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Dynamic Pricing Policies for Interdependent Perishable

Products or Services using Reinforcement Learning

Abstract: Many businesses offer multiple products or services that are interdependent, in

which the demand for one is often affected by the prices of others. This article considers a rev-

enue management problem of multiple interdependent products, in which price set is dynamically

adjusted over a finite sales horizon to maximize expected revenue, given an initial inventory for

each product. The main contribution of this article is to use reinforcement learning to model the

optimal pricing of perishable interdependent products when demand is stochastic and its func-

tional form unknown. We show that reinforcement learning can be used to price interdependent

products. Moreover, we analyze the performance of the Q-learning with eligibility traces algorithm

under different conditions. We illustrate our analysis with the pricing of services.

Keywords: Dynamic pricing; Reinforcement learning; Revenue management; Service Man-

agement; Simulation.

1 Introduction

The history of the development of expert-systems is a very reach one, throughout the years several

important applications have been proposed in which there is an attempt to transfer expertise form

humans to computers by using artificial intelligence methods, see Eom (1996) and Liao (2005) for a

complete survey in the area: expert systems have been applied in Accounting and Finance, Human

resource management, Marketing, Logistics, and Manufacting planning, among other areas. In the

context of pricing problems we find: customized pricing in which the producer charges a different

price to different consumers (e.g., Lee et al., 2012); automobile pricing using artificial neural

networks (Iseri and Karlik, 2009); pricing and promotion strategies for online shoping (Chan et
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al., 2011); smart meetering (e.g., Chakraborty et al., 2014); and pricing of mobile phones (Sohn et

al., 2009), among others.

In this article we address the issue of dynamic pricing interdependent products and services,

which can be defined as those whose demand is affected by the prices of other products and

services. The dynamic pricing of interdependent and perishable products or services requires a

strategy that considers these demand interdependencies. Indeed, the generic problem of pricing

perishable interdependent products or services arises in a variety of industries, including fashion,

or seasonal retail, and the travel and leisure industries. For example, in the retail industry it

may take as long as six to eight months to produce an item which would typically be expected

to be sold in as little as nine weeks (Gallego and Van Ryzin, 1994). In such a case, reordering

stock is not possible and old stock must be cleared before the arrival of new stock. Many retail

products influence demand for other products or services. For example, changes in the price of a

pair of jeans might affect the demand for a matching belt or other related brand preferences. Other

examples include flights to the same destination at different times of the day or week, the delivery

of services at different times, and various types of rooms in a hotel. Ignoring the effects of demand

substitution on inventory and pricing decisions can have significant implications for profit (Bitran

et al., 2004). This interdependency is especially important as the need to understand purchasing

behavior of customers becomes increasingly complex as the number of variables increases with

interdependent products.

For simplicity, most studies in dynamic pricing of interdependent services or products assume

that the functional relationship between demand and price is known to the decision maker. For

example, Oliveira (2008) uses Lemke’s algorithm to analyze the dynamic pricing of interdependent

products both within a week and for the management of the products’ life cycle. This author’s

assumption was that, indeed, the firm knows the demand functions both in the short-term and

in the long-term. Also, Besbes and Zeevi (2009) show that for a single product dynamic pricing

problem, the use of parametric approaches in nonparametric environments can result in significant

revenue loss. The assumption of full information, especially with multiple interdependent products,

makes the problem more tractable. While allowing for the fast solution of complex problems

(Oliveira, 2008), this endows the decision maker with knowledge that he or she does not possess

in practice. These assumptions regard not only the estimates for demand and cost parameters

but also the functional forms of the demand and cost functions. These functional forms are very
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difficult to estimate and in most cases are unknown.

The pricing of services and products is usually influenced by many factors such as competi-

tors prices of substitutable services and stochastic demand, which makes it a complex large scale

stochastic problem. For this reason a simplified model is usually analyzed, due to computational

tractability, as the most complex models are too difficult for managers to implement in real time,

because of the large number of calculations involved. A method that allows the analysis of a

complex problem, such as the pricing of interdependent products, requires the ability to both

implicitly learn demand behavior and to optimize the pricing policies of the different products.

Reinforcement learning meets these requirements (e.g., Sutton and Barto, 1998; Kaelbling et al.,

1996; Mabu et al., 2012; Peteiro-Barral et al., 2013; dos Santos et al., 2014; Oliveira, 2014) as the

optimal policy is learn implicitly (without requirement the knowledge of the actual demand func-

tion) and without requirement knowledge of the transition probabilities between states; moreover,

as reinforcement learning is based on using Monte-Carlo simulation being able to handle very large

problems.

Reinforcement learning offers the advantage of formulation of a mathematical model based on

multiple variables without any pre-definition of non-linear structure of the model, (Jiang and Sheng,

2009, Dorca et al, 2013). Applications of reinforcement learning in the context of expert systems

include, among others, goal-regulation in manufacturing systems (Shin et al, 2012), real time

rescheduling (Palombarini and Martinez, 2012), inventory control in supply chain management

(Kwon et al., 2008; Jiang and Sheng, 2009), and real-time dynamic packaging for e-commerce

(Cheng, 2009). Our research similarly uses the advantages of using a model-free approach offered

by reinforcement learning algorithm but is applied in a different domain i.e, the dynamic pricing of

multiple interdependent products. The major contribution of this article lies in the use of the Q-

learning with eligibility traces algorithm to model the dynamic pricing of interdependent services.

The use of this algorithm allows the joint learning of the pricing strategies for different services

without explicitly modeling consumer behavior. Using a model-free environment (whereby the

transition probabilities between states follow an unknown distribution) enables many influencing

factors to be included implicitly in the pricing decisions.

The remainder of this paper is therefore structured as follows. First, we review relevant litera-

ture and present the contribution of this article. Second, we discuss how the model is formulated

and analyze the dynamic pricing model with interdependent products. Third, we evaluate the
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performance of the interdependent learning algorithm, using simulation experiments, and provide

an understanding of the dynamics of the theorems proved in the article. Finally, we summarize

our conclusions.

2 Relevant Literature

The two main areas of research that are most relevant to this study are dynamic pricing and

reinforcement learning. Dynamic pricing of perishable assets has been researched extensively see,

for example, Gallego and van Rzyin (1994), Mcgill and van Ryzin (1999), Anjos et al. (2004,

2005), Currie et al. (2008) and Zhao and Zheng (2000), who each address a single product problem.

Reviews of these articles can be found in Elmaghraby and Keskinocak (2003), Bitran and Caldentey

(2003) and Talluri and van Ryzin (2005).

There is limited literature on the dynamic pricing of interdependent products or services.

Gallego and van Ryzin (1997) consider dynamic pricing problems where the demand for each

product depends on a vector of prices of all the products. They assume that demand is Markovian

for the current price and that the relationship between all prices and arrival rates is known.

