
Fuzzy Tactics: A scripting game that leverages fuzzy logic as an engaging
game mechanic
⇑ Corresponding author. Tel.: +39 0223993472; fax: +39 0223993411.
E-mail addresses: michele.pirovano@polimi.it (M. Pirovano), pierluca.lanzi@

polimi.it (P.L. Lanzi).
1 http://www.youtube.com/watch?v=tFxbakAamsc.
Michele Pirovano a,b, Pier Luca Lanzi a,⇑
a Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano, Milano, Italy
b Department of Computer Science, University of Milano, Milano, Italy
1. Introduction

Artificial intelligence in video games aims at enhancing players’
experience in various ways (Millington, 2006; Buckland, 2004); for
instance, by providing intelligent behaviors for non-player charac-
ters, by implementing adaptive gameplay, by generating high-
quality content (e.g. missions, meshes, textures), by controlling
complex animations, by implementing tactical and strategic plan-
ning, and by supporting on-line learning. Noticeably, artificial
intelligence is typically invisible to the players who become aware
of its presence only when it behaves badly (as demonstrated by the
huge amount of YouTube videos showing examples of bad artificial
intelligence1).

Artificial intelligence can, in few rare cases, play a more central
role and become a mean to introduce innovative game mechanics
that are built around specific techniques. For instance, the games
from the Creatures series (Gameware Development, 1996) make
the interaction with the learning mechanism of the underlying
neural networks the main focus of the player. The creatures
remember facts and adapt to the environment, thus looking
intelligent. The award-winning game Black & White (Lionhead
Studios, 2001) leverages reinforcement learning to support the
interaction with the player’s giant pet-avatar as the main core of
the gameplay. Most of the gameplay in Black & White (Lionhead
Studios, 2001) concerns teaching what is good and what is bad
to the pet, a novel mechanic enabled by the AI. In Galactic Arms
Race (Hastings, Guha, & Stanley, 2009), the players’ weapon prefer-
ences form the selection mechanism of a distributed genetic algo-
rithm that evolves the dynamics of the particle weapons of
spaceships. The players can experience the weapons’ evolution
based on their choices. In all these games, the underlying artificial
intelligence is the main element that permeates the whole game
and also the biggest selling point. The use of AI to support game-
play mechanics thus enables the exploration of new design solu-
tions. It is however difficult to develop compelling gameplay
around a specific artificial intelligence technique since it would
both require a significant amount of resources for experiments
and an in-depth knowledge of the technique as well as of game
design; accordingly, only a few successful games based on this idea
have been built so far (Gameware Development, 1996; Hastings
et al., 2009; Lionhead Studios, 2001).

In this paper, we define the genre of scripting video games and
introduce Fuzzy Tactics, a tactical role-playing game that makes the
artificial intelligence, a fuzzy system in this case, the central ele-
ment that supports gameplay. In Fuzzy Tactics, players lead their

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2014.02.052&domain=pdf
mailto:michele.pirovano@polimi.it
mailto:pierluca.lanzi@polimi.it
mailto:pierluca.lanzi@polimi.it
http://www.youtube.com/watch?v=tFxbakAamsc

troops into battle by specifying a set of fuzzy rules that determines
the behavior of the units. In our game, the interaction with the
underlying fuzzy system is the main game mechanic and thus it
gives artificial intelligence a primary role by requiring players to
script behaviors to be able to play. The use of fuzzy logic in the
main game mechanics enables us to (i) extend the depth of the
game further than would be manageable, (ii) allow more compel-
ling gameplay to emerge, while also (iii) keeping the interaction
intuitive thanks to natural language and (iv) increase the educa-
tional value of the game (which at the end can also be viewed as
a joyful way to learn something about fuzzy logic).

The paper is organized as follows. In Section 2 we discuss the
pros and cons of applying fuzzy logic to games. In Section 3, we
briefly overview the use of fuzzy logic in commercial games and
in games developed in academia; we also discuss the video games
that offer mechanics related to Fuzzy Tactics. In Section 4, we pres-
ent our approach to the use of fuzzy logic in games and show how
Fuzzy Tactics exploits this technique to implement innovative
mechanics. In Section 5, we describe the game mechanics of Fuzzy
Tactics while in Section 6 we present examples of gameplay scenar-
ios showing the peculiar features of our game. In Section 7, we
draw some conclusions and outline directions for future research.
2. Fuzzy logic in games

Fuzzy logic has been officially introduced in game development
in 1996 in the Game Developer Magazine2 by O’Brien (1996) and
since then it has been listed as a major technique for game artificial
intelligence design by several reference sources. The major text-
books on game AI devote entire chapters to it (Bourg & Seemann,
2004; Buckland, 2004; Millington, 2006) and several introductory
articles show how to apply fuzzy logic to games (e.g., McCuskey,
2000). Zarozinski (2002) stretches as far as suggesting that fuzzy
logic finds its way in almost every game.
2.1. The benefits of using fuzzy logic in games

Fuzzy logic has several advantages over other artificial intelli-
gence techniques as a mean to introduce advanced behaviors in
games. Firstly, fuzzy logic needs no prerequisites apart from basic
knowledge of Boolean logic and therefore it is a good candidate to
add advanced AI to any game with relatively little effort. In addi-
tion, because of its linguistic nature, domain experts can specify
fuzzy rules even if they have no knowledge nor understanding of
the underlying technology so as to implement human experts’
strategies (McCuskey, 2000). This can be very useful in sports
and war simulation games. Thirdly, the input–output mappings
of fuzzy rules are typically non-linear thus it is generally easy to
implement complex behaviors without the need to define mathe-
matical models that may be tedious or impossible to obtain
(Gabriyel Wong, 2006); at the same time, such non-linearity is
exploited to decrease the predictability of the controlled agents.
Accordingly, game designers can use fuzzy logic to implement
complex game intelligence without the need for a programmer to
assist them. Moreover, while traditional decision making
approaches can result in unnatural and unrealistic sudden switch
of action policies, fuzzy logic produces smoother changes, although
Millington (2006) suggests that such gradual transitions may be
over-kill for most current games. Another benefit of fuzzy logic lies
in its intrinsic non-sequential representation of knowledge. In fact,
since fuzzy rules can be activated in any order, designers can easily
add or remove rules without worrying about their activation
2 Previously at http://www.gdmag.com now available at http://www.gamasutra.com/
topic/game-developer.
sequence. Fuzzy logic has also a low computational cost (Li,
Musilek, & Wyard-Scott, 2004) which makes it an ideal solution
due to the low resources available to game AI developers and to
the real-time constraints they are often required to abide to; this
benefit is one of the main reasons why fuzzy logic is favored in
the gaming industry. Finally, fuzzy systems are also good candi-
dates for in-game adaptation and learning.

To aid game developers in their implementation of a fast-
performance fuzzy system, the Free Fuzzy Logic Library3 (FFLL)
has been created and its use is widely encouraged in the literature
(e.g., Zarozinski, 2001).

