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Separate or Joint? Estimation of Multiple Labels from

Crowdsourced Annotations

Lei Duan, Satoshi Oyama, Haruhiko Sato, and Masahito Kurihara

Graduate School of Information Science and Technology, Hokkaido University, Kita 14,
Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0814, Japan

Abstract

Artificial intelligence techniques aimed at more naturally simulating human
comprehension fit the paradigm of multi-label classification. Generally, an
enormous amount of high-quality multi-label data is needed to form a multi-
label classifier. The creation of such datasets is usually expensive and time-
consuming. A lower cost way to obtain multi-label datasets for use with such
comprehension-simulation techniques is to use noisy crowdsourced annota-
tions. We propose incorporating label dependency into the label-generation
process to estimate the multiple true labels for each instance given crowd-
sourced multi-label annotations. Three statistical quality control models
based on the work of Dawid and Skene are proposed. The label-dependent
DS (D-DS ) model simply incorporates dependency relationships among all
labels. The label pairwise DS (P-DS ) model groups labels into pairs to
prevent interference from uncorrelated labels. The Bayesian network label-
dependent DS (ND-DS ) model compactly represents label dependency using
conditional independence properties to overcome the data sparsity problem.
Results of two experiments, “affect annotation for lines in story” and “in-
tention annotation for tweets”, show that (1) the ND-DS model most effec-
tively handles the multi-label estimation problem with annotations provided
by only about five workers per instance and that (2) the P-DS model is best
if there are pairwise comparison relationships among the labels. To sum up,
flexibly using label dependency to obtain multi-label datasets is a promising
way to reduce the cost of data collection for future applications with minimal
degradation in the quality of the results.

Keywords: Multi-label estimation, Crowdsourced annotation, Label
dependency, Quality control, Human computation
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1. Introduction

Given the complexity of human thinking, several artificial intelligence sys-
tems aimed at simulating human comprehension, including affect prediction
and intention inference, have one thing in common: They more naturally fit
the paradigm of multi-label classification than that of single-label classifica-
tion since one instance may evoke more than one “comprehension” at the
same time. Generally, an enormous amount of multi-label data is needed to
form a multi-label classifier. Moreover, the data quality directly affects the
performance of machine learning techniques. Obtaining high-quality data
from both experts and large crowds can be expensive and time-consuming.
We investigated ways to obtain at low cost reliable multi-label datasets for
use with aforementioned comprehension-simulation techniques.

On-line crowdsourcing services provide a means for outsourcing various
kinds of tasks to a large group of people, and labeling is one of the main
crowdsourcing tasks. Although multi-label data can be obtained from a
crowdsourcing service at very low cost (time and expense), crowdsourcing
workers are rarely trained and generally do not have the abilities needed
to accurately perform the offered task. Moreover, some workers may simply
submit random responses as a means to earn easy money. Therefore, ensuring
the quality of the results submitted by workers is one of the biggest challenges
in crowdsourcing.

A promising approach to improving the quality of crowdsourced annota-
tions is to introduce redundancy, which involves asking several workers to
work on each task, and then aggregating their results to obtain a more reli-
able result. The simplest aggregation strategy, majority vote, is valid only if
the number of workers is large enough. It is based on the implicit assumption
that all workers have the same probability of making an error. If the number
of workers is less than a certain unknown number, the detrimental effect of
the noisy responses is significant, and treating responses given by different
workers equally produces poor quality results. However, collecting data from
a large number of workers is almost impossible due to the high cost (time and
expense). In view of this, several sophisticated statistical techniques (Dawid
& Skene, 1979; Whitehill et al., 2009; Welinder et al., 2010; Oyama et al.,
2013) have been proposed for obtaining reliable results from annotations
provided by a handful of crowdsourcing workers. However, these techniques
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simply handle the problem of estimating a single true label for each single-
labeled instance. Nowak & Rüger (2010) investigated the agreement between
experts and crowdsourcing workers (non-experts) for multi-label image an-
notation. They found that the quality of crowdsourced annotations is similar
to the annotation quality of experts. However, they did not determine how
many crowdsourcing workers are needed to obtain comparable quality. To
the best of our knowledge, the problem of multi-label estimation has not been
effectively solved. Therefore, our aim here is to determine the best way to
estimate multiple true labels for each instance from multi-label annotations
provided by a handful of crowdsourcing workers. The aim is to reduce the
cost of creating high-quality multi-label datasets for future applications with
minimal degradation in the quality of the results.

Multi-label estimation from crowdsourced annotations can be seen as an
unsupervised multi-label classification problem. Two widely used methods
for multi-label classification are the binary relevance (BR) method and the
label combination or label power-set (LP) method (Tsoumakas et al., 2010).
The BR method decomposes the multi-label estimation problem into several
independent binary-label estimation problems, one for each label in the set
of candidate labels. The final labels for each instance are determined by ag-
gregating the predictions from all binary estimators. However, this method
does not consider dependency among candidate labels. The LP method
treats each unique subset of labels in the set of candidate labels as an atomic
“label” and considers a new single-label estimation problem, i.e., estimat-
ing each member of the power-set of the candidate label set. Although the
LP method takes label dependency into account, a large number of classes
has to be dealt with when the number of candidate labels is large. Simply
put, the LP method can easily suffer from the sparsity of high-dimensional
annotations.

