surrogate problem is constructed.

2. Decision phase. The interactive method is employed to solve the surrogate prob-
lem in communication with the DM.

3. Projection phase. The solution of the original problem is obtained based on the
solution of the surrogate problem. If needed, the surrogate problem is updated
in order to improve its accuracy and the second phase is repeated.

We distinguish the decision phase where the DM is actively involved from con-
struction and projection phases where his or her presence is not necessary. The lat-
ter two phases can be referred to as offline phases. By replacing the original problem

8

with a surrogate problem we shift the computational burden from decision phase
to offline phases, thus eliminating waiting time of the DM. On the other hand, this
replacement means that, instead of Pareto optimal solutions the DM is shown ap-
proximate Pareto optimal solutions, i.e., Pareto optimal solutions of the surrogate
problem. After the DM has found his or her most preferred approximate Pareto op-
timal solution, as the name of the projection phase suggests, the solution is projected
to the Pareto frontier of the original problem. This can be done using, for example,
an achievement scalarization function [55] as described in [33].

The challenge with a surrogate based approach is that the approximate Pareto
optimal solution may be too far from the Pareto frontier of the original problem,
i.e., the surrogate is not accurate enough. If the problem is computationally very
demanding, the projection can take a long time. If the projected solution is too dif-
ferent from the corresponding approximate Pareto optimal solution, the DM may
need to start the interactive solution process again. In the worst case, this may mean
that first a new surrogate problem must be constructed before the interactive solu-
tion process can be started again and all previous preference information may be
wasted. This outcome is the complete opposite to the aim of using the surrogate
problem because it hinders the learning process rather than supports it. Therefore,
the accuracy of the surrogate problem plays an important role.

The aim of utilizing multiple independent agents, i.e., artificial decision makers,
is to improve the accuracy of the surrogate problem in the intelligent way, i.e. in
those areas of the problem where the improvement is most needed. We propose to
utilize four different types of agents which perform specific tasks during different
phases of the solution process as described in the next section.

3.2 The Agent Assisted Algorithm

Now we are in a position to describe the proposed agent assisted interactive al-
gorithm, to be called an agent assisted algorithm. This algorithm is general and not
tailored for any specific interactive method or surrogate problem. The agent assisted
algorithm extends the interactive method by emphasizing the intelligent updating
of the surrogate problem, minimizing waiting times imposed on the DM and de-
creasing the amount of preference information expected from the DM, thus decreas-
ing the cognitive load.

The overall structure of elements comprising the agent assisted algorithm can
be seen in Figure 1. There are four types of agents which both perform their own
tasks and communicate and share information with each other. Preference agents use
preference information expressed by the DM to build a preference model, interactive
method agents collect information about the parameters that the interactive method
uses to generate approximate Pareto optimal solutions, based on this information op-
timization agents generate new Pareto optimal solutions, and finally, surrogate agents
are responsible for constructing and updating the surrogate problem. Each type of
agent is described in detail in the next section.

The agent assisted algorithm consists of the following six steps. We indicate for

9

Figure 1: Overall structure of the agent assisted algorithm

each step, to which of the phases it belongs: construction phase (c.p.), decision phase
(d.p.) or projection phase (p.p.).

1. (c.p.) The surrogate agent constructs the surrogate problem

• using information from all other agents, if available.

2. (d.p.) The DM uses the interactive method and specifies preference informa-
tion based on the starting solution.

• Preference agents collect the preference information to build a model of
the DM’s preferences.

3. (d.p.) The interactive method generates approximate Pareto optimal solu-
tion(s) to be shown to the DM.

• The interactive method agents collect information on how approximate
Pareto optimal solutions are generated.

4. (d.p.) The DM selects one approximate Pareto optimal solution

(a) as the new starting solution for the next iteration and continues with step
2, or

(b) as the most preferred solution of the surrogate problem.

10

• Preference agents collect this information which is interpreted as prefer-
ence of one solution over others.

5. (p.p.) The optimization agents generate new Pareto optimal solutions of the
original problem based on the information collected by the interactive method
agents and the preference agents.

6. The preference agents select a subset of Pareto optimal solutions which is
shown to the DM. The DM either

(a) continues with step 1, or

(b) selects one as the most preferred solution of the original problem and
stops.

The advantage of having separate offline and decision phases is that there are no
waiting times for the DM to see approximate Pareto optimal solutions correspond-
ing to his or her preferences. On the other hand, how long the offline phase can take
is agreed with the DM. It should be noted that it is possible to choose one of the
solutions in step 6 as the solution for the original problem using preference agents
without involvement of the DM. Therefore, in the extreme case the DM’s involve-
ment can be restricted to steps 2 to 4.

In practice, the information from all other agents in step 1 advises where the
surrogate should be updated. This means that no previously specified preference
information is wasted when the DM decides to continue with step 1 from step 6.

The presented description of the algorithm is very general for it can incorporate a
large variety of interactive methods and surrogate problem construction techniques.
To be more specific, in the next section we select both the method and the technique
which allows us to describe what agents do in detail.

4 Agents in Detail

In this section we give more information about the four types of agents utilized in
the agent assisted algorithm. Figure 2 provides a more detailed view of the roles
of the agents in the algorithm. Because agents depend on the interactive method
and the surrogate problem selected, here we provide more information assuming
that NIMBUS is the interactive method and PAINT is the method to construct the
surrogate problem.

In general, each agent type can be implemented in various ways, and in practice
it is advisable to utilize several different agents to compliment each other. For this
reason, we refer to several agents in what follows.

