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This paper compares machine learning techniques for detecting malicious webpages. The conventional
method of detecting malicious webpages is going through the black list and checking whether the web-
pages are listed. Black list is a list of webpages which are classified as malicious from a user’s point of
view. These black lists are created by trusted organizations and volunteers. They are then used by modern
web browsers such as Chrome, Firefox, Internet Explorer, etc. However, black list is ineffective because of
the frequent-changing nature of webpages, growing numbers of webpages that pose scalability issues
and the crawlers’ inability to visit intranet webpages that require computer operators to log in as authen-
ticated users. In this paper therefore alternative and novel approaches are used by applying machine
learning algorithms to detect malicious webpages. In this paper three supervised machine learning
techniques such as K-Nearest Neighbor, Support Vector Machine and Naive Bayes Classifier, and two
unsupervised machine learning techniques such as K-Means and Affinity Propagation are employed.
Please note that K-Means and Affinity Propagation have not been applied to detection of malicious web-
pages by other researchers. All these machine learning techniques have been used to build predictive
models to analyze large number of malicious and safe webpages. These webpages were downloaded
by a concurrent crawler taking advantage of gevent. The webpages were parsed and various features such
as content, URL and screenshot of webpages were extracted to feed into the machine learning models.
Computer simulation results have produced an accuracy of up to 98% for the supervised techniques
and silhouette coefficient of close to 0.96 for the unsupervised techniques. These predictive models have
been applied in a practical context whereby Google Chrome can harness the predictive capabilities of the
classifiers that have the advantages of both the lightweight and the heavyweight classifiers.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Web security threats are increasing day by day (Facebook,
2010; Malware, 2011; Sood & Enbody, 2011). The open nature of
the Internet allows malicious webpages to pose as ‘safe webpages’
and consequently some users are misled to think that these
webpages are safe.

As the use and the speed of the Internet increased over the last
two decades, web developers have increased the usage of images,
JavaScript and other elements. The Google search engine is a clear
example. At the beginning, it had very few elements. There are now
more elements, graphics, stylesheets and the HTML specifications
which have been added as time went on. Initially, the only way
to create a webpage was by static HTML. JavaScript was then added
for user interactivity. ActiveX, Silverlight, Java Applets, etc. were
further added to include features. For example, ActiveX allowed
browsers to host various executables which enabled users to read
PDF and various other file formats such as Flash, DivX, etc. Web
developers started using the integrated development environ-
ments that generated a considerable HTML markup language and
this increased the HTML payload. The number of browsers
increased and some of these browsers, especially Internet Explorer
had their own quirks and needed more work from the developers.
These factors raised the complexity of the webpages that led to
potential increase in how webpages are ‘adversely affected’ and
have become malicious.

Cross Site Scripting (XSS) injects malicious code from an
unexpected source. These malicious codes can get hold of the
cookies, browsing history and then send them over to the mali-
cious webpage. Thus the user’s privacy is jeopardized. There have
been many attempts to prevent this sort of attacks (Lucca,
Fasolino, Mastoianni, & Tramontana, 2004). XSS not only affects
the user but also it affects the server. The webpage is used as
the vehicle to transfer infections to multiple users. The malicious
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code then executes in the user’s browser. The problem has been
intensified with the addition of scripting capabilities that did
not exist at the beginning of the history of web browsing. With
the addition of scripting capabilities, the users are benefitting
with a better user experience but have become prone to these
additional security problems. These scripts run on users’ brows-
ers. The web developer may build a webpage only using HTML,
but an attacker can still inject scripts to make it susceptible to
scripts. These scripts can then access the cookies that are used
for authentication. The XSS vulnerability therefore affects the
users and the webpages. Take for example, a user visits a web-
page and decides to purchase a product. The user adds the items
to the basket and would like to checkout. Then he fills in a form
to register. Each of these users is uniquely identifiable by the
webpage through the use of cookies. The criminal will be able
to look at the cookies and impersonate the user and buy the prod-
ucts, without the knowledge of the user. By the time the user has
realized the problem, the money has already been dispatched
from the user’s account.