Aiming to address these limitations, we propose flexibly incorporating
label dependency into the label-generation process. In particular, we propose
three statistical quality control models based on the model of Dawid & Skene
(1979) (DS ), a well-known unsupervised single-label classification algorithm:

• Label-dependent DS (D-DS) model

The D-DS model, which is an implementation of the LP method, sim-
ply takes the dependency relationships among all candidate labels into
account.
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• Label pairwise DS (P-DS) model

The P-DS model groups candidate labels into pairs, and then sepa-
rately estimates the states of the two labels within each pair, thereby
preventing interference from uncorrelated labels.

• Bayesian network label-dependent DS (ND-DS) model

The ND-DS model depicts the conditional independence properties of
the joint distribution over candidate labels as a Bayesian network and
approximates the underlying high-dimensional joint distribution by us-
ing the product of the conditional distributions of the candidate labels.

To evaluate the effectiveness of the proposed models for multi-label esti-
mation, we conducted two experiments using Lancers crowdsourcing service1.
In one, crowdsourcing workers were tasked with annotating the affects (emo-
tions) of lines in a story, and in the other they were tasked with annotating
the intentions of tweet posters. The results showed that, with multi-label
annotations provided by a handful of crowdsourcing workers, in most cases,
the ND-DS model handled the multi-label estimation problem more effec-
tively than the other models. However, if there were pairwise comparison
relationships among the candidate labels, the P-DS model was the most
effective.

The remainder of this article is organized as follows. In Section 2, we
review the original Dawid-Skene model, which is the basis of our study. Sec-
tion 3 introduces two of the proposed multi-label estimation models: D-DS
and P-DS. Section 4 describes the use of the expectation maximization (EM)
algorithm to infer the results together with the parameters of the model. The
drawback of the D-DS model is discussed and the ND-DS model is presented
as the solution in Section 5. Section 6 describes the experimental design and
presents the results obtained by applying the majority vote strategy, the orig-
inal DS model, and the proposed models to actual crowdsourced annotations.
Section 7 briefly introduces related work on quality control in crowdsourcing
and provides some background material on the experiments conducted. Fi-
nally, Section 8 discusses the strengths of the proposed models, explains the
research contributions in theory, discusses the implications of the research,
points out the limitations of the proposed models, and suggests several future
research directions.

1http://www.lancers.jp
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2. Background: original Dawid-Skene (DS) model

Our work is based on the well-known Dawid-Skene model (Dawid &
Skene, 1979), which is aimed at inferring the unknown health state of a
patient given the assessments of several clinicians. Let I be the set of pa-
tients, J be the set of health state types, and K be the set of clinicians. That
j is the true state of patient i is denoted as ti = j (i ∈ I, j ∈ J). The true
state of patient i is estimated as

arg max
j∈J

P
(
ti = j |

{
nk
il

}
k∈K,l∈J

)
, (1)

where nk
il ∈ N (k ∈ K, i ∈ I, l ∈ J) denotes the number of times that clinician

k declared patient i to be in state l.
In our research, instances and crowdsourcing workers are the counterparts

of patients I and clinicians K. The state (true or false) of a particular
label for an instance can be considered as the health state of a patient. On
the basis of this, the DS model can be directly used to estimate the state
of a particular label for each instance. Let ti =  (i ∈ I,  ∈ {0, 1}) denote
whether a particular label is true ( = 1) or false ( = 0) for instance i, and
let nk

iı ∈ N (k ∈ K, i ∈ I, ı ∈ {0, 1}) be the number of times that worker k
annotated instance i with (ı = 1) or without (ı = 0) the label. Similar to
formula (1), whether the label is true for instance i can be estimated using

arg max
∈{0,1}

P
(
ti =  |

{
nk
iı

}
k∈K,ı∈{0,1}

)
. (2)

Simply put, the DS model is an implementation of the BR method.

3. Proposed models

As described in Section 2, the states of different labels for each instance
must be estimated separately using different DS models. This is suitable
for multi-label estimation only in the extreme case that labels are mutually
independent. However, some labels may reveal clues about other labels.
For instance, in the affect annotation experiment described in Section 6, an
instance with fear may co-exist with a certain degree of anger and surprise,
fondness and anger are rarely co-true, and shame or anger may be false when
relief is true. To take advantage of this insight, we extended the DS model
so that it takes label dependency into account to simultaneously estimate
multiple true labels for each instance given multi-label annotations.
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3.1. Label-dependent DS (D-DS) model

As a first step, we focus on the assumption that labels depend on each
other. To depict the dependency relationships among candidate labels, we
introduce the concept of conjoint-label. Let J be the set of candidate labels.
A conjoint-label represents a subset of J . For example, in the affect annota-
tion experiment, the two conjoint-labels {happiness, relief } and {happiness,
excitement} express two different kinds of “happiness”: one is comparatively
mild while the other is strong.

Let Ti = Ĵ
(
i ∈ I, Ĵ ⊆ J

)
denote that Ĵ is the true conjoint-label for

instance i, and let nk
iL̂
∈ N

(
k ∈ K, i ∈ I, L̂ ⊆ J

)
be the number of times that

worker k annotated instance i with conjoint-label L̂, which can be directly
calculated from the crowdsourced annotations. Our goal is to estimate the set
of true conjoint-labels {Ti}i∈I , i.e., the multiple true labels for each instance,

given the set of multi-label annotations
{
nk
iL̂

}
k∈K,i∈I,L̂⊆J

. Similar to that of

the DS model, the true conjoint-label for instance i is the one that achieves
the maximum likelihood given the annotations for instance i:

arg max
Ĵ⊆J

P
(
Ti = Ĵ |

{
nk
iL̂

}
k∈K,L̂⊆J

)
. (3)

Therefore, the D-DS model is an implementation of the LP method.
It is self-evident that 2|J | conjoint-labels can be derived from J . We now

describe the estimation of the 2|J | posterior probabilities in formula (3) for
each instance in I . By Bayes’ Theorem, we have

P
(
Ti = Ĵ |

{
nk
iL̂

}
k∈K,L̂⊆J

)
=

P

({
nk
iL̂

}
k∈K,L̂⊆J

| Ti = Ĵ

)
P
(
Ti = Ĵ

)
P

({
nk
iL̂

}
k∈K,L̂⊆J

) .

