
Automated Generation of Computationally Hard Feature Models using
Evolutionary Algorithms

Sergio Seguraa,∗, José A. Parejoa,∗∗, Robert M. Hieronsb, David Benavidesa, Antonio Ruiz-Cortésa

aDepartment of Computer Languages and Systems, University of Seville
Av Reina Mercedes S/N, 41012 Seville, Spain

bSchool of Information Systems, Computing and Mathematics, Brunel University
Uxbridge, Middlesex, UB7 7NU United Kingdom

Abstract

A feature model is a compact representation of the products of a software product line. The automated extraction of
information from feature models is a thriving topic involving numerous analysis operations, techniques and tools. Per-
formance evaluation in this domain typically relies on the use of randomly generated feature models. However, these
only provide a rough idea of the behaviour of the tools with average problems and do not reveal their real strengths and
weaknesses. In this article, we propose to model the problem of finding computationally hard feature models as an
optimisation problem and we solve it using a novel evolutionary algorithm for optimised feature models (ETHOM).
Given a tool and an analysis operation, ETHOM generates input models of a predefined size maximising aspects such
as the execution time or the memory consumption of the tool when performing the operation over the model. This
allows users and developers to know the performance of tools in pessimistic cases providing a better idea of their real
power and revealing performance bugs. Experiments using ETHOM successfully identified models producing much
longer executions times and higher memory consumption than those obtained with randomly generated models of
identical or even larger size.

Keywords: Search-based testing, software product lines, evolutionary algorithms, feature models, performance
testing, automated analysis.

1. Introduction1

Software Product Line (SPL) engineering is a sys-2

tematic reuse strategy for developing families of re-3

lated software systems [16]. The emphasis is on de-4

riving products from a common set of reusable assets5

and, in doing so, reducing production costs and time–6

to–market. The products of an SPL are defined in terms7

of features where a feature is any increment in prod-8

uct functionality [6]. An SPL captures the commonal-9

ities (i.e. common features) and variabilities (i.e. vari-10

ant features) of the systems that belong to the product11

line. This is commonly done by using a so-called fea-12

ture model. A feature model [32] represents the prod-13

ucts of an SPL in terms of features and relationships14

amongst them (see the example in Fig. 1).15

∗Principal corresponding author
∗∗Corresponding author

Email addresses: sergiosegura@us.es (Sergio Segura),
japarejo@us.es (José A. Parejo)

