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ABSTRACT Two problems that burden the learning process of Artificial Neural
Networks with Back Propagation are the need of building a full and representative
learning data set, and the avoidance of stalling in local minima. Both problems seem to
be closely related when working with the handwritten digits contained in the MNIST
dataset. Using a modest sized ANN, the proposed combination of input data
transformations enables the achievement of a test error as low as 0.43%, which is up
to standard compared to other more complex neural architectures like Convolutional or
Deep Neural Networks.

Keywords Atrtificial Neural Networks - Back Propagation — MNIST — Handwritten
Text Recognition

1 Introduction

Handwritten text recognition is a demanding problem for which ANNs are well suited
learning models, as is shown by ongoing research. There are multiple technological
applications that require a more or less robust ability to perform handwritten text
recognition, for example the validation of signatures in banks, the entry of text in mobile
devices or for large-scale digitizing and archival of manuscripts (Plamondon & Srihari,
2000).

The complexity of the text recognition varies greatly depending on the type of the
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context or the required application. The recognition of handwritten text always
demands a more sophisticated approach that in the case of machine written texts.
There is a greater difficulty in recognizing writer independent unconstrained continuous
handwritten text than for texts written with printed isolated letters.

Some applications such as the identification of signatures in banks use a different
approach as they rely on touch-pads that allow obtaining the data describing the
sequence followed during the writing process, in what is called on-line recognition. In
this case there is information available in real time on the strokes that make up the text,
i.e., the direction, angle, speed and pressure.

The biggest challenge in text recognition arises when addressing the off-line variant,
which operates on digitized raster images and lacks information about the strokes,
sequencing and timing of the writing process.

The digitized image will be contained in a plane, where each point represents a pixel
with a variable intensity between the white paper and the dark ink strokes. Such
collection of pixels represents a high dimensional and complex set of data with regard
to the recognition of characters. This is the reason for which the off-line recognition
techniques have to resort to a series of previous processes that can transform the
images into a more usable set of data. These processes involve several tasks as
binarization, contrast and brightness adjustments, skeletonization, and noise removals.
A crucial and complex task prior to the recognition is to segment each of the
paragraphs, lines and characters contained in the image (Alonso-Weber, Galvan, &
Sanchis, 2003; Alonso-Weber & Sanchis, 2011; Lacerda & Mello, 2013), which may
require some feedback from the recognition stage (Fernandez-Caballero, Lopez, &
Castillo, 2012).

Mainstream research deals with the problem of extracting and using explicit
information from the high dimensional image data. The purpose of this Feature
Extraction is two-fold. At first hand, the interest is to extract structured and relevant
information from the high volume of data available in an image, and to dismiss
redundant or useless information. The second purpose is to reduce the dimensionality
of the data, which can help to find better solutions and decreases the computational
costs associated to the learning and test processes.

A different approach deals with implicit feature extraction, and the recognition is
performed directly on the original, unprocessed image data. A machine learning
method is applied and expected to extract the relevant information from the raw data.
Here, several ANN models have shown to be particularly efficient, achieving rather low
error rates such as a 0.4% and 0.39% for Convolutional Neural Networks (Ranzato,
Poultney, Chopra, & LeCun, 2006; Simard, Steinkraus, & Platt, 2003), 0.35% for Deep
Neural Networks (Ciresan, Meier, Gambardella, & Schmidhuber, 2010), or even 0.27%
and 0.23% for Committees of Convolutional Neural Networks (Ciresan, Meier,
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Gambardella, & Schmidhuber, 2011; Ciresan, Meier, & Schmidhuber, 2012).

Our proposal follows the raw recognition approach, and is based on a modestly
sized ANN with two hidden layers containing 300x200 cells. This is considerably
smaller than most of the ANN architectures shown in the literature. The training is
performed with the standard Back Propagation Algorithm. We show that good results
can be achieved boosting the training process with a combination of several input
pattern transformations. These transformations comprise a line-up of affine
transformations including a trapezoidal deformation, a dimensionality reduction through
image downsizing, and an annealed input noise addition schema. Previous work of the
authors involved handwritten recognition through skeletal structures and had a limited
accuracy result due to the usual problems of premature stalling of the Back
Propagation algorithm (Alonso-Weber & Sanchis, 2011).

The performance of our proposal is validated against the MNIST dataset (LeCun,
Bottou, Bengio, & Haffner, 1998; LeCun & Cortes, 1998), that has been used
thoroughly over the time to develop increasingly refined recognition algorithms.

The next section contains a review of the work related to our proposal, which is
presented in section three, whereas the experimental setup and evaluation are shown
in section four.