(4)
In the DS model, each clinician’s predilections, which are called error rates,
are captured in confusion matrix π, where πk

jl specifies how likely clinician
k will declare a patient to be in state l when the patient is actually in state

j. In the D-DS model, πk
ĴL̂

(
k ∈ K, Ĵ ⊆ J, L̂ ⊆ J

)
represents the probability

that worker k assigns conjoint-label L̂ when the true conjoint-label is Ĵ . The
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numbers of times that worker k annotated instance i with different conjoint-
labels L̂ ⊆ J when Ĵ is the true conjoint-label are distributed according to a
multinomial distribution, i.e.,

P
({
nk
iL̂

}
L̂⊆J | Ti = Ĵ

)
=

(∑
L̂⊆J n

k
iL̂

)
!∏

L̂⊆J

(
nk
iL̂

!
) ∏

L̂⊆J

(
πk
ĴL̂

)nk
iL̂ .

We assume that, given the true conjoint-label, each worker’s capability to
make the correct judgment is conditionally independent of that of other work-
ers, i.e.,

P
({
nk
iL̂

}
k∈K,L̂⊆J | Ti = Ĵ

)
=
∏
k∈K

P
({
nk
iL̂

}
L̂⊆J | Ti = Ĵ

)

=
∏
k∈K


(∑

L̂⊆J n
k
iL̂

)
!∏

L̂⊆J

(
nk
iL̂

!
) ∏

L̂⊆J

(
πk
ĴL̂

)nk
iL̂

 .

(5)

Let pĴ

(
Ĵ ⊆ J

)
be the prior probability that an instance drawn at random

has true conjoint-label Ĵ , i.e.,

P
(
Ti = Ĵ

)
= pĴ . (6)

Different conjoint-labels being true for instance i are mutually exclusive
events. From the law of total probability, we have

P
({
nk
iL̂

}
k∈K,L̂⊆J

)
=
∑
Ĵ⊆J

P
({
nk
iL̂

}
k∈K,L̂⊆J | Ti = Ĵ

)
P
(
Ti = Ĵ

)

=
∑
Ĵ⊆J

∏
k∈K


(∑

L̂⊆J n
k
iL̂

)
!∏

L̂⊆J

(
nk
iL̂

!
) ∏

L̂⊆J

(
πk
ĴL̂

)nk
iL̂

 pĴ

 .

(7)

Finally, by substituting Equations (5), (6), and (7) into Equation (4), we can
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estimate the posterior probabilities in formula (3) using

P
(
Ti = Ĵ |

{
nk
iL̂

}
k∈K,L̂⊆J

)
=

(∏
k∈K

(
(
∑

L̂⊆J nk
iL̂

)!∏
L̂⊆J(nk

iL̂
!)

∏
L̂⊆J

(
πk
ĴL̂

)nk
iL̂

))
pĴ∑

Ĵ⊆J

(∏
k∈K

(
(
∑

L̂⊆J nk
iL̂

)!∏
L̂⊆J(nk

iL̂
!)

∏
L̂⊆J

(
πk
ĴL̂

)nk
iL̂

)
pĴ

)

=

(∏
k∈K

∏
L̂⊆J

(
πk
ĴL̂

)nk
iL̂

)
pĴ∑

Ĵ⊆J

((∏
k∈K

∏
L̂⊆J

(
πk
ĴL̂

)nk
iL̂

)
pĴ

) .
(8)

3.2. Label pairwise DS (P-DS) model

It is generally agreed that if two labels are similar or opposite, they are
strongly correlated. Let us consider an attendance intention annotation task
with four candidate labels, have attended, plan to attend, want to attend, and
no intention of attending. It is obvious that the first two labels are strongly
correlated, as are the last two, because someone who has already attended
an activity (like an annual festival) would not likely plan to attend again,
and someone who has no intention of attending would also be unlikely to
want to attend. However, the four labels are not so generally correlated.
Unfortunately, neither the “independent assumption” of the DS model nor
the “dependent assumption” of the D-DS model can properly depict the
relationships among these four labels. In view of this, we propose grouping
candidate labels into pairs and then estimating the states of the two labels
within each pair separately using |J | /2 independent models, each of which
can be seen as a “two-label version of the D-DS model”, in order to prevent
interference from uncorrelated labels.

The crucial problem with the P-DS model is how to pair the candidate
labels. Let H (a, b) (a ∈ J, b ∈ J, a 6= b) be the joint entropy of labels a and
b. The optimal pairing pattern S is the one that minimizes the sum of the
joint entropies of all label pairs:2

arg min
S

∑
(a,b)∈S

H (a, b) .

2For a detailed proof of this, see AppendixA.
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label label label... label

(c)

instance

true labels

label label label...