2.2. The pitfalls of fuzzy logic in games

There are relatively few drawbacks for using fuzzy logic in
games. Fuzzy systems typically work better if a domain expert is
available to specify what the input and output variables are, as well
as to sketch the rules that represent existing relationships; if an
expert is not available, it might be hard to come up with an ade-
quate rule set and a significant amount of tuning might be needed
to implement satisfactory behaviors. This may be a drawback for
games based on the simulation of uncommon situations, where
domain experts may not even exist (for instance, when designing
the game AI for spaceship battles). In addition, if not carefully
designed, the development of a fuzzy rule set may result in a large
amount of (possibly redundant) rules that will be tested at each
time step, dramatically increasing the computational cost. To limit
this issue, several improvements have been suggested (Alexander,
2002). For instance, single-state outputs can be enforced to avoid
unnecessary computations, hierarchical behaviors can be intro-
duced to resolve groups of rules at once and parallel and indepen-
dent behavior layers with different evaluation frequencies can be
used.
3. Related work

Fuzzy systems have been often applied to video games to tackle
several tasks e.g., to implement game intelligence (Johnson &
Wiles, 2001), for graphics (Hsu, Kao, & Wu, 2009), and to support
design (Lo & Wen, 2010). In this section, we overview games that
are related to Fuzzy Tactics either for their use of fuzzy logic or
for their game mechanics, in order to provide a frame of reference
for the subsequent discussion.

3.1. Fuzzy logic in commercial games

Although fuzzy logic is well known in the game AI literature
(Millington, 2006), it is hard to find mentions of actual commercial
games that leverage fuzzy logic. This suggests two alternative con-
clusions: either fuzzy logic has become such a wide-spread tech-
nology that it is deemed not worth mentioning as a bullet point
as compared to other more exotic techniques, or the technique,
while well known in theory, is not actually used so thoroughly.
Nonetheless, an older comprehensive list of games using fuzzy
logic techniques can be found among the titles listed in
Woodcock (2000). Unreal (Epic Games, 1998) is one of the most
famous first person shooter in videogame history and has been
reported to use fuzzy state machines (FuSMs) to control the behav-
ior of enemy aliens; when published, the game was praised for its
believable game intelligence (Johnson & Wiles, 2001; Woodcock,
1999). Civilization: Call to Power (Activision, 1999) (Fig. 1(a)),
turn-based strategy game that is a spin-off of the well-known fran-
chise, uses fuzzy state machines (FuSMs) to set priorities for
3 http://ffll.sourceforge.net/.

http://www.gdmag.com
http://www.gamasutra.com/topic/game-developer
http://www.gamasutra.com/topic/game-developer
http://ffll.sourceforge.net/

Fig. 1. Games that make use of fuzzy logic. Top left: Civilization: Call to Power. Top right: The Sims. Bottom left: Close Combat 2. Bottom right: S.W.A.T. 2.
strategic level intelligence, allowing personality traits to be defined
for the different civilization leaders (Johnson & Wiles, 2001). The
worldwide top-selling game The Sims (Maxis, 2000) (Fig. 1(b)) uses
fuzzy state machines to determine what objects a character can
interact with based on their properties and the characters person-
ality traits. Close Combat (Atomic Games, 1996) and its sequel
Close Combat 2 (Atomic Games, 1998) (Fig. 1(c)) use a Fuzzy State
Machine that weights hundreds of variables to determine the prob-
ability to select actions (Merrick & Maher, 2009; Sweetser & Wiles,
2002). Enemy Nations (Windward Studios, 1997) features enemies
that employ finite state machines, fuzzy state systems, and a data-
base of goals and tasks (Woodcock, 2000). S.W.A.T. 2 (Yosemite
Entertainment, 1998) (Fig. 1(d)) is a real-time tactics game that
has been reported to make extensive use of fuzzy logic to enable
the non-player characters to behave spontaneously based on their
defined personalities and abilities (Johnson & Wiles, 2001;
Sweetser & Wiles, 2002).

3.2. Fuzzy logic in game research

Fuzzy logic has been widely used in commercial games with
success, however most of the times its application is restricted to
simple inference engines or fuzzy state machines. In contrast, fuzzy
logic has been broadly applied in academia to tackle a wide variety
of tasks related to game research. For instance, it has been used for
the design of the behavior of the enemy ghosts in a Pac-Man clone
(Namco, 1980; Shaout, King, & Reisner, 2006); however, heavy tun-
ing was needed to achieve a reasonable behavior. Fuzzy Q-learning,
borrowed from the fields of robotics, was used in a Ms. Pac-Man
clone (DeLooze & Viner, 2009; Midway, 1982). Li et al. (2004) men-
tion fuzzy control as a practical method for generating subtle
behavior and use it in a Belief-Desire-Intention (BDI) framework
as part of decision making for a BattleCity (Namco, 1995) clone.
Ho and Garibaldi (2008a) introduced the concept of Context-
Dependent fuzzy system, in which the membership functions of
the fuzzy variables are not fixed but change according to the con-
text. The proposed approach was applied to design a controller for
the car racing competition held at FuzzIEEE 2007. In Ho and
Garibaldi (2008b), the same authors, present an improved version
of the controller for the 2007 CIG Simulated Car Racing Competi-
tion. The controller consisted in a two-layers architecture that
combines a high-level path planner with a low-level execution
controller based on fuzzy logic.

In Perez, Recio, and Saez (2009), Perez et al. presented a driver
based on a fuzzy controller for the 2008 CIG Simulated Car Racing
Competition. First, they designed the rules and the fuzzy sets of a
base driver. Then, they applied a genetic algorithm to optimize
the parameters of the fuzzy sets. Onieva, Pelta, Alonso, Milanes,
and Perez (2009) developed a modular architecture in which the
general driving was implemented by a fuzzy system controlling
the target speed. To this date, the tuned fuzzy controller still out-
performs other controllers in the same competition.

In Onieva, Cardamone, Loiacono, and Lanzi (2010), we pre-
sented an initial study of blocking in car racing games based on
our experience in the organization of the Simulated Car Racing
Competition (Loiacono et al., 2008, 2010;) we showed that even
the most competitive controller can fail to overtake even the most
basic blocking strategies on very simple straight track sections; we
also showed that a simple fuzzy controller could tackle blocking
behaviors that more advance drivers failed to manage. The original
study was later extended in Cardamone, Lanzi, Loiacono, and
Onieva (2013), where we presented a more detailed experimental
analysis. Fujii, Nakashima, and Ishibuchi (2008) also applied fuzzy
systems to simulated car racing. In this case, rules are generated

from a set of training patterns; the study compares two methods
for generating such training patterns and two representations of
the sensory information (third person vs. egocentric).