4.1 Preference Agents

The main function of the preference agents is to build models of the DM’s prefer-
ences. These models are built in order to identify those areas of the Pareto frontier

11

Figure 2: Detailed illustration of the agent assisted algorithm

which are interesting to the DM. The model of the DM’s preferences (preference model
for short) is usually a mathematical description of all necessary information allow-
ing one to choose a solution or to specify preference information on the DM’s behalf.
A preference model is generally defined as a universal rule of selecting a subset of
solutions from any given set of feasible solutions, i.e., as a choice function [54]. An-
other general, but a simpler way of modeling DM’s preferences is defining a binary
relation on the set of feasible solutions (see e.g. [1, 41]) describing the DM’s prefer-
ence judgments for certain pairs of solutions. These two concepts are mostly used
for theoretical studies. In practical multiobjective optimization methods, people use
more compact and problem-specific models of DM’s preferences such as value func-
tions (see e. g. [19, 13]) and reference points (see e.g. [56, 20]).

The process of constructing a preference model based on observations of the
DM’s behavior is called preference learning. For illustrating the agent assisted al-
gorithm, we have implemented simple techniques based on two basic approaches:
computer learning and human learning. The computer learning approach is based on
the assumption that all DM’s input reflects his or her steady preference model and,
thus, a computer learning approach can be applied for building a DM’s preference
model from this data. The human learning approach assumes that as the interactive
method progresses, the DM learns and adjusts one’s preferences. Thus constructing
the preference model is reduced to predicting its parameters for the next iteration

12

based on the time series of parameters in previous iterations. It should be noted that
when using interactive methods, it cannot be assumed that the DM could take hun-
dreds of iterations, and the selected preference model construction approach cannot
depend on large amounts of input data.

As examples, we demonstrate the computer learning approach in the context of
NIMBUS in two ways. Both of them are implemented using two different machine
learning techniques: polynomial-based kriging (e.g., [36]) and support vector ma-
chines (e.g., [7]). In the first way, when training the agent, it is given as the input a
set of (approximate) Pareto optimal solutions presented to the DM at each NIMBUS
iteration, and as the output, the agent is given the solution that the DM selected from
that set. After the computer learning agent has been trained with this data, it can
be used to select one solution of a set of solutions (that would be most preferred by
the DM). In what follows, this is referred to as a selecting agent. In the second com-
puter learning way, the agent is given a Pareto optimal solution as the input and the
NIMBUS classification specified by the DM in relation to that solution as the output.
After the training, the agent will give as the output a classification information cor-
responding to any solution given as the input. This is called a classification agent.
By combining the selecting and the classification agents, we can replace the DM in
the offline phase of the agent assisted algorithm.

As an example of the human learning approach, an agent can be created for pre-
dicting coefficient of each objective function fi in the achievement scalarizing func-
tion. Then for each agent, a feedforward multilayer neural network is trained. As
the input, the agent is given the reference points (obtained from the classifications
as per [29]) provided by the DM during the previous NIMBUS iterations. It is also
given as the input the component of the reference point corresponding to the objec-
tive function fi for the next classification. After the training, for each fi, the agent can
be given a reference point as the input, and it will give as the output the ith compo-
nent of a new reference point. In this way, the history of the preference information
specified during the NIMBUS iterations is utilized. Here preference learning can be
understood as predicting how DM’s input changes by analyzing the time series of
previous input [6].

Besides step 2., step 6. of the agent assisted algorithm utilizes preference agents
when selecting which Pareto optimal solutions should be shown to the DM. This is
done by giving all Pareto optimal solutions generated as the input to the selecting
agent.

4.2 Interactive Method Agents

The main function of the interactive method agents is to find Pareto optimal so-
lutions during the offline phase. These solutions should correspond (as described
below) to the approximate Pareto optimal solutions the DM has found during the
decision phase. This can be achieved by first collecting information on how approx-
imate Pareto optimal solutions were generated in the decision phase. Then, during
the offline phase, this information is used to mimic the actions of the DM with the

13

original problem to generate Pareto optimal solutions which correspond to the DM’s
preferences. In other words, the classifications made by the DM during the NIMBUS
iterations are repeated with the original problem.

In addition, the interactive method agents can also be used for projecting approx-
imate Pareto optimal solutions obtained in the decision phase to the Pareto frontier.
Using interactive method agents in the two described ways may generate two differ-
ent Pareto optimal solutions per each approximate Pareto optimal solution. Which
of them is shown to the DM depends on the preference agent. This increases under-
standing of attainable Pareto optimal solutions but, on the other hand, also increases
the computational cost. If desired, the projection can be skipped.

4.3 Optimization Agents

The main function of the optimization agent is to generate Pareto optimal solutions
for the original multiobjective optimization problem. When using the NIMBUS
method, Pareto optimal solutions are generated by solving single objective subprob-
lems. In the agent assisted algorithm, these subproblems are solved by the opti-
mization agents with several different single objective optimization methods. The
methods used for solving the subproblems depend on the used interactive methods.
For solving the NIMBUS subproblems, we use global methods, such as differential
evolution [50], controlled random search [35] and genetic algorithm [30], and local
methods such as COBYLA [34] and proximal bundle method (if gradient informa-
tion is available) [32] and their hybrids.