Almost all HTML tags are wrapped by ‘greater than’ and ‘less
than’. To write the script tag, these two characters are needed.
There are several combinations of characters that can be generated
(Braganza, 2006). The combinations are quite vast and will likely to
increase. The combinations of letters that generate the letters are
dependent on browser version and the default language.
Braganza (2006) states that the browser cannot be trusted because
of these extensive possibilities and some precautions are required.
To cleanse, data entered are encoded and data displayed are both
decoded, this process is known as ‘sanitization’. In terms of how
the webpage is deployed to the user, the operations team have to
make sure that the firewall or any other forms of preventative
measures are kept up to date. Another security threat that is very
difficult to detect is clickjacking. This is a relatively new threat that
has become more prevalent through the advancement of modern
browsers. The interesting thing about clickjacking is that it does
not use security vulnerabilities, rather uses the browsers most
common feature such as hyperlinks. The user is encouraged to click
a link to a webpage. But this webpage has two webpages one is dis-
played to the user and the other one the malicious webpage which
is hidden from the user (Hansen & Grossman, 2008). The hidden
webpage executes the malicious code even though the user thinks
that the information is on the right webpage. This technique is very
hard to detect by inspecting the source code and there have not
been many successful ways to prevent it from happening.

Drive-by-download occurs without the knowledge of a user and
the downloaded file is used for malicious purposes. This malicious
executable installs itself on users’ computer. This is a very popular
method that has been used by Harley and Bureau (2008) to spread
malware infection on the Internet. There are three components in
the attack, the web server, the browser and the malware. An
attacker finds a web server to serve the malware. The user who vis-
its a webpage hosted in this web server is then exploited by the
webpage, and some code utilizes software loopholes to execute
commands on the user’s browser are injected. The web server sub-
sequently provides the malware that is downloaded by the brow-
ser. As a result, the browser that is targeted will have a known
vulnerability that the attacker will try to exploit. Internet Explorer
had many instances of ActiveX loopholes that the attackers had
used and are still using and Harley and Bureau (2008) have pro-
vided potential solutions. The first solution is to completely isolate
the browser from the operating system so that the arbitrary codes
are not at all executed on the browser. Another solution is for web
crawlers to visit webpage and see whether they are hosting any
malware content. But the attackers can avoid by using a URL that
does not have a corresponding hyperlink. Crawlers by its nature
only visit URLs that have a corresponding hyperlink.
Browsers these days use publicly available blacklists of mali-
cious webpages. These blacklists are updated after a few days or
even a month. These gaps allow for webpages to be affected while
being unnoticed to the crawler. At this point, the users will also get
affected, because the browser thinks the webpage to be secure, as
it has never been in the blacklist. Take another scenario where a
regular webpage may be hacked and injected with malicious code
visible only to some users or a group of users of an organization or
a country. The blacklists will not be able to ‘blacklist’ those either.
Some crawlers do not validate the JavaScript code because the code
is executed on the server and not in a browser. This allows client
vulnerabilities to pass through easily. Even though some of the
scripts which are assumed to be safe, these scripts can load mali-
cious scripts remotely and then execute them on the computer.
Some scripts create iFrames and then load external webpages that
are malicious (Provos, Mavrommatis, Rajab, & Monrose, 2008).
These external webpages then gets hold of the cookies and steal
the identity. The users then browse this malicious webpage and
get infected and are then easily tracked by remote users from
somewhere else. The users also may run malicious executables
without even knowing that the executables have already access
to the system and are monitored from somewhere else. Webpages
are the common victims to all these threats that have been
described above. The features in a webpage can indicate whether
it is malicious or not. Researchers have studied and analyzed a
large number of features with or without machine learning tech-
niques described below.