(a)

true labels

label label ... label

(b)

instance

true labels

instance

Figure 1: Multi-label estimation models: (a) DS, (b) D-DS, and (c) P-DS

Our experiments demonstrated that most label pairs contain synonymous
or antonymous labels. In fact, the pairing pattern described above for the
four intention labels is the optimal one for handling the intention annotation
experiment, as described in Section 6.

The differences among the DS, D-DS, and P-DS models are illustrated
in Figure 1.

4. Inference algorithm

Let us take the D-DS model as an example because the P-DS model can

be considered to consist of several two-label D-DS models. Let qiĴ

(
i ∈ I, Ĵ ⊆ J

)
represent the posterior probability in formula (3), which means

qiĴ = P
(
Ti = Ĵ |

{
nk
iL̂

}
k∈K,L̂⊆J

)
.

Similar to the approach for the DS model, we use an EM-based algorithm to

obtain the maximum likelihood estimates of model parameters
{
πk
ĴL̂

}
k∈K,Ĵ⊆J,L̂⊆J

and {pĴ}Ĵ⊆J , with the probabilities of true conjoint-labels {qiĴ}i∈I,Ĵ⊆J as la-
tent variables.

We then proceed as follows:
(1)3 Obtain the initial estimates of unobserved variables {qiĴ}i∈I,Ĵ⊆J .

(2) M-step: Estimate the maximum likelihood estimates of parame-

ters
{
πk
ĴL̂

}
k∈K,Ĵ⊆J,L̂⊆J

and {pĴ}Ĵ⊆J by using the current expectations of

3This step is discussed in more detail in section 5.
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{qiĴ}i∈I,Ĵ⊆J :

πk
ĴL̂

=

∑
i∈I qiĴn

k
iL̂∑

L̂⊆J
∑

i∈I qiĴn
k
iL̂

,

pĴ =

∑
i∈I qiĴ
|I|

.

(3) E-step: Estimate the expected values of {qiĴ}i∈I,Ĵ⊆J using Equation

(8) with the current estimates of parameters
{
πk
ĴL̂

}
k∈K,Ĵ⊆J,L̂⊆J

and {pĴ}Ĵ⊆J .

(4) Alternately perform steps (2) and (3) until the likelihood for all an-

notations P

({
nk
iL̂

}
k∈K,i∈I,L̂⊆J

)
converge. At this point, the Ĵ with the

maximum qiĴ is the true conjoint-label for instance i. Since all instances are
annotated independently, from Equation (7), we have

P
({
nk
iL̂

}
k∈K,i∈I,L̂⊆J

)
=
∏
i∈I

P
({
nk
iL̂

}
k∈K,L̂⊆J

)

=
∏
i∈I

∑
Ĵ⊆J

∏
k∈K


(∑

L̂⊆J n
k
iL̂

)
!∏

L̂⊆J

(
nk
iL̂

!
) ∏

L̂⊆J

(
πk
ĴL̂

)nk
iL̂

 pĴ

 .

To avoid the “zero frequency problem” in step (2), π is estimated using
Lidstone smoothing. Note that if worker k annotated only a certain instance
with conjoint-label L̂ one time and did not annotate any other instances,
for k’s error rate matrix, πk

ĴL̂
= 1 and πk

ĴL̂′
= 0 (Ĵ ⊆ J, L̂′ ⊆ J, L̂′ 6= L̂)

constantly within iterations. Therefore, to estimate a worker’s error rate
matrix, at least two annotations of that worker must be collected.

5. Discussion: Bayesian network label-dependent DS (ND-DS)
model

Recall that there is an unsolved problem in the first step of the EM algo-
rithm described in Section 4: how to initialize the estimates of unobserved
variables {qiĴ}i∈I,Ĵ⊆J . Let xj

iĴ
∈ {0, 1}

(
j ∈ J, i ∈ I, Ĵ ⊆ J

)
be the state of

the jth label in conjoint-label Ĵ for instance i. One possible and intuitive
way to initialize the estimates is to assign

qiĴ = P

({
xj
iĴ

}
j∈J

)
=

∑
k∈K n

k
iĴ∑

L̂⊆J
∑

k∈K n
k
iL̂

, (9)
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which is the maximum likelihood estimate of qiĴ and which is indeed used
in the D-DS model. This is equivalent to estimating a |J |-dimensional joint
distribution for each instance over the candidate labels. Because the label
states are binary-valued, the joint distribution requires the probabilities of
2|J | different assignments of values. For all but the smallest |J |, the explicit
representation of the joint distribution is unmanageable from every perspec-
tive. At the practical level, it is too expensive and nearly impossible to
acquire a sufficient number of samples from workers to robustly estimate the
high-dimensional joint distribution. This means that the D-DS model can
easily suffer from the sparsity of high-dimensional annotations. To overcome
this problem, it is better to represent the distribution more compactly, and to
approximate the underlying joint distribution from a finite number of samples
by using the conditional independence properties of the joint distribution.