The automated extraction of information from feature16

models (a.k.a automated analysis of feature models) is17

a thriving topic that has received much attention in the18

last two decades [10]. Typical analysis operations allow19

us to know whether a feature model is consistent (i.e.20

it represents at least one product), the number of prod-21

ucts represented by a feature model, or whether a model22

contains any errors. Catalogues with up to 30 anal-23

ysis operations on feature models have been reported24

[10]. Techniques that perform these operations are typ-25

ically based on propositional logic [6, 45], constraint26

programming [9, 76], or description logic [70]. Also,27

these analysis capabilities can be found in several com-28

mercial and open source tools including AHEAD Tool29

Suite [3], Big Lever Software Gears [15], FaMa Frame-30

work [19], Feature Model Plug-in [20], pure::variants31

[53] and SPLOT [43].32

The development of tools and benchmarks to eval-33

uate the performance and scalability of feature model34

analysis tools has been recognised as a challenge [7,35

Preprint submitted to Expert Systems with Applications December 15, 2013

10, 51, 62]. Also, recent publications reflect an in-36

creasing interest in evaluating and comparing the perfor-37

mance of techniques and tools for the analysis of feature38

models [4, 25, 26, 31, 45, 39, 50, 51, 52, 55, 64, 71].39

One of the main challenges when performing experi-40

ments is finding tough problems that show the strengths41

and weaknesses of the tools under evaluation in ex-42

treme situations, e.g. those producing longest execu-43

tion times. Feature models from real domains are by far44

the most appealing input problems. Unfortunately, al-45

though there are references to real feature models with46

hundreds or even thousands of features [7, 37, 66], only47

portions of them are usually available. This lack of48

hard realistic feature models has led authors to eval-49

uate their tools with large randomly generated feature50

models of 5,000 [46, 76], 10,000 [23, 45, 67, 74] and51

up to 20,000 [47] features. In fact, the size of the fea-52

ture models used in experiments has been increasing,53

suggesting that authors are looking for complex prob-54

lems on which to evaluate their tools [10]. More re-55

cently, some authors have suggested looking for hard56

and realistic feature models in the open source commu-57

nity [13, 21, 49, 61, 62]. For instance, She et al. [62]58

extracted a feature model containing more than 5,00059

features from the Linux kernel.60

The problem of generating test data to evaluate the61

performance of software systems has been largely stud-62

ied in the field of software testing. In this context,63

researchers realised long ago that random values are64

not effective in revealing the vulnerabilities of a sys-65

tem under test. As pointed out by McMinn [42]: “ran-66

dom methods are unreliable and unlikely to exercise67

‘deeper’ features of software that are not exercised by68

mere chance”. In this context, metaheuristic search69

techniques have proved to be a promising solution for70

the automated generation of test data for both functional71

[42] and non–functional properties [2]. Metaheuristic72

search techniques are frameworks which use heuristics73

to find solutions to hard problems at an affordable com-74

putational cost. Examples of metaheuristic techniques75

include evolutionary algorithms, hill climbing, and sim-76

ulated annealing [69]. For the generation of test data,77

these strategies translate the test criterion into an ob-78

jective function (also called a fitness function) that is79

used to evaluate and compare the candidate solutions80

with respect to the overall search goal. Using this in-81

formation, the search is guided toward promising ar-82

eas of the search space. Wegener et al. [72, 73] were83

one of the first to propose the use of evolutionary al-84

gorithms to verify the time constraints of software back85

in 1996. In their work, the authors used genetic algo-86

rithms to find input combinations that violate the time87

constraints of real–time systems, that is, those inputs88

producing an output too early or too late. Their exper-89

imental results showed that evolutionary algorithms are90

much more effective than random search in finding in-91

put combinations maximising or minimising execution92

times. Since then, a number of authors have followed93

their steps using metaheuristics and especially evolu-94

tionary algorithms for testing non–functional properties95

such as execution time, quality of service, security, us-96

ability or safety [2, 42].97

Problem description. Current performance evalu-98

ations on the analysis of feature models are mainly99

carried out using randomly generated feature models.100

However, these only provide a rough idea of the aver-101

age performance of tools and do not reveal their specific102

weak points. Thus, the SPL community lacks mech-103

anisms that take analysis tools to their limits and re-104

veal their real potential in terms of performance. This105

problem has negative implications for both tool users106

and developers. On the one hand, tool developers have107

no means of performing exhaustive evaluations of the108

strengths and weaknesses of their tools making it hard109

to find faults affecting their performance. On the other110

hand, users are not provided with full information about111

the performance of tools in pessimistic cases and this112

makes it difficult for them to choose the tool that best113

meets their needs. Hence, for instance, a user could114

choose a tool based on its average performance and later115

realise that it performs very badly in particular cases that116

appear frequently in their application domain.117

In this article, we address the problem of generating118

computationally hard feature models as a means to re-119

veal the performance strengths and weaknesses of fea-120

ture model analysis tools. The problem of generating121

hard feature models has traditionally been addressed122

by the SPL community by simply randomly generating123

huge feature models with thousands of features and con-124

straints. That is, it is generally observed and assumed125

that the larger the model the harder its analysis. How-126

ever, we remark that these models are still randomly127

generated and therefore, as warned by software testing128

experts, they are not sufficient to exercise the specific129

features of a tool under evaluation. Another negative130

consequence of using huge feature models to evaluate131

the performance of tools is that they frequently fall out132

of the scope of their users. Hence, both developers and133

users would probably be more interested in knowing134

whether a tool may crash with a hard model of small135

or medium size.136

Finally, we may mention that using realistic or stan-137

dard collections of problems (i.e. benchmarks) is138

equally insufficient for an exhaustive performance eval-139

2

uation since they do not consider the specific aspects140

of a tool or technique under test. Thus, feature mod-141

els that one tool finds hard to analyse could be trivially142

processed by another and vice versa.143

Solution overview and contributions. In this article,144

we propose to model the problem of finding computa-145

tionally hard feature models as an optimisation prob-146

lem and we solve it using a novel Evolutionary algo-147

riTHm for Optimised feature Models (ETHOM). Given148

a tool and an analysis operation, ETHOM generates in-149

put models of a predefined size maximising aspects such150

as the execution time or the memory consumed by the151

tool when performing the operation over the model. For152

the evaluation of our approach, we performed several153

experiments using different analysis operations, tools154

and optimisation criteria. In particular, we used FaMa155

and SPLOT, two tools for the automated analysis of fea-156

ture models developed and maintained by independent157

laboratories. In total, we performed over 50 million158

executions of analysis operations for the configuration159

and evaluation of our algorithm, during more than six160

months of work. The results showed how ETHOM suc-161

cessfully identified input models causing much longer162

executions times and higher memory consumption than163

randomly generated models of identical or even larger164

size. As an example, we compared the effectiveness165

of random and evolutionary search in generating fea-166

ture models with up to 1,000 features maximising the167

time required by a constraint programming solver (a.k.a.168

CSP solver) to check their consistency. The results re-169

vealed that the hardest randomly generated model found170

required 0.2 seconds to analyse while ETHOM was able171

to find several models taking between 1 and 27.5 min-172

utes to process. Besides this, we found that the hard-173

est feature models generated by ETHOM in the range174

500-1,000 features were remarkably harder to process175

than randomly generated models with 10,000 features.176

More importantly, we found that the hard feature mod-177

els generated by ETHOM had similar properties to re-178

alistic models found in the literature. This suggests that179

the long execution times and high memory consumption180

detected by ETHOM might be reproduced when using181

real models with the consequent negative effect on the182

user.183

Our work enhances and complements the current184

state of the art on performance evaluation of feature185

model analysis tools as follows:186

• To the best of our knowledge, this is the first ap-187

proach that uses a search–based strategy to exploit188

the internal weaknesses of the analysis tools and189

techniques under evaluation rather than trying to190

detect them by chance using randomly generated191

models.192

• Our work allows developers to focus on the search193

for computationally hard models of realistic size194

that could reveal performance problems in their195

tools rather than using huge feature models out of196

their scope. If a tool performs poorly with the gen-197

erated models, developers could use the informa-198

tion as input to investigate possible improvements.199

• Our approach provides users with helpful infor-200

mation about the behaviour of tools in pessimistic201

cases helping them to choose the tool that best202

meets their needs.203

• Our algorithm is highly generic and can be applied204

to any automated operation on feature models in205

which the quality (i.e. fitness) of models with re-206

spect to an optimisation criterion can be quantified.207

• Our experimental results show that the hardness of208

feature models depends on different factors in con-209

trast to related work in which the complexity of the210

models is mainly associated with their size.211

• Our algorithm is ready-to-use and publicly avail-212

able as a part of the open-source BeTTy Frame-213

work [14, 58].214

Scope of the contribution. The target audience of215

this article is practitioners and researchers wanting to216

evaluate and test the performance of their tools that217

analyse feature models. Several aspects regarding the218

scope of our contribution may be clarified, namely:219

• Our work follows a black-box approach. That220

is, our algorithm does not make any assumptions221

about an analysis tool and operation under test.222

ETHOM can therefore be applied to any tool or223

analysis operation regardless of how it is imple-224

mented.225

• Our approach focuses on testing, not debugging.226

That is, our work contributes to the detection of227

performance failures (unexpected behaviour in the228

software) but not faults (causes of the unexpected229

behaviour). Once a failure is detected using the230

test data generated by ETHOM, a tool’s develop-231

ers and designers should use debugging to identify232

the fault causing it, e.g. bad variable ordering, bad233

problem encoding, parsing problems, etc.234

• It is noteworthy that many different factors could235

contribute to a technique finding it hard to analyse236

3

a given feature model, some of them not directly237

related to the analysis algorithm used. Examples238

including: bad variable ordering, bad problem en-239

coding, parsing problems, bad heuristic selection,240

etc. However, as previously mentioned, the prob-241

lem of identifying the factors that make a feature242

model hard to analyse when using a specific tool is243

out of the scope of this article.244

The rest of the article is structured as follows. Sec-245

tion 2 introduces feature models and evolutionary algo-246

rithms. In Section 3, we present ETHOM, an evolu-247

tionary algorithm for the generation of optimised fea-248

ture models. Then, in Section 4, we propose a specific249

configuration of ETHOM to automate the generation250

of computationally hard feature models. The empiri-251

cal evaluation of our approach is presented in Section252

5. Section 6 presents the threats to validity of our work.253

Related work is described in Section 7. Finally, we sum-254

marise our conclusions and describe our future work in255

Section 8.256

2. Preliminaries257

2.1. Feature models and their analyses258

Feature models define the valid combinations of fea-259

tures in a domain and are commonly used as a compact260

representations of all the products of an SPL. A feature261

model is visually represented as a tree-like structure in262

which nodes represent features and connections illus-263

trate the relationships between them. These relation-264

ships constrain the way in which features can be com-265

bined. Fig. 1 depicts a simplified sample feature model.266

The model illustrates how features are used to specify267

and build software for Global Position System (GPS)268

devices. The software loaded in the GPS is determined269

by the features that it supports. The root feature (i.e.270

‘GPS’) identifies the SPL.271

Feature models were first introduced in 1990 as a272

part of the FODA (Feature–Oriented Domain Analysis)273

method [32]. Since then, feature modelling has been274

widely adopted by the software product line community275

and a number of extensions have been proposed in at-276

tempts to improve properties such as succinctness and277

naturalness [56]. Nevertheless, there seems to be a con-278

sensus that at a minimum feature models should be able279

to represent the following relationships among features:280

• Mandatory. If a child feature is mandatory, it is281

included in all products in which its parent feature282

appears. In Fig. 1, all GPS devices must provide283

support for Routing.284

• Optional. If a child feature is defined as optional,285

it can be optionally included in products in which286

its parent feature appears. For instance, the sample287

model defines Multimedia to be an optional fea-288

ture.289

• Alternative. Child features are defined as alter-290

native if only one feature can be selected when291

the parent feature is part of the product. In our292

SPL, software for GPS devices must provide sup-293

port for either an LCD or Touch screen but only one294

of them.295

• Or-Relation. Child features are said to have an296

or-relation with their parent when one or more of297

them can be included in the products in which the298

parent feature appears. In our example, GPS de-299

vices can provide support for an MP3 player, a300

Photo viewer or both of them.301

Notice that a child feature can only appear in a prod-302

uct if its parent feature does. The root feature is a part303

of all the products within the SPL. In addition to the304

parental relationships between features, a feature model305

can also contain cross-tree constraints between features.306

These are typically of the form:307

• Requires. If a feature A requires a feature B, the308

inclusion of A in a product implies the inclusion of309

B in the product. GPS devices with Traffic avoid-310

ing require Auto-rerouting.311

• Excludes. If a feature A excludes a feature B, both312

features cannot be part of the same product. In our313

sample SPL, a GPS with Touch screen cannot in-314

clude a Keyboard and vice-versa.315

The automated analysis of feature models deals with316

the computer-aided extraction of information from fea-317

ture models. It has been noted that in the order of 30 dif-318

ferent analysis operations on feature models have been319

reported during the last two decades [10]. The analy-320

sis of feature models is usually performed in two steps.321

First, the analysis problem is translated into an interme-322

diate problem such as a boolean satisfiability problem323

(SAT) or a Constraint Satisfaction Problem (CSP). SAT324

problems are often modelled using Binary Decision Di-325

agrams (BDD). Then, an off-the-shelf solver is used to326

analyse the problem. Most analysis problems related to327

feature models are NP-hard [7, 51]. However, solvers328

provide heuristics that work well in practice. Experi-329

ments have shown that each technique has its strengths330

and weaknesses. For instance, SAT solvers are efficient331

when checking the consistency of a feature model but332

4

GPS

Routing Interface

MP3 player3D map view

Multimedia

Screen

LCDTouch

Mandatory

Optional

Alternative

Or

Requires

Excludes

Photo viewer

Traffic avoiding

Radar detector

Auto-rerouting Predictive entry Keyboard

Figure 1: A sample feature model

incapable of calculating the number of products in a333

reasonable amount of time [11, 45, 51]. BDD solvers334

are the most efficient solution known for calculating the335

number of products but at the price of high memory con-336

sumption [11, 46, 51]. Finally, CSP solvers are espe-337

cially suitable for dealing with numeric constraints as-338

sociated with feature models with attributes (so-called339

extended feature models) [9].340

2.2. Evolutionary algorithms341

The principles of biological evolution have inspired342

the development of a whole branch of optimisation tech-343

niques called Evolutionary Algorithms (EAs). These al-344

gorithms manage a set of candidate solutions to an opti-345

misation problem that are combined and modified itera-346

tively to obtain better solutions. Each candidate solution347

is referred to as an individual or chromosome in analogy348

to the evolution of species in biological genetics where349

the DNA of individuals is combined and modified along350

generations enhancing the species through natural se-351

lection. Two of the main properties of EAs are that they352

are heuristic and stochastic. The former means that an353

EA is not guaranteed to obtain the global optimum for354

the optimisation problem. The latter means that differ-355

ent executions of the algorithm with the same input pa-356

rameters can produce different output, i.e. they are not357

deterministic. Despite this, EAs are among the most358

widely used optimisation techniques and have been ap-359

plied successfully in nearly all scientific and engineer-360

ing areas by thousands of practitioners. This success is361

due to the ability of EAs to obtain near optimal solu-362

tions to extremely hard optimisation problems with af-363

fordable time and resources.364

As an example, let us consider the design of a car as365

an optimisation problem. A similar example was used366

to illustrate the working of EAs in [73]. Let us suppose367

that our goal is to find a car design that maximises368

Initialization

Stop criteria met?

Selection

Mutation

Crossover

Evaluation

[NOT]

[YES]

Evaluation

Encoding

Decoding

Survival

Figure 2: General working scheme of evolutionary algorithms

speed. This problem is hard since a car is a highly369

complex system in which speed depends on a number370

of parameters such as engine type and the shape of the371

car. Moreover, there are likely to be extra constraints372

like keeping the cost of the car under a certain value,373

making some designs infeasible. All EA variants are374

based on a common working scheme shown in Fig. 2.375

Next, we describe its main steps and relate them to our376

example.377

378

Initialisation. The initial population (i.e. set of379

candidate solutions to the problem) is usually generated380

randomly. In our example, this could be done by381

randomly choosing a set of values for the design382

parameters of the car. Of course, it is unlikely that383

this initial population with contain an optimal or384

5

near optimal car design. However, promising val-385

ues found at this step will be used to produce variants386

along the optimisation process leading to better designs.387

388

Evaluation. Next, individuals are evaluated using a389

fitness function. A fitness function is a function that390

receives an individual as input and returns a numerical391

value indicating the quality of the individual. This392

enables the objective comparison of candidate solutions393

with respect to an optimisation problem. The fitness394

function should be deterministic to avoid interferences395

in the algorithm, i.e. different calls to the function with396

the same set of parameters should produce the same397

output. In our car example, a simulator could be used398

to provide the maximum speed prediction as fitness.399

400

Stopping criterion. Iterations of the remaining steps401

of the algorithm are performed until a termination cri-402

terion is met. Typical stopping criteria are: reaching a403

maximum or average fitness value, maximum execution404

times of the fitness function, number of iterations of405

the loop (so-called generations) or number of iterations406

without improvements on the best individual found.407

408

Encoding. In order to create offspring, an individual409

needs to be encoded (represented) in a form that facili-410

tates its manipulation during the rest of the algorithm.411

In biological genetics, DNA encodes an individual’s412

characteristics on chromosomes that are used in re-413

production and whose modifications produce mutants.414

Classical encoding mechanisms for EAs include the415

use of binary vectors that encode numerical values in416

genetic algorithms (so-called binary encoding) and tree417

structures that encode the abstract syntax of programs418

in genetic programming (so-called tree encoding)419

[1, 54]. In our car example, this step would require420

design patterns of cars to be expressed using a data421

structure, e.g. binary vectors for each design parameter.422

423

Selection. In the main loop of the algorithm (see Fig.424

2), individuals are selected from the current population425

in order to create new offspring. In this process, better426

individuals usually have a greater probability of being427

selected, with this resembling natural evolution where428

stronger individuals are more likely to reproduce. For429

instance, two classic selection mechanisms are roulette430

wheel and tournament selection [1]. When using the431

former, the probability of choosing an individual is432

proportional to its fitness and this can be seen as deter-433

mining the width of the slice of a hypothetical spinning434

roulette wheel. This mechanism is often modified435

by assigning probabilities based on the position of436

Figure 3: Sample crossover and mutation in the search of an optimal
car design.

the individuals in a fitness–ordered ranking (so-called437

rank-based roulette wheel). When using tournament438

selection, a group of n individuals is randomly chosen439

from the population and a winning individual is selected440

according to its fitness.441

442

Crossover. These are the techniques used to combine443

individuals and produce new individuals in an analo-444

gous way to biological reproduction. The crossover445

mechanism used depends on the encoding scheme but446

there are a number of widely-used mechanisms [1].447

For instance, two classical crossover mechanisms for448

binary encoding are one-point crossover and uniform449

crossover. When using the former, a location in the450

vector is randomly chosen as the break point and451

portions of vectors after the break point are exchanged452

to produce offspring (see Fig. 5 for a graphical example453

of this crossover mechanism). When using uniform454

crossover, the value of each vector element is taken455

from one parent or other with a certain probability,456

usually 50%. Fig. 3(a) shows an illustrative application457

of crossover in our example of car design. An F1458

car and a small family car are combined by crossover459

producing a sports car. The new vehicle has some460

design parameters inherited directly from each parent461

such as number of seats or engine type and others462

mixed such as shape and intermediate size.463

464

Mutation. At this step, random changes are applied to465

the individuals. Changes are performed with a certain466

probability where small modifications are more likely467

than larger ones. Mutation plays the important role468

of preventing the algorithm from getting stuck prema-469

turely at a locally optimal solution. An example of470

mutation in our car optimisation problem is presented471

in Fig. 3(b). The shape of a family car is changed472

by adding a back spoiler while the rest of its design473

parameters remain intact.474

475

6

Decoding. In order to evaluate the fitness of new476

and modified individuals decoding is performed.477

For instance, in our car design example, data stored478

on data structures is transformed into a suitable car479

design that our fitness function can evaluate. It often480

happens that the changes performed in the crossover481

and mutation steps create individuals that are not valid482

designs or break a constraint, this is usually referred483

to as an infeasible individual, e.g. a car with three484

wheels. Once an infeasible individual is detected, this485

can be either replaced by an extra correct one or it486

can be repaired, i.e. slightly changed to make it feasible.487

488

Survival. Finally, individuals are evaluated and the next489

population is formed in which individuals with better490

fitness values are more likely to remain in the popula-491

tion. This process simulates the natural selection of the492

better adapted individuals that survive and generate off-493

spring, thus improving a species.494

3. ETHOM: an Evolutionary algoriTHm for Opti-495

mized feature Models496

In this section, we present ETHOM, a novel evo-497

lutionary algorithm for the generation of optimised498

feature models. The algorithm takes several constraints499

and a fitness function as input and returns a feature500

model of the given size maximising the optimisation501

criterion defined by the function. A key benefit of our502

algorithm is that it is very generic and so is applicable503

to any automated operation on feature models in which504

the quality (i.e. fitness) of the models can be measured505

quantitatively. In the following, we describe the basic506

steps of ETHOM as shown in Fig. 2.507

508

Initial population. The initial population is generated509

randomly according to the size constraints received510

as input. The current version of ETHOM allows the511

user to specify the number of features, percentage of512

cross-tree constraints and maximum branching factor of513

the feature model to be generated. Several algorithms514

for the random generation of feature models have been515

proposed in the literature [57, 67, 78]. There are also516

tools such as BeTTy [14, 58] and SPLOT [43, 65] that517

support the random generation of feature models.518

519

Evaluation. Feature models are evaluated according520

to the fitness function received as input obtaining a521

numeric value that represents the quality of a candidate522

solution, i.e. its fitness.523

524

0

2

1 3

4 5

6

Op,2 Or,1 M,0 Or,0 Alt,0 Alt,1 M,0

E,3,6

7

Op,0

R,6,7

TREE

CTC

Individual

0 1 2 3 4 5 6 7

Figure 4: Encoding of a feature model in ETHOM

Encoding. For the representation of feature models as525

individuals (a.k.a. chromosomes) we propose using a526

custom encoding. Generic encodings for evolutionary527

algorithms were ruled out since these either were not528

suitable for tree structures (i.e. binary encoding) or529

were not able to produce solutions of a fixed size (e.g.530

tree encoding), a key requirement in our approach. Fig.531

4 depicts an example of our encoding. As illustrated,532

each model is represented by means of two arrays,533

one storing information about the tree and another one534

containing information about Cross-Tree Constraints535

(CTC). The order of each feature in the array corre-536

sponds to the Depth–First Traversal (DFT) order of537

the tree. Hence, a feature labelled with ‘0’ in the tree538

is stored in the first position of the array, the feature539

labelled with ‘1’ is stored the second position and so540

on. Each feature in the tree array is defined by a pair541

< PR,C > where PR is the type of relationship with542

its parent feature (M: Mandatory, Op: Optional, Or:543

Or-relationship, Alt: Alternative) and C is the number544

of children of the given feature. As an example, the545

first position in the tree array, < Op, 2 >, indicates that546

the feature labelled with ‘0’ in the tree has an optional547

relationship with its parent feature and has two child548

features (those labelled with ‘1’ and ‘3’). Analogously,549

each position in the CTC array stores information about550

one constraint in the form < TC,O,D > where TC is551

the type of constraint (R: Requires, E: Excludes) and552

O and D are the indexes of the origin and destination553

features in the tree array respectively.554

555

Selection. Selection strategies are generic and can556

be applied regardless of how the individuals are557

represented. In our algorithm, we implemented both558

rank-based roulette-wheel and binary tournament559

selection strategies. The selection of one or the other560

7

E,3,6

Op,2 Or,1 M,0 Or,0 Alt,0

E,3,6 R,6,7

M,0 Or,0 Alt,0 Alt,1 M,0 Op,0Op,2 Or,1

0

2

1 3

4 5

6

7

TREE

CTC

0

2

1 3 6 75

Op,2 Or,1 Op,0 Or,0 Op,3 Alt,0 Alt,0

R,3,5

4

Alt,0

R,2,6

0

2

1 3

5 64

Alt,0 Alt,0 Alt,0

R,2,6

7

Parent A Parent B Offspring

Crossover point

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Figure 5: Example of one-point crossover in ETHOM