Kan and Thi (2005) carried out one of the first research work that
utilized machine learning to detect malicious webpages. This work
ignored webpage content and looked at URLs using a bag-of-words
representation of tokens with annotations about the tokens’ posi-
tions within the URL. A noteworthy result from Kan and Thi’s
research is that lexical features can achieve 95% accuracy of the
page content features. Garera, Provos, Chew, and Rubin (2007)s
work used logistic regression over 18 hand selected features to clas-
sify phishing URLs. The features include the presence of red flag key
words in the URL, features based on Google’s page ranking, and
Google’s webpage quality guidelines. Garera et al. achieved a classi-
fication accuracy of 97.3% over a set of 2500 URLs. Although this
paper has similar motivation and methodology, it differs by trying
to detect all types of malicious activities. This paper also uses more
data for training and testing, as described in the subsequent sec-
tions. Spertus (1997) suggested an alternative approach and
endeavored to identify malicious webpages, Cohen (1996)
employed the decision trees for detection and Dumais, Platt,
Heckerman, and Sahami (1998) utilized inductive learning algo-
rithms and representations for text categorization. Guan, Chen,
and Lin (2009) focused on classifying URLs that appear in webpages.
Several URL-based features were used such as webpage timing and
content. This paper has used similar techniques but applied them to
webpages which have much more complex structures with better
accuracies. Mcgrath and Gupta (2008) did not construct a classifier
but performed a comparative analysis of phishing and non-phish-
ing URLs. With respect to data sets, they compared non-phishing
URLs drawn from the DMOZ Open Directory Project to phishing
URLs from Phishtank (2013) and a non-public source. The features
they analyzed included IP addresses, WHOIS thin records (contain-
ing date and registrar provided information only), geographic infor-
mation, and lexical features of the URL (length, character
distribution and presence of predefined brand names). The differ-
ence is that this paper utilizes different types of features to add to
the novelty. Provos et al. (2008) carried out a study of drive-by
exploit URLs and used a patented machine learning algorithm as a
pre-filter for virtual machine (VM) based analysis. This approach
is based on heavyweight classifiers and is time consuming. Provos
et al. (2008) used the following features in computer simulation,
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content based features from the page, whether inline frames are
‘out of place’, the presence of obfuscated JavaScript, and finally
whether iFrames point to known malicious sites. Please note, an
‘iFrame’ is a window within a page that can contain another page.
In their evaluations, the machine learning based pre filter can
achieve 0.1% false positives and 10% false negatives. Provos et al.’s
approach is very different to this paper as the features are primarily
focused on iFrames. Bannur, Saul, and Savage (2011)s research has
some similarities to this paper but it uses a very small dataset and
furthermore this paper utilizes various other types of features.
Abbasi, Zhang, Zimbra, Chen, and Nunamaker (2010) and Abbasi,
Zahedi, and Kaza (2012) ran some classification to detect fake med-
ical sites but the size of dataset was very small, whereas this paper
focuses on detecting any type of malicious webpages. Fu, Wenyin,
and Deng (2006) and Liu, Deng, Huang, and Fu (2006)s research
considered the visual aspects of a webpage to determine whether
the page is malicious or not. Le, Markopoulou, and Faloutsos
(2010) detected phishing webpages only using the URLs. And, Ma,
Saul, Savage, and Voelker (2009b) looked at online learning to
detect malicious webpages from URL features.

As the security improves, the attackers will devise new ways to
avoid barriers raised by administrators and web developers. To fur-
ther improve security, an automated tool is required in order to
detect the vulnerabilities. One approach to automation is for web
developers to secure and enhance their webpages. But there are
limits to the extent that developers can work to secure webpages.
Web developers are bound by the web frameworks they use
(Okanovic, Mateljan, & May, 2011). If the web frameworks fail to
take preventative measures, the users’ machines get infected and
the webpages become vulnerable. This paper takes the research in
malicious webpages described above further by applying three
supervised machine learning techniques such as Naive Bayes Clas-
sifier, K-Nearest Neighbor and Support Vector Machine, and two
unsupervised machine learning techniques like K-Means and Affin-
ity Propagation, and compares the results. The novel unsupervised
techniques of K-Means and Affinity Propagation have not been
applied to detection of malicious webpages by any other research-
ers in the past. Moreover, to add to the novelty, the research utilizes
more complex structures for better accuracies, more data for train-
ing and testing, and employs both the lightweight and the heavy-
weight classifiers for detection of all types of malicious activities.