2 Related Work

As it has been already mentioned, there are several ANN models that have shown
to be particularly efficient performing the handwritten text recognition starting from the
raw images. Due to the complexity of the task, ANNs with multiple layers are used,
because it is expected that the first layers are able to detect the most basic features,
while the subsequent layers construct higher level feature detectors based on the
detected features from the precedent layers.

Several proposals have been made, including Convolutional Neural Networks (CNN)
and Deep Neural Networks (DNN), which are now described. We also depict here
several issues that are related with the proposal of this paper, such as pattern
deformations, input noise addition and dimensionality reduction.

2.1 Convolutional and Deep Neural Networks

Convolutional Neural Networks (LeCun et al., 1998) are biologically inspired models
that can be traced back (Fernandes, Cavalcanti, & Ren, 2013) to the work of (Hubel &

3



Wiesel, 1962) and Fukushima“s Neocognitron (Fukushima, 1980). In a CNN each cell
in the first layer has a set of inputs (receptive fields) coming from a limited region of the
input space (retinotopic region). These cells are arranged in a tile structure covering
the whole input space. The function of these cells is to perform a simple filtering i.e., a
feature detection based on the high correlation between neighbouring input pixels,
which is called convolutional mapping. The cells in the subsequent layers replicate the
same structure, with their inputs covering a small region of the preceding layer. The
stacking of these retinotopic mappings builds progressively more complex feature
detectors that cover a greater input region.

Layers with a different functionality can be alternated: a convolutional layer can be
cascaded with a so called max-pooling layer that performs a subsampling of the
detected features. For the final output a conventional fully-connected layer can be
used.

A specific constraint joint to the max-pooling layers allows these detectors to
develop invariance to the position of the features. This is accomplished using
neighbouring cells that share the same weights, i.e. they perform the same feature
detection with a slight displacement in the input space.

This constraint and the sparse connectivity of the model have associated a reduced
parameter space, where the search for an optimal weight configuration can be
performed in a more efficient way than in a conventional ANN with a fully connected
architecture.

Some applications of CNNs on the MNIST dataset have reported very low error
rates: such as a 0.4% for (Simard et al., 2003) and 0.39% for (Ranzato et al., 2006).

Training ANNs with Back Propagation has a serious inconvenience when several
hidden layers are used. The errors fade (Hochreiter & Munchen, 1998) when they are
propagated back through multiple layers, and this hinders a proper learning. Several
authors proposed alternative algorithms to overcome this inconvenience. Hinton
(Hinton, 2007) and Bengio (Bengio & Lamblin, 2007) proposed unsupervised methods
for training independently each layer of a Deep Belief Neural Network, with a
subsequent fine tuning with a supervised learning algorithm. Based on these concepts
(Ciresan et al.,, 2010) proposed a Deep Neural Network with error rates as low as
0.35%.

There are other posterior works that show even lower error rates as 0.27% (Ciresan
et al., 2011) and 0.23% (Ciresan et al., 2012) are based on combining several CNNs
into additive ensembles or committees. These ensembles can achieve an improvement
in the accuracy in an additional 0.1% (at these extreme performance ratios) with
respect to the underlying neural model.



In practice, the multilayer models are extremely profuse in the number of layers,
cells and weights, even in spite of the sparse connections and the weight sharing of the
CNNs. This leads to one of their major inconveniences, which is the need of a very
high computational power in order to achieve reasonable training times. In the case of
(Ciresan et al., 2010) the DNN with the best performance has 7500 cells distributed in
five hidden layers that are fully connected, and about 12.000.000 connections. The use
of Graphical Processing Units (GPU) allows a considerable boosting in the processing
times (Ciresan et al., 2010) with a reported speedup of 40x. These GPUs have allowed
exploring the possibilities of the DNNs, but require more elaborate programs for the
simulations.

2.2 Pattern Deformations

Although the use of DNNs and CNNs may help to find good solutions, another
problem that they do not avoid is the need of using a very large set of training samples.
Even datasets like the MNIST that contains 60000 training instances fall short for a
satisfactory training.

A usual strategy is extending the training set performing some kind of changes on
the images. These changes are mostly affine transformations (Yaeger, Lyon, & Webb,
1996) like displacements, rotations and linear deformations. Simard (Simard et al.,
2003) proposes a distortion process based on elastic deformations which tries to
reproduce the natural uncontrolled oscillations of the writer's hand. Two parameters
allow adjusting these distortions.

The deformation helps the learning process to develop a recognition ability that is
more invariant to changes in the input data of the test, and reduces the error rate.

2.3 Input Noise Addition, Weight Decay and Regularization

Another problem that weights down the performance of Back Propagation is the fact
that convergence usually stalls in local minima, often far away from a reasonable
working point.