Bitran et al. (2004) combine the multinomial logit model with a utility maximization function

to describe the demand for substitutable products. These authors use heuristic algorithms to

approximate an optimal solution. Maglaras and Meissner (2006) show that when customers choose

between multiple products, the dynamic pricing problem can be reduced to an equivalent one-

dimensional problem. They propose several heuristics to solve the optimization problem. Cooper

et al. (2006) show that neglecting substitution across products can lead to a downward spiral

effect, in which the performance of the capacity allocation policy worsens systematically as the

forecasting-optimization process continues. Zhang and Cooper (2006) develop a Markov decision

process formulation of dynamic pricing for multiple substitutable flights between the same origin

and destination, taking into account customer choice among flights. Netessine et al. (2006)

consider cross-selling by offering customers a choice between their requested product and a package

containing multiple products which include the requested one. They recognize the complexity of

this problem and demonstrate that, in a setting where the number of products is three or more, the

choice of the best packaging complements is non-trivial. Oliveira (2008) uses Lemke’s algorithm

to analyze dynamic pricing issues in the daily and life-cycle dynamic pricing of services. Asdemir
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et al. (2009) investigate optimal dynamic pricing of multiple home delivery options using dynamic

programming. Their analysis shows that substitution effects are significant on an optimal pricing

policy and on the resulting revenue gained. The joint dynamic pricing of multiple perishable

products under a consumer choice model was investigated by Akcay et al. (2010), who formulate

the problem as a stochastic dynamic program where consumer behavior depends on the nature of

product differentiation. Kim and Bell (2011) study the impact of price-driven substitution on a

firms’ pricing and production capacity decisions for a single period during which the firm sells to

multiple segments.

The papers listed above have assumed knowledge of model parameters. In this article we

develop methods for learning the demand response functions over time. However, it could be

argued that the real-world demand model is more complex, given that parameters are unknown

and, therefore, modeling errors may arise through assumptions that are made for the purpose

of analytical tractability (Lim and Shanthikumar, 2007). Estimating the demand for services is

difficult, especially when faced with increasing numbers of interdependent services, and dynamic

pricing models in the aforementioned literature have therefore had to make assumptions regarding

customer behavior. The possibility of substitution across products and services has a significant

impact on both on the probability distribution of demand and the total revenue gained.

Given the complexity of dynamic programming, instead, when modelling real-world problems a

good approach is to use of heuristics (e.g., Burkart et al., 2012; Sen, 2013) or reinforcement-learning.

In this article we are going to explore the use of reinforcement learning as this is an ideal method

for solving the pricing problem in situations when both the probability distributions of demand and

the expected revenue gain for taking a pricing action are unknown. Reinforcement learning does

not require any assumptions regarding market demand such as customer arrival rates, customer

reservation price or the probabilities of demand substitution, but rather one learns how customers

act at each time-step before the service expires, and subsequently this information is used to solve

the maximization problem. The revenue management literature using reinforcement learning is

limited (e.g., Gosavi et al., 2002; Raju et al., 2006). Rana and Oliveira (2013) use reinforcement

learning, Q-learning and Q-learning with eligibility traces algorithms, to learn and optimize pricing

strategies for a single product in a non-stationary finite selling horizon. They present an approach

that avoids optimization errors caused by the underlying model and compare a model-free approach

with a parameterized structure approach. The literature concerning reinforcement learning and
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multiple product pricing is even sparser. For example, Cheng (2007) investigates a Q-learning

approach to determining dynamic pricing for multiple products in an e-retailing setting. These

papers do not consider the dynamic nature of demand, how the demand between the products

interacts and the effects on the revenue gained.

The majority of articles (e.g., Maglaras and Meissner, 2006; Cheng, 2007) do not explicitly

model the dependencies between demand and history of pricing since this is a complex task (espe-

cially with interdependent products or services); it requires estimations of all inter-related model

parameters and this in turn requires a large amount of data. Also, this may not be computationally

tractable as the number of interdependent products or services increases.

3 Modeling Dynamic Pricing using Reinforcement Learn-

ing

Reinforcement learning originated in the areas of cybernetics, psychology, neuroscience, and com-

puter science and has since attracted increasing interest in artificial intelligence and machine

learning (e.g., Sutton and Barto 1998; Gosavi 2009; dos Santos et al., 2014; Oliveira, 2014). Rein-

forcement learning is an approach to sequential decision making in an unknown environment that

is based upon learning from past experience. Reinforcement learning algorithms apply directly to

the agent’s experience, changing the policy in real time. The first advantage of using reinforcement

learning is that it does not require a pre-specified model of the environment on which to base the

action selections. Instead, the relationship between states, actions and rewards is learned through

dynamic interaction with the environment. The second advantage is that it is adaptive, in the

sense that reinforcement learning is capable of responding to a dynamically changing environment

through on going learning and adaption.

The revenue management problem of interdependent products in a finite selling horizon is con-

sidered in this article. For example, consider a dynamic pricing problem for multiple substitutable

flights between the same origin and destination, in which the airline’s objective is to maximize

the total expected revenue from customer bookings over the finite selling horizon by setting the

prices of the flights. Customers choose among the flights or decide not to purchase based upon

their own preferences and the prices of all the flights offered. This problem is particularly relevant

to low-cost airlines which have multiple-flights scheduled for the same day between each pair and
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they sell many tickets on the Internet, hence making price comparisons easily accessible. Another

example is that of a delivery company which operates from Monday to Friday with a fixed number

of drivers. The customers choose from multiple delivery times. The company can use dynamic

pricing as a mechanism to control uncertainty created by consumers choice of delivery time, with

objective to maximise the expected revenue of the entire week.

In this article we use the following concepts.

A) The selling horizon is the period of time during which the product or the service is sold.

For example an airline company may start selling tickets from 6 months before the flight departs.

The last selling period may be 48 hours before departure, if there are still seats available on that

flight. This entire period of time is the selling horizon. The selling horizon is split into discrete

times at which prices for the services are updated. The selling horizon is separated into m discrete

decision times. Let t = 1, 2, ..,m denote the index of decision times. m is the last time a price can

be changed and at the end of this period there is no salvage value for the unsold services.

B) The state set X is a set of all possible capacity states. Capacity state is the amount of

inventory available for each product or service. For the multiple substitutable flights example, the

capacity state would reflect the number of seats available on each flight, where each flight would

be categorised as a different service. A dynamic pricing decision is made at the beginning of every

decision time. The state of current capacity is the reference factor for future pricing decisions, which

consists of the current decision time index and capacity level of each interdependent products. Let

Xt = (xt(1), xt(2), , xt(n)) denote the current state, the capacity level for all n products at time t.