The application of fuzzy logic as an alternative of the original AI
of commercial games has been widely explored as a way to have a
industry validation of the approach (and thus a greater impact on
the game industry). This however requires the game’s AI to be
extensible and the commercial game to be open-sourced, features
found only in a handful of games. The code of Quake III Arena (Id
Software, 1999), a major commercial success in the game industry,
is available as open source and the game has thus been the target
of much research. Fuzzy-logic controlled bots have been released
for the game (van Waveren, 2001), with weapon and item selection
controlled by fuzzy decision making. The fuzzy bots have shown
interesting performance and they are now taken as the basis for
comparison when more advanced techniques are used (Prieditis
& Dalal, 2006; Westra & Dignum, 2009). Pinto and Alvares (2006)
model fuzzy sensors as input to extended behavior networks in
Unreal Tournament (Epic, 1999), another famous first person shoo-
ter, while Acampora (2010) uses timed automata and fuzzy con-
trollers to model emotions for bots in a Unreal Tournament 2004
(Epic, 2003) match.

Additional uses of fuzzy logic in games regard the classification
of player feedback and learning from the player. In these contexts,
fuzzy logic is used as an effective way to model the player’s reason-
ing. El-Nasr, Yen, and Ioerger (2000) report that fuzzy logic has
provided better means of modeling emotions due to its qualitative
and quantitative expressiveness. Levillain, Orero, and Rifqi (2010)
use fuzzy decision trees to categorize the emotional feedback of
players during gameplay. Gabriyel Wong (2006) uses fuzzy control
to manage the complexity of a scene by classifying 3D models
according to their level of detail. Ohsone and Onisawa (2008) use
fuzzy decision trees to determine the best response of their virtual
opponent.

Fuzzy systems are good candidates for learning and fuzzy logic
has been used to model rules that are then evolved using the
player’s actions as input to an evolutionary algorithm (Avery &
Michalewicz, 2008). In Ishibuchi, Sakamoto, and Nakashima
(2003), the authors extract data from the iterative execution of
games and then learn fuzzy rules for the classifications of player
actions.

3.3. Scripting as a game mechanic

In Fuzzy Tactics, the players indirectly control their units
through scripting a set of fuzzy rules that defines units behavior
beforehand; then, they sit back, relax, and watch their troops go
to war. In the game literature, there is no mention of similar
mechanics. In this paper, we introduce the notion of scripting games
to identify those games in which the players cannot directly inter-
act with the game world to complete the game objective, but they
have to script the behavior of one or more agents to complete the
tasks. Scripting games have usually two distinct phases: (i) a plan-
ning phase, during which players program their agents, (ii) a sim-
ulation phase, when they experience the results of their planning.
Based on the results, players can either progress to the next level/
battle or need to refine their plan.

Scripting games have their roots in the early programming
games like Darwin (Vyssotsky, Morris-Sr, & McIlroy, 1961), Core
Wars (Jones & Dewdney, 1980), and their descendants such as Rob-
oCode (see http://corewar.co.uk/ for more programming games).
They are not a popular game genre probably due to their appeal
to the niche of strategic-type players, their lack of immediate feed-
back, and to the intrinsic complexity of the scripting mechanics.
Nonetheless, various attempts have been made to increase the
appeal of this genre, accordingly we can find games of this genre
on all major gaming platforms. Cargo Bot (Viana, 2012) is a script-
ing game published for the Apple iPad in which players have to
program a manipulator to complete puzzles. In Light Bot
(CoolioNiato, 2008), players must program a small robot to move
around the game grid and activate all the required blocks. Space-
Chem (Zachtronics Industries, 2011) is a good example of a suc-
cessful scripting game, set in a chemistry plant, in which players
build machines that separate and merge chemical elements to
meet production requirements.

All games mentioned so far belongs to the puzzle genre, but
scripting games cover a wider range of genres such as tactical
and strategic games. The Carnage Heart (Artdink, 1997) series for
the Sony PlayStation systems requires the player to equip and pro-
gram robots for an upcoming duel. Gratitious Space Battles
(Positech Games, 2012) is a successful independent scripting game
in which fleets of spaceships fight against each other; the player is
allowed to customize and program the spaceships, although using
only simple orders. The games of the Dominions (Illwinter Design,
2007) series make great use of battle scripting: players can issue
simple orders to their units before a battle begins and they have
no control on their behavior during the actual battle. Frozen Syn-
apse (Mode 7, 2011) is another recent example of independent suc-
cessful game that borrows features from scripting games, in a
lesser degree. In Frozen Synapse (Mode 7, 2011), the player is
asked to control a handful of units to complete tactical objectives.
At each turn, which consists of a few seconds, the player can visu-
ally program the behavior of each unit, then the turn is played.

A few open-source games are available online that require
actual programming skills such as Real Time Battle (Real Time
Battle, 2006) and RoboCode (Nelson, 1980), both requiring the
players to program battle robots. These games are obviously tar-
geting programmers (or programming students) and their com-
mercial value is hard to estimate.
4. Fuzzy logic as a game mechanic

Scripting games, like all programming systems, implement a
trade-off between language simplicity, representation power, and
programming flexibility. To be fun and accessible to non-program-
mers, a scripting game needs a very simple programming language.
Most games accomplish this through the creation of visual opera-
tional languages, such as in the case of Light Bot (CoolioNiato,
2008) or SpaceChem (Zachtronics Industries, 2011). Other games,
such as Gratitious Space Battles (Positech Games, 2012) or Domin-
ions (Illwinter Design, 2007), simply let players specify only high
level behavioral rules, thus limiting their flexibility. These
approaches are typically easier to understand for non-program-
mers, but they can only represent very basic behaviors. Accord-
ingly, they are way too simple to implement advanced tactical
maneuvering. In fact, their use is usually limited to simple puzzle
games and their extension to wargames has not been successful
yet.

In Fuzzy Tactics, we propose a solution to this issue that lever-
ages the intrinsic simplicity of fuzzy logic and uses it to support
the main game mechanic for a tactical role-playing game with indi-
rect control. Our aim is to create complex and deep gameplay for
scripting games, favored by tactical-minded players, while keeping
the gameplay accessible and intuitive for most people. Accordingly,
we developed Fuzzy Tactics, a game that requires players to lead
their troops into battle by specifying the behavior of single units
and teams. In our game, units are controlled by a fuzzy system
and the players can define their behavior using a rich visual lan-
guage. The players goal is to learn to command their troops using
the fuzzy rules that control each unit, becoming increasingly
skilled in defining the rules as the game progresses. Through trial

http://corewar.co.uk/

and error and the experience shared with other players, players
improve their skills and reach mastery.

We chose fuzzy logic since, because of its linguistic nature, it
allows players to easily write complex strategies that their units
will execute. Players command the troops by writing readable
(fuzzy) rules that encode complex strategic decisions with ease
using an intuitive graphical interface that resembles visual script-
ing environments (see Section 5). Players can thus easily express
complex notions while the underlying fuzzy logic emulates the
reasoning.