Several perturbation techniques have been used in the past in order to improve the
convergence and the generalization abilities of ANN: for example noise injection adds
small random values of noise to weights (Abunawass & Owen, 1993), to node
activations, including output perturbations (Wang & Principe, 1999).

Injecting additive input noise (Matsuoka, 1992; Sietsma & Dow, 1991) is a particular
case which has been related (An, 1996; Grandvalet, Canu, & Boucheron, 1997) to
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other well known learning techniques as weight decay and kernel regression estimation
or Tikhonov regularization (Bishop & Avenue, 1995; Holmstrom & Koistinen, 1992;
Koistinen & Holmstrom, 1991).

Regularization tries to accomplish smoother network mappings with a modified error
function. A penalty function is added to the sum squared error. This modifies the weight
update function. A special case is weight decay where the penalty function is the sum
of the squared network weights. This allows a smoother learning because it leads to a
more moderate growth of the weights.

Weight decay and regularization are interesting options for avoiding local minima.
They are easier to study and analyze than noise injection. A drawback for both is that
they have an impact on the computational cost of the Back Propagation algorithm, as
they imply the computation of some additional terms in each weight update. For
computationally intensive problems such as image processing, this fact cannot be
neglected.

Input noise injection is used in different applications (Piotrowski, Rowinski, &
Napiorkowski, 2012; Unsworth & Coghill, 2006), being necessary to adjust the
parameters of the noise distribution according to the requirements of each input
variable. Regarding the computational cost, input noise injection is more efficient than
regularization or weight decay. The overhead is the addition of random values to each
input value, which are much more reduced in number than the total weight updates for
each pattern presentation.

2.4 Dimensionality reduction, subsampling

Dimensionality reduction is a crucial issue in machine learning research. There are
many situations where a reduction of the data to be processed is needed (Peteiro-
Barral, Bolon-Canedo, Alonso-Betanzos, Guijarro-Berdifas, & Sanchez-Maroino, 2013).
This is the case of the off-line handwritten text recognition in which the raw data from
the scanned images has a high dimensionality. It was already mentioned that most
research in this domain involves the extraction of relevant features, discarding
redundant or useless information, which is a particular case of dimensionality
reduction. But also the approach of working directly on the raw data can benefit from a
dimensionality reduction.

In a scanned image neighbouring pixels usually have a high correlation between
them. If the resolution of the image is high, a convenient approach is subsampling the
pixels. The reduced image may retain sufficient information for a correct recognition of
its content.



This dimensionality reduction has already been applied to the MNIST problem
(LeCun et al., 1998), with an interpolation of the input images from the original 28x28
size down to 16x16. Some layers of the Convolutional NN model perform a sub-
sampling of the detected features in the previous layer. But the usual approaches rely
more on explicit feature extraction, or on feature selection, rather than on subsampling
based on interpolation.

3 Proposed model

Bengio (Bengio & Lamblin, 2007) mentions the long-standing belief that ANNs
with multiple hidden layers should not perform better than single layered networks.
This belief might be originated by the difficulties of training deep multi-layer neural
networks. With the development of newer learning strategies these difficulties
disappear, and this has spurred the use of increasingly complex and deep neural
networks.

Our motivation for the present research is to explore if a relatively small ANN
(with two hidden layers with 300x200 cells) is able of achieving similar results to
those reported for Deep and Convolutional Neural Networks. Therefore we enhance
the learning process with a set of transformations that are applied onto the input
instances, and create this way a virtually infinite training data set:

a) We design a new trapezoidal deformation that is combined with the usual linear
transformations (rotation, displacement, scaling). This deformation differs from
both the affine deformation (Yaeger et al., 1996) and the elastic distortions
(Simard et al., 2003) used in a great part of the published research. The
experimentation suggests that the proposed deformation is rather effective.

b) The input images are sub sampled with an interpolation method. This was
previously used by LeCun (LeCun et al., 1998), and is part of the some layers of
the Convolutional Neural Networks. But it has not been used as a regular
strategy.

c) An annealed input noise addition schema to help to avoid local minima during
the training phase is fundamental for overcoming stalling. Much literature has
been devoted to the input noise addition, but the usual approach is the use of a
static noise, mostly following a Gaussian distribution. Our proposal is based on
combining an annealing scheme with a uniform noise distribution, which shows
to be rather more effective than static Gaussian noise. An open question is how
this annealed noise scheme relates with weight decay.

We now describe with detail the mentioned processes. At last, the task of finding
adequate parameter values is addressed.



3.1 Dimensionality Reduction through subsampling

The MNIST Dataset is a collection of 70000 numerical handwritten symbols which
are almost evenly distributed in ten classes (,0" — ,9. The dataset is divided into the
training set with 60000 images and the test set with 10000 images. Each one of the
digitized numerals are represented with a 28x28 sized, 256 graylevel image.