Where, 1, .., n denotes the set of products or services.

C) The pricing action set A(Xt) is a set of actions available in state Xt. At decision time t, a

set of prices At = (at(1), at(2), .., at(n)) for all products is set for this period, where, at(1) is the

price for product 1 at time t. e.g., each flight will have a price for its seat, and the set of prices

for all the multiple flights At is called a pricing action.

D) The state transition probabilities specify how the actions affect the transition from one state

to the next. Let Pt(Xt+1|Xt, At) be the probability that the state is Xt+1 after it was currently

at state Xt and At is performed. For the multiple flights example, it is the probability of having

Xt+1 amount of seats remaining for each flight at time t + 1, when the seats remaining for each

flight is Xt and the pricing action At is selected, at time t. The transition probabilities are only

required here for explanation and proof purposes, but the learning algorithm does not require them
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to derive a pricing policy.

E) The policy is a function π : Xt → At which specifies the prices that should be set for all the

products or services given the remaining capacities at time t.

F) The revenue function computes, for every state Xt and pricing action At, the immediate

revenue gained, r(Xt, At, Xt+1) =
∑n

j=1 r(xt(j), at(j), xt+1(j)).

The objective function to be maximized is the finite total expected revenue,

V π
1 (X1) = Eπ[r(X1, A1) + r(X2, A2) + .....+ r(Xm, Am)|X1, π] (1)

for X ∈ X and Eπ is the expected value given the policy π.

The Q-learning with eligibility traces Q(λ) algorithm has been proposed to approximately solve

large scale Markov Decision Process (MDP) problems. In an MDP framework, V π
t (Xt) denotes

the expected total reward when starting at state Xt and following a policy π; Qπ
t (Xt, At) denotes

the discounted expected total reward when starting at state X, taking action A at time t and

following policy π, i.e., Qπ
t is the (Xt, At) value function for policy π (i.e., At = π(xt) where π(s)

denotes the action chosen in state s when policy π is pursued). Eq. (2) represents the relationship

of Qπ
t (Xt, At) and V π

t ,

Qπ
t (Xt, At) =

∑
Xt∈X

Pt(Xt+1|At, Xt)[r(Xt, At, Xt+1) + ηV π
t+1(Xt+1)] (2)

where η is the discount factor, 0 < η < 1. In terms of the Bellman optimality function, Eq. (3)

holds for arbitrary Xt ∈ X, where Q∗
t (Xt, At) is the optimal value function for each state-action

pair. For all t = 1, 2, ...m

Q∗
t (Xt, At) =

∑
Xt∈X

Pt(Xt+1|At, Xt)[r(Xt, At, Xt+1) + ηmax
At+1

Q∗
t+1(Xt+1, At+1)] (3)

In the Q(λ) paradigm, the decision maker interacts with the environment by executing a set of

actions. The environment is then modified and the agent receives a new state and a reward signal at

each decision time. Over the course of the learning process, the Q-value of every state-action pair,

Qt(Xt, At), is stored and updated. Let k denote the episode (selling horizon) and let each selling

horizon be split into m decision times. The episode refers to multiple instances of the dynamic

pricing problem in consecutive time horizons and the transition probabilities are the same for

different episodes (this makes them stationary across different episodes) but non-stationary within
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each episode. The algorithms consist of updating Qt,k, the Q-values at every selling horizon k,

for time t, which is a representation the estimation of Q∗
t , the optimal Q-values, from the current

observed transitions and reward < Xt,k, At,k, Xt+1,k, rt,k >, where Xt,k, At,k, rt,k is the remaining

capacity, price action, current observed reward at time t, in episode k, respectively and Xt+1,k is

the new remaining capacity at time t + 1. Note that rt,k would depend on Xt,k, At,k and Xt+1,k

i.e., rt,k ≡ r(Xt,k, At,k, Xt+1,k).

The Q-values estimates of all state-action pairs are updated in proportion to their eligibility.

The use of eligibility traces helps a reinforcement learning based system to solve the temporal-

credit assignment problem, i.e., to calculate how to punish or reward a state-action choice, when

it might have far-reaching effects. Additionally, reinforcement learning with eligibility traces has

the important ability of learning in non-stationary selling horizons; refer to Rana and Oliveira

(2013), for a more detailed discussion. The eligibility traces function, at episode k, at time t, is

denoted by et,k. On observing < Xt,k, At,k, Xt+1,k, rt,k > the following updates are performed to

the eligibilities trace:

et,k(Xt,k, At,k) = 1,

∀ i < t et,k(Xi, Ai) = λet−1,k(Xi, Ai) if Qt,k(Xt,k, At,k) = maxAt Qt,k(Xt,k, At),

otherwise et,k(Xi, Ai) = 0.

The eligibility trace decays for all state-action pairs at a rate λ , except for the last state-action

visited where the eligibility trace is incremented by one unit. The traces can be updated in two

ways. If a greedy selection is made, then all the traces of the state-action pairs visited in the

episode decay at a parameter λ. The decay parameter determines how different state-action pairs

are assigned a certain prediction error. If an exploration action was taken then the eligibility traces

are set to zero. At episode k, for each decision time-step t, we look at the current error,

δt,k = rt,k + ηmaxAt+1 Qt,k(Xt+1,k, At+1) − Qt,k(Xt,k, At,k) , and assign it backward to each prior

state-action pair visited in episode k according to their eligibility trace. The objective is to learn

the optimal pricing policy. The Q(λ) algorithm iteratively computes the optimal value function:

for each state X at every time t, the optimal value Q∗
t (Xt, At) of each action At is estimated on the

basis of simulated transitions. When all these values have been correctly estimated, the optimal

policy can be derived through:

∀t ≤ m, ∀X ∈ X, π∗(Xt) = max
At

Q∗
t (Xt, At). (4)
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Before discussing the Q(λ) algorithm in procedural form (presented in Table 1), two important

elements must be introduced: the exploration rate and the learning rate. The absence of perfect

prior information concerning the demand model introduces a new component into the dynamic

optimization problem; the trade-off between exploration (attempting non-optimal decisions in

order to improve the current policy) and exploitation (choosing the best policy so far in order to

maximize the expected profit). The longer one spends learning the demand, the less time is spent

exploiting prices to increase revenue.

The objective of the algorithm is to obtain an accurate estimate of the optimal policy based

on observations during the exploration phase while, at the same time, keeping the exploration

rate small in order to limit revenue loss over this learning phase. The exploration rate (ϵ) chosen

is a ϵ-greedy policy at a rate 1/k so that learning progresses as the exploration rate decreases.

The result of this assumption is that, as the decision-maker gains more knowledge, sub-optimal

prices are explored less often. The learning rate is set in a similar manner and also decreases with

time. The learning rate for each state-action pair is denoted by αk(Xt, At) and equals 1/nk(Xt, At),

where nk(Xt, At)is the number of times the state-action pair (Xt, At) was visited by the process

(Xt,k, At,k) before time k, plus one.