Compared to other games that use fuzzy logic in the design and
development phase, in Fuzzy Tactics we take a step further and give
the players the role of domain expert/designer whose knowledge is
leveraged by the underlying fuzzy system. By using fuzzy logic as
a major element of gameplay we also gain additional benefits.
Since the underlying system is a black box, players can specify
the rules without the need to delve into technicalities which might
distract them from the real goal, that is to have fun playing a tac-
tical warfare game; instead, players only need to specify unit com-
mands that are typical of strategic and tactical scenarios. The
intrinsic non-linearity of fuzzy inference systems also makes the
creation of unpredictable and complex behavior easier, so as to
increase replayability and gameplay variety. In addition, the low
computational cost of the fuzzy reasoning systems, coupled with
the solutions for managing a large number of rules, allows us to
deploy and control a large number of units on the battlefield.
Finally, the affinity of fuzzy systems to learning algorithms can
be leveraged to create suitable computer-controlled enemies for
the game and also aid in balancing.
5. Fuzzy Tactics: the game

Fuzzy Tactics is a scripting video game we developed whose
genre lies at the intersection of strategy games, tactics games
and tactical role-playing games (see Fig. 2(a) and (b)). The player
commands an army and has to defeat enemies in battles, which
take place on a battlefield represented by a hexagonal grid. The
game generates a wide possibility space through a plethora of units
to choose from, different weapons to equip, skills to use and abil-
ities to learn; all of these elements affect in their own way the
result of a battle, promoting emergent gameplay (Juul, 2002). The
players are required to exercise their strategic skills to manage
the army’s resources and their tactical maneuvering skills to win
each battle, thus focusing on two of the five fundamental mechan-
ics types as listed by Adams (2009). The current game prototype
presents the battles as a series of separated events; we later plan
to link the battles with a plot and a layer of strategic turn-based
gameplay.

In contrast to most games in the tactical/strategic genres, in our
game the player has no control over the units during battle, and
this peculiarity of the gameplay makes Fuzzy Tactics a scripting
game (see Section 3.3). The player can equip units, train them
and arrange their formation before the battle begins, but when
the fight starts the player can only sit back and watch the clash
from afar. The player can create orders for the units to follow, with
each unit having its own list of orders. These orders allow the
player to plan what actions the unit will perform during the fight,
basically programming its behavior. Thanks to the use of fuzzy
logic in this process, issuing orders to the units becomes as natural
as explaining them what to do using written language. For exam-
ple, the unit may be given the order to attack with a ranged
weapon when it is far enough from the enemy unit, or to flee when
the enemy gets dangerously close.

The battle takes place in real time, but all units are actually syn-
chronized and reason/act in discrete time steps. At each time step,
each unit analyzes the battlefield’s state to determine, based on its
orders, the action to take. To do so, the fuzzy reasoning system of
each unit (basically, its brain) checks its rule base (its orders)
against the current state of the battle, that is determined by the
values of the fuzzy variables it can access. Input fuzzy variables
are automatically created for each variable parameter of a unit
(maximum health, current health, strength, intelligence, speed,
etc.) and for each variable that represents a relationship between
two different units (for example, distance); each unit has access
to all the fuzzy variables of all units on the battlefield. To each
input fuzzy variable, we assigned seven trapezoid fuzzy member-
ship sets that we labeled very-small, small, medium-small, medium,
medium-large, large, and very-large, covering the whole range of the
variable (see Fig. 3). Output fuzzy variables represent the prefer-
ence for actions to be taken and for what to target, with one output
variable created for each action-target pair. The output of the fuzzy
inference engine thus determines the action the unit takes (flee,
attack, move, etc.) and which unity to target (enemy, ally, itself)
based on the current battle state. When all units have chosen their
action, a single battle step is simulated and the battle advances
with all units acting simultaneously. Since the fuzzy reasoning sys-
tem of each unit can efficiently choose the action to take, there is
no delay between one battle step and another, resulting in a con-
tinuous battle flow.

A single battle can end in three ways: (i) either the player’s
army is defeated and thus the player loses; (ii) the enemy army
is defeated and the player wins; or (iii) too much time has passed
without a clear winner and the battle ends with a draw.

5.1. Order Creation System

Before the battle begins, players can setup their army through
the army setup interface. In the current version of the game, units
have fixed but different equipment, statistics and skills, while their
placement on the battle grid and their orders can be configured by
the player.

Players can easily specify the orders for each one of their units
using a graphical interface we created (dubbed Order Creation Sys-
tem or OCS) that is linked to the fuzzy reasoning system of the
units. To make the system as straightforward as possible while still
retaining its flexibility, we allow the players to define orders using
predefined building blocks on a three-layer hierarchy. The first
layer is the order-list layer: here, the player can create, delete,
rename or choose to modify orders in a sequence that determines
their priority and thus the correspondent fuzzy rule’s weight (see
Fig. 4(a)). A library of orders is also available and can be used to
add pre-defined orders to the current unit. The second layer con-
cerns the details of a specific order and can be accessed when an
order is selected with a click in the first layer. The player can
add, delete and modify a set of conditions independently (the ante-
cedents of the fuzzy rules) and a set of consequences (the conse-
quents of the fuzzy rules) (see Fig. 4(a)). Conditions and
consequences are linked with an and clause, and they are collec-
tively referred to as prepositions. The third and final layer concerns
the details of the fuzzy rules’ prepositions and can be accessed
when one of them is selected with a click in the second layer.
The player can build prepositions from a sequence of atomic build-
ing blocks that correspond to subjects, variables, verbs, label mod-
ifiers and labels. By combining the building blocks, a preposition is
created much in the same way as a person would write it down
using the English grammar structure, making the creation process
natural. Fig. 4(b) shows the interface of the Order Creation System
where a visual explanation of the preposition is shown on the right
to further help the player. Subjects refer to the units in the battle
(enemy, allied, self), variables to the fuzzy variables tied to the
units (health, distance, strength, etc.), verbs to the actions that

Fig. 2. Battles in the world of Fuzzy Tactics. On the top, we see a barrage of arrows hitting the unfortunate frog-men. On the bottom, we see crocodile-men and frog-men
fighting with arrows.

Fig. 3. A fuzzy variable related to the current health parameter of a unit (from 0% to 100%). We can see the seven fuzzy membership sets that cover the whole range.
the units can perform (attack, move, flee, etc.), and labels and label
modifiers correspond to either one of the seven defined fuzzy set
labels or special labels that define set compounds. To make the
editing even simpler, we constrained the possible sequences of
blocks to forbid infeasible or meaningless prepositions using the
preposition’s type (condition or consequence) and the blocks
already used in its construction.

Conditions are created in the form ‘‘if subject’s variable is label’’,
with extensions for label modifiers and relative variables. Example
conditions are ‘‘if my health is large’’ or ‘‘if an ally’s distance to the
enemy is very large.’’ Consequences are created in the form ‘‘then
verb target’’, with examples such as ‘‘then attack the enemy’’ or
‘‘then cast the ‘cure’ spell on the ally.’’ Before a battle starts, all
the orders are converted to actual fuzzy rules based on the specific
battle’s setup: generic subjects such as enemy or ally are converted
to the actual unit IDs, and the resulting rule set is used.