To motivate our discussion, we first assume that all candidate labels are
statistically independent. That is, the completely general joint distribution
in Equation (9) can be approximated as an independent distribution over
candidate labels:

qiĴ =
∏
j∈J

P
(
xj
iĴ

)
. (10)

Intuitively, this simple assumption of ignoring the dependency relation-
ships among candidate labels is unreasonable in most cases, as we explained
at the beginning of Section 3. There have been several proposals for ap-
proximating high-dimensional joint distributions. Chow & Liu (1968), for
example, addressed this problem by approximating an n-dimensional joint
distribution as the product of n − 1 second-order component distributions,
where the relationships among random variables are represented by a de-
pendence tree. Here we represent label dependency as a Bayesian network
and call this extended D-DS model the “Bayesian network D-DS (ND-DS )
model”. Figure 2 shows an example Bayesian network for our affect an-
notation experiment. The corresponding approximate product of the joint
distribution is

P (X) = P (xsu)P (xsa)P (xdi)P (xre | xsu, xsa)P (xha | xsa)P (xan | xsa, xdi)
P (xfe)P (xfo | xha)P (xsh | xfe)P (xex) .

Since the number of annotations for one instance is not sufficient for learn-
ing a Bayesian network, in the ND-DS model, all instances are assumed to
share an identical Bayesian network, which is learned from the annotations
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shame

sadness

relief happiness anger

fondness

disgustsurprise

excitement

Figure 2: Example Bayesian network for affect annotation experiment

for all instances. This is reasonable because the relationships among can-
didate labels are independent of instances. We build the network structure
of candidate labels using the “PC” algorithm (Spirtes et al., 2000), which
is based on hypothesis testing. To test whether two labels xa and xb are
conditionally independent given a subset of other labels X̄, we compute the
conditional mutual information of these two labels,

CMI
(
xa;xb | X̄

)
=
∑
X̄

P
(
X̄
) ∑
xa,xb

P
(
xa, xb | X̄

)
log

P
(
xa, xb | X̄

)
P
(
xa | X̄

)
P
(
xb | X̄

) ,
by using the maximum likelihood estimates on annotations for all instances.
Under the independence assumption, 2m ∗CMI

(
xa;xb | X̄

)
follows a χ2 dis-

tribution with degrees of freedom equal to 2|X̄|, where m is the sample size
|I| ∗ |K|.

Although we take the p-value for rejecting the null hypothesis that two
labels are conditionally dependent as 0.1, it is worth mentioning that if the p-
value is 1, all labels are determined to be unconditionally independent of each
other, and the approximation strategy of the ND-DS model is the same as
Equation (10). Likewise, the ND-DS model is equivalent to the D-DS model
if the p-value is 0, which means that the network structure is a complete
directed acyclic graph, and the depicted approximate product of the joint
distribution is the chain rule for Equation (9).

In summary, we proposed two models, D-DS and P-DS, for estimating
multiple true labels for each instance given crowdsourced multi-label annota-
tions. Moreover, we extended the D-DS model to create the ND-DS model,
using the Bayesian network to approximate the joint distribution over the
candidate labels.
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6. Empirical study

6.1. Affect annotation for lines in story

To create a first test bed for the proposed models containing actual an-
notations obtained from the Lancers crowdsourcing service, we asked crowd-
sourcing workers to read some story lines and spontaneously indicate the
character’s affects (emotions) generated by each line and then estimated the
true affects for each line on the basis of the obtained multi-label annotations.
To simplify the task, we needed stories in which the lines express clear affects.
Since children typically have an elementary level of psychological develop-
ment, stories written for them usually have vibrant affection tint, distinct
character personalities, and higher proportion of lines than other types of
stories. The aim is to better attract the attention of children. Therefore,
children’s stories and fairy tales are commonly used in affect analysis (Alm
et al., 2005; Mohammad, 2011). We thus chose two Japanese children’s sto-
ries, “Although we are in love”4 (“Love” for short) and “Little Masa and a
red apple”5 (“Apple” for short), as the texts to be annotated. As the source
of the texts we used the Aozora Library6. While “the Big Six” affects (i.e.,
happiness, fear, anger, surprise, disgust, and sadness) and the related affect
sets are typically used in affective computing research (Alm et al., 2005; Alm,
2010; Trohidis et al., 2008), we used ten affects as the candidate labels in or-
der to provide more choices for the workers and thereby enable us to perform
a more in-depth study on multi-label estimation. The affects were taken from
the “Emotive Expression Dictionary” (Nakamura, 1993). An example task
input screen is shown in Figure 3. If none of the listed affects was felt, the
worker could check neutral.

People have different tendencies when detecting subjective feelings, so two
people may be affected differently by the same line. This means that, for the
affect labels to be reliable, they should be in accord with the general con-
sensus of large crowds. The majority vote strategy most objectively reflects
the general consensus if the number of workers is large enough. Therefore,
we obtained gold standards by having each line annotated 30 times and then
taking the majority vote. That is, the most often annotated conjoint-label
for a line was used as the gold standard for that line.

4http://www.aozora.gr.jp/cards/001475/files/52111 47798.html
5http://www.aozora.gr.jp/cards/001475/files/52113 46622.html
6http://www.aozora.gr.jp
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Figure 3: Example task input screen (translated from original Japanese)

For the “Love” story, we asked each of 30 workers to annotate each line
one time, which ensured that each worker annotated the complete set of
lines. For the “Apple” story, the workers were not specifically selected, so
the 30 annotations for every line were provided by arbitrary workers, and
few, if any, of them annotated all the lines. This is a more realistic situation
since it is not a good idea to submit a very large task to a crowdsourcing
service because a large task tends to diminish worker enthusiasm or even
cause workers to avoid the task. We conducted the “Apple” task in this way
simply to examine the effects of “arbitrary worker interference” on the model
results.