Table 1: Q(λ) An online policy TD dynamic pricing algorithm for interdependent products in
finite selling horizon

Initialize k = 1 and ∀ t Q1
t (X

1
t , A

1
t );

Repeat for each episode k →∞
Step 1: All traces are set to zero at the beginning of the sales horizon

∀ t, Xt, At, et,k(Xt, At)= 0, ;
Step 2: We initialize the initial capacities and price set Xt,k, At,k

Step 3: Repeat t = 1 to m (for each decision step in the selling horizon)
Step 3.1: Take price At,k observe the reward rt,k and remaining capacities Xt+1,k

Step 3.2: We choose a price At+1,k for state Xt+1,k using using policy π (ϵ = 1/k)
Greedy price A∗

t+1 ← argmaxAt+1Qt+1,k(Xt+1,k, At+1)
Step 3.3: TD error is δt,k ← rt,k + ηQt+1,k(X

k
t+1, A

∗
t+1)−Qt,k(Xt,k, At,k)

Step 4.: Update the (Xt,k, At,k) pair’s trace et,k(Xt,k, At,k)← 1
Step 4.1: ∀ i ≤ t ∈ T , ∀ Xi, Ai Update all Q-values according to their eligibility traces
Step 4.2: Qt,k+1(Xi, Ai)← Qi,k(Xi, Ai) + α(Xk

i , Ai,k)δt,ket,k(Xi, Ai)
Step 4.3: If At+1,k = A∗

t+1, then et+1,k(Xi, Ai)← λet,k(Xi, Ai)
else ekt+1(Xi, Ai)← 0

Step 5: Xt,k ← Xt+1,k, At,k ← At+1,k, k ← k + 1

The algorithm in Table 1 starts by initializing the Q-values. We repeat the following steps for
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each episode k. All the eligibility traces for all state-action pairs are set to zero. We choose the

starting state Xt,k, a vector of the total number of inventory and At,k a vector of prices for each

product. After taking the pricing action we observe the next state Xt+1,k and immediate revenue

gained rt,k. We choose the pricing action At+1,k in the next state using the (non-greedy) policy

π. The error (δ) is calculated and the eligibility trace et,k(Xt, At) is updated to 1. Next, all the

Q-values of the state, action pairs are updated using their eligibility traces. All eligibility traces

are updated: if the pricing At+1,k is a greedy (optimal) action then all traces are multiplied by a

parameter λ. If At+1,k is an exploration action then all traces are set to zero. Then the next state

Xt+1,k at decision time-step t+1 and action At+1,k becomes the new Xt,k and At,k. The process is

repeated until the last decision time m, for each episode. The Q-values converge with probability

one as long as all state-action pairs are visited an infinite number of times (Rana and Oliveira,

2013).

We proceed with the analysis of dynamic pricing policies for interdependent products, to address

model misspecification risk and simplified assumptions of demand, especially on the pricing policy,

of pricing interdependent products individually or independent of each other.

4 Analysis of the dynamic pricing model with interdepen-

dent products

This section considers how different products (services) and their demand patterns determine the

learning dynamics. The analysis first investigates how the Q-values are estimated for interdepen-

dent products when their pricing policies have been learnt independently of each other. Consider a

set of interdependent products or services, all sold by the same decision maker, but whose pricing

policies are derived/learnt independently of each other. Let A(t,−j) = [at(1), .., at(j − 1), at(j +

1), .., at(n)] be the vector of prices of all interdependent products, excluding product j, and let

wt[xt(j), at(j), A(t,−j)] be a weight assigned to state xt(j), price at(j) and prices of interdepen-

dent products A(t,−j) tuple at time t. The weight wt[xt(j), at(j), A(t,−j)] is equal to the number of

times the price A(t,−j) is chosen at a state-action pair (xt(j), at(j)) divided by the total number

of times (xt(j), at(j)) is visited. Since the decision maker prices the interdependent products in-

dependently, the price of other products is not considered when selecting the optimal policy for

product j. However, the price of interdependent products will affect their demand and therefore
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the price acts as a stochastic element of demand. Thus the Q-value of a state-action pair will

be the weighted average of the Q-values of the state, action and the prices of the interdependent

products (Q∗
t+1(xt+1(j), at+1(j))).

Theorem 1.1. The Q-values for any product or service j are equal to the weighted sum of the

Q-values of its state xt, action at and prices of the interdependent products At−j, as described in

equation (5):

Q∗
t (xt(j), at(j)) =

∑
A(t,−j)

wt[xt(j), at(j), A(t,−j)]Q
∗
t (xt(j), at(j), A(t,−j))

=
∑

A(t,−j)

wt[xt(j), at(j), A(t,−j)][r(xt(j), at(j), A(t,−j))+

pt(xt+1(j) | (xt(j), at(j), A(t,−j)))ηmax
at+1

Q∗
t+1(xt+1(j), at+1(j))].

(5)

[Proof in Appendix]

Deriving a pricing policy for interdependent products individually leads to the prices of the

independent products increasing the stochastic element of demand. More specifically, the Q-

values calculated using the Q(λ) algorithm are a weighted sum of the prices of the interdependent

products. Knowledge of the (part) cause of the stochastic element of demand, especially as the

decision maker can control it, can help to price strategically.

The next theorem highlights the advantages of aggregation information of products which follow

the same demand to arrive at an optimal policy. Let Xt be the capacity remaining to sell for the

first set of products 1 to n; X ′
t be the capacity remaining to sell for a different, second set of

products from 1 to n; At be the prices for the first set of products; A
′
t be the prices for the second

set of products.

Theorem 1.2. If we have two sets of n products or services each following the same demand

patterns then r(Xt, At) = r(X ′
t, A

′
t) for all Xt = X ′

t, At = A′
t and π∗(Xt, At) = π∗(X ′

t, A
′
t) and the

dynamic policy used for the two sets of products is the same. Aggregating the observations of both

products accelerates the learning process of the policy. [Proof in Appendix]

Theorem 1.2 shows that the more information the decision maker has regarding the demand

of a set of interdependent products, the faster the algorithm will converge to the optimal policy.
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Next, we discuss how oversimplifying the model changes the learning dynamics.

Theorem 1.3. If we have two sets of n products or services following different demand patterns

r(Xt, At) ̸= r(X ′
t, A

′
t) for all Xt = X ′

t, At = A′
t then aggregating the observations of each would

produce a less profitable pricing policy than if the policies were to be derived separately. [Proof in

Appendix]

Theorem 1.3 illustrates how oversimplifying the model can change the dynamics of how the

pricing policy is developed. The revenue gain is likely to be significantly lower if the pricing

policy uses information of interdependent products that do not follow the same demand pattern.