2. Machine learning models

This section provides a brief overview of the five machine
learning techniques that have been used in this paper; they are
Naive Bayes Classifier, K-Nearest Neighbor, Support Vector
Machine, K-Means and Affinity Propagation, briefly described
below. The computer simulation results of these machine learning
methods are discussed in Section 3.

2.1. Naive Bayes Classifier

Naive Bayes Classifier uses the Bayes’ theorem. The classifier
assumes that all the features are independent of each other. It
learns pðCkjxÞ by modeling pðxjCkÞ and pðCkÞ, using Bayes’ rule to
infer the class conditional probability (Bayes & Price, 1763). The
model is

yðxÞ ¼ arg max
x

pðCkjxÞ ¼ arg max
x

pðxjCkÞ � pðCkÞ

¼ arg max
x

YD

i¼1

pðxijCkÞ � pðCkÞ

¼ arg max
x

XD

i¼1

log pðxijCkÞ þ log pðCkÞ ð1Þ
The training in this paper was carried out using Gaussian
likelihood (alternative options for training include multivariate
likelihood and multinomial likelihood).

pðxjCkÞ ¼
YD

i¼1

Nðlik;rikÞ ð2Þ

where:
� Ck are the classes where C = {C1,C2, . . . ,Ck}.
� Nðlik;rikÞ is the normal distribution.
� l is the mean of the Gaussian distribution.
� r is the standard deviation of the Gaussian distribution.

The complexity of the model OðNMÞ is as such that each training
instance must be visited and each of its features ought to be
counted. For non-linear problems, it can only learn linear
boundaries for multivariate/multinomial attributes. With Gaussian
attributes, quadratic boundaries can be learnt with unimodal
distributions (Jordan, 2002). Naive Bayes is generally used in text
classification and is one of the most widely used classification algo-
rithm in machine learning because it is fast and space efficient,
which is also noticed in the simulation results described in
Section 3.

2.2. K-Nearest Neighbor

K-Nearest Neighbor works in such a way that the label of a new
point x̂ is classified with the most frequent label t̂ of the k nearest
training instances. It is modeled as

t̂ ¼ arg max
C

X
i:xi2Nkðx;x̂Þ

dðti;CÞ ð3Þ

where:
� Nkðx; x̂Þ  k points in x closest to x̂.

� Euclidean distance formula:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPD

i¼1ðxi � x̂iÞ2
q

.
� d(a, b) 1 if a = b; 0o/w.

The model does not require any optimization and it trains itself
using cross validation to learn the appropriate k. k regularizes the
classifier, as k ? N the boundary becomes smoother. OðNMÞ is used
as space complexity, since all training instances and all their
features need to be kept in memory. K-Nearest Neighbor uses a
very simple technique for classification, and cannot handle large
training dataset as shown in the results section. It can handle
non-linear boundaries easily (Altman, 1992).
2.3. Support Vector Machines

SVM was developed by Cortes and Vapnik (1995) and it is
widely regarded as one of the most effective models for binary
classification of high dimensional data. SVM and indeed any other
supervised classifiers use a similar technique to classify webpages
shown in Fig. 1. SVM is modeled as

hðxÞ ¼ bþ
XN

n¼1

yiaiKðx; xiÞ ð4Þ

where
� h(x) is the distance of the decision boundary.
� b is the bias weight.
� a is a coefficient that maximize the margin of correct classifica-

tion on the training set.
� N is the number of features.
� K is the kernel function.
� x is a feature vector.