Let us briefly describe our approach to implementing optimization agents. When
employed in the agent assisted algorithm, an optimization agent usually belongs to
an agent group. For example, a new agent group is assembled for each step 2. taken
by the DM. The goal of an agent in a group is to find a Pareto optimal solution cor-
responding to the preference information specified by the DM, i.e., each agent in the
group tries to solve the same single objective NIMBUS subproblem. The agents in
the same group differ by which single objective optimization method they employ,
and by what parameters are given to those methods. In step 5, all agents are run
simultaneously, but the rate of convergence for each agent in a group is studied on
a decreasing interval and the agents converging fastest are given more computing
time. To improve their convergence rate, the optimization agents are able to change
their configuration, i.e. what method they are using and what are the method pa-
rameters. In addition, the optimization agents communicate with each other, pro-
viding information about the best solutions found and about the configurations the
solutions have been found. This information is communicated also to the agents in
other groups.

Optimization agents continue solving the NIMBUS subproblems until they can-
not find configurations which provide improvement on the optimal values. In ad-
dition, step 5 is given a maximum time available for obtaining new Pareto optimal
solution, and in practice, the optimization agents continue until the given time runs
out.

14

As single objective optimization is not in the scope of this paper, optimization
agents are not discussed here in more detail. They have been implemented follow-
ing the results of [43].

4.4 Surrogate Agent

The main function of the surrogate agent is update the surrogate problem on those
areas that DM has shown interest in. In the case of PAINT, it is intuitively obvious
that the accuracy of the surrogate problem depends on the coverage of the construct-
ing set. Therefore, adding a Pareto optimal solution to the set usually improves the
accuracy in the approximate Pareto optimal solutions that can be obtained near that
solution. Improving the accuracy can be achieved by including Pareto optimal solu-
tions generated by optimization agents in the constructing set whenever appropri-
ate.

If a preference agent has an inaccurate preference model, it can instruct opti-
mization agents to generate a solution that does not correspond to the DM’s prefer-
ences. Even if a surrogate agent adds it in the constructing set, the accuracy of the
surrogate does not suffer because the solution added is Pareto optimal. The worst
consequence of this is increased computational cost.

5 Case Study: Two-Stage Separation Problem

To demonstrate the benefits of the agent assisted algorithm we apply it in a two-
stage separation problem, originally considered in [46]. The related multiobjective
optimization problem is computationally demanding. The solution process was car-
ried out with the implementations of agents, NIMBUS and PAINT contained in the
IND-NIMBUS software framework where the DM used a graphical user interface.
For further implementation details of the two methods, see [33, 17], respectively.

In the two-stage separation problem, an incoming feed of water and general im-
purity are separated into permeate and retentate. The process model considered
here consists of two pumps pumping the feed to two filters and two pumps recy-
cling a part of the permeate back to the filters. The goal of the two-stage separation
problem is to extract a maximum amount of retentate (kg) from an incoming feed
while minimizing the amount of impurity (kg) in the permeate and minimizing the
energy (Kj) used by the pumps. The two-stage separation process is studied for the
duration of a typical factory shift length, discretized over a time horizon. In addi-
tion to objective functions, the problem model consists of a single constraint and
100 decision variables of which four are continuous and 96 are binary valued. The
problem is nonconvex, i.e., it contains multiple local optimal solutions. When using
Intel R© CoreTM i7-2600 running at 3.4GHz, a single simulation of the problem model
took 5 seconds on an average. In order to reliably obtain optimal solutions when
using a differential evolution [50] method, an average of 15000 simulations were
required. More details of the two-stage separation problem can be found in [46].

15

Iter Issue Max Min Min
Permeate (kg) Impurity Energy (kJ)

z1 2222 11.02 16842
1 Classif I≥=2000 I≤=2.300 I≤=9500.000

z12 1732 3.92 12402
z13 1483 2.02 14632
z14 2096 3.39 16155
z1
3 1483 2.02 14632

2 Classif I≤=1900 I≥=2.35 I≤=9600.000

z15 950 6.84 11606
z16 1240 2.06 14939
z1
6 1240 2.06 14939

3 Classif I≤=1500 I≥=2.4 I≤=12000.000

z17 1348 2.14 9329
z18 1236 2.07 9339
z19 1234 1.85 9857

Pref. z1
7 1348 2.14 9329

Table 1: Solution process of the two-stage separation problem in [46]

Originally in [46], due to time constraints, the two-stage separation problem was
solved with a restricted number of function evaluations. The preferences specified
by the DM and the corresponding Pareto optimal solutions generated with the in-
teractive NIMBUS method can be seen in Table 1. Here, each section of the table
represents a single iteration of the interactive method, where the first (bolded) row
indicates the starting solution shown to the DM, the second row indicates the pref-
erences specified by the DM and the following rows indicate the Pareto optimal
solutions generated. For more details of the solution process, see [46].

In Table 1, each Pareto optimal solution is denoted by zj , of which z7 denotes
the solution selected as the most preferred one by the DM. However, as noted in
[46], the solutions generated are not actually Pareto optimal because the optimiza-
tion methods did not necessarily converge, as the optimization had to be stopped
prematurely due to the time constraints.

In what follows, we apply the agent assisted algorithm in the two-stage separa-
tion problem. The aim of the problem is to design a new type of separation process,
and the process designer acted as the DM for during the solution process. Because
we want to utilize all preference information provided in the previous research, we
denote the results of [46] as the first decision phase for the agent assisted algorithm
and start with the offline phase of step 5. In addition, preference agents selected only
one Pareto optimal solution in step 6 with which we proceeded to step 1, where the
surrogate problem was constructed for the first time with the PAINT method. In
this way, we could build the surrogate problem with increased accuracy on the ares
that the DM had shown interested in. The DM started the second decision phase

16

with step 2 and the agent assisted algorithm was followed till step 6 (b).
In what follows, we provide some details of the individual steps taken in the

solution process. The offline phase in step 5 was started with the optimization
agents first using the information from the interactive method agents to mimic the
actions of the DM summarized in Table 1. For example, from the information of
the iteration 3 of Table 1, four new interactive method agents were created. Each
of them corresponded to one of the subproblems of the NIMBUS method generat-
ing a Pareto optimal solution (corresponding to the classification information). Each
of the interactive agents employed a group of eight optimization agents. These 32
agents, using different optimization methods with different parameters, generated
four new Pareto optimal solutions (one for each group). One of these solutions was
(1764, 0.20, 12030). To obtain this result, the optimization agents spent a total of 2600
function evaluations.