5.2. Rule creation example

As an example of gameplay, we illustrate the creation of rules
for one unit. Suppose we want to create the rules for a melee-type
unit and that we we want each warrior to behave as follows: when
an enemy is far, the warrior should get closer to the enemy; when
an enemy is near, the warrior attacks.

Fig. 4(a) shows the interface used for creating such orders. In
the order-list layer (i), we add two orders and we assign them
the name Get closer and Attack closest. The first order (Get closer)
is highlighted because it has been selected and as such the order

Fig. 4. The interface of the Order Creation System that allows the player to create sets of orders for each unit. We can see the selected unit, the order-list layer (i) and its
library, the order layer (ii) and the preposition layer (iii).
layer (ii) shows its contents: it has one condition and one conse-
quence. The condition reads ‘‘my distance from the enemy is least’’
and it is thus concerned with the distance of the unit from any
one of its enemies. The consequence reads ‘‘move to enemy.’’
Combined, the two prepositions allow the unit to move towards
the closest enemy. The second order was created similarly,
although its construction is not shown in the figures, and reads
‘‘if my distance from the enemy is less than small, then attack the
enemy,’’ allowing the unit to attack when in range. Notice that
the Get closer order appears first in the sequence and will thus
get higher weight; the unit prioritizes moving over attacking.
Fig. 4(b) shows the preposition layer (iii). In this case, the condition
of the Get closer order is selected and we can see how it has been
built using the word blocks on the left. We note that the condition
has been created using the subject Me (i.e., the acting unit), the var-
iable Distance, the target Enemy and the label Least. We can also
note that the variable block has been clicked for modification
and the options for its value are thus shown (distance, the chosen
one, is highlighted in green).
6. Fuzzy Tactics: game scenarios

We now present examples of scenarios that can be played in the
current version of the game. The scenarios are set up as plain
empty battlefields with predefined allied units (identified by an
A) and enemy units (identified by an E), with fixed equipment,
placement and skills. Unit statistics are not considered and set to
the same values for each unit. We test different rules and simulate
the resulting battles. A video showing the scenario discussed here
is available at http://www.polimigamecollective.org/fuzzy-tactics/.
6.1. Scenario 1

In the first scenario, we show a simple example that highlights
the great potential of our approach. Only two units are placed on
the battlefield: an allied warrior unit Aw equipped with a melee
weapon and an enemy archer unit Ea equipped with a ranged
weapon. Fig. 5 shows the placement of the units on the battlefield.

For illustration purposes, we are only interested in the distance
between the units. We thus generate one fuzzy input variable: Ea’s
distance to Aw from 1 (minimum) to 16 cells (maximum). For short,
we call this variable just distance. The output fuzzy variables are:

� Ea attacks Aw

� Ea holds
� Ea moves to Aw

� Aw attacks Ea

� Aw holds
� Aw moves to Ea

Ea is given the order ‘‘if the enemy’s distance is equal or larger
than small, then attack.’’ Aw is given no order and will thus use

http://www.polimigamecollective.org/fuzzy-tactics/

Fig. 5. Fuzzy Tactics, setup of scenario 1. The allied warrior Aw against the enemy
archer Ea .

Fig. 6. Fuzzy Tactics, scenario 2. On the allied side, a healer Ah and a warrior Aw get
ready for the battle. On the enemy side, we have two warriors Ew .
the standard action hold for the whole battle. Internally, the follow-
ing fuzzy rules are generated:

� IF distance IS very-small THEN Ea holds
� IF distance IS small THEN Ea attacks
� IF distance IS medium-small THEN Ea attacks
� IF distance IS small THEN Ea attacks
� IF distance IS medium THEN Ea attacks
� IF distance IS medium-large THEN Ea attacks
� IF distance IS large THEN Ea attacks
� IF distance IS very-large THEN Ea attacks

With this setup, when we start the simulation by pressing the
play button, we see that Ea can easily dispose of our unit, resulting
in a loss. This is because the distance variable is around 6 units
(medium = 0.7, medium-large = 0.3), hence the output is always
(Ea attacks = 1).

We retry, instead, by giving Aw the order ‘‘if the enemy’s distance
is equal or smaller than small, then attack’’ and the order ‘‘if the
enemy’s distance is larger than small, then move to the enemy.’’ Inter-
nally, the following fuzzy rules are generated:

� IF distance IS very-small THEN Ea holds
� IF distance IS small THEN Ea attacks
� IF distance IS medium-small THEN Ea attacks
� IF distance IS small THEN Ea attacks
� IF distance IS medium THEN Ea attacks
� IF distance IS medium-large THEN Ea attacks
� IF distance IS large THEN Ea attacks
� IF distance IS very-large THEN Ea attacks
� IF distance is very-small THEN Aw attacks
� IF distance is small THEN Aw attacks
� IF distance IS medium-small THEN Aw moves
� IF distance IS small THEN Aw moves
� IF distance IS medium THEN Aw moves
� IF distance IS medium-large THEN Aw moves
� IF distance IS large THEN Aw moves
� IF distance IS very-large THEN Aw attacks

We thus obtain the following behavior: at the beginning of the
battle, Ea attacks from afar, while Aw tries to close the distance
between the two units. As Aw gets close enough, it will start to
attack, while Ea stands still, due to its only order not triggering
and thus reverting to the standard hold action. As a result, the
player wins. As a last test, requiring a new flee action and output
variable, we give Ea an additional order ‘‘if the enemy’s distance is
below small, then flee’’. With this last order added, the enemy archer
will flee when the warrior approaches and the warrior will follow
it until it can successfully strike it down.

In this simple scenario, with just a couple of rules, interesting
behavior can already be seen. Note also that the addition of a single
rule can change the result of the battle dramatically.

6.2. Scenario 2

In the second scenario, we show the emergent dynamics that
can arise from the interaction of different units. We place two
enemy warrior units, Ew1 and Ew2, with the same orders we used
for our winning allied warrior in scenario 1. On the player side,
we place an allied warrior Aw (again, with the same orders) and
an allied healer Ah that can use the cure skill to heal a damaged
allied unit. The units’ placement can be seen in Fig. 6. We generate
six fuzzy input variables,

� Ew1’s distance to Ew2

� Ew1’s distance to Aw

� Ew1’s distance to Ah

� Ew2’s distance to Aw

� Ew2’s distance to Ah

� Aw’s distance to Ah

while the output fuzzy variables are

� Ew1 attacks Aw

� Ew1 attacks Ah

� Ew1 holds
� Ew1 moves to Aw

� Ew1 moves to Ah

� Ew2 attacks Aw

� Ew2 attacks Ah

� Ew2 holds
� Ew2 moves to Aw

� Ew2 moves to Ah

� Aw attacks Ew1

� Aw attacks Ew2

� Aw holds
� Aw moves to Ew1

� Aw moves to Ew2

� Ah attacks Ew1

� Ah attacks Ew2

� Ah holds
� Ah moves to Ew1

� Ah moves to Ew2

� Ah casts cure on Aw

� Ah casts cure on Ah

Note the additional outputs for casting the magic of Ah; the hea-
ler Ah is given the order ‘‘if an ally’s health is below medium, then cast
cure on the ally’’ and the order ‘‘if my health is below medium, then
cast cure on me.’’ Due to the fuzzy rule weighting favoring orders
that come first in the order sequence, Ah will prioritize healing
its allies, then itself.