Moreover, although our proposed models can handle a line being anno-
tated more than once by a worker, to collect opinions as widely as possible
at a fixed cost, it is still best to avoid this situation even though a worker
may interpret a line differently at different times. Therefore, in our exper-
iments, all the annotations for a line were obtained from different workers.
This means that nk

iı in formula (2) and nk
iL̂

in formula (3) are either 0 or
1. The annotation frequencies of the affect labels are shown in Table 1, and
other statistics about the datasets are shown in Table 2.

To determine the effect of the number of workers per line on accuracy,
we randomly split the workers who annotated a particular line into various
numbers of groups of equal size and estimated the reliable affect labels for
each line given the annotations within each group. We did this for five
different group sizes: 3 (ten groups), 5 (six groups), 10 (three groups), 15
(two groups), and 30 (one group). Since both the estimation result and the
gold standard for a line can be regarded as a binary vector, the performance
evaluation of the proposed models is the average simple matching coefficient,
i.e., the average proportion of correct labels between the gold standard and
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Table 1: Annotation frequencies of affect labels and neutral

Affect label Freq. in “Love” Freq. in “Apple” Total

Relief 516 362 878
Anger 242 623 865

Sadness 522 298 820
Happiness 458 306 764
Fondness 467 226 693

Excitement 379 270 649
Disgust 279 265 544
Neutral 120 352 472
Surprise 190 243 433

Fear 164 107 271
Shame 84 68 152

Total (except Neutral) 3301 2768 6069

Table 2: Statistics for affect annotation experiment

“Love” “Apple” Total

No. of workers 30 57 84
No. of lines 63 78 141

No. of annotations 1890 2340 4230
Avg. no. of checked labels per annotation 1.75 1.18 1.43

Avg. no. of annotations per line 30 30 30

the estimation result for all lines. The average accuracies for each group
size were obtained with the majority vote strategy, the DS, P-DS, and D-DS
models, and the ND-DS sub-model of the D-DS model.

As shown in Figure 4, for the “Love” story, the statistical models achieved
better or comparable accuracy than the majority vote strategy when the
group size was 3, 5, or 10. As shown in Figure 5, for the “Apple” story, the
statistical models achieved better accuracy when the group size was 3 or 5,
and two of them achieved better or comparable accuracy when the group
size was 10. This means that ten workers at most for each line would be a
reasonable number. Moreover, the ND-DS model consistently outperformed
the D-DS model. This means that a learned Bayesian network is effective for
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Figure 4: Average affect annotation accuracy for “Although we are in love” story

Figure 5: Average affect annotation accuracy for “Little Masa and a red apple” story

approximating the high-dimensional joint distribution over ten affect labels
from a finite number of annotations. Although the DS, P-DS, and ND-DS
models had virtually the same average accuracy for three workers per line, the
ND-DS model had significantly better accuracy (greater than 90%) for five
or more workers per line. In other words, the ND-DS model can most effec-
tively handle the multi-label estimation problem with annotations provided
by only about five crowdsourcing workers per instance. One noteworthy re-
sult is that the average accuracies of the DS and P-DS models remained
basically unchanged as the group size increased for the “Love” task while
they decreased for the “Apple” one. This could be because these two models
are more sensitive to the effects of “arbitrary worker interference”.
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Table 3: Annotation frequencies of intention labels

Intention label Frequency

have no intention of attending 2521
want to attend 2417
plan to attend 1365
have attended 1200

total 7503

Table 4: Statistics for intention annotation experiment

No. of workers 94
No. of tweets 1398

No. of annotations 6990
Avg. no. of checked labels per annotation 1.07

Avg. no. of annotations per tweet 5

6.2. Intention annotation for tweets

In the second experiment, intention annotation for tweets, we posted
1398 tweets on the Twitter micro-blogging service7 related to the Sapporo
Snow Festival. We again used the Lancers crowdsourcing service and asked
workers to infer the attendance intentions of the tweet poster and then select
appropriate ones from four intention labels: have no intention of attending,
want to attend, plan to attend, andhave attended. Each tweet was annotated
by five arbitrary workers. The annotation frequencies of the intention labels
are shown in Table 3, and other statistics about the dataset are shown in
Table 4.

We manually assigned reliable labels to each tweet and used them as the
gold standards. The performance of the proposed models was measured in
the same way as in the affect annotation experiment. As shown in Figure
6, all the statistical models as well as the majority vote strategy performed
well due to the simplicity of the task. Particularly noteworthy is that the
P-DS model had the highest accuracy, followed by the ND-DS model. The
superior performance of the P-DS model is attributed to the fact that the

7https://twitter.com
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Figure 6: Average accuracies for intention annotation

four intention labels have a typical pairwise characteristic, as explained in
Section 3.2.

7. Related work

7.1. Crowdsourcing and quality control

Crowdsourcing is an economical and efficient approach to performing
tasks that are difficult for computers but relatively easy for humans. With
the recent expansion of crowdsourcing platforms such as Amazon Mechanical
Turk8 and CrowdFlower9, the concept of crowdsourcing has been successfully
applied in various areas of computer science research, including natural lan-
guage processing (Snow et al., 2008) and computer vision (Sorokin & Forsyth,
2008).

Because there is no guarantee that all workers are sufficiently competent
to complete the offered tasks, ensuring the quality of the results is one of
the biggest challenges in crowdsourcing. A simple strategy is giving mon-
etary bonuses to high-performance workers and denying payments to low-
performance ones. In addition, several approaches geared toward efficient
quality control have been applied. For example, Amazon Mechanical Turk
provides a pre-qualification system to assess the skill level of a prospective
worker, and CrowdFlower enables requesters to inject a collection of tasks
with known correct answers into their tasks to measure a worker’s perfor-
mance automatically.