Let us consider this Pareto optimal solution for a while. It was used by the pref-
erence agent called classification agent to generate two new sets of preference infor-
mation. As an example, the classification agent-based on support vector machines
produced the classification

(
I≤2270, I≥2.3, I≤7500

)
. Then this preference information

was passed to interactive method agents to generate new Pareto optimal solutions.
The corresponding actions were taken for each of the remaining three Pareto opti-
mal solutions of iteration 3. Naturally, the corresponding steps were repeated for
iterations 1 and 2 of Table 1. In this way, preference information available from the
previous research was utilized.

Step 5 of the first offline phase was continued until the amount of time agreed
with the DM was used up. In step 6, the preference agents selected one Pareto
optimal solution z21 (see Table 2) which was shown to the DM. Because the DM
wanted to improve it, the second offline phase was started with step 1.

In step 1, the Pareto optimal solutions generated in step 5 of the first offline
phase were used to construct a surrogate problem of the two-stage separation prob-
lem. The solution process continued with the second decision phase consisting of
repeated steps from 2 till 4.

A collection of the results generated during the second decision phase as well as
the preference information specified can be seen in Table 2. The Pareto optimal so-
lutions were generated based on the preferences specified by the DM in a graphical
user interface shown in Figure 5. Here, the DM has provided classification for the
iteration 2 of the solution process (described in Table 2), and the method has gen-
erated four new approximated Pareto optimal solutions, that are shown to the DM.
In the Figure 5, the DM is shown a single Pareto optimal solution, namely the solu-
tion a23, on the left side. As can be seen, the Pareto optimal solution is shown with
three vertical bars, each of which corresponding to an objective function. The first
objective function is to be maximized, which is indicated by having the bar starting
from the right end. The lowest (estimated) value that each objective function can
achieve is shown to left of the bar, and the highest (estimated) value is shown to the
right. The relative position of the current objective function value is indicated with
an arrow pointing down, as well as the exact numeric value below the bar. The DM

17

Iter Issue Max Min Min
Permeate (kg) Impurity Energy (kJ)

Ideal 4693 0.00 0
Nadir 0 23.56 48532
z24 1773 0.29 8488

1 Classif I≥=1050 I< I≤=3400

a21 1051 0.25 4380
a22 983 0.23 4100
a23 109 0.03 466
a24 1030 0.25 4294
a23 109 0.03 466

2 Classif I≤=1000.0 I≥=0.1 I≥=3500.0

a25 469 0.10 2368
a26 962 0.29 3889
a27 580 0.12 2952
a28 988 0.28 4032
a25 469 0.10 2368

3 Classif I≤=1000.0 I≤=0.1 I≥=5000.0

a29 974 0.23 4102
a210 580 0.12 2952
a211 990 0.23 4158
a25 469 0.10 2368

4 Classif I≤=2000.0 I≥=0.12 I≥=9000.0

a212 566 0.12 2881
a213 1909 0.57 7735
a214 902 0.21 3928
a215 1952 0.59 7887
a212 566 0.12 2881

5 Classif I≤=2000.0 I≥=0.13 I≥=9000.0

a216 606 0.13 3033
a217 1909 0.57 7735
a218 938 0.22 4001
a219 1952 0.59 7887

Pref. a27 580 0.12 2952

Table 2: Solution process in the second decision phase with the agent assisted algo-
rithm

18

Figure 3: Graphical user interface used by the DM

indicates preferences by clicking the bar on location where the value is desired to
be changed or by inputting a numeric value to the edit box located to the right of
the bar. The obtained solutions are shown on the right side of the figure. For more
information on the graphical user interface used during the decision phase by the
DM, see [33].

Based on his understating of the problem (gained during the first decision phase),
the DM decided to minimize the amount of impurity as much as possible, while
maintaining reasonable bounds (to be seen in the table) for the other objectives.
This was the first classification. He was shown four approximate Pareto optimal
solutions of which he selected a23 as it had the best impurity even though the values
of the other objectives were not satisfactory.

For the second iteration, he gave an upper bound 0.10 for the impurity, while
aspiring for the value 1000 for the permeate (to be maximized) and maintaining
an upper bound of 3500 for the energy consumption. For the third iteration, he
decided to continue with a25 as this solution obeyed the upper bound of impurity
even though the permeate value 469 was low.

In the third iteration, he allowed increment of energy consumption till 5000, in
order to obtain the desired value 1000 for the permeate. From the results shown,
he noticed that by increasing the impurity level, he might be able to obtain a better
permeate value while maintaining a reasonable level of energy consumption.

The fourth iteration was started again from a25 to see the effect of increasing the
upper bound of impurity to 0.12. As hoped for, the permeate amount improved
while the impurity bound was not violated without impairing the energy consump-
tion. He selected a25.