With this setup, the offensive power of the enemy’s army is
greater (two warriors instead of one), but running the simulation
leads to a possibly unanticipated result. The two enemy warriors
and the allied warrior approach each other and start fighting in
melee range, while the healer stands behind. As Aw’s health gets
lower, Ah casts its cure skill repeatedly on it, replenishing its
health. Eventually, Aw kills both enemy warriors and the player
wins. If the player’s strategy (or the enemy’s) was different, or
the balance of statistics and skills of the different units were differ-
ent, we could get a quite different result. As an example, if the cure
skill were weaker, Aw would die even under the effects of the heal-
ing. On the other hand, if the enemy warriors were ordered to kill
the healer first, for example by making sure to target lower-health
units first, the enemy could win the battle.

This scenario shows how much small differences in the starting
conditions in either the battle setup or the issued rules can drasti-
cally change the results of a battle, even with a modest number of
units, highlighting the presence of emergent gameplay. In addition,
it shows that the flexibility given by differentiating units can be a
useful asset for a player’s strategy.

6.3. Scenario 3

In our last scenario, we show how a symmetric condition may
result in a battle loop, and stress the solutions that can be taken
to avoid the situation. The battle configuration consists of two ene-
mies (Ew an enemy warrior and Eh an enemy healer) with orders set
up as in the previous scenarios. Symmetrically, we have two allied
units Aw and Ah on the other side of the battlefield (see the setup in
Fig. 7).
Fig. 7. Fuzzy Tactics, scenario 3. An allied warrior Aw and a healer Ah can be seen in
the lower side of the battlefield, while the symmetric enemy warrior Ew and healer
Eh can be seen on the other side.
Since the conditions are symmetric and since there are no ran-
dom factors, the result is a battle loop: the opposing warriors will
get close and start to fight, while the healers will stand back and
cast their cure skill when necessary. The battle will thus go on for-
ever, with neither side being able to defeat the other. We avoid
such situations in the game by setting a time limit for the battle
so as to declare a draw if there is no clear winner when the time
elapses. However, such loop behavior can be readily avoided if
the player changes his tactics, for example by focusing on the hea-
ler first. From a game design point of view, introducing limited
resources in the battle would also avoid this. For example, by intro-
ducing a limited pool of points to spend on skills, the healers would
not be able to cast their cure skill indefinitely.
7. Conclusions

In this paper, we (i) defined the video game genre of scripting
games, and (ii) introduced Fuzzy Tactics, a scripting game that
makes good use of fuzzy logic to create innovative gameplay,
working as an example of how expert systems can be integrated
into game design. The definition of scripting games can be useful
for research, as such games focus on indirect control and favor stra-
tegic scenarios, potentially functioning as good test beds for the
expert system community. In particular, we presented an innova-
tive approach to the development of scripting games by leveraging
the power of fuzzy logic to create a game, Fuzzy Tactics, that allows
deeper gameplay than other similar games. At the same time, the
game is also made more intuitive due to the use of natural lan-
guage, allowing its audience to be broadened. Fuzzy logic, or other
expert systems, can thus be useful from a game design point of
view; by incorporating computational intelligence methods into
games in novel ways, we can explore new types of gameplays
and expand into novel areas of game design. Fuzzy Tactics also pro-
poses new game mechanics at the intersection of the strategic
games genre and the scripting games genre, giving hardcore play-
ers a way to work on actual game intelligence while also testing
their strategic skills. At the same time, the same innovative game
mechanics pose new challenges for designing user interfaces that
can make the underlying fuzzy engine accessible to the broader
strategy gamers’ audience.

The first prototype we developed implements the main game
features, although it is restricted only to three types of units.
A video of the gameplay, showing the scenarios described in the
previous sections, is available at http://www.polimigamecollec-
tive.org/fuzzy-tactics/; we plan to release an alpha version to
validate the usability of the Order Creation System and of the game
interface. Extensive playtesting will also assess whether meaning-
ful play is generated through the peculiar gameplay that Fuzzy Tac-
tics offers. We aim to refine and expand the game with new content,
such as new units, rules and skills, and we will test whether there
are enough tactical choices to satisfy the tastes of this genre’s
veterans.

This work has given us many ideas for future work concerning
the benefits of fuzzy logic in Fuzzy Tactics, extending the research
impact of the game. We plan to introduce and playtest additional
innovative gameplay elements made possible only through the
use of fuzzy logic. For instance, we plan to model units emotions
to be able to create units that attack when angered or flee when
scared. We also plan to add special skills to the units that can inter-
fere with the fuzzy system reasoning, for example by making a unit
appear weaker than it really is, thus deceiving enemy units into
performing wrong actions. Additionally, we plan to add a degree
of free will to the units, so that their behavior is conditioned by
their own intelligence; as an example, think of a less intelligent
unit that does not understand complex orders, or of a honorable

http://www.polimigamecollective.org/fuzzy-tactics/
http://www.polimigamecollective.org/fuzzy-tactics/

combatant that refuses to commit to all orders. Finally, we want to
investigate the use of learning techniques to create units that can
adapt to the situation by modifying the fuzzy rules based on their
performance. We remark that such innovations are made possible
by the use of expert systems in our game.

Additional future directions regard the broader topic of leverag-
ing expert systems for gameplay. Nowadays, players expect most
games to be realistic in everything, not only in their graphics,
and artificially intelligent characters are one of the main basis for
comparisons that player use to measure the realism of a game.
By leveraging expert systems to model the behavior of game char-
acters agents, higher realism can be pursued. Fuzzy Tactics can be a
first step towards this direction.

References

Acampora, G. (2010). Synthesizing bots emotional behaviors through fuzzy
cognitive processes. In Proceedings of the 6th international conference on
computational intelligence and games, CIG’10.

Activision (1999). Civilization: Call to power. <http://en.wikipedia.org/wiki/
Civilization:_Call_to_Power>.