Each image is coded as a pattern with 784 input values and 10 output values. Each
input value encodes a pixel value, where 1 represents a black pixel and 0 a white one.
The output layer has ten nodes where each node represents one of the ten possible
classes.

Different image sizes were tried out with appropriate sized neural networks. The
original images where downsized to 14x14 and 20x20 pixels. Differences in the
performance are not highly significant (see Table 1), but show that there might be an
issue with the input data dimensionality. Loss of detail in the downsized digits is
compensated with the benefits of lower dimensionality up to a certain performance
level.

Another advantage of using downsized images is the lower computational cost. The
learning process for the 14x14 sized database lasts typically about 10 hours, whereas
the original 28x28 sized images need about 41 hours.

3.2 Image Transformation

Image transformation is performed applying different affine transformations: rotation,
translation and scaling, followed by a new trapezoidal deformation

Rotation, translation and scaling:

Given a pixel defined by its lattice coordinates (i, j), the mapping of this pixel in the
transformed image is given by (i, j) — (x;, yi):

x; = - sin (-0t) / 8 + <008 (-a) /'S + AX; (1)
yij = jcos (-a)/s +isin(-a)/s + Ayj (2)

Parameter a represents the rotation angle selected randomly in the [-a, +a] interval
with a uniform distribution, where a is a parameter which limits the maximal rotation.
The scale factor is represented with s.



Translation is defined by Ax; and Ay :
AXij = R1(dx) =sgn (rxi,-)-int (|rxi,-|V . dx) (3)
Ay; = Rq(dy) = sgn (ryy)-int (Jry|" - dy) (4)

where d, and d, are parameters that limit the maximal displacement, and r,;, ry; are
uniform distributed random numbers in the [-1, +1] interval.

The purpose of function R; is to reduce the incidence of extreme random
displacements. For y = 1 the function R, returns a random value which is uniformly
distributed in the [-d,, +d,] or [-d,, +d,] interval. For values of y higher than 1, the
distribution density increases around the zero values, with fewer extreme values. This
transformation works best when the displacements are applied as integer values,
therefore the int() function is used.

Trapezoidal Deformation:

The trapezoidal deformation operates on each of the four corner vertex of the lattice
containing the original digit, displacing them by some random amount and in a random
direction, and stretching or compressing the rest of the lattice in a proportional quantity.
The inverse map in Figure 1 shows an example of a deformed lattice.

For each corner vertex Wy, € { (Xa, Ya), (X8, ¥8), (Xc, Yc), (Xo, Y¥p) } of the nxn sized
lattice, which represents each of the coordinates A:(0, 0), B:(n-1, 0), C:(0, n-1), D:(n-1,
n-1)}, a displacement is applied such that (x,, yn) — (Un, Vp),

Un = Xn + Ro(by) (5)
Vn = ¥n + Ra(by) (6)
Rz(by) = sgn(by) - [rnl® - by (7)
Ra(by) = sgn(by) - Irynl® - by 8)

where b, and b, are parameters that limit the displacement of each lattice corner,
and ry,, ry, are uniform distributed random numbers in the [-1, +1] interval.

The purpose of function R, is to reduce the incidence of extreme random
deformations. For B=1 the function R, returns a random value which is uniformly
distributed in the [-b, +b] interval. For values of B higher than 1, the distribution
accumulates around the zero values, with fewer extreme values.



Given the displaced corners, the final position of each pixel in the image lattice can
be computed following the displacement scheme (x;, y;) — (ujj, Vy):

Uj = DX - j + Xa ()
Vi =Dy, -]+ Ya (10)

where Dx; , Dy; are the differences that define the slope of the i-th horizontal lattice-
line:

Dx; = (Xgpi — Xaci) / (n-1) (11)
Dy; = (Yepi — Yaci) / (n-1) (12)
where Xaci , Yaci define the i-th point on the lattice line between vertex A-B:

Xaci = DXac - 1 + Xa (13)
Yaci = Dyac- i+ ya (14)
and Xgpi , Yepi define the i-th point on the lattice line between vertex B-D:

Xgpi = DXgp - i + Xp (15)
Yeoi = Dysp - i +ys (16)

finally, the slope differences Dxac, Dyac, and Dxgp, Dygp for the lattice-lines A-C and
B-D are defined:

DXac = (Xc = Xa) / (n-1) (17)
Dyac = (Yo = ya) / (n-1) (18)
Dxgp = (%o — Xg) / (n-1) (19)
Dyep = (Yo — ¥s) / (n-1) (20)
Sampling

Applying the sequence of transformations gives a collection of coordinate pairs (uj,
v;) which are not integer valued. This means that the corresponding pixel values need
to be computed by interpolation. Bilinear sampling is an easy way to undertake this
task. Since each one of mentioned transformations degrades the image quality, the
operation sequence should be done in a single shot, rather than applying them
independently on the image.
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Figure 1 Inverse mapping (left) for a rotation and deformation. When applied to the
original digit (right above) gives the deformed version (right below).