Theorem 1.4 highlights the importance of using interdependent learning.

Theorem 1.4. Let there be n interdependent perishable products. The total expected revenue for

jointly optimising pricing actions at each state, using interdependent learning, is greater than the

sum of the individual total expected revenue of the optimal pricing actions in these states:

max
At

Q∗
t (Xt, At) ≥

n∑
j=1

max
at(j)

Q∗
t (xt(j), at(j)). (6)

[Proof in Appendix]

Theorem 1.4 does not only show that pricing interdependent products independently of each

other generates less revenue, but also that simplified assumptions or misspecified models of demand

can have significant effects on the revenue gained. This theorem shows the risks of model mis-

specification, which changes the dynamics of how the pricing policy is learnt. Under an individual

learning policy the products may be competing with others, whilst when interdependent products

are priced jointly, the effects on demand are taken into account in order to maximise revenue.

Finally, an important issue when using learning models is their tractability in real-world situ-

ations. The speed of convergence to the optimal pricing policy as the number of interdependent

products increases is analysed in Theorem 1.5.

Theorem 1.5. Let u, v denote the number of interdependent products, if u > v then the pricing

policy of v interdependent products will converge to its optimal policy exponentially faster than that

of u interdependent products. [Proof in Appendix]
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5 Numerical Results and Qualitative Insights

To evaluate the performance of the interdependent learning algorithm, and to understand the

dynamics of the theorems presented in the previous section, two examples are considered. In the

first example, customers have the choice of two options (Peak or Off-peak) for when to receive a

service and in the second example interdependent pricing of five different services with different

demand patterns will be offered over the course of a week (weekly pricing).

5.1 Example 1: Peak Service

Consider a business which offers a particular service. It is assumed that on a given day there are

a fixed number of workers deployed to meet the overall demand for the service, but that demand

varies during the day. There are periods of excess demand, i.e. during Peak hours, such as early

morning, lunch time and evening time, where there are insufficient workers to meet all service

requests, and periods of low demand, i.e. during Off-peak hours (mid-morning and after lunch),

where there are more workers than strictly required. Now, consider the problem where customers

have two options of when they receive the service: during Peak hours and Off-Peak hours; it will be

assumed that there are equal numbers of time slots in both periods. The objective is to maximise

the total revenue over a finite horizon. The characteristics of customer behaviour (assumed in the

simulation but not known by the decision maker) are as follows:

1. Customer Arrival Pattern: a Poisson distribution with discrete decision time for the mean

arrival µ(t). The customer arrival rate is drawn randomly from a uniform distribution [60,

100].

2. Customer Reservation Price (i.e., how much the customer is willing to pay): increases expo-

nentially as the decision expiry time approaches, e−βaζ(t), where a is the price of the service

and β is the sensitivity parameter of the customers to the price. As function ζ(t) increases

with time, the customers are willing to pay more for a service that is performed sooner rather

than later.

3. Customer Preference: most customers prefer Peak to the Off-peak option; if the price of

the service is the same for both Peak and Off-peak times, the probability of a customer

purchasing the Peak option is higher.
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This model is simulated and studied by considering a discrete price set [10, 35] and a discrete stock

set [0,100]. It is assumed that both of the service options expire at the same time. Moreover, a

time-horizon of 20 days with daily price change is considered. The first decision time is day 1 and

the last time the price can be changed is at the start of day 20, i.e., just before the service expires.

The optimal policy is derived by averaging 1000 simulation runs.

To provide qualitative insight into the optimal policies derived from the independent and inter-

dependent learning algorithms, three experiments have been designed. The first experiment com-

pares two different approaches to determining the optimal pricing policy, i.e., individual learning

and interdependent learning. The second experiment compares optimal prices over time, derived

from individual learning, when there are different numbers of slots available at Peak times. The

third experiment compares optimal prices over time, derived from interdependent learning, when

there are different numbers of slots available at Peak times.

In the first experiment, it is assumed that there are 100 time slots in each of the Peak and Off-

peak periods. Figure 1 shows the optimal pricing policy for both the individual learning (Figure

1a) and interdependent learning (Figure 1b) approaches. It can be seen that the policies differ

over the 20-day time-course and that they differ from each other. It can be observed that the

optimal price for Peak is always higher than Off-peak; this is expected as, by definition, Peak is

the more popular option and price is demand-driven. The price for both the services increases as

time gets closer to expiration; this is due to customers being willing to pay more to receive a service

sooner rather than later. In the individual learning scenario, it is interesting to note the Off-peak

price remains constant at £10, whereas in the interdependent learning scenario the Off-peak price

increases as well as the Peak price. The optimal prices for Peak and Off-peak are closer when the

interdependent learning algorithm is used as, by increasing the Off-peak price, demand increases

for the more expensive and profitable Peak service. This insight is very specific to this example,

and aims to illustrate how interdependent learning leads to different (better) pricing policies. The

average total expected revenue gained using individual learning is £2670 and £1657 for Peak and

Off-peak, respectively. The average total expected revenue gained using interdependent learning,

maximising revenue jointly is £4699. Thus, the interdependent learning algorithm generates 8.6%

(£372) more revenue.

The second experiment compares optimal prices derived from individual learning when there

are different available slots at Peak times. In the first scenario, the number of slots available in
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Figure 1: Prices over time with 100 available slots for Peak and Off-peak

the Peak period is 20 and the number available during Off-peak is 40; in the second scenario, the

number of slots available during Off-peak hours remains the same but 80 slots are made available

during the Peak period. Figure 2 illustrates the optimal prices over time using individual learning

for Peak and Off-peak separately. One can observe how the optimal prices of the Peak and Off-peak

services changes when the number of available slots for the more popular Peak service is increased.

When the availability of Peak slots is low, one observes (Figure 2a) that the price for the Peak

service is much higher than that of the Off-peak price; Peak service is priced at £35 across all 20

days. In contrast, Figure 2b shows that when the number of available slots for the Peak service is

increased to 80, the price of the Off-peak service is actually higher than Peak service, and remains

higher as time progresses. The results suggest that the difference in optimal policy is caused by

an interesting substitution effect: the popular Peak service will be filled later in the selling horizon
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whereas the less popular Off-peak service will be filled in earlier in the selling horizon. The effect is

that the popular Peak service becomes less important as the time in the selling horizon decreases.

The total expected revenue gained by the Off-peak service can be greater than the total expected

revenue gained by the Peak service.