mainly depends on the application domain.561

562

Crossover. We provided our algorithm with two563

different crossover techniques, one-point and uniform564

crossover. Fig. 5 depicts an example of the application565

of one-point crossover in ETHOM. The process starts566

by selecting two parent chromosomes to be combined.567

For each array in the chromosomes, the tree and568

CTC arrays, a random point is chosen (the so-called569

crossover point). Finally, the offspring is created by570

copying the contents of the arrays from the beginning571

to the crossover point from one parent and the rest from572

the other one. Notice that the characteristics of our573

encoding guarantee a fixed size for the individuals in574

terms of features and CTCs.575

576

Mutation. Mutation operators must be specifically de-577

signed for the type of encoding used. ETHOM uses four578

different types of custom mutation operators, namely:579

• Operator 1. This randomly changes the type580

of a relationship in the tree array, e.g. from581

mandatory,<M, 3 >, to optional,< Op, 3 >.582

• Operator 2. This randomly changes the number of583

children of a feature in the tree, e.g. from < M, 3 >584

to < M, 5 >. The new number of children is in the585

range [0, BF] where BF is the maximum branching586

factor indicated as input.587

• Operator 3. This changes the type of a cross-tree588

constraint in the CTC array, e.g. from excludes589

< E, 3, 6 > to requires < R, 3, 6 >.590

• Operator 4. This randomly changes (with equal591

probability) the origin or destination feature of a592

constraint in the CTC array, e.g. from < E, 3, 6 >593

to < E, 1, 6 >. The implementation of this ensures594

that the origin and destination features are differ-595

ent.596

These operators are applied randomly with the same597

probability.598

599

Decoding. At this stage, the array-based chromosomes600

are translated back into feature models so that they601

can be evaluated. In ETHOM, we identified three602

types of patterns making a chromosome infeasible or603

semantically redundant, namely: i) those encoding set604

relationships (or- and alternative) with a single child605

feature (e.g. Fig. 6(a)), ii) those containing cross-tree606

constraints between features with parental relationship607

(e.g. Fig. 6(b)), and iii) those containing features linked608

by contradictory or redundant cross-tree constraints609

(e.g. Fig. 6(c)). The specific approach used to address610

infeasible individuals, replacing or repairing (see611

Section 2.2 for details), mainly depends on the problem612

and it is ultimately up to the user. In our work, we used613

a repairing strategy described in the next section.614

615

B

A

B

A

B

A

B

A BA

B

A

BA

B

A

BA

(a)

(d)

(b)

(e)

(c)

(f)

In
c
o

n
s
is

te
n

c
y

R
e
p

a
ir

Figure 6: Examples of infeasible individuals and repairs

Survival. Finally, the next population is created by616

including all the new offspring plus those individuals617

8

from the previous generation that were selected for618

crossover but did not generate descendants.619

620

For a pseudo-code listing of the algorithm we refer621

the reader to [59].622

4. Automated generation of hard feature models623

In this section we propose a method that models the624

problem of finding computationally hard feature mod-625

els as an optimisation problem and explain how this is626

solved using ETHOM. In order to find a suitable con-627

figuration of ETHOM, we performed numerous execu-628

tions of a sample optimisation problem evaluating dif-629

ferent combination of values for the key parameters of630

the algorithm, presented in Table 1. The optimisation631

problem was to find a feature model maximising the632

execution time taken by the analysis tool when check-633

ing model consistency, i.e. whether it represents at least634

one product. We chose this analysis operation because635

it is currently the most frequently quoted in the litera-636

ture [10]. In particular, we searched for feature models637

of different size maximising execution time in the CSP638

solver JaCoP [29] integrated into the framework for the639

analysis of feature models FaMa [19]. Next, we clarify640

the main aspects of the configuration of ETHOM:641

• Initial population. We used a Java program im-642

plementing the algorithm for the random genera-643

tion of feature models described by Thüm et al.644

[67]. For a detailed description of the generation645

approach, we refer the reader to [59].646

• Fitness function. Our first attempt was to mea-647

sure the time (in milliseconds) taken by FaMa to648

perform the operation. However, we found that649

the result of the function was significantly affected650

by the system load and was not deterministic. To651

solve this problem, we decided to measure the fit-652

ness of a feature model as the number of back-653

tracks produced by the analysis tool during its anal-654

ysis. A backtrack represents a partial candidate so-655

lution to a problem that is discarded because it can-656

not be extended to a full valid solution [68]. In con-657

trast to the execution time, most CSP backtracking658

heuristics are deterministic, i.e. different execu-659

tions of the tool with the same input produce the660

same number of backtracks. Together with execu-661

tion time, the number of backtracks is commonly662

used to measure the complexity of constraint satis-663

faction problems [68]. Thus, we can assume that664

the higher the number of backtracks the longer the665

computation time.666

• Infeasible individuals. We evaluated the effec-667

tiveness of both replacement and repair techniques.668

More specifically, we evaluated the following re-669

pair algorithm applied to infeasible individuals: i)670

isolated set relationships are converted into op-671

tional relationships (e.g. the model in Fig. 6(a) is672

changed as in Fig. 6(d)), ii) cross-tree constraints673

between features with parental relationships are re-674

moved (e.g. the model in Fig. 6(b) is changed as in675

Fig. 6(e)), and iii) two features cannot be linked by676

more than one cross-tree constraint (e.g. the model677

in Fig. 6(c) is changed as in Fig. 6(f)).678

• Stopping criterion. There is no means of decid-679

ing when an optimum input has been found and680

ETHOM should be stopped [73]. For the config-681

uration of ETHOM, we decided to allow the al-682

gorithm to continue for a given number of execu-683

tions of the fitness function (i.e. maximum number684

of generations) taking the largest number of back-685

tracks obtained as the optimum, i.e. the solution to686

the problem.687

Table 1 depicts the values evaluated for each config-688

uration parameter of ETHOM. These values were based689

on related work using evolutionary algorithms [23], the690

literature on parameter setting [18], and our previous691

experience in this domain [48]. Each combination of692

parameters used was executed 10 times to avoid hetero-693

geneous results and to allow us to perform statistical694

analysis on the data. The values underlined are those695

that provided better results and were therefore selected696

for the final configuration of ETHOM. In total, we per-697

formed over 40 million executions of the objective func-698

tion to find a good setup for our algorithm.699

Parameter Values evaluated and selected

Selection strategy Roulette-wheel, 2-Tournament
Crossover strategy One-point, Uniform
Crossover probability 0.7, 0.8, 0.9
Mutation probability 0.005, 0.0075, 0.02
Size initial population 50, 100, 200
#Executions fitness function 2000, 5000
Infeasible individuals Replacing, Repairing

Table 1: ETHOM configuration

5. Evaluation700

In order to evaluate our approach, we developed a701

prototype implementation of ETHOM. The prototype702

was implemented in Java to facilitate its integration into703

9

the BeTTy Framework [14, 58], an open-source Java704

tool for functional and performance testing of tools that705

analyse feature models1.706

We evaluated the efficacy of our approach by compar-707

ing it to random search since this is the usual approach708

for performance testing in the analysis of feature mod-709

els. In particular, the evaluation of our evolutionary pro-710

gram was performed through a number of experiments.711

In each experiment, we compared the effectiveness of712

a random generator and ETHOM when searching for713

feature models maximising properties such as the exe-714

cution time or memory consumption required for their715

analysis. Additionally, we performed some extra exper-716

iments studying the characteristics of the hard feature717

models generated and the behaviour of ETHOM when718

allowed to run for a large number of generations. The719

setup and results of our experiments as well as the statis-720

tical analysis of the data are summarised in this section721

and fully reported in an external technical report due722

to space limitations [59]. The experimental work and723

the statistical analysis of the results took more than six724

months and involved several people.725

All the experiments were performed on a cluster of726

four virtual machines equipped with an Intel Core 2727

CPU 6400@2.13GHz running Centos OS 5.5 and Java728

1.6.0 20 on 1400 MB of dedicated memory. These vir-729

tual machines ran on a cloud of servers equipped with730

Intel Core 2 CPU 6400@2.13Ghz and 4GB of RAM731

memory managed using Opennebula 2.0.1.732

5.1. Experiment #1: Maximizing execution time in a733

CSP solver734

This experiment evaluated the ability of ETHOM735

to search for input feature models maximising the736

analysis time of a solver. In particular, we measured the737

execution time required by a CSP solver to determine738

whether the input model was consistent (i.e. it repre-739

sents at least one product). This was the problem used740

to tune the configuration of our algorithm. Again, we741

chose the consistency operation because currently it is742

the most frequently mentioned in the literature. Next,743

we present the setup and results of our experiment.744

745

Experimental setup. This experiment was performed746

through a number of iterative steps. In each step, we747

randomly generated 5,000 feature models and checked748

their consistency, saving the maximum fitness obtained.749

Then, we executed ETHOM and allowed it to run for750

the same number of executions of the fitness function751

1BeTTY was used because it was developed by the authors

(5,000) and compared the results. Recall that the size752

of the population in our algorithm was set to 200753

individuals which meant that the maximum number754

of generations was 25, i.e. 5,000/200. This process755

was repeated with different model sizes to evaluate the756

scalability of our algorithm. In particular, we generated757

models with different combinations of features, {200,758

400, 600, 800, 1,000} and percentage of constraints759

(with respect to the number of features), {10%, 20%,760

30%, 40%}. The maximum branching factor was set761

to 10 in all the experiments. For each model size,762

we repeated the process 25 times to get averages and763

performed statistical analysis on the data. In total, we764

performed about 5 million executions2 of the fitness765

function for this experiment. The fitness was set to766

be the number of backtracks used by the analysis tool767

when checking the model consistency. For the analysis,768

we used the solver JaCoP integrated into FaMa v1.0769

with the default heuristics MostConstrainedDynamic770

for the selection of variables and IndomainMin for the771

selection of values from the domains. To prevent the772

experiment from getting stuck, a maximum timeout of773

30 minutes was used for the execution of the fitness774

function in both the random and evolutionary search. If775

this timeout was exceeded during random generation,776

the execution was cancelled and a new iteration was777

started. If the timeout was exceeded during evolution-778

ary search, the best solution found until that moment779

was returned, i.e. the instance exceeding the timeout780

was discarded. After all the executions, we measured781

the execution time of the hardest feature models found782

for a full comparison, i.e. those producing a larger783

number of backtracks. More specifically, we executed784

each returned solution 10 times to get average execution785

times.786

787

Analysis of results. Fig. 7 depicts the effectiveness of788

ETHOM for each size range of the feature models gen-789

erated. We define the effectiveness of our evolutionary790

program as the percentage of times (out of 25) in which791

ETHOM found a better optimum than random search,792

i.e. a higher number of backtracks. As illustrated, the793

effectiveness of ETHOM was over 80% in most of the794

size ranges, reaching 96% or higher in nine of them.795

Overall, our evolutionary program found harder feature796

models than those generated randomly in 85.8% of the797

executions. We may remark that our algorithm revealed798

the lowest effectiveness with those models containing799

10% of cross-tree constraints. We found that this was800

25 features ranges x 4 constraints ranges x 25 iterations x 10,000
(5,000 random search + 5,000 evolutionary search)

10

Figure 7: Effectiveness of ETHOM in Experiment #1.