3.3 Additive Input Noise Annealing

Input noise is fed into the input layer at the time each pattern is presented to the
network.

For each pixel value Vj :
Vi=Vi+e- Qg T t) (21)
Qg T.t)y=g-t-T (22)

where g; is a uniform random number in the [0, +1] interval, and Q(g, T, {) defines
an annealing schema that subdues the noise influence with increasing simulation time
t. The parameters g and T define the profile of the annealing schema. A typical value
set for a t,ax = 71000 iteration learning is g = 1, T = 1/ .., Which implies a rather hefty
noise injection for the initial iterations that gets dimmed towards the end of the learning
process.

3.4 Parameter values

Finding the adequate parameter values requires some prospecting experimentation.
Applying each transformation individually has a limited influence on the ANNSs
performance. In such cases, finding a good working point requires higher parameter
values than in combination with other transformations. In order to shortcut an
undesirable lengthy search in the parameter space, a good approach relies on
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exploring at first the transformation with greatest influence and gradually introducing
the rest (following this order: deformation, translation, rotation, and scaling).

For the combined transformations a good maximal rotation value is a = 0.15, which
is valid for all the digit sizes. For 20x20 sized digits good translation parameter values
are dy = d, = 3.2, y = 2, and the deformation process requires: b, = b,= 3.5, 8 = 1. For
the 28x28 sized images the parameters that need adaptation are d, = d,= 4.5, and b, =
b, =5.

The scale factor should be limited to random values between [0.99, 1.1], or can be
fixed to 1 since the deformation process has a strong influence on the image scale.

The parameter exploration was not performed in an exhaustive way, so some room
for further improvement can be expected.

Figure 2 shows a selection of transformations (rotation, translation and deformation)
applied on the same input digit.

333 333 33
J 2333333
3 333 3333

Figure 2 A sample containing different transformations of the same original digit (rotation,
translation, deformation).

4 Experimental Evaluation

Initial experimentation served for determining some generic parameter values
needed for the experimental evaluation. Throughout the extensive experimentation of
this work these parameter values showed to be rather stable, which means that no
circumstances entailed a change of these values, and no dependencies between
parameters were stated.

A Neural Network with two hidden layers and size 784x300x200x10 was determined
to be a good option. In the course of the experimentation, it was stated that changing
the input data size (14x14, 20x20 and 28x28) had no influence on the needed network
layers and hidden cells. ANNs with a single layer were discarded because they were
prone to premature stalling with an increasing size of the hidden layer.

The weight values were initialized with uniform distributed random values in the [-
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0.3, +0.3] interval. Best results were obtained with a Learning Rate 7 valued at 0.03.

Training of the ANN follows the usual cycle sequence until some convergence
criterion is reached. At each cycle all the training patterns are transformed with our
deformation and noise processing, and presented to the ANN in a randomized order.
This extends the input data set into a virtually infinite training set.

The experimental evaluation arises some issues which are how to evaluate the
performance and when to stop the learning process. In order to evaluate the
generalization capability the test set should not be used directly for this purpose. The
first option is using a third validation set whose aim is determining the optimal working
point of the ANN during the learning process. Therefore the original training set is split
into a new training set with 50000 patterns, and a validation set with the remaining
10000. Another option is assuming that the optimal configuration is achieved in the last
training cycle.

Another issue is the training length. Conventional Back Propagation training without
noise annealing shows a faster convergence but gets stalled in local minima. Extending
the learning process beyond 500 cycles (for example) improves slightly but with a very
low cost-effectiveness ratio. Training with input noise annealing requires extending the
learning process until the input noise is near zero. Beyond this point the improvement
rate is near zero. As the selected noise annealing scheme requires 1000 cycles for
experimental coherence we have chosen all the simulations to last the same cycle
number (1000 cycles).

All performance values are computed as the mean value over series of ten
experiments.

A first comparison is done with the object of determining the performance of plain
Back Propagation using the MNIST dataset without any transformations. Results are
shown in Table 1.

Input image size
28x28 20x20 14x14 Test Error [%] based on:
1.79 1.63 1.50 Last Iteration
1.82 1.66 1.51 Validation

Table 1 Errors on the MNIST test set without any transformations.