Fig. 1. Supervised machine learning architecture for classifying webpages.
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The positive or negative sign of this distance indicates the side
of the decision boundary on which the example lies. The value of
h(x) is limited to predict a binary label for the feature vector x.
The model is trained by initially specifying a kernel function
K(x, x0) and then computing the coefficients ai that maximize the
margin of correct classification on the training set. The required
optimization can be formulated as an instance of quadratic pro-
gramming, a problem for which many efficient solutions have been
developed (Chang & Lin, 2012).
2.4. K-Means

K-Means is a geometric clustering, hard-margin algorithm,
where each data point is assigned to its closest centroid. It is mod-
eled using hard assignments rnk 2 {0, 1} so that "n

P
krnk = 1, i.e.

each data point is assigned to one cluster k (MacQueen, 1967).
The geometric distance is calculated using the Euclidean distance,
l2 norm:

jjxn � lkjj
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD

i¼1

ðxni � lkiÞ
2

vuut ð5Þ

where
� lk is cluster centroid.
� D is the no of points.
� x is one of the points.

The mini-batch K-Means algorithm uses mini batches to reduce
the computation time while still attempting to optimize the same
objective function. Mini-batches are subsets of the input data, ran-
domly sampled in each training iteration. These mini-batches dras-
tically reduce the amount of computation required to converge to a
local solution. Mini batch k-means converges faster than K-Means,
but the quality of the results is reduced. In practice, the difference
in quality can be quite small, as shown in the results section.
2.5. Affinity Propagation

Affinity Propagation is an unsupervised algorithm created by
Dueck (2009) where each data point acts as centroids and these
data points choose the number of clusters. The following is an
example of how to represent the centroid for datapoint i

ci 2 f1; . . . ;Ng ð6Þ

The algorithm maximizes the following function

SðcÞ ¼
XN

i¼1

sði; ciÞ þ
XN

k¼1

dkðcÞ ð7Þ

The similarity of each point to the centroid is measured by the first
term in Eq. (7) and the second term is a penalty term denoted as -1.
If some data point i has chosen k as its exemplar that is ck – k, but k
has not chosen itself as an exemplar i.e. ck = k, then the following
constraints could be presented in Eq. (8).

dkðcÞ ¼
�1 if ck–k but 9i : ci ¼ k
0 otherwise

�
ð8Þ

A factor graph can represent the objective function and it is possible
to use N nodes, each with N possible values or with N2 binary nodes.
Each variable node ci sends a message to each feature node dk and
each factor node dk sends a message to each variable node ci. The
number of clusters is controllable by scaling the diagonal term
S(i, i), which shows how much each data point would like to be an
exemplar. Although Affinity Propagation was developed very
recently it has a very good performance as shown later in the results
section. The overall architecture of the unsupervised machine learn-
ing is outlined in Fig. 2.

3. Results

The architecture of the computer simulation carried out for this
paper is presented in Fig. 3. The experiment was conducted on an
Intel Xeon E3-1220 4 Cores � 3.1 GHz computer with 12 GB of
RAM. First, 100,000 webpages were downloaded using a crawler



Fig. 3. The architecture of Web Application Classifier (WAC).

Fig. 2. Unsupervised machine learning architecture for classifying webpages.
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and then converted into feature vectors. Then a tool named Web
Application Classifier (WAC) took these vectors as inputs, and
applied the machine learning algorithms described in the previous
section to create the predictive models. These predictive models
read vectors of the new webpages to produce an output that indi-
cated whether a webpage is safe or not. The Sections 3.1–3.5
describe which features were used and how the webpages were pre-
processed and cleansed before placing inside the predictive models.

3.1. Data sources

The downloaded webpages were divided into two sets,
malicious and safe. The source for the list of safe webpages was
gathered primarily from Alexa (2013), the malicious ones were
collated primarily from Phishtank (2013) and two types of repre-
sentation of each webpage were created. One contained all the
HTML codes and other only had English characters.