In the fifth iteration, he allowed the impurity to rise up to 0.13 in order to improve
the permeate amount. In addition, he allowed the energy consumption to rise till
9000. This iteration was not satisfactory and he selected (580, 0.12, 2952) as the final

19

Issue Max Min Min
Permeate (kg) Impurity Energy(kJ)

z31 323 0.10 2858
z32 479 0.14 4240
z33 1870 0.18 10697
z34 2901 0.60 26348

Table 3: Pareto optimal solutions obtained from second offline phase

approximate solution. This was the last step 4 (b) of the second decision phase.
After the second decision phase, the second offline phase of the agent assisted

algorithm was started with the data summarized in Table 2. From the Pareto opti-
mal solutions obtained in the second offline phase, the preference agents suggested
four Pareto optimal solutions which would be preferred by the DM. Their number
was four because it was a cognitively feasible number for the DM. These solutions
are shown in Table 3. Of these, the DM selected z33 as the most preferred solution for
the two-stage separation problem. In it, the permeate and energy values were rea-
sonable while maintaining a good impurity. The DM stopped the solution process
because he was satisfied with the final solution.

As far as the solution process with the agent assisted algorithm is concerned,
for the two-stage separation problem the algorithm could intelligently update the
surrogate problem and enabled interaction with the DM without noticeable wait-
ing times. To be more specific, the DM was able to obtain new approximate Pareto
optimal solutions immediately after having specified preference information. This
enabled him to explore the two-stage separation problem with five different prefer-
ences, that is, iteration, by spending only about half an hour of his time. This is a
remarkable improvement compared to the original research reported in [46], where
he was able to give only one classification per day.

The construction sets generated based on the preference information specified
by the DM are illustrated in Figure 5. Here, Pareto optimal solutions generated
based on the first decision phase are marked with diamonds and those based on the
second decision phase are marked with circles. If the agent assisted algorithm had
been continued, the PAINT surrogate problem would have been constructed from
a combination of these two sets. The vectors of aspiration levels specified by the
DM are marked with triangles pointing downwards for the first decision phase and
with triangles pointing upwards for the second decision phase. As can be seen, the
agent assisted algorithm was able to identify how the DM’s interests changed and
to generate new solutions on the Pareto frontier in those areas.

It should be noted that the amount of preference information specified by the
DM did not decrease when compared to the original research. The slowness of the
original solution process was explained by the computationally demanding prob-
lem. Now that the DM could see new solutions without having to wait for hours, it
encouraged him to do a more thorough search of the interesting area of the approx-
imate Pareto frontier. Nevertheless, the preference agents decreased the cognitive

20

Figure 4: Construction sets created from DM’s preferences

21

load in step 6 by allowing him to consider only a subset of the generated Pareto
optimal solutions.

Originally, the DM regarded impurity as the most important objective. How-
ever, during the solution process he learned that he had to trade-off and give up in
impurity in order to get reasonable values for the other objectives.

The aim of this research is not simply to decrease the overall computational cost
of solving a multiobjective optimization problem. The main idea is to shift the com-
putationally demanding elements from the decision phase to the offline phase in
order to decrease waiting times imposed on the DM. Interestingly, when compar-
ing the results obtained by the optimization agents during the offline phase to the
results obtained with the interactive NIMBUS method (without the surrogate prob-
lem), the optimization agents were able to converge significantly faster and, thus,
computational savings were clear. For example, optimization agents were able to
generate the solution z13 with 1700 function evaluations, but generating a similar
solution without agents took almost 15000 function evaluations. This was not stud-
ied further, as our main focus was on supporting the DM in solving multiobjective
optimization problems with interactive methods.

6 Discussion

With the new agent assisted algorithm we were able to generate satisfactory solu-
tions to the DM and support him when solving the two-stage separation problem.
The same DM was involved in the original research reported in [46] and found the
new algorithm more convenient for exploring the Pareto frontier of the problem. He
appreciated the fact that new approximate Pareto optimal solutions corresponding
to his preference information were generated without waiting times.

It is intuitively evident that the agent assisted algorithm can increase the number
of objective function evaluations used when solving a multiobjective optimization
problem. In step 5 of the agent assisted algorithm, the agents generate more Pareto
optimal solutions than the plain NIMBUS method would. However, by producing
more Pareto optimal solutions based on the DM’s preferences, the agent assisted al-
gorithm is able to provide the DM with a more complete view of the problem. In this
regard, the agent assisted algorithm could also be applied for computationally inex-
pensive problems by generating additional Pareto optimal solutions in the decision
phase. The preference agents could then, as in step 6 of the agent assisted algorithm,
select some of these Pareto optimal solutions to be shown to the DM. In this way,
the agent assisted algorithm could encourage the DM to consider unexplored ares of
the Pareto frontier that could be of interest. It could even be possible to employ the
human learning agents to generate new preference information without additional
function evaluations.

On the other hand, it is possible that the increase of the computational cost in-
troduced by the agent assisted algorithm is not that significant. As pointed out in
Section 5, it seems that the agent assisted algorithm was actually able to reduce the

22

computational cost of solving the two-stage separation problem by an order of mag-
nitude. It is possible that as the optimization agents are guided based on the pref-
erence information obtained from the DM, they are able to converge faster towards
the Pareto frontier. In addition, this effect may be amplified as the optimization
agents share information on the best solutions found including the history of previ-
ous iterations of the interactive method. However these results cannot be directly
generalized to all solution methods.

When shortening the waiting times imposed on the DM, there is naturally some
price to be paid. In the agent assisted algorithm this means showing approximate
Pareto optimal solutions to the DM. This may cause some impreciseness of pref-
erence information. Clearly, the DM must be informed of this. On the other hand,
real-world problems contain typically nonlinear and nonconvex objective functions.
Furthermore, these problems are usually considered as a black-box, i.e. the exact for-
mulations or even characteristics of the objectives problem are usually do not know
before solving the problem. Therefore, even when solving the problem without us-
ing surrogates, we cannot guarantee that the obtained Pareto optimal solutions are
accurate. In practice, the time available for solving the problem usually determines
the quality of the obtained solutions. As the agent assisted algorithm allows for con-
ducting the time intensive parts of the solution process without involvement of the
DM, it is possible to expand the time available and therefore provide the DM with
more accurate solutions.