Figure 2: Prices over time for the different number of available slots using individual learning

The third experiment, designed to investigate Peak service, is similar in design to the previous

experiment but determines the optimal policy through interdependent learning. The same two

scenarios are examined, i.e. there are 40 Off-peak slots in both scenarios whilst the Peak slots

increase from 20 to 80. Figure 3 shows the optimal prices over time for two scenarios. In the

scenario where Peak availability is low (Figure 3a), the price of the Peak service remains constant

over time (£35) and is always higher than that of the Off-peak service. Whilst the Off-peak price
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Figure 3: Prices over time for the different available slots using interdependent learning

does increase over time, the difference in the two services remains at £10 until the end of the 20

days. When compared to individual learning policy in Figure 2, the optimal price of Off-peak is

greater when using the interdependent learning primarily because the policy takes into account

the effect that the price change in one service has on the demand for the other. Figure 3b shows

the policy when the availability of the Peak service is high and results suggest that both of the

services should be priced equally, even though there are fewer Off-peak slots.

5.2 The Weekly Pricing example

The weekly pricing example attempts to improve the management of demand by using dynamic

pricing. Consider a service company which operates from Monday to Friday with a fixed number
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of contracted workers. Service requests can arrive at any time during the week, including on

weekends. The problem faced by the company is that service requests logged during the weekend

have to wait until at least Monday before they can be carried out. It is reasonable to assume

that all service requests have to be completed within a certain lead time in order for the company

to maintain acceptable levels of quality; this can result in the company having employees work

beyond their contracted hours at the start of the working week. Furthermore, it can be assumed

that the demand for the service varies during the working week and it is possible for there to be

an excess of workers during periods of low demand. If the excess demand seen at the start of the

working week (say Monday and Tuesday) can be shifted to the rest of the week then there would

be no need for workers to work overtime and therefore it is possible to reduce costs significantly.

This experiment is designed to determine whether dynamic pricing can be used as a mechanism

to decrease the cost of having engineers working overtime and to keep the lead time to an acceptable

level of quality. If, by introducing a dynamic pricing policy, it is possible to provide the right

incentives to price-sensitive customers to choose a period of lower demand, it is possible to reduce

the need for overtime working. It may also be possible to increase revenue by charging a higher

price for a service to customers who are willing to pay more to receive the service at a convenient

time. The objective is, therefore twofold: to improve the allocation of resources in order to increase

the expected revenue gained, and to meet pre-determined levels of quality.

To define the problem, consider the five days of the week (Monday to Friday) as five different

services. The company has the same capacity each day, i.e., a fixed number of workers, with which

to meet demand. Most importantly, it is assumed that the price of the service on one day can

affect the demand for the service on another. It is also assumed that the customer can only see

the price of the service over the next five days, which reflects the selling horizon t = 1, 2, 3, 4, 5,

i.e., the length of time over which the services are sold before they expire. At the start of each

day of the week the company reviews the stock of each day and is able to change the price of each

service. The available slots in each day come from a discrete set between [0, 50] and the price set

[35, 50].

The primary objective is to maximise the expected revenue gain during the entire selling hori-

zon, from all services, and therefore the objective function to be maximised is∑5
t=1

∑5
d=1 r(xt(d), at(d)) where Monday is d=1, Tuesday is d=2, etc.

The demand is characterised by the following equations and parameters, and the realised de-
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mand is observed over time. Neither the equations, parameters nor the underlying functional

relationship between the price set of multiple products and the demand function that governs

these observations are known to the decision maker. The demand for service at day d at price

at(d) is D(at(d)) = µ(t)− ζd(a(d))− ζd+1(a(d+ 1))− ζd+2(a(d+ 2))− ζd+3(a(d+ 3))

−ζd+4(a(d+4))−ζd+5(a(d+5)). The demand for d+i at price at(d+i) isD(at(d+i)) = ζd+i(a(d+i)).

The arrival rate µ(t) is given by µ(t) = θ − 5t, where θ is the initial customer arrival rate drawn

randomly from a uniform distribution [60, 100]. As the selling horizon is a moving window, the

experiment was repeated 1000 times and the optimal pricing policy learnt by repeating different

pricing actions over numerous weeks.

It is assumed that customers are willing to wait to receive the service on a later day if the price

is cheaper than on all previous days. As the number of days the customer has to wait increases, the

number of customers willing to wait reduces. If customers can purchase the service more cheaply

or at the same price on an earlier day they will then choose not to purchase the service on a later

day. Both interdependent learning (Theorem 4) and individual learning (Theorem 1) are used in

this experiment to generate optimal policies for the five interdependent services. Tables 2 and 3

show the results of a single simulation run, when there are 50 slots available at the start of each

day using interdependent and individual learning respectively. Each table shows the optimal prices

for the service on each day for the entire week. The rows represent the day of the week (t) on

which the decision maker acts, and the columns show the prices for that day and for the next four

days. For example, if the decision maker is acting on Tuesday, the table shows the price of the

service on the Tuesday (50) and for the following four days, i.e., Wednesday (47), Thursday (40),

Friday (37) and Monday (50).

Table 2: Prices for interdependent learning algorithm

It can be observed that the optimal prices for the services using interdependent learning are,

in general, higher when compared to those derived using individual learning. The price for the
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Table 3: Prices for individual learning algorithm

service on Monday is always set to be high by both algorithms, with the interdependent learning

algorithm setting it at five units higher. The optimal prices using the individual learning are

lower as the prices for services on each day compete with one another; in interdependent learn-

ing the services work together to maximise their revenue jointly. The revenue generated using

the individual learning is 9680, with a fixed optimal price of 42, is 9828 (1.53% improvement on

the individual learning), and using interdependent learning is 10264 (6.03% improvement on the

individual learning). From these results it can be seen that pricing the services individually gen-

erates less revenue than keeping the policy at a fixed price because the individual learning creates

competition between the different days of the week. Further to the experiment described above,

the effect of assuming that the demands for each of the days of the week are the same, when in

fact the underlying demands are different for each days, is analyzed. The optimal dynamic pricing

policy, assuming an initial availability of 50 slots per day, is shown in Table 4. As the observations

of all the days are combined to a single pricing policy, all the days of the week will have the same

pricing policy.

Table 4: Prices for the combined distribution of demand

The revenue generated using the pricing policy of the combined demands is 8752 (14.73% less

revenue compared to the interdependent learning algorithm). This clearly shows that combining

the observations of the days of the week when they have different demands generates less revenue,
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illustrating that the simplified model assumption can have large impacts on the total revenue

gained.

Figure 4: Convergence to the true expected revenue for five services

For practitioners it is important to know how long it takes to learn the optimal policy; here

this is addressed by observing the time it takes for five interdependent products to converge to

its optimal policy for a given initial state. An experiment was run to determine the convergence

of the total expected revenue over the number of episodes. This experiment considered the five

services as described in our pricing example. This experiment was run 10000 times and repeated

for 50 samples. Figure 1 shows the convergence to the total expected revenue and their respective

95% confidence intervals. In Figure 1 shows discontinuity in the graph; with a larger state and

action space it takes longer to explore all possible pricing actions.