due to the simplicity of the analysis in this size range.801

The number of backtracks produced by these models802

was very low, zero in most cases, and thus ETHOM803

had problems finding promising individuals that could804

evolve towards optimal solutions.805

Table 2 depicts the evaluation results for the range of806

feature models with 20% of cross-tree constraints. For807

each number of features and search technique, random808

and evolutionary, the table shows the average and max-809

imum fitness obtained (i.e. number of backtracks) as810

well as the average and maximum execution times of the811

hardest feature models found (in seconds). The effec-812

tiveness of the evolutionary program is also presented813

in the last column. As illustrated, ETHOM found fea-814

ture models producing a number of backtracks larger by815

several orders of magnitude than those produced using816

randomly generated models. The fitness of the hardest817

models generated using our evolutionary approach was818

on average over 3,500 times higher than that of ran-819

domly generated models (200,668 backtracks against820

45.3) and 40,500 times higher in the maximum value821

(23.5 million backtracks against 1,279). As expected,822

these results were also reflected in the execution times.823

On average, the CSP solver took 0.06 seconds to anal-824

yse the randomly generated models and 9 seconds to825

analyse those generated using ETHOM. The superior-826

ity of evolutionary search was remarkable in the maxi-827

mum times ranging from the 0.2 seconds for randomly828

generated models to the 1,032.2 seconds (17.2 minutes)829

taken by the CSP solver to analyse the hardest feature830

model generated by ETHOM. Overall, our evolution-831

ary approach produced a harder feature model than ran-832

dom techniques in 92% of the executions in the range of833

20% of constraints. For details regarding the data corre-834

sponding to 10%, 30% and 40% of constraints we refer835

the reader to [59].836

Table 3 presents a summary of the results. The ta-837

ble depicts the maximum execution time taken by the838

CSP solver to analyse the hardest models found us-839

ing random and evolutionary search. The data shows840

that ETHOM found models that led to higher execution841

times than those randomly generated and this was the842

case for all size ranges. The hardest randomly generated843

model required 0.2 seconds to be processed. In contrast,844

ETHOM found four models whose analysis required be-845

tween 1 and 27.3 minutes (1,644 seconds). We may846

remark that ETHOM reached the maximum timeout847

of 30 minutes once during the experiment but random848

search never produced times over 0.2 seconds. Interest-849

ingly, ETHOM was able to find smaller but significantly850

harder feature models (e.g. 600-10%, 60 seconds) than851

the hardest randomly generated model found which had852

800 features, 20% of CTCs and an analysis time of 0.2853

seconds. Finally, the results show that ETHOM found854

it more difficult to find hard feature models as the per-855

centage of cross-tree constraints increased. We remark,856

however, that this trend was also observed in the random857

search with an average fitness of 45.3 backtracks in the858

range of 20% CTC, 16.6 backtracks in the range of 30%859

CTC and 9.1 backtracks in the range of 40% CTC. We860

conclude, therefore, that these results are caused by the861

CSP solver and the heuristic used which provide a better862

performance when the models have a high percentage of863

constraints.864

Fig. 8 compares random and evolutionary techniques865

for the search for a feature model maximising the num-866

ber of backtracks in two sample executions. Horizon-867

tally, the graphs show the number of generations where868

each generation represents 200 executions of the fitness869

function. Fig. 8(a) shows that random search reaches870

its maximum number of backtracks after only 5 gen-871

erations (about 1000 executions). That is, the random872

generation of 4,000 other models does not produce any873

higher number of backtracks and therefore is useless. In874

contrast to this, ETHOM shows a continuous improve-875

ment. After 13 generations (about 2600 executions),876

the fitness found by evolutionary search is above that of877

the maximum for the randomly generated models. Fig.878

8(b) depicts another example in which random search879

is ‘lucky’ and finds an instance with a high number of880

backtracks in the 14th generation. Evolutionary optimi-881

sation, however, once again manages to improve the ex-882

ecution times continuously overcoming the best fitness883

produced using random search after 22 generations. We884

might note that a significant leap of about 200 back-885

tracks can also be observed in generation 23. In both886

examples, the curve suggests that ETHOM would find887

even better solutions if the number of generations was888

11

Random Search ETHOM

#Features Avg Fitness Max Fitness Avg Time Max Time Avg Fitness Max Fitness Avg Time Max Time Effect. (%)

200 8.08 61 0.02 0.03 63.4 215 0.04 0.06 96
400 30.1 389 0.04 0.07 7,128.4 106,655 0.24 2.93 88
600 40.3 477 0.05 0.09 9,188.2 116,479 0.70 7.98 92
800 91.1 1, 279 0.08 0.20 22,427.6 483,971 1.28 24.6 88
1000 57.2 582 0.10 0.13 964,532.6 23,598,675 42.5 1, 032.2 96

Total 45.3 1,279 0.06 0.20 200,668 23,598,675 8.96 1,032.2 92

Table 2: Evaluation results on the generation of feature models maximising execution time in a CSP solver. Fitness measured in number of
backtracks. Time in seconds. CTC=20%

10% CTC 20% CTC 30% CTC 40% CTC

#Features Random ETHOM Random ETHOM Random ETHOM Random ETHOM

200 0.04 0.06 0.03 0.06 0.04 0.17 0.04 0.08
400 0.05 0.33 0.07 2.93 0.04 0.61 0.08 0.13
600 0.10 59.9 0.09 7.98 0.06 6.62 0.07 4.09
800 0.09 280.4 0.20 24.6 0.10 13.9 0.09 0.52
1,000 0.12 1, 643.9 0.13 1, 032.2 0.12 1.62 0.10 0.27

Max 0.12 1,643.9 0.20 1,032.2 0.12 13.9 0.10 4.09

Table 3: Maximum execution times produced by random and evolutionary search. Time in seconds.

increased. This was confirmed in a later experiment in889

which the program was allowed to run for up to 125890

generations (25,000 executions of the fitness function)891

finding feature models producing more than 77.6 mil-892

lion backtracks (see Section 5.3 for details).893

5.2. Experiment #2: Maximizing memory consumption894

in a BDD solver895

This experiment evaluated the ability of ETHOM to896

generate input feature models maximising the memory897

consumption of a solver. In particular, we measured the898

memory consumed by a BDD solver when determining899

the number of products represented by the model. We900

chose this analysis because it is one of the hardest901

operations in terms of complexity and it is the second902

most frequently quoted operation in the literature [10].903

We decided to use a BDD-based reasoner for this904

experiment since it has proved to be the most efficient905

option to perform this operation in terms of time906

[10, 51]. A Binary Decision Diagram (BDD) solver is907

a software package that takes a propositional formula908

as input and translates it into a graph representation909

(the BDD itself) that provides efficient algorithms for910

counting the number of possible solutions. The number911

of nodes of the BDD is a key aspect since it determines912

the consumption of memory and can be exponential913

in the worst case [46]. Next, we present the setup and914

results of our experiment.915

916

Experimental setup. The experiment consisted of a917

number of iterative steps. At each step, we randomly918

generated 5,000 models and compiled each of them919

into a BDD for use in counting the number of solutions920

of the input feature model. We then executed ETHOM921

and allowed it to run for 5,000 executions of the fitness922

function (i.e. 25 generations) searching for feature923

models maximising the size of the BDD. Again, this924

process was repeated with different combinations of925

features, {50, 100, 150, 200, 250} and percentages of926

constraints, {10%, 20%, 30%} to evaluate the scalability927

of our approach. For each model size, we repeated928

the process 25 times to get statistics from the data.929

In total, we performed about 3.5 million executions930

of the fitness function for this experiment. We may931

remark that we generated smaller feature models than932

those presented in the previous experiment in order to933

reduce BDD building time and make the experiment934

affordable. Measuring memory usage in Java is difficult935

and computationally expensive since memory profilers936

usually add a significant overload to the system. To937

simplify the fitness function, we decided to measure the938

fitness of a model as the number of nodes of the BDD939

representing it. This is a natural option used in the940

research community to compare the space complexity941

of BDD tools and heuristics [46]. For the analysis,942

we used the solver JavaBDD [30] integrated into the943

feature model analysis tool SPLOT [43]. We chose944

SPLOT for this experiment because it integrates highly945

12

a) Feature models with 400 features and 30% of cross-tree constraints b) Feature models with 1,000 features and 10% of cross-tree constraints

Generation Generation

F
it

n
e
s

s
 v

a
lu

e
 f

o
r
 b

e
s
t

in
d

iv
id

u
a
l

F
it

n
e
s
s
 v

a
lu

e
 f

o
r
 b

e
s
t

in
d

iv
id

u
a
l

Figure 8: Comparison of randomly generated models and ETHOM for the search of the highest number of backtracks

efficient ordering heuristics specifically designed for the946

analysis of feature models using BDDs. In particular,947

we used the heuristic ‘Pre-CL-MinSpan’ presented by948

Mendonca et al. in [46]. For a detailed description of949

the configuration of the solver we refer the reader to950

[59]. As in our previous experiment, we set a maximum951

timeout of 30 minutes for the fitness function to prevent952

the experiment from getting stuck. We measured the953

compilation and execution time of the hardest feature954

models found to allow a more detailed comparison.955

Each optimal solution was compiled and executed 10956

times to get average times.957

958

Analysis of results. Fig. 9 depicts the effectiveness of959

ETHOM for each size range of the feature models gen-960

erated, i.e. percentage of times (out of 25) in which evo-961

lutionary search found feature models producing higher962

memory consumption than randomly generated mod-963

els. As illustrated, the effectiveness of ETHOM was964

over 96% in most cases, reaching 100% in 10 out of965

the 15 size ranges. The lowest percentages were regis-966

tered in the range of 250 features. When analysing the967

results, we found that the timeout of 30 minutes was968

reached frequently in the range of 250 features hinder-969

ing ETHOM from evolving toward promising solutions.970

In other words, the feature models generated were so971

hard that they often took more than 30 minutes to anal-972

yse and were discarded. In fact, the maximum time-973

out was reached 18 times during random generation and974

62 times during evolutionary search, 25 of them in the975

range of 250 features and 30% of constraints. In this976

size range, ETHOM exceeded the timeout after only 7977

generations on average (25 being the maximum). Over-978

all, ETHOM found feature models producing higher979

memory consumption than random search in 94.4% of980

the executions. The results suggest, however, that in-981

Figure 9: Effectiveness of ETHOM in Experiment #2.

creasing the maximum timeout would significantly im-982

prove the effectiveness.983

Table 4 depicts the number of BDD nodes of the hard-984

est feature models found using random and evolution-985

ary search. For each size range, the table also shows986

the computation time (BDD building time + execution987

time) taken by SPLOT to analyse the model. As il-988

lustrated, ETHOM found higher maximum values than989

random techniques in all size ranges. On average, the990

BDD size found by our evolutionary approach was be-991

tween 1.03 and 10.3 times higher than those obtained992

with random search. The largest BDD generated in ran-993

dom search had 14.8 million nodes while the largest994

BDD obtained using ETHOM had 20.6 million nodes.995

Again, the results revealed that ETHOM was able to996

find smaller but harder models (e.g. 150-30%, 17.7 mil-997

lion nodes) than the hardest randomly generated model998

found, 250-30% 14.8 million nodes. We may recall that999

the maximum timeout was reached 62 times during the1000

execution of ETHOM. This result suggests that the max-1001

imum found by evolutionary search would have been1002

13

10% CTC 20% CTC 30% CTC

Random ETHOM Random ETHOM Random ETHOM

#Features BDD size Time BDD Size Time BDD Size Time BDD Size Time BDD Size Time BDD Size Time

50 687 0.02 1,579 0.01 2,067 0.00 6,892 0.01 4,233 0.01 20,481 0.02
100 7,947 0.04 22,608 0.03 44,560 0.03 240,941 0.24 128,970 0.14 989,046 2.19
150 52,641 0.04 176,466 0.15 477,174 1.52 4,872,868 3.50 808,881 7.07 17,719,021 67.7
200 294,534 0.20 1,126,682 1.18 2,829,486 3.26 17,447,587 68.8 10,098,279 170.9 17,634,083 452.7
250 2,327,128 1.10 8,806,065 41.1 10,812,118 116.2 20,680,364 898.3 14,878,606 929.7 17,680,923 960.8

Max 2,327,128 1.10 8,806,065 41.1 10,812,118 116.2 20,680,364 898.3 14,878,606 929.7 17,719,021 960.8

Table 4: BDD size and computation time of the hardest feature models found using random and evolutionary search. Time in seconds.