3.2. Features

3.2.1. Semantic
This paper utilizes vector space representation to extract the

semantic features, as it is commonly used in classification and
clustering. Salton, Wong, and Yang (1975) carried out research
using a vector space model for automatic indexing of webpages,
Cohen and Singer (1999) used a context-sensitive learning method
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for categorizing text, and Sahami, Dumais, Heckerman, and Horvitz
(1998) utilized a Bayesian approach to classify emails for detecting
spam. Vector space representation denotes webpages as vectors in
a very high dimensional space. Each webpage is represented as a
Boolean or numerical vector; in this paper, it is represented as a
numerical vector. In this very high dimensional space, each term
is a sequence of alphanumeric characters. A given webpage has
in each component a numerical value specifying some function f
of often a term corresponding to the dimension appearing in the
webpage. Salton and Buckley (1988) used an alternative term
called weighting but it is not used in this simulation. In a vector
space representation of webpages, n(ti,d) is the number of occur-
rences of term ti in webpage d; n(ti,d) is a random variable. The
function f is applied to n(ti,d) and produces a value for the ith com-
ponent of the vector for webpage d. The identity function f(a) = a is
applied to the term counts. Other common functions that are
applied to the term frequencies are outlined below.

f ðaÞ ¼ logðaþ 1Þ ð9Þ
f ðaÞ ¼

ffiffiffi
a
p

ð10Þ

f ðaÞ ¼ a
aþ const

ð11Þ

Eq. (9) was defined by Robertson and Jones (1976). Eq. (10) was
used in the scatter/gather system (Cutting, Karger, Pedersen, &
Tukey, 1992) for webpage clustering and was found to outperform
Eq. (9). Robertson and Walker (1994) proposed Eq. (11) and found
this general form to be useful for webpage retrieval by making
use of various instantiations of the constant value.
Fig. 4. Visual representation of supervised learning models demo
Term frequency – inverse document frequency (TFIDF)
weighting is the most used function for the webpage term frequen-
cies. The term frequencies (TF) in each webpage and the inverse
document (webpage) frequency (IDF) of each term in the entire
collection are part of the weighting function. IDF is defined as

IDFðtÞ ¼ log
N
nt

� �
ð12Þ

where N is the total number of webpages in the collection and nt is
the number of webpages in which term t appears at least once. The
TFIDF weight for a term t in a webpage d is the product of the term
frequency and the inverse webpages frequency for that term,
returning:

TFIDFðt; dÞ ¼ nðt;dÞ:IDFðtÞ ð13Þ

This paper uses a simple Boolean representation of webpages
that records whether or not a given term appears in a webpage.
Most rule-based methods (Apt´e, Damerau, & Weiss 1994; Cohen,
1996) use an underlying Boolean model and Boolean vector
representation has been used in probabilistic classification models.
Another way to incorporate word frequency information into
probabilistic classification models is by using a parametric
distribution, such as bounded Gaussian or Poisson distribution to
capture the probability of words appearing number of times in
webpages. Yang and Chute (1994) provide further evidence that
Boolean representation is adequate by comparing Boolean and
frequency-based representations.
nstrating clear separations of malicious and safe webpages.



Table 1
Results of comparisons of supervised machine learning models that detect malicious
webpages (key: KNN: K-Nearest Neighbor, LS: Linear SVM, RS: RBF SVM, NB: Naive
Bayes).

No. of webpages KNN (%) LS (%) RS (%) NB (%)

50 74 80 79 77
100 75 82 83 78
500 79 86 92 78
5000 91 93 97 84
100,000 95 93 98 89
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Word stemming reduces the words in the webpages to their
root forms, known as word stems. Porter (1997) described a simu-
lation model that utilizes the word-stemming algorithm, which is
able to combine similar and dissimilar items into one. But Frakes
and Baeza-Yates (1992) compared various stemming methods to
unstemmed representations and showed that in many cases the
performances of both representations are very close to each other.