In this study we have set the Q-values to zero (without any prior training) to test the worst

case situation. Even in the worst case with a large state-space problem with five interdependent

services, a reasonable policy can be arrived within 6000 episodes. Companies applying dynamic

pricing tend to have vast amounts of data available; they have the same scenarios running daily

and, therefore, the actual policy can be initialised with the Q-values set to the their current

practice. The only difference between using this approach and the Q(λ) (as seen in Table 1) is

that the Q-values are initialised using an estimated demand simulation model as opposed to being

set to zeros (without priori training). Rana and Oliveira (2013) have showed that using such

an approach leads to higher returns than assuming no prior knowledge and convergence to the

near-optimal policy is quicker. Hence companies can start with using their current practice, when
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selecting pricing actions, and move toward the new policy derived from the reinforcement learning

algorithm approach faster.

6 Conclusions and Discussion

The pricing of interdependent products is a very complex problem due to the exponential growth of

the policy space with the number of products considered and because of the requirement to account

for the interactions between the pricing of these products. In practice this is a very important

problem. It is well-known that the network problem in dynamic pricing is very hard to handle

and these interactions are usually ignored and the products are priced independently, or heuristics

are required to address this problem instead. It is for these reasons that the major contribution

of this article is the presentation of a dynamic pricing model for interdependent products. Unlike

in traditional dynamic pricing models, no functional relationship between price and demand was

assumed; instead the model learns the relationship explicitly using the observation of realized

demand to derive an optimal dynamic pricing policy. Indeed, the main advantage of using a Q-

learning with eligibility traces algorithm is that the decision maker can learn how to make pricing

decisions without any explicit knowledge of customer buying behavior.

Moreover, in this article we emphasize the advantages of using interdependent dynamic pric-

ing, as opposed to individual pricing of products or services. Firstly, this allows for the better

approximation of the optimal policy. By using interdependent pricing, the algorithm is able to use

the information from the different products or services to improve the overall profit received from

pricing all the items in a consistent way. Secondly, this allows for faster learning when the demand

for the different products or services is strongly related. However, as with dynamic programming,

the algorithm still suffers from the curse of dimensionality. As the number of interdependent prod-

ucts increases, the speed of convergence decreases exponentially. As the number of interdependent

products becomes too large, the decision maker may consider grouping products together if they

follow the same demand pattern, as proven in Theorem 2, or jointly pricing highly correlated in-

terdependent products, so that he can arrive at optimal policies in real-time. Alternatively, the

decision maker could use function approximation such as regression or Bellman error (Tsitsiklis

and Roy, 1997; Gosavi, 2009).

In conclusion, we propose a new formalization of the problem of dynamically pricing interde-
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pendent products that is able to improve the quality of the solutions derived when compared with

independent pricing without requiring a formal model of customer behavior.

As future research in the area there are several avenues both regarding possible evolutions on the

algorithms used to solve the pricing problem and on the applicability of this tool to the solution

of complex real word problems. A) We can relax the approach of fixed resources and consider

problems where there is flexibility in resources, for example, the repair service problem considered

in this paper can be extended to have the option of overtime workers i.e., flexibility in resources.

B) Reinforcement learning algorithms with large state-spaces and action spaces face the problem

of the slow speed of convergence, e.g., Mabu et al. (2012). The use of function approximators

and grouping of correlated products is an area of future research that may improve the speed of

convergence of the algorithms, when this is a concern. C) Dynamic pricing is becoming more

prevalent in many industries, for example, in electricity and natural gas where real time meetering

is used (e.g., Chakraborty et al., 2014); this is a case in which reinforcement learning can play an

important role, as it enables the retailers to best learn how to price their products dynamically

by learning the optimal pricing policy for different types of consumers. D) Another business area

where dynamic pricing usining reinforcement learning can be used is markdown-pricing (in which

a firm decides to plan a systematic decrease of prices in order to sell an wanted inventory); in most

cases this is a mixed-integer non-linear optimization problem in which the firm needs to decide

when and by how much to reduce the price. In the case of some products, such as perishable food

(fresh vegetables and meat, for example), this price reductions are repeated daily, allowing the

collection of the information needed to use reinforcement learning, when oprimization techniques

are hard to apply. E) Finally, hotel management can slso benefit from the algorithm proposed in

this article; in this case, the online pricing of the different types of rooms (single vs. double; with

different locations in the hotel - sea view vs. city view, for example) can be priced taking into

account available capacity; as this is a daily pricing activity the data collected can be used to learn

to price online the different types of room with interdependent demands.
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Appendix

Theorem 1.1 - Proof

The Q-values for interdependent products are formulated byQ∗
t (Xt, At) = r(Xt, At)+

∑
Xt+1

pt(Xt+1 |

Xt, At)ηmaxAt+1 Q
∗
t+1(Xt+1, At+1). If in vector At only at(j) is controlled by the decision maker

and all other decisions are not observed, and the states of the other variables are not observed

within them, then r(Xt, At) = r(xt(j), at(j)), where r(xt(j), at(j)) =∑
A(t,−j)

wt[xt(j), at(j), A(t,−j)]r(xt(j), at(j), A(t,−j)) and pt(Xt+1 | Xt, At) = pt(xt+1(j) | xt(j), at(j))

hold. The decision maker does not know the state of the interdependent products. Xt,−j does not

directly influence customers buying behaviour but determines the prices of the interdependent

products. The decision maker only observes transition probabilities and these are the weighted

average implied by the prices and state of the other interdependent products as follows pt(xt+1(j) |

xt(j), at(j)) =
∑

A(t,−j)
wt[xt(j), at(j), A(t,−j)]pt(xt+1(j) | xt(j), at(j), A(t,−j)). Then Q∗

t (Xt, At) =∑
A(t,−j)

wt[xt(j), at(j), A(t,−j)][r(xt(j), at(j), A(t,−j)) +∑
xt+1

pt(xt+1(j) | (xt(j), at(j), A(t,−j)))ηmaxAt+1 Q
∗
t+1(xt+1(j), At+1)]. Finally as we only control

at(j) and observe xt+1(j) we get that At+1 = at+1(j) and Q∗
t (Xt, At) = Q∗

t (xt(j), at(j)),

Q∗
t+1(Xt+1, At+1) = Q∗

t+1(xt+1(j), at+1(j)), and Q∗
t (xt(j), at(j)) =∑

A(t,−j)
wt[xt(j), at(j), A(t,−j)][r(xt(j), at(j), A(t,−j)) +
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∑
xt+1

pt(xt+1(j) | (xt(j), at(j), A(t,−j)))ηmaxat+1 Q
∗
t+1(xt+1(j), at+1(j))]