8http://www.mturk.com
9http://crowdflower.com
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Meanwhile, crowdsourcing service researchers have also explored sophis-
ticated statistical strategies for ensuring the quality of crowdsourcing data
obtained from noisy responses. Snow et al. (2008) demonstrated that, using
an automatic bias correction algorithm, Amazon Mechanical Turk can be
used effectively for a variety of natural language annotation tasks. Sheng
et al. (2008) explored several methods for choosing which instances should
get more labels, and how to include labels’ uncertainty information when
training classifiers. Whitehill et al. (2009) presented a model for simultane-
ously estimating the true label of each multi-labeled instance, the expertise
of each worker, and the difficulty of each question. Lin et al. (2012) took
a decision-theoretic approach to estimating the correct answer for a task
that can have a countably infinite number of possible answers. Oyama et al.
(2013) investigated the use of not only crowdsourced annotations but also
workers’ self-reported confidence scores to estimate the true label for each
single-labeled instance. Baba et al. (2014) applied quality control techniques
to the detection of crowdsourcing tasks considered to be improper by a crowd-
sourcing service. They showed that the accuracy of detecting improper tasks
could be improved by combining non-expert judgments by crowdsourcing
workers with expert judgments.

There has also been some research on the problem of multi-label estima-
tion, the focus of this paper. Nowak & Rüger (2010) studied inter-annotator
agreement for multi-label image annotation and found that using the major-
ity vote strategy to generate one annotation set from several opinions can
filter out noisy judgments of non-experts to some extent. However, they did
not answer the question of how many crowdsourcing workers are needed to
obtain quality comparable to that of expert annotators. Bragg et al. (2013)
presented a decision-theoretic approach to taxonomy creation that imple-
ments the BR method. They showed that, with their approach, 16 workers
per instance are sufficient to achieve quality comparable to the general con-
sensus of a large crowd.

7.2. Affect prediction

People, by nature, can be emotionally affected by literature, music, fine
art, etc. Predicting how we are affected is an important research direction
in artificial intelligence as it is potentially applicable to many further appli-
cations, including expressive text-to-speech synthesis (Anderson et al., 2013)
and therapeutic education of children with communication disorders (Dias
et al., 2013). Many researchers have thus concentrated on this research area.
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Alm et al. (2005) investigated the importance of various features for affect
analysis and classified the emotional affinity of sentences in the narrative do-
main of children’s fairy tales using the sparse network of winnows (SNoW )
learning architecture. Trohidis et al. (2008) modeled the automated detection
of emotion in music as a multi-label classification task. Alm (2010) analyzed
the characteristics of sentences with high-agreement crowdsourced affect an-
notations. ? did an experiment on affect analysis of certain characters in
narrative text. Kim et al. (2013) introduced a continuous representation,
called the manifold, for human emotions in sentiment analysis research and
constructed a statistical model connecting it to documents and to a discrete
set of emotions. A method for identifying emotions in micro-blog posts by
using “emotion cause extraction” was proposed by Li & Xu (2014).

7.3. Intention inference

In today’s Web 2.0 era, people post descriptions of their various real-world
experiences such as visiting places, participating in activities, and shopping to
social networking services, such as Twitter and Facebook10. Extracting such
information from the huge amounts of real-time updated text corpora is im-
portant for estimating the popularity of places, activities, and products, and
is of great value to navigation and recommendation systems. Lee & Sumiya
(2010) developed a method for detecting geo-social events, such as local festi-
vals, by monitoring crowd behaviors indirectly via Twitter. Liao et al. (2012)
investigated whether and how micro-messaging technologies could be used to
predict attendance trends at the World Expo 2010 in Shanghai. Xu et al.
(2012) proposed using a semidefinite programming optimization technique
for identifying valuable customers from social network services in terms of
profit maximization.

8. Conclusion

We focused on crowdsourcing tasks fitting the paradigm of multi-label an-
notation, which means that an instance can have one or more true label(s).
The three statistical quality control models we proposed for the multi-label
estimation problem incorporate label dependency into the label-generation
process. An EM-based algorithm is used to estimate the multiple true labels

10https://www.facebook.com
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for each instance as well as the maximum likelihood estimates of the model
parameters. Two experiments using Lancers crowdsourcing service showed
that two of the models showed promising performance: in most cases, the
Bayesian network label-dependent DS (ND-DS ) model most effectively han-
dled the annotations provided by about five crowdsourcing workers per in-
stance. The label pairwise DS (P-DS ) model was the most effective when
there were pairwise comparison relationships among candidate labels.

Two widely used methods for multi-label classification are the binary rele-
vance method and the label combination or label power-set method (Tsoumakas
et al., 2010), which are the counterparts of the DS model and the D-DS model
in this research. The DS model simply decomposes the multi-label estima-
tion problem into several independent binary-label estimation problems, one
for each label in the set of candidate labels, and final labels for each instance
are determined by aggregating the predictions from all binary estimators. A
significant limitation of this method is that they do not take into account any
dependency among candidate labels. Since multi-label tasks often have many
candidate labels, if we simply incorporate dependency relationships among all
candidate labels into the label-generation process, as does the D-DS model,
we may get data sets with a large number of classes and few samples per
class. This means that the D-DS model can easily suffer from the sparsity
of high-dimensional annotations, which makes the learning process difficult.
Therefore, the D-DS model performs poorly for high-dimensional data sets.