Naturally, if different interactive methods and surrogate problem constructing
techniques are used, appropriate agents of the four types must be developed. How-
ever, the ideas of implementing agents presented here are not limited to the consid-
ered application.

7 Conclusions

In this paper, we have introduced an agent assisted interactive multiobjective op-
timization algorithm for solving computationally demanding problems. Motivated
by the benefits of using interactive methods we, with this algorithm, enable apply-
ing them in computationally demanding problems. The algorithm is general and
can be used with different interactive methods and surrogate problem construction
techniques.

The algorithm employs a computationally inexpensive surrogate problem and
four types of agents. The agents observe the DM’s actions when using an inter-
active method. With these observations the agents intelligently increase the accu-
racy of the surrogate by updating it in the areas the DM is interested in, without a
need for additional information. Besides that, the agents working with the surrogate
problem shorten the waiting times imposed on the DM and decrease the amount of
preference information required.

We solved a computationally demanding two-stage separation problem with the
new agent assisted algorithm involving the interactive NIMBUS method and the

23

PAINT method to construct the surrogate problem. The DM appreciated the fast so-
lution process and the results obtained. As the experiences were most encouraging,
we consider this research direction to be fruitful and conclude that agent assisted al-
gorithm should be applied in and tested with various computationally demanding
problems.

Acknowledgments

This work was supported on the part of Vesa Ojalehto by the Jyväskylä Doctoral
Program in Computing and Mathematical Sciences in Finland, by the Nyyssönen
foundation and by the KAUTE foundation. The authors wish to thank Mr. Jouni
Savolainen for participating in this research as the decision maker.

References

[1] K. J. Arrow. Rational choice functions and orderings. Economica, 26(102):121–
127, 1959.

[2] F. B. Aydemir, A. Günay, F. Öztoprak, Ş. İker Birbil, and P. Yolum. Multi-
agent cooperation for solving global optimization problems: An extendible
framework with example cooperation strategies. Journal of Global Optimization,
57(2):499–519, 2013.

[3] S. Bechikh, L. Ben Said, and K. Ghedira. Estimating nadir point in multi-
objective optimization using mobile reference points. In Evolutionary Compu-
tation (CEC), 2010 IEEE Congress on, pages 1–9, 2010.

[4] S. Bechikh, L. Ben Said, and K. Ghedira. Negotiating decision makers’ reference
points for group preference-based evolutionary multi-objective optimization.
In Hybrid Intelligent Systems (HIS), 2011 11th International Conference on, pages
377–382, 2011.

[5] J. Branke, K. Deb, K. Miettinen, and R. Slowiński, editors. Multiobjective Opti-
mization: Interactive and Evolutionary Approaches. Springer-Verlag, 2008.

[6] K. Chakraborty, K. Mehrotra, C. K. Mohan, and S. Ranka. Forecasting the
behavior of multivariate time series using neural networks. Neural Networks,
5(6):961–970, 1992.

[7] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2(3):27:1–27:27, 2011.

[8] D. Cvetković and I. Parmee. Agent-based support within an interactive evolu-
tionary design system. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing: AIEDAM, 16(5):331–342, 2002.

24

[9] P. Davidsson, J. A. Persson, and J. Holmgren. On the integration of agent-
based and mathematical optimization techniques. In N. T. Nguyen, A. Grzech,
R. Howlett, and L. C. Jain, editors, Agent and Multi-Agent Systems: Technologies
and Applications, pages 1–10. Springer Berlin Heidelberg, 2007.

[10] R. Drezewski and L. Siwik. Agent-based co-operative co-evolutionary algo-
rithm for multi-objective optimization. In L. Rutkowski, R. Tadeusiewicz,
L. Zadeh, and J. Zurada, editors, Artificial Intelligence and Soft Computing–
ICAISC 2008, pages 388–397. Springer Berlin Heidelberg, 2008.

[11] A. Forrester, A. Sobester, and A. Keane. Engineering Design Via Surrogate Mod-
elling: a Practical Guide. Wiley, 2008.

[12] L. Gardiner and D. Vanderpooten. Interactive multiple criteria procedures:
Some reflections. In J. Climaco, editor, Multicriteria Analysis, pages 290–301.
Springer, 1997.

[13] S. Greco, M. Kadziński, V. Mousseau, and R. Słowiński. Robust ordinal regres-
sion for multiple criteria group decision: UTAGMS-GROUP and UTADISGMS-
GROUP. Decision Support Systems, 52(3):549–561, 2012.

[14] C. Grimme, J. Lepping, and U. Schwiegelshohn. Multi-criteria scheduling: An
agent-based approach for expert knowledge integration. Journal of Scheduling,
16(4):369–383, 2013. cited By (since 1996)2.

[15] J. Hakanen, K. Sahlstedt, and K. Miettinen. Wastewater treatment plant design
and operation under multiple conflicting objective functions. Environmental
Modelling & Software, 46(1):240–249, 2013.

[16] M. Hartikainen, K. Miettinen, and M. M. Wiecek. PAINT: Pareto front inter-
polation for nonlinear multiobjective optimization. Computational Optimization
and Applications, 52:845–867, 2012.