Here, best results are obtained for the 14x14 sized images. Differences for the
distinct image sizes are not exceedingly high, but are an indication about the difficulty
of finding good solutions when the input data has a high dimensionality. Test errors
based on the validation stopping criterion are higher than those at the last iteration.
This behaviour was already stated in (Simard et al., 2003). This can be due to the fact
that extending the learning process of the ANN indefinitely never worsens the results
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on the test set. The stopping point determined with the validation set occurs usually
about 200 cycles before the last iteration. So, some loss of the accuracy can be
expected. Therefore we evaluate the accuracy based only on the errors at the last
iteration.

The next step involves comparing the performance when the input data are
transformed with annealed noise or affine transformations. The corresponding results
are shown in Table 2.

Individual Transformations Input image size

28x28 20x20 14x14 Test Error [%] on:

Input Noise Annealing 1.03 0.96 0.96 Last iteration
Rotation+Translation+Deformation 0.55 0.53 0.66

Input Noise Annealing 1.05 0.98 0.97 Validation
Rotation+Translation+Deformation 0.58 0.60 0.66

Table 2 Errors on the MNIST test set applying individual transformations.

Applying the deformation combined with the usual rotation and translation has a
high influence on the performance reducing the error rate in more than a 1% in relation
to the standard Back Propagation learning (Table 1). The test errors for 28x28 sized
images (0.55%) are even lower than those published by Simard for elastic distortions
combined with 2 layer MLPs (0.7%-0.9%) (Simard et al., 2003). Input Noise Annealing
has also a respectable influence, reducing the test error in about 0.5% - 0.7%
depending on the image size.

The next step involves comparing the performance when the input data are
processed with input noise combined with the transformations. Table 3 shows a better
performance for the 20x20 sized images. The 14x14 images have the worst results.
This might be due to an insufficient resolution, which is more patent for the few
remaining conflictive patterns.

Combined Transformations Input image size

28x28 20x20 14x14 Test Error [%] on:

Input Noise Annealing + Rotation + 0.51 0.43 0.56 Last iteration

Translation + Deformation 0.53 0.45 0.59 Validation

Table 3 Errors on the MNIST test set applying all transformations.
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Adding the input noise annealing to the transformation sequence reduces the error
less than 0.1% (about 9 mismatches) for the 20x20 sized digits. Considering it the
other way round, the addition of the transformation line-up to the noise annealing
reduces the error rate in about 0.45% - 0.55% depending on the image size.
Contribution of the input noise annealing seems low in the total test error. We
conjecture is that the action of the input noise annealing and the image transformation
do overlap.

Figure 3 shows the mismatched digits for a minimal configuration found during the
extensive experimentation (for an experiment with 20x20 sized images).

&) 44490555«

COp09&s1 clp04202 C4pl0z4ag C4p01113 C4p02131 C4p08E28 CEpOD&TE CEp01738 CEpO2036 CEpO2041

TS LYY T 74

CEp02598 CEp035593 CEep09730 Chpl2p55 Chpl3423 Chpl3763 C7p01227 C7pl6s77 C7p09&06 CBpl0583

DY e Y UNQG Y T F

“
CEpO1&73 CBp08280 Cep0a4ng C9p01902 C9p02294 C9p02940 CIp03Ra0 C9pl4762 CIplas72 C9p09531

Figure 3 Mismatched digits for the best configuration found (30 failures)

A last comparison involves testing the invariance of the trained ANN to noise in the
test patterns. Since the proposed training is based on a noise injection, the conjecture
is that the resulting learned ANN should be rather robust.

For this purpose the test set with the 20x20 sized digits is transformed in two
different ways. At first, several new test sets are generated which contain wiped out
pixels (set to white value) up to a certain proportion (at 10%, 20%, up to 50%). A
second collection contains different test sets where a certain proportion of pixels are
changed by random noise (in the [0, 1] interval). A sample is shown in Figure 4.
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Figure 4 Noise Tests. Original test image (left) and successive versions with wiped out pixels
(above) at 10%-50% proportion, and with randomized pixels at 5%-25% rates (below).

All the ANNs were trained with the usual Pattern Transformations and confronted
with and without Noise Annealing.

The results for the wiped out pixels are shown in Table 4. ANNs trained with noise
injection show a respectable resistance in the test set. Test errors degrade to a 20% in
the last iteration when half of the pixels are wiped out. Training without noise
annealing, leads to a degraded performance, increasing the error rate by a factor
between 1.5 and 1.7.

Wiped out pixels 0% 10% 20% 30% 40% 50%  Test Error [%] on:
With Noise Annealing 0.43 0.99 2.32 523 1110 19.82 Last Iteration
Without Noise Annealing 0.53 1.47 3.82 8.84 17.74 29.66
With Noise Annealing 0.45 1.10 2.92 6.79 1432 24.33 Validation
Without Noise Annealing 0.60 1.47 3.95 9.01 17.63 28.91

Table 4 Errors on the MNIST test set with wiped out pixels. The ANNs were trained with the
usual Pattern Transformations, and with or without the Noise Annealing on the 20x20 sized
dataset. Cursive values match those obtained in Table 2 and Table 3 and are included for
reference.