To address these limitations, we proposed two approaches that flexibly
use label dependency. In the first approach, the P-DS model is used to group
candidate labels into pairs. The states of the two labels within each pair are
then estimated separately in order to prevent interference from uncorrelated
labels. The crucial problem is how to recognize pairwise comparison rela-
tionships among candidate labels. If the labels are pairwise correlated, the
optimal pairing pattern should be the one that minimizes the sum of the
joint entropies of all label pairs. The reason for this is explained in detail in
AppendixA.

In the second approach, the underlying high-dimensional joint distribu-
tion over candidate labels is represented more compactly to enable it to be
approximated from a finite number of annotations. The ND-DS model de-
picts the properties as a Bayesian network, enabling the joint distribution
to be approximated using the product of the conditional distributions of the
candidate labels. Because the dependency relationships among candidate
labels are independent of instances, the network is learned from the annota-
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tions for all instances. The superiority of these two approaches is shown by
the experimental results.

Multi-label annotation is crucial for many comprehension-simulation tech-
niques, e.g., affect prediction, intention inference, email analysis, and text,
image, music, and movie semantic categorization. The annotation quality
directly affects the performance of these techniques. Collecting high-quality
annotations from both experts and large crowds can be expensive and time-
consuming. The proposed models enable multiple true labels to be effectively
estimated using the annotations provided by handful of crowdsourcing work-
ers. This approach to obtaining multi-label datasets with quality approach-
ing that of ones obtained from the general consensus of large crowds or from
human experts is a promising way to reduce the cost of data collection for
future applications with minimal degradation in the quality of the results.

Our work is an exploration of the human computation issue. Our promis-
ing results provide encouragement for further study to overcome the limita-
tions of our present work. For one thing, each worker should label at least two
instances because a worker’s error rate matrix cannot be estimated with only
one annotation, as mentioned in Section 4. This requirement may decrease
the flexibility of crowdsourcing somewhat. In our research, every instance
was assigned an equal number of workers. However, for simple instances, few
(one or two) workers may be sufficient, so taking into account the difficulties
of instances should further reduce annotation costs.

In view of these considerations, we plan to enhance our research ef-
forts in several ways. First, our experiments were conducted on three small
databases, especially the two stories. In future work we will explore the ef-
fect of using large datasets on the results. Another possible direction is the
design of an effective mechanism for automatically identifying the difficul-
ties of instances such as using the time needed for completing an instance.
Other information, such as workers’ self-reported confidence scores, which
have shown an improvement recently (Oyama et al., 2013), and consistency of
story emotionality and character personality for narrative annotation tasks,
is also important for the label-generation process and worth studying. In
the long-term, we plan to extend our work to other multi-label estimation
problems, such as art genre recognition, which is thought to raise more vari-
ant opinions among people. Estimating labels not only from crowdsourced
annotations but also from user-created content services is also an interesting
direction for future work.
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AppendixA. Proof of optimal label pairing pattern

Let P (X) be the joint probability distribution over n labels x1, x2, ...,
xn, X denoting the n-dimensional vector (x1, x2, ..., xn). Under the condition
that labels are pairwise correlated, the joint distribution over all labels takes
the following form:

P ′ (X) =
n−1∏
i=1

i<j(i)≤n

i 6=j(i′),j(i)6=j(i′) (i′=1,...,i−1)

P
(
xi, xj(i)

)
,

where
(
xi, xj(i)

)
constitutes a label pair. The optimal pairing pattern is

the one that minimizes the Kullback-Leibler divergence (Kullback & Leibler,
1951), which measures the difference between two probability distributions
over the same event space, between P (X) and P ′ (X):

D (P || P ′) =
∑
X

log
P (X)

P ′ (X)

=−
∑
X

P (X) log
1

P (X)
−
∑
X

P (X) logP ′ (X)

=−H (X)−
∑
X

P (X)
n−1∑
i=1

i<j(i)≤n

i 6=j(i′),j(i)6=j(i′) (i′=1,...,i−1)

logP
(
xi, xj(i)

)
,

(A.1)

where H (X) on the right side is the joint entropy of all labels. Since
P
(
xi, xj(i)

)
is a component of P (X),

−
∑
X

P (X) logP
(
xi, xj(i)

)
= −

∑
xi,xj(i)

P
(
xi, xj(i)

)
logP

(
xi, xj(i)

)
,

where the right side of the equation is the joint entropy of label pair
(
xi, xj(i)

)
.

Thus, Equation (A.1) becomes

D (P || P ′) = −H (X) +
n−1∑
i=1

i<j(i)≤n

i 6=j(i′),j(i)6=j(i′) (i′=1,...,i−1)

H
(
xi, xj(i)

)
.
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Since H (X) is independent of the pairing pattern, minimizing the Kullback-
Leibler divergence D (P || P ′) is equivalent to minimizing the sum of the joint
entropies of all label pairs:

n−1∑
i=1

i<j(i)≤n

i 6=j(i′),j(i)6=j(i′) (i′=1,...,i−1)

H
(
xi, xj(i)

)
.

If we depict the pairing pattern as an undirected graph, where labels are
represented by vertices, and the weight of each edge is assigned the joint
entropy of the two labels represented by the two vertices of the edge, the
sum of the joint entropies of all label pairs can be minimized by finding
the minimum-weight perfect matching of the graph. This solution can be
achieved by using the Blossom algorithm (Edmonds, 1965).
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