[17] M. Hartikainen, V. Ojalehto, and K. Sahlstedt. Applying approximation
method PAINT and interactive method NIMBUS to multiobjective optimiza-
tion of operating a wastewater treatment plant. Engineering Optimization, to
appear.

[18] M. Hasenjäger and B. Sendhoff. Crawling along the Pareto front: Tales from
the practice. In The 2005 IEEE Congress on Evolutionary Computation (IEEE CEC
2005), pages 174–181, 2005.

[19] E. Jacquet-Lagreze and Y. Siskos. Preference disaggregation: 20 years of MCDA
experience. European Journal of Operational Research, 130(2):233–245, 2001.

[20] I. Kaliszewski. Out of the mist–towards decision-maker-friendly multiple
criteria decision making support. European Journal of Operational Research,
158(2):293–307, 2004.

25

[21] P. Korhonen, S. Salo, and R. E. Steuer. A heuristic for estimating nadir cri-
terion values in multiple objective linear programming. Operations Research,
45(5):pp.751–757, 1997.

[22] H. Li and H. Ding. Agent-based evolutionary algorithms applied to con-
strained multi-objective optimization problems. Applied Artificial Intelligence,
26(10):941–951, 2012.

[23] I. Lobel, A. Ozdaglar, and D. Feijer. Distributed multi-agent optimization with
state-dependent communication. Mathematical Programming, 129(2):255–284,
2011.

[24] T. Máhr, J. Srour, M. de Weerdt, and R. Zuidwijk. Can agents measure up?
a comparative study of an agent-based and on-line optimization approach for
a drayage problem with uncertainty. Transportation Research Part C: Emerging
Technologies, 18(1):99–119, 2010.

[25] K. Miettinen. Nonlinear Multiobjective Optimization. Kluwer Academic Publish-
ers, 1999.

[26] K. Miettinen. Interactive multiobjective optimization method NIMBUS applied
to continuous casting of steel. In N. Bandyopadhyay, P. Chattopadhyay, and
S. Chattopadhyay, editors, International Workshop on Neural Network and Genetic
Algorithm in Materials Science and Engineering, Proceedings, pages 58–72. Tata
McGraw-Hill Publishing Company, 2006.

[27] K. Miettinen. Using interactive multiobjective optimization in continuous cast-
ing of steel. Materials and Manufacturing Processes, 22(5):585–593, 2007.

[28] K. Miettinen and M. M. Mäkelä. Interactive multiobjective optimization system
WWW-NIMBUS on the Internet. Computers & Operations Research, 27(7-8):709–
723, 2000.

[29] K. Miettinen and M. M. Mäkelä. Synchronous approach in interactive multi-
objective optimization. European Journal of Operational Research, 170(3):909–922,
2006.

[30] K. Miettinen, M. M. Mäkelä, and J. Toivanen. Numerical comparison of some
penalty-based constraint handling techniques in genetic algorithms. Journal of
Global Optimization, 27(4):427–446, 2003.

[31] K. Miettinen, F. Ruiz, and A. P. Wierzbicki. Introduction to multiobjective op-
timization: Interactive approaches. In J. Branke, K. Deb, K. Miettinen, and
R. Slowinski, editors, Multiobjective Optimization: Interactive and Evolutionary
Approaches, pages 27–57. Springer-Verlag, 2008.

[32] M. M. Mäkelä and P. Neittaanmäki. Nonsmooth Optimization Analysis and Algo-
rithms with Applications to Optimal Control. World Scientific, 1992.

26

[33] V. Ojalehto, K. Miettinen, and T. Laukkanen. Implementation aspects of in-
teractive multiobjective optimization for modeling environments: The case of
GAMS-NIMBUS. Computational Optimization and Applications, 58(3):757–779,
2014. doi:10.1007/s10589-014-9639-y.

[34] M. J. D. Powell. A direct search optimization method that models the objective
and constraint functions by linear interpolation. In S. Gomez and J. Hennart,
editors, Advances in Optimization and Numerical Analysis, pages 51–67. Kluwer
Academic Publishers, 1994.

[35] W. Price. Global optimization by Controlled Random Search. Journal of Opti-
mization Theory and Applications, 40(3):333–348, 1983.

[36] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning.
The MIT Press, 2006.

[37] H. Ruotsalainen, E. Boman, K. Miettinen, and J. Tervo. Nonlinear interactive
multiobjective optimization method for radiotherapy treatment planning with
Boltzmann transport equation. Contemporary Engineering Sciences, 2(9):391–422,
2009.

[38] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, 2003.

[39] R. A. Sarker and T. Ray. Agent based evolutionary approach: An introduction.
In R. A. Sarker and T. Ray, editors, Agent-Based Evolutionary Search, pages 1–11.
Springer Berlin Heidelberg, 2010.

[40] Y. Sawaragi, H. Nakayama, and T. Tanino. Theory of Multiobjective Optimization.
Academic Press, Inc., 1985.

[41] A. K. Sen. Choice functions and revealed preference. The Review of Economic
Studies, 38(3):307–317, 1971.

[42] W. Shen, Q. Hao, H. J. Yoon, and D. H. Norrie. Applications of agent-based sys-
tems in intelligent manufacturing: An updated review. Advanced Engineering
Informatics, 20(4):415–431, 2006.

[43] J. D. Siirola, S. Hauan, and A. W. Westerberg. Toward agent-based process
systems engineering: Proposed framework and application to non-convex op-
timization. Computers & Chemical Engineering, 27(12):1801–1811, 2003.

[44] J. D. Siirola, S. Hauan, and A. W. Westerberg. Computing Pareto fronts using
distributed agents. Computers & Chemical Engineering, 29(1):113–126, 2004.