much higher if we had not limited the time to make the1003

experiment affordable. As expected, the superiority of1004

ETHOM was also observed in the computation times re-1005

quired by each model. This suggests that our approach1006

can also deal with optimisation criteria involving com-1007

pilation and execution time in BDD solvers.1008

Fig. 10 shows the frequency with which each fitness1009

value was found during the search. The data presented1010

corresponds to the hardest feature models generated in1011

the range of 50 features and 10% of cross-tree con-1012

straints. We chose this size range because it produced1013

the smallest BDD sizes and facilitated the representa-1014

tion of the results using a common scale. For randomly1015

generated models (Fig. 10(a)), a narrow curve is ob-1016

tained with more than 99% of the executions produc-1017

ing fitness values under 310 BDD nodes. During evolu-1018

tionary execution (Fig. 10(b)), however, a wider curve1019

is obtained with 40% of the executions producing val-1020

ues over 310 nodes. Both histograms clearly show that1021

ETHOM performed a more exhaustive search in a larger1022

portion of the solution space than random search. This1023

trend was also observed in the other size ranges.1024

5.3. Additional results and discussion1025

We performed some extra experiments reported in an1026

external technical report due to space limitations [59].1027

Among other results, we studied the ability of ETHOM1028

to generate input models maximising execution time in1029

a propositional logic-based solver (a.k.a. SAT solver).1030

The setup and results of this experiment were similar to1031

those presented in Sections 5.1 and 5.2. The fitness of1032

each model was measured as the number of decisions1033

(i.e. steps) taken by the SAT solver when checking1034

model consistency. In the experiment, our evolution-1035

ary approach succeeded in finding harder feature mod-1036

els than those generated randomly in 87.8% of the exe-1037

cutions. We may remark, however, that the differences1038

in the execution times obtained using random and evo-1039

lutionary techniques were relatively small. This finding1040

supports the results of Mendoca et al. [45] that show1041

that checking the consistency of feature models with1042

simple cross-tree constraints (i.e. those involving three1043

features or less) using SAT solvers is highly efficient.1044

We emphasise, however, that SAT solvers are not the1045

optimum solution for all the analyses that can be per-1046

formed on a feature model [10, 11, 51]. Previous studies1047

show that CSP and BDD solvers are often better alter-1048

natives for certain operations and therefore experiments1049

with these and others solvers are still necessary.1050

All the experiments performed suggested that1051

ETHOM would find even better solutions if allowed to1052

run longer. To check this, we reproduced Experiments1053

#1 and #2, increasing the number of generations from1054

25 to 125. As expected, we found that the results pro-1055

vided by evolutionary search improved as the number1056

of generations increased and did not reach a clear peak.1057

In contrast, the results of random search showed little1058

or no improvement at all. In the execution with the CSP1059

solver, ETHOM produced a new maximum fitness of1060

more than 77 million backtracks (computed in 27.5 min-1061

utes) while random search found a maximum value of1062

only 1,603 backtracks (computed in 0.2 seconds). Sim-1063

ilarly, the maximum fitness produced in our experiment1064

with BDD and random search was 89,779 nodes, far1065

from the best fitness obtained by our evolutionary pro-1066

gram, 22.7 million nodes.1067

As part of our evaluation, we also studied the char-1068

acteristics of the hardest feature models generated by1069

ETHOM for each size range in the experiments with1070

CSP, SAT and BDD solvers; the results are presented in1071

Table 5. The data reveals that the models generated have1072

a fair proportion of all relationships and constraints.1073

This is interesting since ETHOM was free to remove1074

any type of relationship or constraint from the model1075

if this helped to make it harder, but this did not hap-1076

pen in our experiments. Recall that the only constraints1077

imposed by our algorithm are those regarding the num-1078

ber of features, number of constraints and maximum1079

branching factor. Another piece of evidence is that dif-1080

ferences between the minimum and maximum percent-1081

14

0

50

100

150

200

250

300

350

400

450

500

10 310 610 910 1210 1510

0

50

100

150

200

250

300

350

400

450

500

10 310 610 910 1210 1510

Fitness value (number of BDD nodes) Fitness value (number of BDD nodes)

N
u

m
b

e
r

o
f

e
x

e
c

u
ti

o
n

s

N
u

m
b

e
r

o
f

e
x

e
c

u
ti

o
n

s

a) Distribution of fitness values for random models b) Distribution of fitness values for our evolutionary approach

Maximum

fitness value

99% exec. 1% exec. 60% exec. 40% exec.

Maximum

fitness value

Figure 10: Histograms with the distribution of fitness values for random and evolutionary techniques when searching for a feature model maximiz-
ing the size of the BDD.

ages of each modelling element are small. More impor-1082

tantly, the average percentages found are very similar to1083

those of feature models found in the literature. In [61],1084

She et al. studied the characteristics of 32 published fea-1085

ture models and reported that they contain, on average,1086

25% of mandatory features (between 17.1% and 27.9%1087

in our models), 44% of set subfeatures3 (between 37%1088

and 46.3% in our models), 16% of set relationships4
1089

(between 13.8% and 16.1% in our models), 6% of or-1090

relationships (between 7% and 8.9% in our models) and1091

9% of alternative relationships (between 6.7% and 7.2%1092

in our study). As a result, we conclude that the models1093

generated by our algorithm are by no means unrealistic.1094

On the contrary, in the context of our study, they are a1095

fair reflection of the realistic models found in the liter-1096

ature. This suggests that the long execution times and1097

high memory consumption found by ETHOM might be1098

reproduced when using real models with the consequent1099

negative effect on the user.1100

Regarding the consistency of the models, the results1101

are heterogeneous. On the one hand, we analysed all1102

the models generated using ETHOM in our experiment1103

with CSP and found that most of them are inconsis-1104

tent (92.8%). That is, only 7.2% of the generated mod-1105

els represent at least one valid product. On the other1106

hand, we found that 100% of the models generated us-1107

ing ETHOM in our experiments with SAT and BDD are1108

consistent. This suggests that the consistency of the in-1109

put models affects strongly but quite differently the per-1110

formance of each solver. Also, it shows the ability of1111

our algorithm to guide the search for hard feature mod-1112

els regardless of their consistency.1113

3Subfeatures in alternative an or-relationships
4Alternative and or-relationships

Our experimental results revealed that ETHOM is1114

able to find smaller but much harder feature models1115

than those found using random search. We also com-1116

pared the results obtained in our experiments with the1117

execution times and memory consumption produced by1118

large randomly generated models. More specifically,1119

we randomly generated 100 feature models with 10,0001120

features and 20% of CTCs and recorded the execution1121

times taken by the CSP solver JaCoP to check their con-1122

sistency. The results revealed an average execution time1123

of 7.5 seconds and a maximum time of 8.1 seconds5,1124

far from the 27 minutes required by the hardest fea-1125

ture models found by ETHOM for 500-1000 features.1126

Similarly, we generated 100 randomly generated fea-1127

ture models with 500 features and 10% of CTCs and1128

recorded the size of the BDD generated when counting1129

the number of products using the JavaBDD solver. The1130

results revealed an average BDD size of 913,640 nodes1131

and a maximum size of 17.2 million nodes, far from the1132

22 millions of BDD nodes reached by ETHOM in the1133

range of 100 features [59]. These results clearly show1134

the potential of ETHOM to find hard feature models of1135

realistic size that are likely to reveal deficiencies in anal-1136

ysis tools rather than using large randomly generated1137

models.1138

In another experiment, we checked whether the hard1139

feature models generated by ETHOM were also hard for1140

other tools and heuristics. In particular, we first checked1141

whether the hardest feature models found in Experiment1142

#1 using a CSP solver were also hard when using a SAT1143

solver. The results showed, as expected, that all models1144

5Most of the time was taken by the translation from the feature
model to a constraint satisfaction problem while the analysis itself
was trivial. In fact, the maximum number of backtracks generated
was 7.

15

CSP Solver SAT Solver BDD Solver

Modelling element Min Avg Max Min Avg Max Min Avg Max

% relative to no. of features
Mandatory 25.3 27.9 31.0 20.0 25.1 28.0 10.0 17.1 24.8
Optional 27.5 34.9 45.0 30.5 36.9 44.0 18.0 35.7 46.5
Set subfeatures 29.0 37.0 41.5 31.0 37.8 45.5 34.5 46.3 62.0
Set relationships 11.0 14.1 16.0 12.0 13.8 15.3 13.3 16.1 20.0

- Or 5.5 7.0 9.0 5.5 7.1 8.3 6.0 8.9 12.0
- Alternative 5.5 7.1 8.5 4.0 6.7 8.8 3.3 7.2 10.0

% relative to no. of constraints
Requires 31.3 47.5 56.6 41.1 51.9 68.4 31.0 48.5 64.3
Excludes 43.4 52.5 68.7 31.6 48.1 58.9 35.7 51.5 69.0

Table 5: Properties of the hardest feature models found in our experiments.