Adams, E. (2009). Fundamentals of game design (2nd ed.). New Riders.
Alexander, T. (2002). An optimized fuzzy logic architecture for decision-making. AI

Game Programming Wisdom.
Artdink (1997). Carnage heart. <http://www.artdink.co.jp/>.
Atomic Games (1996). Close combat. <http://en.wikipedia.org/wiki/

Close_Combat_(series)>.
Atomic Games (1998). Close combat: A bridge too far. <http://en.wikipedia.org/

wiki/Close_Combat:_A_Bridge_Too_Far>.
Avery, P., & Michalewicz, Z. (2008) Adapting to human game play. In Proceedings of

the 4th international conference on computational intelligence and games, CIG’08.
Bourg, D. M., & Seemann, G. (2004). AI for game developers. O’Reilly Media.
Buckland, M. (2004). Programming game AI by example (1st ed.). Jones & Bartlett

Publishers<http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-
20&path=ASIN/1556220782>.

Cardamone, L., Lanzi, P. L., Loiacono, D., & Onieva, E. (2013). Advanced overtaking
behaviors for blocking opponents in racing games using a fuzzy architecture.
Expert Systems and Application, 40, 6447–6458.

CoolioNiato (2008). Light bot. <http://www.kongregate.com/games/coolio_niato/
light-bot>.

DeLooze, L. L., & Viner, W. R. (2009). Fuzzy q-learning in a nondeterministic
environment: Developing an intelligent ms. pac-man agent. In Proceedings of the
5th international conference on computational intelligence and games, CIG’09
(pp. 162–169). Piscataway, NJ, USA: IEEE Press<http://dl.acm.org/
citation.cfm?id=1719293.1719327>.

Illwinter Design, G. (2007). Dominions III. <http://www.illwinter.com/dom3/>.
El-Nasr, M. S., Yen, J., & Ioerger, T. R. (2000). Flame fuzzy logic adaptive model of

emotions. Autonomous Agents and Multi-Agent Systems, 3, 219–257.
Epic (1999). Unreal tournament. <http://en.wikipedia.org/wiki/Unreal_Tournament>.
Epic (2003). Unreal tournament 2004. <http://en.wikipedia.org/wiki/Unreal_

Tournament_2004>.
Epic Games (1998). Unreal. <http://en.wikipedia.org/wiki/Unreal>.
Fujii, S., Nakashima, T., Ishibuchi, H. (2008). A study on constructing fuzzy systems

for high-level decision making in a car racing game (pp. 3626–3633). <http://
dx.doi.org/10.1109/CEC.2008.4631289>.

Gabriyel Wong, J. W. (2006). A fuzzy-control approach to managing scene
complexity. Game Programming Gems, 6.

Gameware Development, Creatures (1996). <http://www.gamewaredevelopment.
com/creatures_index.php>.

Hastings, E., Guha, R., & Stanley, K. (2009). Automatic content generation in the
galactic arms race video game. In Proceedings of the 5th international conference
on computational intelligence and games, CIG’09.

Ho, D. T., & Garibaldi, J. (2008). A fuzzy approach for the 2007 cig simulated car
racing competition. In Proceedings of the 4th international conference on
computational intelligence and games, CIG’08.

Ho, D. T., & Garibaldi, J. (2008). A fuzzy approach for the 2007 cig simulated car
racing competition. In IEEE symposium on computational intelligence and games,
CIG ’08 (pp. 127–134). <http://dx.doi.org/10.1109/CIG.2008.5035631>.

Hsu, S. H., Kao, C.-H., & Wu, M.-C. (2009). Design facial appearance for roles in video
games. Expert Systems with Applications, 36, 4929–4934.

Id Software (1999). Quake III arena. <http://en.wikipedia.org/wiki/
Quake_III_Arena>.

Ishibuchi, H., Sakamoto, R., & Nakashima, T. (2003). Learning fuzzy rules from
iterative execution of games. Fuzzy Sets and Systems.

Johnson, D., & Wiles, J. (2001). Computer games with intelligence. In FUZZ-IEEE
(pp. 1355–1358). IEEE.
Johnson, D., & Wiles, J. (2001). Computer games with intelligence. In In Proceedings
of the 10th IEEE international conference on fuzzy systems (pp. 61–68). IEEE.

Jones, D. G., & Dewdney, A. K. (1980). Core wars. <http://en.wikipedia.org/wiki/
Core_War>.

Juul, J. (2002). The open and the closed: Games of emergence and games of
progression. Computer Games and Digital Cultures.

Levillain, F., Orero, J., & Rifqi, M. (2010). Characterizing player’s experience from
physiological signals using fuzzy decision trees. In Proceedings of the 6th
international conference on computational intelligence and games, CIG’10.

Li, Y., Musilek, P., & Wyard-Scott, L. (2004). Fuzzy logic in agent-based game design.
In IEEE annual meeting of the fuzzy information, 2004. Proceedings NAFIPS ’04.

Lionhead Studios (2001). Black&white. <http://lionhead.com/black-white/>.
Loiacono, D., Togelius, J., Lanzi, P., Kinnaird-Heether, L., Lucas, S., Simmerson, M.,

Perez, D., Reynolds, R., & Saez, Y. (2008). The wcci 2008 simulated car racing
competition. In IEEE symposium on computational intelligence and Games, CIG ’08
(pp. 119–126). http://dx.doi.org/10.1109/CIG.2008.5035630.

Loiacono, D., Lanzi, P., Togelius, J., Onieva, E., Pelta, D., Butz, M., et al. (2010). The
2009 simulated car racing championship. IEEE Transactions on Computational
Intelligence and AI in Games, 2, 131–147.

Lo, Y.-F., & Wen, M.-H. (2010). A fuzzy-ahp-based technique for the decision of
design feature selection in massively multiplayer online role-playing game
development. Expert Systems with Applications, 37, 8685–8693.

Maxis (2000). The sims. <http://en.wikipedia.org/wiki/The_Sims>.
McCuskey, M. (2000). Fuzzy logic for video games. Game Programming Gems, 1.
Merrick, K. E., & Maher, M. L. (2009). Motivated reinforcement learning: Curious

characters for multiuser games. Springer.
Midway (1982). Ms. pac-man. <http://en.wikipedia.org/wiki/Ms._Pac-Man>.
Millington, I. (2006). Artificial intelligence for games. The Morgan Kaufmann series in

interactive 3D technology. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc.

Mode 7 (2011). Frozen synapse. <http://www.frozensynapse.com/>.
Namco (1980). Pac-man. <http://en.wikipedia.org/wiki/Pac-Man>.
Namco (1995). Battlecity. <http://en.wikipedia.org/wiki/Battle_City_(video_game)>.
Nelson, M. (1980). Robocode. <http://robocode.sourceforge.net/>.
O’Brien, L. (1996). Fuzzy logic in games. Game Developer Magazine.
Ohsone, K., & Onisawa, T. (2008). Friendly partner system of poker game with facial

expressions. In Proceedings of the 4th international conference on computational
intelligence and games, CIG’08.

Onieva, E., Cardamone, L., Loiacono, D., & Lanzi, P. L. (2010). Overtaking opponents
with blocking strategies using fuzzy logic. In G. N. Yannakakis & J. Togelius
(Eds.), CIG (pp. 123–130). IEEE.