=
∑

A(t,−j)
wt[xt(j), at(j), A(t,−j)]Q

∗
t (xt(j), at(j), A(t,−j)). QED

Theorem 1.2 - Proof

If the demands are the same then r(Xt, At) = r(X ′
t, A

′
t) ∀Xt, X

′
t ∈ X, At, A

′
t ∈ A(Xt), Xt = X ′

t,

At = A′
t and the optimal pricing policy for the first set of n products will be the same as the

second set of n products, π∗(Xt) = π∗(X ′
t). Then we can put the observations for the products

together < Xt,k, At,k, Xt−1,k, rt−1,k, ....X
′
t,k, A

′
t,k, X

′
t−1,k, r

′
t−1,k, .., X

′
1,1 > and use them to update the

Q-values. It follows ∀ (Xt, At) = (X ′
t, A

′
t), α

′
k(Xt, At) ≤ αk(Xt, At)) and α′

k(Xt, At) ≤ αk(X
′
t, A

′
t)

where, α′
k(Xt, At), αk(Xt, At), αk(X

′
t, A

′
t) are the learning rates of the combined observations of the

products, for the first set of n products and the second set of n products, at episode k, respectively.

The learning rate αk(Xt, At) is equal to 1/nk(Xt, At), where nk(Xt, At) is the number of times the

state-action (Xt, At) was visited by the process (Xt,k, At,k) before episode k, plus 1.

Consider Q(λ) in a finite MDP where the sequence is < Xt,k, At,k, Xt+1,k, rt,k >. Assume that

the learning rate sequence αk(Xt, At) satisfies the following:

1. 0 ≤ αk(Xt, At),
∑∞

t=0 αk(Xt, At) =∞,
∑∞

t=0 α
2
k(Xt, At) <∞ are uniformly and hold w.p.1

2. αk(Xt, At) = 0 if αk(Xt, At) ̸= αk(Xt,k, At,k) w.p.1. Then the values calculated by Q(λ)

algorithm converges to Q∗.

Then 0 ≤ αk(Xt, At) ≤ 1, t ≥ 0, and
∑∞

k=0 αk(Xt, At) converges uniformly in X as k −→∞ is

a condition for Qk converges to Q∗. The smaller αk(Xt, At) the closer Qk is to Q∗. Then it follows

that Q′
t,k(Xt, At) converges Q

∗
t faster than Qt,k(Xt, At) and Qt,k(X

′
t, At). QED

Theorem 1.3 - Proof

If all the observations from the first set of n products and the second set of n products are put

together < Xt,k, At,k, Xt−1,k, rt−1,k, ...., X
′
(t,k), A

′
t,k, X

′
t−1,k, r

′
t−1,k, .., X

′
1,1 > and used to update the

Q-values, the optimal Q-values of the combined observation are calculated ∀ Xt = X ′
t by

π∗(Xt) = maxQ∗
t (Xt, At) = maxAt{r(Xt, At)+

∑
Xt+1

pt(Xt+1 | Xt, At)ηmaxAt+1 Q
∗
t+1(Xt+1, At+1)}

as we have assumed that π∗(Xt) = π∗(X ′
t) and Q∗

t (Xt, At) = Q∗
t (X

′
t, At) holds, then ∀ Xt = X ′

t,

maxAt{r(Xt, At) +
∑

Xt+1
pt(Xt+1 | Xt, At)ηmaxAt+1 Q

∗
t+1(Xt+1, At+1)}

= maxA′
t
{r(X ′

t, A
′
t)+

∑
Xt+1

pt(X
′
t+1 | X ′

t, A
′
t)ηmaxA′

t+1
Q∗

t+1(Xt+1, A
′
t+1)}. Then r(Xt, At) = r(X ′

t, A
′
t)

is a contradiction therefore π∗(Xt) ̸= π∗(X ′
t) ∀ Xt = X ′

t. Hence combining the observation gives a
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non-optimal policy and in this case it is better to learn the policy for the products separately. QED

Theorem 1.4 - Proof

The Q-values for n interdependent products or services is calculated by Q∗
t (Xt, At) = r(Xt, At) +∑

Xt+1
pt(Xt+1 | Xt, At)ηmaxAt+1 Q

∗
t+1(Xt+1, At+1). The Q-values for each product, for all product

j = 1, .., n is calculated by

Q∗
t (xt(j), at(j)) = rt(xt(j), at(j)) +

∑
xt+1

pt(xt+1(j) | xt(j), at(j))ηmaxat+1 Q
∗
t+1(xt+1(j), at+1(j))

=
∑

A(t,−j)
wt(xt(j), at(j), A(t,−j))Q

∗
t (xt(j), at(j), A(t,−j)).

(proved in Theorem 1.1). When calculating the maxAt Q
∗
t (Xt, At) we choose at(1), at(2).. and

at(n) at the same time and hence the weights do not sum over the other actions, say all possible

At,−j, but you use the optimal At, say A∗
t . By definition of optimality it follows maxAt Q

∗
t (Xt, At) ≥∑n

j=1maxat(j)
∑

A(t,−j)
wt(xt(j), at(j), A(t,−j))Q

∗
t (xt(j), at(j), A(t,−j))

=
∑n

j=1maxat(j) Q
∗
t (xt(j), at(j)) holds. QED.

Theorem 1.5 - Proof

The state space of u and v independent products at time t is denoted by Xu
t and Xv

t respectively,

and let {1, ..., n} be a set of all the possible states of a single product. Then the combination of

all possible states for u products is greater than v products. ∀ t, Xu
t = {1, ..., n} × ..{1, ..., n}u >

{1, ..., n}× ..{1, ..., n}v = Xv
t . The same holds for the action space Au

t and Av
t , A

u
t = {1, ..., L}×

..{1, ..., L}u > {1, ..., L} × ..{1, ..., L}v = Av
t . where, {1, ..., L} is the set of all the possible pricing

actions of a single product. Then it follows that the state-space of u products is greater than v

products. ∀t Xu
t × Au

t > Xv
t × Av

t and then the #α(Xu
t , A

u
t ) = nuLu > #α(Xv

t , A
v
t ) = nvLv

∀Xu
t ∈ Xu

t , Xv
t ∈ Xv

t Au
t ∈ Au

t , Av
t ∈ Av

t . All estimated Q-values (Qt,k) will converge to

their optimal Q-values (Q∗
t ), if all αk(Xt, At) satisfy the condition that

∑∞
k=0 αk(Xt, At) converges

uniformly as k → ∞. Then since u products have a greater number of states-action space and

therefore a greater number of learning rates, the rate of its convergences will be 1/(n(v−u)L(v−u))

slower than v number of products, to its optimal policy. QED
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