were trivially analysed in a few seconds. Then, we re-1145

peated the analysis of the hardest feature models found1146

in Experiment #1 using the other seven heuristics avail-1147

able in the CSP solver JaCoP. The results revealed that1148

the hardest feature models found in our experiment, us-1149

ing the heuristic MostConstrainedDynamic, were triv-1150

ially solved by some of the others heuristics. For exam-1151

ple, the hardest model in the range of 800 features and1152

10% CTC produced 5.3 million backtracks when us-1153

ing the heuristic MostContrainedDynamic and only 431154

backtracks when using the heuristic SmallestMin. This1155

finding clearly shows that feature models that are hard1156

to analyse by one tool or technique could be trivially1157

processed by others and vice-versa. Hence, we con-1158

clude that using a standard set of problems, randomly1159

generated or not, is not sufficient for a full evaluation1160

of the performance of different tools. Instead, as in1161

our approach, the techniques and tools under evaluation1162

should be exercised to identify their strengths and weak-1163

nesses providing helpful information for both users and1164

developers.1165

The average effectiveness of our approach ranged1166

from 85.8% to 94.4% in all the experiments. As ex-1167

pected from an evolutionary algorithm, we found that1168

these variations in the effectiveness were caused by the1169

characteristics of the search spaces of each problem.1170

In particular, ETHOM behaves better when the search1171

space is heterogeneous and there are many different fit-1172

ness values, i.e. it is easy to compare the quality of1173

the individuals. However, results get worse in homo-1174

geneous search spaces in which most fitness values are1175

equal (e.g. Experiment #1, range of 10% of CTCs).1176

A common strategy to alleviate this problem is to use1177

a larger population, increasing the chances of the al-1178

gorithm finding promising individuals during initialisa-1179

tion. We also found that the maximum timeout of 301180

minutes was insufficient in some size ranges (e.g. Ex-1181

periment #2, 250 features and 30% CTCs), adversely1182

affecting the results. Increasing this timeout would have1183

certainly increased the effectiveness of ETHOM at the1184

price of making our experiments more time-consuming.1185

Finally, as a safety check, we tested ETHOM with1186

different optimisation problems. In particular, we used1187

problems with a known global maximum where the ef-1188

ficacy of ETHOM was easier to observe. For instance,1189

we used ETHOM to search for feature models with1190

n features and m% of CTCs that represent as many1191

products as possible, 2n being the maximum. Interest-1192

ingly, the algorithm progressively removed the relation-1193

ships constraining the set of products (i.e. mandatory1194

and alternative), generating models with optional and1195

or-relationships only. This demonstrates the ability of1196

ETHOM to change the model if that helps to make it1197

better for the given problem. This and other examples1198

are available as a part of the BeTTy testing framework1199

[14].1200

5.4. Statistical analysis1201

Statistical analysis is usually performed by formulat-1202

ing two contrary hypotheses. The first hypothesis is re-1203

ferred to as the null hypothesis (Hi
0) and says that the1204

algorithm has no impact at all on the goodness of the re-1205

sults obtained, i.e. there is no difference between the re-1206

sults obtained by ETHOM and random search. Opposite1207

to the null hypothesis, an alternative hypothesis (Hi
1) is1208

formulated, stating that ETHOM has a significant ef-1209

fect in the quality of the results obtained. Statistical1210

tests provide a probability (named p-value) ranging in1211

[0,1]. A low p-value indicates that the null hypothesis is1212

probably false and the alternative hypothesis is probably1213

true, i.e. ETHOM works. Alternatively, high p-values1214

suggest that ETHOM does not work. Researchers have1215

established by convention that p-values under 0.05 or1216

16

0.01 are so-called statistically significant and are suf-1217

ficient to reject the null hypothesis, i.e. demonstrate1218

that ETHOM provides better results that random search.1219

The statistical analysis described in this section was per-1220

formed using the SPSS 17 statistical package [28].1221

The techniques used to perform the statistical analy-1222

sis and obtain the p-values depend on whether the data1223

follows a normal frequency distribution or not. After1224

some preliminary tests (Kolmogorov-Smirnov [35, 63]1225

and Shapiro-Wilk [60] tests) we concluded that our1226

data did not follow a normal distribution and thus our1227

tests required the use of so-called non–parametric tech-1228

niques. In particular, we applied the Mann-Withney U1229

non–parametric test [41] to the experimental results ob-1230

tained with ETHOM and random search. Tables A.61231

and A.7 show the results of these tests in SPSS for1232

Experiments #1 and #2 respectively. For each num-1233

ber of features and percentage of cross-tree constraints,1234

the values of the test are provided. As illustrated, the1235

tests rejected the null hypotheses with extremely low p-1236

values (zero in most cases) for nearly all experimental1237

configurations of both experiments. This, coupled with1238

the results shown in Section 5, clearly shows the su-1239

periority of our algorithm when compared to random1240

search. As expected, statistical tests accepted some null1241

hypotheses in the range of 10% of CTCs in Experiment1242

#1. As explained in Section 6, this is due to the small1243

complexity of the analysis on those models which made1244

the fitness landscape extremely flat. Similarly, the tests1245

accepted some null hypotheses in the range of 250 fea-1246

tures and 30% of CTCs in Experiment #2. This was1247

due to the maximum timeout of 30 minutes used for our1248

experiments that made our algorithm stop prematurely,1249

stopping it from evolving toward promising solutions.1250

For a more detailed explanation of our statistical anal-1251

ysis of the data we refer the reader to [59].1252

6. Threats to validity1253

In order to clearly delineate the limitations of the1254

experimental study, next we discuss internal and1255

external validity threats.1256

1257

Internal validity. This refers to whether there is1258

sufficient evidence to support the conclusions and1259

the sources of bias that could compromise those1260

conclusions. In order to minimise the impact of1261

external factors in our results, ETHOM was executed1262

25 times for each problem to get averages. Moreover,1263

statistical tests were performed to ensure significance1264

of the differences identified. Regarding the random1265

generation of feature models, we avoided the risk of1266

creating syntactically incorrect models as follows.1267

First, we used a publicly available (and previously1268

used) algorithm for the random generation of feature1269

models. Second, we performed several checks using1270

the parser of BeTTy, FaMa and SPLOT to make sure1271

that the generated models were syntactically correct1272

and had the desired properties, e.g. a maximum1273

branching factor. A related risk is the possibility of our1274

random and evolutionary algorithms having different1275

expressiveness, e.g. tree patterns that can be generated1276

with ETHOM but not with our random algorithm. To1277

minimise this risk, we imposed the same generation1278

constraints on both our random and evolutionary1279

generators. More specifically, both generators received1280

exactly the same input constraints: number of features,1281

percentage of CTC and maximum branching factor1282

of the model to be generated. Also, both generators1283

prohibit the generation of CTCs between features with1284

parental relation and features linked by more than1285

one CTC. A related limitation of the current ETHOM1286

encoding is that it does not allow there to be more than1287

one set relationship of the same type (e.g. alternative1288

group) under a parent feature. Hence, for instance,1289

if two alternative groups are located under the same1290

feature, these are merged into one during decoding.1291

We may remark, however, that this only affects the1292

expressiveness of ETHOM putting it at a disadvantage1293

against random search. Also, the results do not reveal1294

any correlation between the number of set relationships1295

and the hardness of the models which means that this1296

restriction did not benefit our algorithm. Besides this,1297

the results show that ETHOM is equally capable of1298

generating consistent or inconsistent models if that1299

make them harder for the target solver. Therefore, it1300

seems unlikely that our algorithm has a tendency to1301

generate only consistent or inconsistent models.1302

1303

External validity. This is concerned with how the ex-1304

periments capture the objectives of the research and the1305

extent to which the conclusions drawn can be gener-1306

alised. This can be mainly divided into limitations of1307

the approach and generalizability of the conclusions.1308

Regarding the limitations, the experiments showed1309

no significant improvements when using ETHOM with1310

problems of low complexity, i.e. feature models with1311

10% of constraints in Experiment #1. As stated in Sec-1312

tion 5.1, this limitation is due to the fitness landscape1313

being relatively flat for simple problems; most fitness1314

values are zero or close to zero. Another limitation of1315

the experimental approach is that experiments for ex-1316

tremely hard feature models become too time consum-1317

ing, e.g. feature models with 250 features in Experi-1318

17

ment #2. This threat is caused by the nature of the hard1319

feature models we intend to find, with the analysis of1320

promising feature models becoming increasingly time1321

consuming and memory intensive. We may remark,1322

however, that this limitation is intrinsic to the problem1323

of looking for hard feature models and thus it equally1324

affects random search. Finally, we emphasise that in1325

the worst case ETHOM behaves randomly equalling the1326

strategies for the generation of hard feature models used1327

in the current state of the art.1328

Regarding the generalisation of the conclusions, we1329

used two different analysis operations and the results1330

might not generalise further. We remark, however,1331

that these operations are currently the most frequently1332

quoted in the literature, have different complexity and,1333

more importantly, are the basis for the implementation1334

of many other analysis operations on feature models1335

[10]. Thus, feature models that are hard to analyse1336

for these operations would certainly be hard to anal-1337

yse for those operations that use them as an auxiliary1338

function making our results extensible to other analy-1339

ses. Similarly, we only used two analysis tools for the1340

experiments, FaMa and SPLOT. However, these tools1341

are developed and maintained by independent labora-1342

tories providing a sufficient degree of heterogeneity for1343

our study. Also, the results revealed that a number of1344

metrics for the generated models (e.g. percentage of1345

CTCs) were in the ranges observed in realistic models1346

found in the literature, which supports the realism of the1347

hard feature models being generated. We may remark,1348

however, that these models could still contain structures1349

that are unlikely in real-world models and therefore this1350

issue requires further research. Finally, our random and1351

evolutionary generators do not allow two features to be1352

linked by more than one CTC for simplicity (see Section1353

4). This implicitly prohibits the generation of cycles of1354

requires constraints, i.e. A− > B and B− > A. How-1355

ever, these cycles express equivalence relationships and1356

seem to appear in real models (e.g. Linux kernel fea-1357

ture model [49]) which could slightly affect the gener-1358

alisation of our results. These cycles will be allowed in1359

future versions of our algorithm.1360

7. Related work1361

In this section we discuss related work in the areas of1362

software product lines and search-based testing.1363

7.1. Software product lines1364

A number of authors have used realistic feature mod-1365

els to evaluate their tools [4, 9, 24, 26, 31, 33, 46,1366

45, 50, 51, 55, 64, 67, 70]. By realistic models we1367

mean those modelling real–world domains or a sim-1368

plified version of them. Some of the realistic feature1369

models most quoted in the literature are e-Shop [36]1370

with 287 features, graph product line [38] with up to1371

64 features and BerkeleyDB [34] with 55 features. Al-1372

though there are reports from industry of feature models1373

with hundreds or even thousands of features [7, 37, 66],1374

only a portion of them is typically published. This has1375

led authors to generate feature models automatically1376

to show the scalability of their approaches with large1377

problems. These models are generated either randomly1378

[12, 11, 22, 26, 44, 47, 57, 74, 75, 76, 78, 79] or using a1379

process that tries to produce models with the properties1380

of those found in the literature [23, 45, 64, 67]. More re-1381

cently, some authors have suggested looking for tough1382

and realistic feature models in the open source commu-1383

nity [13, 21, 49, 61, 62]. As an example, She et al. [62]1384

extracted a feature model from the Linux kernel con-1385

taining more than 5,000 features and compared it with1386

publicly available realistic feature models.1387

Regarding the size of the models used for experi-1388

ments, there is a clear tendency for model size to in-1389

crease: this ranges from the model with 15 features used1390

in 2004 [8] to models with up to 10,000 and 20,000 fea-1391

tures used in recent years [23, 45, 47, 67, 74]. These1392

findings reflect an increasing interest in using complex1393

feature models in performance evaluation. This also1394

suggests that the only mechanism used to increase the1395

complexity of the models is by increasing size. When1396

compared to previous work, our approach is the first to1397

use a search–based strategy to reveal the performance1398

weaknesses of the tools and techniques under evalua-1399

tion rather than simply using large randomly generated1400

models. This allows developers to focus on the search1401

for tough models of realistic size that could reveal de-1402

ficiencies in their tools rather than using huge feature1403

models out of their scope. Similarly, users could have1404

more information about the expected behaviour of the1405

tools in pessimistic cases helping them to choose the1406

tool or technique that best meets their needs.1407

The application of optimisation algorithms in the1408

context of software product lines has been explored by1409

several authors. Guo et al. [23] proposed a genetic al-1410

gorithm called GAFES for optimised feature selection1411

in feature models, e.g. selecting the set of features1412

that minimises the total cost of the product. Sayyad1413

et al. [55] compared the effectiveness of five multi-1414

objective optimization algorithms for the selection of1415

optimised products. Other authors [25, 39, 71] have1416

proposed algorithms for the selection of test suites (i.e.1417

set of products) maximising or minimising certain pref-1418

18

erences, e.g. feature coverage. Compared to their1419

work, our approach differs in several aspects. First, our1420

work addresses a different problem domain, hard fea-1421

ture model generation. Second, and more importantly,1422

ETHOM searches for optimum feature models while1423

related algorithms search for optimum product config-1424

urations. This means that ETHOM and related algo-1425

rithms bear no resemblance and face completely differ-1426

ent challenges. For instance, related algorithms use a1427

standard binary encoding to represent product configu-1428

rations while ETHOM uses a custom array encoding to1429

represent feature models of fixed size.1430

Pohl et al. [51] presented a performance comparison1431

of nine CSP, SAT and BDD solvers on the automated1432

analysis of feature models. As input problems, they1433

used 90 realistic feature models with up to 287 features1434

taken from the SPLOT repository [65]. The longest1435

execution time found in the consistency operation was1436

23.8 seconds, far from the 27.5 minutes found in our1437

work. Memory consumption was not evaluated. As part1438

of their work, the authors tried to find correlations be-1439

tween the properties of the models and the performance1440

of the solvers. Among other results, they identified an1441

exponential runtime increase with the number of fea-1442

tures in CSP and SAT solvers. This is not supported1443

by our results, at least not in general, since we found1444

feature models producing much longer execution times1445

than larger randomly generated models. Also, the au-1446

thors mentioned that SAT and CSP solvers provided a1447

similar performance in their experiment. This was not1448

observed in our work in which the SAT solver was much1449

more efficient than the CSP solver, i.e. random and1450

evolutionary search were unable to find hard problems1451

for SAT. Overall, we consider that using realistic fea-1452

ture models is helpful but not sufficient for an exhaus-1453

tive evaluation of the performance of solvers. In con-1454

trast, our work provides the community with a limitless1455

source of motivating problems to explore the strengths1456

and weaknesses of analysis tools.1457

In later work, Pohl et al. [52] proposed using width1458

measures from graph theory to characterise the struc-1459

tural complexity of feature models as a way to estimate1460

the difficulty in analysing them. They performed several1461

experiments running the consistency operation on ran-1462

domly generated models of up to 1,000 features in nine1463

state of the art CSP, SAT and BDD solvers. As a result,1464

for some of the solvers they found a correlation between1465

one of the metrics and the time taken by the analysis.1466

When compared to their work, ETHOM uses a black-1467

box strategy and thus it may be used to find hard input1468

feature models for any analysis tool or analysis opera-1469

tion regardless of their implementation details. Further-1470

more, ETHOM explores the whole search space of fea-1471

ture models, not only those with different width prop-1472

erties, in looking for input problems that increase the1473

execution times of analysis tools. Having said this, we1474

think that both works are complementary since ETHOM1475

generates hard feature models and their approach tries to1476

determine what makes the models hard to analyse.1477

During the preparation of this article, we presented a1478

novel application of ETHOM in the context of reverse1479

engineering of feature models [40]. More specifically,1480

we used ETHOM to search for a feature model that rep-1481

resents a specific set of products provided as input. The1482

results showed that within a few generations our algo-1483

rithm was able to find feature models that represent a1484

superset of the desired products. This contribution sup-1485

ports our claims about the generalisability of our algo-1486

rithm showing its applicability to other domains beyond1487

the analysis of feature models.1488

Finally, we would like to remark that our approach1489

does not intend to replace the use of realistic or ran-1490

domly generated models which can be used to evalu-1491

ate the average performance of analysis techniques. In-1492

stead, our work complements previous approaches en-1493

abling a more exhaustive evaluation of the performance1494

of analysis tools using hard problems.1495

7.2. Search-based testing1496

Regarding related work in search-based testing, We-1497

gener et al. [72] were the first to use genetic algorithms1498

to search for input values that produce very long or very1499

short execution times in the context of real time systems.1500

In their experiments, they used C programs receiving1501

hundreds or even thousands of integer parameters. Their1502

results showed that genetic algorithms obtained more1503

extreme execution times with equal or less test effort1504

than random testing. Our approach may be considered a1505

specific application of the ideas of Wegener and later au-1506

thors to the domain of feature modelling. In this sense,1507

our main contribution is the development and configura-1508

tion of a novel evolutionary algorithm to deal with opti-1509

misation problems on feature models and its application1510

to performance testing in this domain.1511

Many authors continued the work of Wegener et al.1512

in the application of metaheuristic search techniques to1513

test non-functional properties such as execution time,1514

quality of service, security, usability or safety [2]. The1515

techniques used by the search-based testing community1516

include, among others, hill climbing, ant colony opti-1517

misation, tabu search and simulated annealing. In our1518

approach, we used evolutionary algorithms inspired by1519

the work of Wegener et al. and their promising results in1520

a related optimisation problem, i.e. generation of input1521

19

values maximising the execution time in real time sys-1522

tems. We remark, however, that the use of other meta-1523

heuristic techniques for the generation of hard feature1524

models is a promising research topic that requires fur-1525

ther study.1526

Genetic Algorithms (GAs) [1] are a subclass of evolu-1527

tionary algorithms in which solutions are encoded using1528

bit strings. However, it is difficult to encode the hierar-1529

chical structure of feature models using this approach1530

and therefore we discarded their use. Genetic Program-1531

ming (GP) is another variant of evolutionary algorithms1532

in which solutions are encoded as trees [54]. This en-1533

coding is commonly used to represent programs whose1534

abstract syntax can be naturally represented hierarchi-1535

cally. Crossover in GP is applied on an individual by1536

switching one of its branches with another branch from1537

another individual in the population, i.e. individuals can1538

have different sizes. We identified several factors that1539

make GPs unsuitable for our problem. First, the classic1540

tree encoding does not consider cross-tree constraints as1541

in feature models. As a result, crossover would proba-1542

bly generate many dangling edges which may require1543

costly repairing heuristics. Second, and more impor-1544

tantly, crossover in GP does not guarantee a fixed size1545

for the solution which was a key constraint in our work.1546

These reasons led us to design a custom evolutionary al-1547

gorithm, ETHOM, supporting the representation of fea-1548

ture trees of fixed size with cross-tree constraints.1549

7.3. Performance evaluation of CSP and SAT solvers1550

CSP and SAT solvers (hereinafter, CP solvers) use1551

algorithms and techniques of Constraint Programming1552

(CP) to solve complex problems from domains such as1553

computer science, artificial intelligence or hardware de-1554

sign6. The underlying problems of CSP and SAT solvers1555

are NP-complete and so CSP and SAT solvers have an1556

exponential worst case runtime. This makes efficiency1557

a crucial matter for these types of tools. Hence, there1558

exist a number of available benchmarks to evaluate and1559

compare the performance of CP solvers [27]. Also, sev-1560

eral competitions are held every year to rank the per-1561

formance of the participants’ tools. As an example, 931562

solvers took part in the SAT competition7 in 2013.1563

CP solvers use three main types of problems for per-1564

formance evaluation: problems from realistic domains1565

(e.g. hardware design), randomly generated problems1566

and hard problems. Both randomly generated and hard1567

6A SAT problem can be regarded a subclass of CSP with only
boolean variables.