The results for the randomized pixels are shown in Table 5. Test errors degrade to a
16% in the last iteration when a 25% of the pixels are randomized. Training without
noise annealing, leads to a considerable degraded performance, increasing the error
rate by a factor between 3 and 6.
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Randomized pixels 0% 5% 10% 15% 20% 25%  Test Error [%] on:

With Noise Annealing 0.43 0.76 1.71 4.22 11.25 15.73 Last Iteration
Without Noise Annealing 0.53 2.25 9.97 20.64 34.65 45.56
With Noise Annealing 0.45 0.89 2.61 6.74 15.70 24.00 Validation

Without Noise Annealing 0.60 2.31 9.94 2240 35.66 46.61

Table 5 Errors on the MNIST test set with randomized pixels. The ANNs were trained with
the usual Pattern Transformations, and with or without the Noise Annealing on the 20x20 sized
dataset. Cursive values match those obtained in Table 2 and Table 3 and are included for
reference.

In order to show how well our method matches against previous proposals, we list in
Table 6 the results for different works based on ANNs. The proposal of this paper
compares very favourable in terms of accuracy and network size (considering the
number of connections) against the others. All the proposed versions, even without the
Input Noise Annealing, outperform the rest.

Classifier | (Inputs)

Type Hid - ... - Hid - Out Deform. | Additional Processing | %Test | Reference

ANN (28x28) 1000-10 Yes None 3.80 |LeCun etal. 1998
ANN (28x28) 300-10 Yes None 3.60 |LeCunetal. 1998
ANN (28x28) 300-100-10 Yes None 2.50 LeCun et al. 1998
ANN (28x28) 500-150-10 Yes None 2.45 |LeCun etal. 1998
ANN (29x29) 800-10 None None 1.60 | Simard et al. 2003
ANN (29x29) 800-10 Affine None 1.10 | Simard et al. 2003
ANN (28x28) 500-500-2000-30 | Elastic None 1.00 | Salakhutdinov&Hinton 2007
ANN (29x29) 800-10 Elastic None 0.70 | Simard et al. 2003
ANN (14x14) 300-200-10 Trapez. None 0.66 | [this paper]

ANN (14x14) 300-200-10 Trapez. Input Noise annealing 0.56 | [this paper]

ANN (28x28) 300-200-10 Trapez. None 0.55 | [this paper]

ANN (20x20) 300-200-10 Trapez. None 0.53 | [this paper]

ANN (28x28) 300-200-10 Trapez. Input Noise annealing 0.51 | [this paper]

ANN (20x20) 300-200-10 Trapez. Input Noise annealing 0.43 | [this paper]

Table 6 Comparison of different proposals based on ANNs. Sorted by decreasing error on
the MNIST test set. Source: http://yann.lecun.com/exdb/mnist/

Table 7 summarizes the results for different works based on CNNs and DNNs. The
proposal of this paper performs better than a good part of the works. More recent
CNNs and DNNs have better accuracies. Ensembles are able to deliver about 10
errors fewer (a 0.1%) than their base members. This fact should be taken into account
when comparing the different proposals.
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Classifier | (Inputs) Hid ... x Hid x Out

Type [connections (free)] Deform. | Committee | Additional Processing %Test | Referente
Conv. NN | (16x16) [~100000 {~2600}] None Subsampling to 16x16 pixels 1.70 | LeCun 1998
Conv. NN | (28x28) [~260000 {~17000}] None None 0.95 |LeCun 1998
Conv. NN | (28x28) [~260000 {~17000}] Huge None 0.85 | LeCun 1998
Conv. NN | (28x28) [~260000 {~17000}] Yes None 0.70 | LeCun 1998
Conv. NN | (28x28) 50-50-50-50-200-10 None None 0.60 | Ranzato 2006
Conv. NN | (29x29) Affine None 0.60 | Simard 2003
ANN (14x14) 300-200-10 [121310] Trapez. Input Noise annealing 0.56 | [this paper]
Conv. NN | (28x28) None None 0.53 | Jarrett 2009
ANN (28x28) 300-200-10 [297710] Trapez. Input Noise annealing 0.51 | [this paper]
Deep NN | (28x28) 1000-500-10 [~1340000] Elastic None 0.49 | Ciresan 2010
Deep NN | (28x28) 1500-1000-500-10 [~3260000] Elastic None 0.46 | Ciresan 2010
ANN (20x20) 300-200-10 [182510] Trapez. Input Noise annealing 0.43 | [this paper]
Deep NN | (28x28) 2000-1500-1000-500-10 [~6690000] Elastic None 0.41 | Ciresan 2010
Conv. NN | (29x29) Elastic None 0.40 | Simard 2003
ANN (var) 800-10 Elastic | Yes, 25x Width normalization deslanting | 0.39 | Meier 2011
Conv. NN | (28x28) 50-50-50-50-200-10 Elastic None 0.39 | Ranzato 2006
Deep NN | (28x28) 2500-2000-1500-1000-500-10 [~12110000] | Elastic None 0.35 | Ciresan 2010
Conv. NN | (var) 1-20-30-40-60-80-100-120-120-10 Elastic None 0.35 | Ciresan 2011
Conv. NN | (var) 1-20-P-40-P-150-10 Elastic Yes, 7x width normalization 0.27 | Ciresan 2011
Conv. NN | (var) 1-20-P-40-P-150-10 Elastic Yes, 35x width normalization 0.23 | Ciresan 2012