3.2.2. URLs
URLs identify webpages and are used as unique identifiers.

Many malicious webpages have suspiciously looking characters
in their URLs and in their contents. Sometimes URLs have spelling
mistakes too. The lexical features of URLs were fed into the
machine learning models. If there were spelling mistakes or suspi-
cious characters in the URL, then they were regarded as suspicious.

3.2.3. Page links
Webpages have many links in order to provide further informa-

tion. The webpages that link to malicious webpages are likely to be
malicious themselves. The computer simulations extracted all the
Fig. 5. ROC curves for supervise
links from each webpage and they were also fed into the machine
learning models.

3.2.4. Visual features
All the features that have been mentioned so far are text based

such as source codes, stripped HTML, domain names and URLs. The
visual features are based on images. First, screenshots of webpages
were downloaded by passing the URLs to PhantomJS (a headless
webkit browser with JavaScript API). PhantomJS took each URL,
saved a screenshot of the webpage and converted them to Portable
Network Graphics (PNG) file format. Images were then converted
to a format understandable by the proposed models. There are
two popular techniques that are generally used such as Speeded
Up Robust Features (SURF) and Scale Invariant Feature Transform
(SIFT) (Lowe, 2004). The simulation used SURF, as it has less strin-
gent licensing options compared to SIFT. The idea behind using the
visual features is that malicious webpages look simpler because
they are likely to have less input from designers whereas safe web-
pages are designed better.

An exciting feature was that the unsupervised machine learning
models were used in conjunction with supervised machine learn-
ing models and each screenshot of the webpages were analyzed
using SURF. The values from the SURF were clustered using the
unsupervised machine learning models. These clusters were then
fed into the supervised machine learning models to further
improve the classification.

3.3. Evaluation of the machine learning models

Machine learning methods discussed previously were used on
different combinations of features. First the webpages were classi-
fied from just content features, then other types of features were
d machine learning models.



Table 2
Results based on datasets provided by Ma et al. (2009a).

Classifier Accuracy (%)

K-Nearest Neighbor 91
RBF Support Vector Machine 97
Linear Support Vector Machine 92
Naive Bayes 85
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added and the gain was reexamined. It was found in this research
that the highest accuracy is obtained by combining URL, page-link,
semantic TFIDF and SURF features, which adds to the paper’s nov-
elty. This combination of features was used as the optimal feature
configuration. The accuracy of the unsupervised models had to be
done differently because the truth labels are not known and the
evaluation had to be performed using the model itself. Finally
the machine learning techniques were trained on data sets with
varying ratios of malicious and safe webpages. 70% of the labeled
webpages were used for training and 30% for testing. The ratio of
malicious to safe webpages is the same in testing as well as train-
ing for the supervised machine learning models.

The supervised classification performances were evaluated in
terms of precision and recall, while the silhouette coefficient was
used to evaluate the unsupervised techniques. The silhouette
coefficient outputs a score relating to a model with better-defined
clusters. The silhouette coefficient is defined for each sample and
composed of two extremes, bounded between �1 for incorrect
clustering and +1 for highly dense clustering.
3.3.1. Supervised techniques
Fig. 4 shows a visual representation of webpages as safe or mali-

cious, using supervised classification. K-Nearest Neighbor, Radial
Fig. 6. Confusion matrices for supervi
Basis Function (RBF) SVM, Linear SVM and Naive Bayes clearly sep-
arate the safe and malicious webpages. The webpages used in Fig. 4
is somewhat smaller in numbers in order to demonstrate pictorial
representations of the outcomes. Table 1 further demonstrates the
overall results of the supervised techniques. The accuracy for all
the supervised models improved as the number of webpages
increased. In general, SVM outperformed the rest. In the case of
SVM, the accuracy values are remarkably low even when a small
number of webpages are applied. As soon as the number of
webpages exceeds 500, the accuracy increases. In the case of other
models, a similar trend is observed at the beginning, as the number
of webpages increases the accuracy also increases. The results
suggest that the models were able to generalize better as more
patterns emerged from various sources. Receiver Operating
sed machine learning techniques.