7http://www.satcompetition.org

problems are automatically generated and are often1568

forced to have at least one solution (i.e. be satisfiable).1569

The CP research community realised long ago that there1570

are benefits in using hard problems to test the perfor-1571

mance of their tools. In 1997, Cook and Mitchell [17]1572

presented a survey on the strategies to find hard SAT1573

instances proposed so far. In their work, the authors1574

warned about the importance of generating hard prob-1575

lems for understanding their complexity and for provid-1576

ing challenging benchmarks. Since then, many other1577

contributions have explored the generation of hard SAT1578

and CSP problems [5, 77].1579

A common strategy to generate hard CSP and SAT1580

problems is by exploiting what is known as the phase1581

transition phenomenon [77]. This phenomenon estab-1582

lishes that for many NP-complete problems the hardest1583

instances occur between the region in which most prob-1584

lems are satisfiable and the region in which most prob-1585

lems are unsatisfiable. This happens because for these1586

problems the solver has to explore the search space in1587

depth before finding out whether the problem is satisfi-1588

able or not. CSP and SAT solvers can be parametrically1589

guided to search in the phase transition region enabling1590

the systematic generation of hard problems. We are not1591

aware of any work using evolutionary algorithms for the1592

generation of hard CP problems.1593

When compared to CP problems, the analysis of fea-1594

ture models differs in several ways. First, CSP and SAT1595

are related problems within the constraint programming1596

paradigm. The analysis of feature models, however, is a1597

high-level problem usually solved using quite heteroge-1598

neous approaches such as constraint programming, de-1599

scription logic, semantic web technologies or ad-hoc al-1600

gorithms [10]. Also, CP solvers focus on a single anal-1601

ysis operation (i.e. satisfiability) for which there exist1602

a number of well known algorithms. In the analysis of1603

feature models, however, more than 30 analysis opera-1604

tions have been reported. In this scenario, we believe1605

that our approach may help the community to generate1606

hard problems and study their complexity, leading to a1607

better understanding of the analysis operations and the1608

performance of analysis tools.1609

We identified two main advantages in our work when1610

compared to the systematic generation of hard CP prob-1611

lems. First, our approach is generic and can be applied1612

to any tool, algorithm or analysis operation for the au-1613

tomated treatment of feature models. Second, our algo-1614

rithm is free to explore the whole search space looking1615

for input models that reveal performance vulnerabilities.1616

In contrast, CP related work focuses the search for in-1617

puts problem in a specific area (the transition phase re-1618

gion).1619

20

Overall, we conclude that related work in CP support1620

our approach for the generation of hard feature mod-1621

els as a way to evaluate the performance strengths and1622

weakness of feature model analysis tools.1623

8. Conclusions and future work1624

In this paper, we presented ETHOM, a novel evo-1625

lutionary algorithm to solve optimisation problems on1626

feature models and showed how it can be used for1627

the automated generation of computationally hard fea-1628

ture models. Experiments using our evolutionary ap-1629

proach on different analysis operations and indepen-1630

dent tools successfully identified input models produc-1631

ing much longer executions times and higher memory1632

consumption than randomly generated models of iden-1633

tical or even larger size. In total, more than 50 mil-1634

lion executions of analysis operations were performed1635

to configure and evaluate our approach. This is the1636

first metaheuristic-based strategy to guide the search for1637

computationally hard feature models rather than sim-1638

ply using randomly generated models. This approach1639

will allow developers to focus on the search for tough1640

models of realistic size that could reveal deficiencies in1641

their tools rather than using huge randomly generated1642

feature models out of the scope of their tools. Simi-1643

larly, users are provided with more information about1644

the expected behaviour of the tools in pessimistic cases,1645

helping them to choose the tool or technique that better1646

meets their needs. Contrary to general belief, we found1647

that model size has an important, but not decisive, effect1648

on performance. Also, we found that the hard feature1649

models generated by ETHOM had similar properties to1650

realistic models found in the literature. This means that1651

the long execution times and high memory consumption1652

found by our algorithm might be reproduced in real sce-1653

narios with the consequent negative effect on the user.1654

In view of the positive results obtained, we expect this1655

work to be the seed for many other research contribu-1656

tions exploiting the benefits of ETHOM in particular,1657

and evolutionary computation in general, on the anal-1658

ysis of feature models. In particular, we envision two1659

main research directions to be explored by the commu-1660

nity in the future, namely:1661

• Algorithms development. The combination1662

of different encodings, selection techniques,1663

crossover strategies, mutation operators and other1664

parameters may lead to a whole new variety of evo-1665

lutionary algorithms for feature models to be ex-1666

plored. Also, the use of other metaheuristic tech-1667

niques (e.g. ant colony optimisation) is a promis-1668

ing topic that need further study. The develop-1669

ment of more flexible algorithms would be desir-1670

able in order to deal with other feature modelling1671

languages (e.g. cardinality-based feature models)1672

or stricter structural constraints, e.g. enabling the1673

generation of hard models with a given percent-1674

age of mandatory features. Also, the generation of1675

feature models with complex cross-tree constraints1676

(those involving more than two features) remains1677

an open challenge that we intend to address in our1678

future work.1679

• Applications. Further applications of our algo-1680

rithm are still to be explored. Some promising ap-1681

plications are those dealing with the optimisation1682

of non–functional properties in other analysis oper-1683

ations or even different automated treatments, e.g.1684

refactoring feature models. The application of our1685

algorithm to minimisation problems is also an open1686

issue in which we have started to obtain promising1687

results. Additionally, it would be nice to apply our1688

approach to verify the time constraints of real time1689

systems dealing with variability like those of mo-1690

bile phones or context–aware pervasive systems.1691

Last, but not least, we plan to study the hard fea-1692

ture models generated and try to understand what1693

makes them hard to analyse. From the information1694

obtained, more refined applications and heuristics1695

could be developed leading to more efficient tool1696

support for the analysis of feature models.1697

A Java implementation of ETHOM is ready-to-use1698

and publicly available as a part of the open-source1699

BeTTy Framework [14, 58].1700

Material1701

The prototype implementation of ETHOM, hard fea-1702

ture models generated (in XML format), statistical1703

results (in SPSS format) and raw experiment data1704

are available at http://www.lsi.us.es/~segura/1705

files/material/ESWA13/.1706

Acknowledgments1707

We would like to thank Dr. Don Batory, Dr. Javier1708

Dolado, Dr. Arnaud Gotlieb, Dr. Andreas Metzger, Dr.1709

Jose C. Riquelme, Dr. David Ruiz and Dr. Javier Tuya1710

whose comments and suggestions helped us to improve1711

the article substantially. We would also like to thank1712

José A. Galindo for his work integrating ETHOM into1713

the framework BeTTy.1714

21

This work has been partially supported by the Eu-1715

ropean Commission (FEDER) and Spanish Govern-1716

ment under CICYT projects SETI (TIN2009-07366)1717

and TAPAS (TIN2012-32273) and the Andalusian Gov-1718

ernment project THEOS (TIC-5906).1719

Appendix A. Statistical analysis results1720

#Features CTC (%)
10 20 30 40

200 0.53 0 0 0
400 0.28 0 0 0
600 0.36 0 0 0
800 0 0 0 0
1000 0.12 0 0 0

Table A.6: p-values obtained in Experiment #1 using the Mann-
Whitney-Wilcoxon test1721

#Features CTC (%)
10 20 30

50 0 0 0
100 0 0 0
150 0 0 0
200 0 0 0
250 0 0 0.85

Table A.7: p-values obtained in Experiment #2 using the Mann-
Whitney-Wilcoxon test1722