Table 7 Comparison of the proposed model with DNNs and CNNs. Sorted by decreasing

error on the MNIST test set. Source: http://yann.lecun.com/exdb/mnist/

Simulations were performed on several workstations with dedicated Intel Xeon

E5520 CPU at 2.27 GHz, having each several core-processors which allow to process
up to 8 concurrent simulations. A specific Back Propagation simulator with vector
oriented data structures for a better vector processing optimization was designed. Each
simulation lasted about 10 hours for the downsized MNIST dataset (14x14), about 20
hours for the 20x20 sized images, and up to 41 hours for the original dataset. Image
pre-processing was performed using xnview.

5 Conclusions and Future Work

Achieving successive improvements in the recognition rate of handwritten text has a
two-fold purpose: on the one hand, very low error rates are needed for standalone
applications for automated recognition, because even error rates of 1% or lower imply
the need of human supervision. On the other hand, this constitutes an excellent
benchmark for pushing on step further the learning capabilities of a particular model.

Our research shows that a relatively small ANN is able of reaching a similar
performance to those reported for more complex architectures. A crucial strategy for
this achievement is an appropriate set of input transformations.
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A more general conclusion is that the “raw recognition” method is a valid approach.
No prior knowledge about the images and the expected features has to be explicitly
stated for achieving good recognition rates.

The Input Noise Annealing technique reveals to be useful in order to avoid the
frequent stalling in local minima which is typical for the Back Propagation algorithm. On
a standalone basis it reduces the test error down to a 1%. Another key strength
appears with noisy test patterns, to which this model is more tolerant.

The possible equivalence of the Noise Annealing with other techniques such as
weight decay or regularization has to be checked, but the first has an advantage for a
start, because it implies a much lower computational cost. Adding a random value to
28x28 input values has a lower impact in the processing time rather than computing an
extra term for each weight update.

A drawback of this Noise Annealing is the extension in time of the learning process.
The required 1000 cycles are compensated in part through the low dimensions of the
proposed neural network. Once the learning process has finished, the working of the
ANN is rather fast, moreover as it has a relatively small architecture.

The proposed deformation of the input patterns combined with the usual affine
transformations (rotation and translation) increases the robustness of the training set.
Without input noise annealing a test error of 0.55% is achieved, which is lower than the
0.7%-0.9% stated in (Simard et al., 2003) for the now widely used elastic distortion.

Further improvement is achieved through Dimensionality Reduction. The
subsampling the input space from 28x28 to 20x20 pixels with an interpolation
technique reduces the computational cost and leaves the test error rate at 0.43%. This
value compares very favourably against other similar methods, and does not lie to far
away from those stated for Convolutional (0.39%) and Deep Neural Networks (0.35%).

We consider that the original MNIST dataset has a low instance to input dimension
rate. Extending the training set through pattern deformations is effective, but to a
certain limit. Reducing the input dimensionality with an interpolation method decreases
the size of the parameter space, which in turn helps the gradient descent to be more
effective. Here the limit is the need to preserve a minimal image resolution for a correct
recognition.

Applying these input data transformations is relatively easy: no alternative neural
architectures or learning procedures are required. Incidentally, other models may
benefit from the proposed transformations.

The proposed deformation of the input patterns is different from the known affine
deformations and the elastic distortions. The latter was designed to simulate the natural
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uncontrolled oscillations of the hand of the writer. Our proposal lacks the ability of
inducing several local deformations in the image, so we intend to enhance the
deformation in this aspect.

Other pending questions are how the Input Noise Annealing is related with other
techniques such as weight decay or ridge regression, and to check whether some type
of regularization is able to further improve the learning and generalization capacities of
classic ANNSs.
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