Onieva, E., Pelta, D. A., Alonso, J., Milanes, V., & Perez, J. 2009. A modular parametric
architecture for the torcs racing engine. In IEEE symposium on computational
intelligence and games, CIG 2009 (pp. 256–262). <http://dx.doi.org/10.1109/
CIG.2009.5286466>.

Perez, D., Recio, G., & Saez, Y. 2009. Evolving a fuzzy controller for a car racing
competition. In IEEE Symposium on Computational Intelligence and Games, CIG
2009 (pp. 263–270). <http://dx.doi.org/10.1109/CIG.2009.5286467>.

Pinto, H., & Alvares, L. O. (2006). Constructing a goal-oriented robot for unreal
tournament using fuzzy sensors, finite-state machines, and extended behavior
networks. Game Programming Gems, 6.

Positech Games (2012). Gratitious space battles. <http://positech.co.uk/
gratuitousspacebattles/>.

Prieditis, A., & Dalal, M. (2006). Applying model-based decision-making methods to
games: Applying the locus ai engine to quake III. Game Programming Gems, 6.

Real Time Battle (2006). <http://realtimebattle.sourceforge.net/>.
Shaout, A., King, B. W., & Reisner, L. A. (2006). Real-time game design of pac-man

using fuzzy logic. The International Arab Journal of Information Technology, 3,
315–325.

Sweetser, P., & Wiles, J. (2002). Current ai in games: A review. Australian Journal of
Intelligent Information Processing Systems, 8.

van Waveren. J. M. P. (2001). The quake III arena bot [Master’s thesis]. University of
Technology Delft.

Viana, R. (2012). Cargo bot. <http://twolivesleft.com/CargoBot/>.
Vyssotsky, V. A., Morris-Sr, R., & McIlroy, M. D. (1961). Darwin. <http://

en.wikipedia.org/wiki/Darwin_(programming_game)>.
Westra, J., & Dignum, F. (2009). Evolutionary neural networks for non-player

characters in quake III. In Proceedings of the 5th international conference on
computational intelligence and games, CIG’09 (pp. 302–309). Piscataway, NJ, USA:
IEEE Press<http://dl.acm.org/citation.cfm?id=1719293.1719345>.

Windward Studios (1997). Enemy nations.
Woodcock, S. (1999). Game AI: The state of the industry.
Woodcock, S. (1995–2000). Games making interesting use of artificial intelligence

techniques, Game AI.
Yosemite Entertainment (1998). Police quest: Swat 2. <http://en.wikipedia.org/

wiki/Police_Quest:_SWAT_2>.
Zachtronics Industries (2011). Spacechem. <http://www.spacechemthegame.com/>.
Zarozinski, M. (2001). Imploding combinatorial explosion in a fuzzy system. Game

Programming Gems, 2.
Zarozinski, M. (2002). An open source fuzzy library. AI Game Programming Wisdom.

http://en.wikipedia.org/wiki/Civilization:_Call_to_Power
http://en.wikipedia.org/wiki/Civilization:_Call_to_Power
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0205
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0210
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0210
http://www.artdink.co.jp/
http://en.wikipedia.org/wiki/Close_Combat_(series)
http://en.wikipedia.org/wiki/Close_Combat_(series)
http://en.wikipedia.org/wiki/Close_Combat:_A_Bridge_Too_Far
http://en.wikipedia.org/wiki/Close_Combat:_A_Bridge_Too_Far
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0215
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/1556220782
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/1556220782
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0230
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0230
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0230
http://www.kongregate.com/games/coolio_niato/light-bot
http://www.kongregate.com/games/coolio_niato/light-bot
http://dl.acm.org/citation.cfm?id=1719293.1719327
http://dl.acm.org/citation.cfm?id=1719293.1719327
http://www.illwinter.com/dom3/
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0245
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0245
http://en.wikipedia.org/wiki/Unreal_Tournament
http://en.wikipedia.org/wiki/Unreal_Tournament_2004
http://en.wikipedia.org/wiki/Unreal_Tournament_2004
http://en.wikipedia.org/wiki/Unreal
http://dx.doi.org/10.1109/CEC.2008.4631289
http://dx.doi.org/10.1109/CEC.2008.4631289
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0250
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0250
http://www.gamewaredevelopment.com/creatures_index.php
http://www.gamewaredevelopment.com/creatures_index.php
http://dx.doi.org/10.1109/CIG.2008.5035631
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0255
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0255
http://en.wikipedia.org/wiki/Quake_III_Arena
http://en.wikipedia.org/wiki/Quake_III_Arena
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0260
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0260
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0265
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0265
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0270
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0270
http://en.wikipedia.org/wiki/Core_War
http://en.wikipedia.org/wiki/Core_War
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0275
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0275
http://lionhead.com/black-white/
http://dx.doi.org/10.1109/CIG.2008.5035630
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0280
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0280
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0280
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0285
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0285
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0285
http://en.wikipedia.org/wiki/The_Sims
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0290
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0295
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0295
http://en.wikipedia.org/wiki/Ms._Pac-Man
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0300
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0300
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0300
http://www.frozensynapse.com/
http://en.wikipedia.org/wiki/Pac-Man
http://en.wikipedia.org/wiki/Battle_City_(video_game)
http://robocode.sourceforge.net/
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0305
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0310
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0310
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0310
http://dx.doi.org/10.1109/CIG.2009.5286466
http://dx.doi.org/10.1109/CIG.2009.5286466
http://dx.doi.org/10.1109/CIG.2009.5286467
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0315
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0315
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0315
http://positech.co.uk/gratuitousspacebattles/
http://positech.co.uk/gratuitousspacebattles/
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0320
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0320
http://realtimebattle.sourceforge.net/
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0325
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0325
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0325
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0330
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0330
http://twolivesleft.com/CargoBot/
http://en.wikipedia.org/wiki/Darwin_(programming_game)
http://en.wikipedia.org/wiki/Darwin_(programming_game)
http://dl.acm.org/citation.cfm?id=1719293.1719345
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0345
http://en.wikipedia.org/wiki/Police_Quest:_SWAT_2
http://en.wikipedia.org/wiki/Police_Quest:_SWAT_2
http://www.spacechemthegame.com/
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0350
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0350
http://refhub.elsevier.com/S0957-4174(14)00132-8/h0355

	Fuzzy Tactics: A scripting game that leverages fuzzy logic as an engaging game mechanic
	1 Introduction
	2 Fuzzy logic in games
	2.1 The benefits of using fuzzy logic in games
	2.2 The pitfalls of fuzzy logic in games

	3 Related work
	3.1 Fuzzy logic in commercial games
	3.2 Fuzzy logic in game research
	3.3 Scripting as a game mechanic

	4 Fuzzy logic as a game mechanic
	5 Fuzzy Tactics: the game
	5.1 Order Creation System
	5.2 Rule creation example

	6 Fuzzy Tactics: game scenarios
	6.1 Scenario 1
	6.2 Scenario 2
	6.3 Scenario 3

	7 Conclusions
	References