References1723

[1] M. Affenzeller, S. Wagner, S. Winkler, and A. Beham. Genetic1724

Algorithms and Genetic Programming: Modern Concepts and1725

Practical Applications. Numerical Insights. Taylor & Francis,1726

2009.1727

[2] W. Afzal, R. Torkar, and R. Feldt. A systematic review of1728

search-based testing for non-functional system properties. In-1729

formation and Software Technology, 51(6):957–976, 2009.1730

[3] AHEAD Tool Suite. http://www.cs.utexas.edu/users/1731

schwartz/ATS.html, accessed July 2013.1732

[4] N. Andersen, K. Czarnecki, S. She, and A. Wasowski. Effi-1733

cient synthesis of feature models. In 16th International Software1734

Product Line Conference, pages 106–115, 2012.1735

[5] C. Ansotegui, R. Bejar, C. Fernandez, and C. Mateu. Edge1736

matching puzzles as hard SAT/CSP benchmarks. In P. Stuckey,1737

editor, Principles and Practice of Constraint Programming, vol-1738

ume 5202 of Lecture Notes in Computer Science, pages 560–1739

565. Springer Berlin / Heidelberg, 2008.1740

[6] D. Batory. Feature models, grammars, and propositional formu-1741

las. In Software Product Lines Conference (SPLC), volume 37141742

of Lecture Notes in Computer Sciences, pages 7–20. Springer–1743

Verlag, 2005.1744

[7] D. Batory, D. Benavides, and A. Ruiz-Cortés. Automated anal-1745

ysis of feature models: Challenges ahead. Communications of1746

the ACM, December:45–47, 2006.1747

[8] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Coping with au-1748

tomatic reasoning on software product lines. In Proceedings of1749

the 2nd Groningen Workshop on Software Variability Manage-1750

ment, November 2004.1751

[9] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Automated rea-1752

soning on feature models. In 17th International Conference on1753

Advanced Information Systems Engineering (CAiSE), volume1754

3520 of Lecture Notes in Computer Sciences, pages 491–503.1755

Springer–Verlag, 2005.1756

[10] D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated anal-1757

ysis of feature models 20 years later: A literature review. Infor-1758

mation Systems, 35(6):615 – 636, 2010.1759

[11] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés. A first1760

step towards a framework for the automated analysis of feature1761

models. In Managing Variability for Software Product Lines:1762

Working With Variability Mechanisms, 2006.1763

[12] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés. Using1764

Java CSP solvers in the automated analyses of feature models.1765

LNCS, 4143:389–398, 2006.1766

[13] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki.1767

Variability modeling in the real: a perspective from the operat-1768

ing systems domain. In Proceedings of the IEEE/ACM Interna-1769

tional Conference on Automated Software Engineering, pages1770

73–82. ACM, 2010.1771

[14] BeTTy Framework. http://www.isa.us.es/betty, ac-1772

cessed July 2013.1773

[15] BigLever. Biglever software gears. http://www.biglever.1774

com/, accessed July 2013.1775

[16] P. Clements and L. Northrop. Software Product Lines: Practices1776

and Patterns. SEI Series in Software Engineering. Addison–1777

Wesley, August 2001.1778

[17] S.A. Cook and D.G. Mitchell. Finding hard instances of the1779

satisfiability problem: A survey. In Satisfiability Problem: The-1780

ory and Applications, volume 35 of Dimacs Series in Discrete1781

Mathematics and Theoretical Computer Science, pages 1–17.1782

American Mathematical Society, 1997.1783

[18] A.E. Eiben and S.K. Smit. Parameter tuning for configuring1784

and analyzing evolutionary algorithms. Swarm and Evolution-1785

ary Computation, 1(1):19 – 31, 2011.1786

[19] FaMa Tool Suite. http://www.isa.us.es/fama/, accessed1787

July 2013.1788

[20] Feature Modeling Plug-in. http://gp.uwaterloo.ca/fmp/,1789

accessed July 2013.1790

[21] J.A. Galindo, D. Benavides, and S. Segura. Debian packages1791

repositories as software product line models. Towards auto-1792

mated analysis. In Proceedings of the 1st International Work-1793

shop on Automated Configuration and Tailoring of Applications1794

(ACoTA), Antwerp, Belgium, 2010.1795

[22] R. Gheyi, T. Massoni, and P. Borba. A theory for feature mod-1796

els in Alloy. In Proceedings of the ACM SIGSOFY First Alloy1797

Workshop, pages 71–80, Portland, United States, nov 2006.1798

[23] J. Guo, J. White, G. Wang, J. Li, and Y. Wang. A genetic algo-1799

rithm for optimized feature selection with resource constraints1800

in software product lines. Journal of Systems and Software,1801

84:2208–2221, December 2011.1802

[24] A. Hemakumar. Finding contradictions in feature models. In1803

First International Workshop on Analyses of Software Product1804

Lines (ASPL), pages 183–190, 2008.1805

[25] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Y.L. Traon.1806

Multi-objective test generation for software product lines. In1807

Proceedings of the 17th International Software Product Line1808

Conference, SPLC ’13, pages 62–71, New York, NY, USA,1809

2013. ACM.1810

[26] R. Heradio-Gil, D. Fernandez-Amoros, J.A. Cerrada, and1811

C. Cerrada. Supporting commonality-based analysis of software1812

22

product lines. Software, IET, 5(6):496 –509, dec. 2011.1813

[27] H. Hoos and T. Stutzle. SATLIB: An online resource for re-1814

search on SAT. In I.P. van Maaren, H. Gent, and T. Walsh, ed-1815

itors, Sat2000: Highlights of Satisfiability Research in the Year1816

2000, pages 283–292. IOS Press, 2000.1817

[28] IBM. SPSS 17 Statistical Package. http://www.spss.com/,1818

accessed November 2010.1819

[29] JaCoP. http://jacop.osolpro.com/, accessed July 2013.1820

[30] JavaBDD. http://javabdd.sourceforge.net/, accessed1821

July 2013.1822

[31] M.F. Johansen, Ø. Haugen, and F. Fleurey. An algorithm for1823

generating t-wise covering arrays from large feature models.1824

In 16th International Software Product Line Conference, pages1825

46–55, 2012.1826

[32] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson.1827

Feature–Oriented Domain Analysis (FODA) Feasibility Study.1828

Technical Report CMU/SEI-90-TR-21, SEI, 1990.1829

[33] A. Karatas, H. Oguztüzün, and A. Dogru. Global constraints1830

on feature models. In D. Cohen, editor, Principles and Practice1831

of Constraint Programming, volume 6308 of Lecture Notes in1832

Computer Science, pages 537–551, 2010.1833

[34] C. Kastner, S. Apel, and D. Batory. A case study implementing1834

features using AspectJ. In SPLC ’07: Proceedings of the 11th1835

International Software Product Line Conference, pages 223–1836

232, Washington, DC, USA, 2007. IEEE Computer Society.1837

[35] A. Kolmogorov. Sulla determinazione empirica di una legge di1838

distribuzione. G. Inst. Ital. Attuari, 4:83, 1933.1839

[36] S.Q. Lau. Domain analysis of e-commerce systems using1840

feature–based model templates. master’s thesis. Dept. of ECE,1841

University of Waterloo, Canada, 2006.1842

[37] F. Loesch and E. Ploedereder. Optimization of variability in1843

software product lines. In Proceedings of the 11th Interna-1844

tional Software Product Line Conference (SPLC), pages 151–1845

162, Washington, DC, USA, 2007. IEEE Computer Society.1846

[38] R.E Lopez-Herrejon and D. Batory. A standard problem for1847

evaluating product-line methodologies. In GCSE ’01: Proceed-1848

ings of the Third International Conference on Generative and1849

Component-Based Software Engineering, pages 10–24, Lon-1850

don, UK, 2001. Springer-Verlag.1851

[39] R.E. Lopez-Herrejon, F. Chicano, J. Ferrer, A. Egyed, and1852

E. Alba. Multi-objective optimal test suite computation for soft-1853

ware product line pairwise testing. In Proceedings of the 29th1854

IEEE International Conference on Software Maintenance, 2013.1855

[40] R.E. Lopez-Herrejon, J.A. Galindo, D. Benavides, S. Segura,1856

and A. Egyed. Reverse engineering feature models with evolu-1857

tionary algorithms: An exploratory study. In Search Based Soft-1858

ware Engineering, volume 7515 of Lecture Notes in Computer1859

Science, pages 168–182. Springer Berlin Heidelberg, 2012.1860

[41] H.B. Mann and D.R. Whitney. On a test of whether one of two1861

random variables is stochastically larger than the other. Ann.1862

Math. Stat., 18:50–60, 1947.1863

[42] P. McMinn. Search-based software test data generation: a sur-1864

vey. Software Testing Verification and Reliability., 14(2):105–1865

156, 2004.1866

[43] M. Mendonca, M. Branco, and D. Cowan. S.P.L.O.T.: Software1867

Product Lines Online Tools. In Companion to the 24th ACM1868

SIGPLAN International Conference on Object-Oriented Pro-1869

gramming, Systems, Languages, and Applications (OOPSLA),1870

pages 761–762, Orlando, Florida, USA, October 2009. ACM.1871

[44] M. Mendonca, D.D. Cowan, W. Malyk, and T. Oliveira. Collab-1872

orative product configuration: Formalization and efficient algo-1873

rithms for dependency analysis. Journal of Software, 3(2):69–1874

82, 2008.1875

[45] M. Mendonca, A. Wasowski, and K. Czarnecki. SAT–based1876

analysis of feature models is easy. In Proceedings of the Inter-1877

national Sofware Product Line Conference (SPLC), 2009.1878

[46] M. Mendonca, A. Wasowski, K. Czarnecki, and D.D. Cowan.1879

Efficient compilation techniques for large scale feature models.1880

In 7th International Conference on Generative Programming1881

and Component Engineering (GPCE), pages 13–22, 2008.1882

[47] A. Osman, S. Phon-Amnuaisuk, and C.K. Ho. Using first or-1883

der logic to validate feature model. In Third International1884

Workshop on Variability Modelling in Software-intensive Sys-1885

tems (VaMoS), pages 169–172, 2009.1886

[48] J.A.. Parejo, A. Ruiz-Cortés, S. Lozano, and P. Fernandez.1887

Metaheuristic optimization frameworks: a survey and bench-1888

marking. Soft Computing - A Fusion of Foundations, Method-1889

ologies and Applications, 16:527–561, 2012.1890

[49] L. Passos, M. Novakovic, Y. Xiong, T. Berger, K. Czarnecki, and1891

A. Wasowski. A study of non-boolean constraints in variability1892

models of an embedded operating system. In Third International1893

Workshop on Feature-Oriented Software Development (FOSD),1894

SPLC ’11, pages 2:1–2:8. ACM, 2011.1895

[50] G. Perrouin, S. Oster, S. Sen, J. Klein, B. Baudry, and Y. Traon.1896

Pairwise testing for software product lines: comparison of two1897

approaches. Software Quality Journal, 20:605–643, 2012.1898

[51] R. Pohl, K. Lauenroth, and K. Pohl. A performance comparison1899

of contemporary algorithmic approaches for automated analy-1900

sis operations on feature models. In 26th International Con-1901

ference on Automated Software Engineering, pages 313–322.1902

IEEE, 2011.1903

[52] R. Pohl, V. Stricker, and K. Pohl. Measuring the structural com-1904

plexity of feature models. In 28th International Conference on1905

Automated Software Engineering, pages 454–464. IEEE, 2013.1906

[53] pure::variants. http://www.pure-systems.com/, accessed1907

July 2013.1908

[54] F. Rothlauf. Representations for Genetic and Evolutionary Al-1909

gorithms. Springer, 2nd edition, 2012.1910

[55] A.S. Sayyad, T. Menzies, and H. Ammar. On the value of user1911

preferences in search-based software engineering: A case study1912

in software product lines. In Proceedings of the 2013 Interna-1913

tional Conference on Software Engineering, ICSE ’13, pages1914

492–501, Piscataway, NJ, USA, 2013. IEEE Press.1915

[56] P. Schobbens, P. Heymans, J. Trigaux, and Y. Bontemps. Fea-1916

ture Diagrams: A Survey and A Formal Semantics. In Proceed-1917

ings of the 14th IEEE International Requirements Engineering1918

Conference (RE’06), Minneapolis, Minnesota, USA, September1919

2006.1920

[57] S. Segura. Automated analysis of feature models using atomic1921

sets. In First Workshop on Analyses of Software Product Lines1922

(ASPL), pages 201–207, Limerick, Ireland, September 2008.1923

[58] S. Segura, J.A. Galindo, D. Benavides, J.A. Parejo, and A. Ruiz-1924

Cortés. BeTTy: Benchmarking and Testing on the Automated1925

Analysis of Feature Models. In U.W. Eisenecker, S. Apel, and1926

S. Gnesi, editors, Sixth International Workshop on Variabil-1927

ity Modelling of Software-intensive Systems (VaMoS’12), pages1928

63–71, Leipzig, Germany, 2012. ACM.1929

[59] S. Segura, J.A. Parejo, R.M. Hierons, D. Benavides, and1930

A. Ruiz-Cortés. ETHOM: An evolutionary algorithm for1931

optimized feature models generation (v1.3). Technical Re-1932

port ISA-2013-TR-01, Applied Software Engineering Research1933

Group, Seville, Spain, 2013. http://www.isa.us.es/1934

sites/default/files/HardFMUsingEA_1.pdf.1935

[60] S. S. Shapiro and M. B. Wilk. An analysis of variance test1936

for normality (complete samples). Biometrika, 52(3/4):pp. 591–1937

611, 1965.1938

[61] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki.1939

The variability model of the linux kernel. In Fourth Interna-1940

tional Workshop on Variability Modelling of Software-intensive1941

Systems (VaMoS), Linz, Austria, January 2010.1942

23

[62] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki.1943

Reverse engineering feature models. In Proceeding of the 33rd1944

International Conference on Software Engineering, pages 461–1945

470. ACM, 2011.1946

[63] N. V. Smirnov. Tables for estimating the goodness of fit of em-1947

pirical distributions. Annals of Mathematical Statistic, 19:279,1948

1948.1949

[64] S. Soltani, M. Asadi, D. Gasevic, M. Hatala, and E. Bagheri.1950

Automated planning for feature model configuration based on1951

functional and non-functional requirements. In 16th Interna-1952

tional Software Product Line Conference, pages 56–65, 2012.1953

[65] S.P.L.O.T.: Software Product Lines Online Tools. http://1954

www.splot-research.org/, accessed July 2013.1955

[66] M. Steger, C. Tischer, B. Boss, A. Müller, O. Pertler, W. Stolz,1956

and S. Ferber. Introducing PLA at Bosch gasoline systems: Ex-1957

periences and practices. In International Sofware Product Line1958

Conference (SPLC), pages 34–50, 2004.1959

[67] T. Thüm, D. Batory, and C. Kästner. Reasoning about edits to1960

feature models. In International Conference on Software Engi-1961

neering, pages 254–264, 2009.1962

[68] Edward Tsang. Foundations of Constraint Satisfaction. Aca-1963

demic Press, 1995.1964

[69] S. Voß. Meta-heuristics: The state of the art. In ECAI ’00:1965

Proceedings of the Workshop on Local Search for Planning and1966

Scheduling-Revised Papers, pages 1–23. Springer-Verlag, Lon-1967

don, UK, 2001.1968

[70] H.H. Wang, Y.F. Li, J. Sun, H. Zhang, and J. Pan. Verifying1969

feature models using OWL. Journal of Web Semantics, 5:117–1970

129, June 2007.1971

[71] S. Wang, S. Ali, and A. Gotlieb. Minimizing test suites in1972

software product lines using weight-based genetic algorithms.1973

In Proceeding of the Fifteenth Annual Conference on Genetic1974

and Evolutionary Computation Conference, GECCO ’13, pages1975

1493–1500, New York, NY, USA, 2013. ACM.1976

[72] J. Wegener, K. Grimm, M. Grochtmann, and H. Sthamer. Sys-1977

tematic testing of real-time systems. In Proceedings of the1978

Fourth International Conference on Software Testing and Re-1979

view (EuroSTAR), 1996.1980

[73] J. Wegener, H. Sthamer, B.F. Jones, and D.E. Eyres. Testing1981

real-time systems using genetic algorithms. Software Quality1982

Control, 6(2):127–135, 1997.1983

[74] J. White, B. Doughtery, and D. Schmidt. Selecting highly op-1984

timal architectural feature sets with filtered cartesian flattening.1985

Journal of Systems and Software, 82(8):1268–1284, 2009.1986

[75] J. White, B. Doughtery, D. Schmidt, and D. Benavides. Au-1987

tomated reasoning for multi-step software product-line config-1988

uration problems. In Proceedings of the Sofware Product Line1989

Conference, pages 11–20, 2009.1990

[76] J. White, D. Schmidt, D. Benavides P. Trinidad, and Ruiz-1991

Cortés. Automated diagnosis of product-line configuration er-1992

rors in feature models. In Proceedings of the 12th Sofware1993

Product Line Conference (SPLC), Limerick, Ireland, September1994

2008.1995

[77] K. Xu, F. Boussemart, F. Hemery, and C. Lecoutre. Random1996

constraint satisfaction: Easy generation of hard (satisfiable) in-1997

stances. Artificial Intelligence, 171(8-9):514–534, 2007.1998

[78] H. Yan, W. Zhang, H. Zhao, and H. Mei. An optimization strat-1999

egy to feature models’ verification by eliminating verification-2000

irrelevant features and constraints. In ICSR, pages 65–75, 2009.2001

[79] W. Zhang, H. Yan, H. Zhao, and Z. Jin. A BDD–based approach2002

to verifying clone-enabled feature models’ constraints and cus-2003

tomization. In 10th International Conference on Software Reuse2004

(ICSR), LNCS, pages 186–199. Springer, 2008.2005

24