[45] C. Simons, I. Parmee, and R. Gwynllyw. Interactive, evolutionary search in
upstream object-oriented class design. Software Engineering, IEEE Transactions
on, 36(6):798–816, 2010.

27

[46] K. Sindhya, V. Ojalehto, J. Savolainen, H. Niemistö, J. Hakanen, and K. Mietti-
nen. Coupling dynamic simulation and interactive multiobjective optimization
for complex problems: An APROS-NIMBUS case study. Expert Systems with
Applications, 41(5):2546–2558, 2014.

[47] L. Siwik and S. Natanek. Solving constrained multi-criteria optimization
tasks using elitist evolutionary multi-agent system. In Evolutionary Computa-
tion, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence). IEEE
Congress on, pages 3358–3365, 2008.

[48] K. Socha and M. Kisiel-Dorohinicki. Agent-based evolutionary multiobjective
optimisation. In Proceedings of the 2002 Congress on Evolutionary Computation,
2002. (CEC ’02), volume 1, pages 109–114, 2002.

[49] I. Steponavice, S. Ruuska, and K. Miettinen. A solution process for simulation-
based multiobjective design optimization with an application in paper indus-
try. Computer-Aided Design, 47:45–58, 2014.

[50] R. Storn and K. Price. Differential evolution – a simple and efficient heuristic
for global optimization over continuous spaces. Journal of Global Optimization,
11(4):341–359, 1997.

[51] S. Talukdar, L. Baerentzen, A. Gove, and P. De Souza. Asynchronous teams:
Cooperation schemes for autonomous agents. Journal of Heuristics, 4(4):295–
321, 1998.

[52] J. Tsitsiklis, D. Bertsekas, and M. Athans. Distributed asynchronous determin-
istic and stochastic gradient optimization algorithms. Automatic Control, IEEE
Transactions on, 31(9):803–812, Sep 1986.

[53] T. Tveit, T. Laukkanen, V. Ojalehto, K. Miettinen, and C. Fogelholm. Interac-
tive multi-objective optimisation of configurations for an oxyfuel power plant
process for CO2 capture. Chemical Engineering Transactions, 29:433–438, 2012.

[54] H. Uzawa. Note on preference and axioms of choice. Annals of the Institute of
Statistical Mathematics, 8:35–40, 1956.

[55] A. Wierzbicki. A mathematical basis for satisficing decision making. Mathemat-
ical Modelling, 3:391–405, 1982.

[56] A. P. Wierzbicki. The use of reference objectives in multiobjective optimization.
In G. Fandel and T. Gal, editors, Multiple Criteria Decision Making: Theory and
Application, pages 468–486. Springer, 1980.

[57] M. Wooldridge. An Introduction to MultiAgent Systems. John Wiley & Sons, Inc.,
2002.

28

[58] L. Xu, T. Reinikainen, W. Ren, B. P. Wang, Z. Han, and D. Agonafer. A
simulation-based multi-objective design optimization of electronic packages
under thermal cycling and bending. Microelectronics Reliability, 44(12):1977–
1983, 2004.

29

	On Solving Computationally Expensive Multiobjective Optimization Problems withInteractive Methods
	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	CONTENTS
	LIST OF INCLUDED ARTICLES
	1 INTRODUCTION
	2 BACKGROUND MATERIAL
	2.1 Some Concept of Multiobjective Optimization
	2.2 Scalarization of the Multiobjective Optimization Problem
	2.3 NIMBUS Method
	2.4 Multiagent Systems

	3 FINDINGS ON SOLVING MULTIOBJECTIVE OPTIMIZATION PROBLEMS WITH INTERACTIVE METHODS
	3.1 On Computationally Expensive Problems
	3.2 Augmented Interactive Multiobjective Optimization Algorithm
	3.3 On Connecting the Interactive Method with the Problem Model

	4 CONTRIBUTION WITH RESPECT TO IMPLEMENTATION
	4.1 Core Structure of Interactive Methods
	4.2 The IND-NIMBUS Software Framework
	4.3 Method Implementations
	4.4 User Interface

	5 A NEW AGENT ASSISTED INTERACTIVE MULTIOBJECTIVE OPTIMIZATION ALGORITHM
	5.1 Description of the Agent Assisted Algorithm
	5.2 Agents Used in the Algorithm
	5.3 Example Implementation of the Agent Assisted Algorithm

	6 AUTHOR’S CONTRIBUTION
	7 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS
	YHTEENVETO (FINNISH SUMMARY)
	REFERENCES
	ORIGINAL PAPERS
	AN INTERACTIVE MULTI-OBJECTIVE APPROACH TO HEAT EXCHANGER NETWORK SYNTHESIS
	IMPLEMENTATION ASPECTS OF INTERACTIVE MULTIOBJECTIVE OPTIMIZATION FOR MODELING ENVIRONMENTS: THE CASE OF GAMS-NIMBUS
	APPLYING APPROXIMATION METHOD PAINT AND INTERACTIVE METHOD NIMBUS TO MULTIOBJECTIVE OPTIMIZATION OF OPERATING AWASTEWATER TREATMENT PLANT
	COUPLING DYNAMIC SIMULATION AND INTERACTIVE MULTIOBJECTIVE OPTIMIZATION FOR COMPLEX PROBLEMS: AN APROS-NIMBUS CASE STUDY
	AGENT-BASED INTERACTIVE APPROACH FOR COMPUTATIONALLY DEMANDING MULTIOBJECTIVE OPTIMIZATION PROBLEMS

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