Fig. 7. Visual representation of unsupervised learning models demonstrating clear separations of malicious and safe webpages.

Table 3
Results of comparisons of unsupervised machine learning models that detect
malicious webpages.

Classifier Silhouette coefficient

Mini Batch K-Means 0.877
Affinity Propagation 0.963
K-Means 0.877
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Characteristic (ROC) curve and Confusion Matrix are used to
analyze the efficiencies and performances of the supervised algo-
rithms, as outlined in Figs. 5 and 6. ROC curve is a graph which
demonstrates the efficiency and performance of a classifier system
by plotting true positive rate against false positive rate at various
threshold settings. Fig. 5 illustrates that Linear SVM and RBF SVM
perform the best out of the four classifiers with 0.93 and 0.91
respectively. K-Nearest Neighbor performs the worst, because it
had less access to training data due to memory constraints.
Confusion Matrix is a contingency table enables visualization of
the efficiency and performance of a supervised learning algorithm,
which makes it easy to understand if the system is confusing or
mislabeling two classes. In Fig. 6, the confusion matrices have four
sections, True Positive, True Negative, False Positive and False
Negative. True Positive denotes that a malicious webpage is cor-
rectly identified as malicious. True Negative represents that a safe
Fig. 8. The Chrome extension uses 4 steps to dec
webpage is correctly labeled as safe. False Positive means that a
safe webpage is incorrectly identified as malicious. False Negative
indicates that a malicious webpage is incorrectly labeled as safe.
The proposed machine learning techniques are designed as such
where the priority is given to detect the malicious websites that
is the true positives. With this is mind, the outstanding True Posi-
tives from highest to lowest are in the following order RBF SVM
(97.8%), Linear SVM (92.4%), Naïve Bayes (76.4%) and K-Nearest
Neighbor (9.9%).

The supervised models were also run against one of the most
popular datasets provided by Ma, Saul, Savage, and Voelker
(2009a). The data file had based on SVM and therefore the data
was converted into recognizable formats to be fed into the
machine learning models. Table 2 shows the results of the simula-
tions using Ma et al. datasets. All the supervised algorithms scored
over 85% and RBF SVM performed the best with 97% accuracy.
3.3.2. Unsupervised techniques
Fig. 7 shows that the three unsupervised algorithms do clearly

separate the malicious and safe webpages. In Fig. 7, a smaller
number of webpages were used in order to demonstrate pictorial
representations of the outcomes. The detailed numerical results
are outlined in Table 3 using 100,000 webpages. Affinity Propaga-
tion performs the best among the unsupervised machine learning
ide whether a webpage is malicious or not.
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algorithms in Table 3 because the silhouette coefficient is closest to
1. Furthermore, Affinity Propagation algorithm identifies three
clusters. The red cluster is grouped as outlier, whereas the other
two Mini Batch K-Means and K-Means find only two clusters.
3.4. Online learning

The conventional batch processing machine learning models
cannot learn incrementally. Online learning needs to employ a
different approach than the traditional batch processing to accom-
modate for the new incoming data. This problem is addressed in
this paper by using streaming data in the form of a list of malicious
Fig. 9. The Chrome extension shows that t

Fig. 10. The Chrome extension shows that the
webpages and safe webpages, which are compiled from various
sources. This allows the supervised predictive models inside
WAC to train automatically as new the data is coming in. This
has been found to be very useful with the use of Chrome extension,
which is described in Section 3.5.
3.5. Chrome extension

The chrome extension has been built using the architecture
shown in Fig. 8. The Content Script looks at the loading document
and sends the loaded source code to the predictive classifier. The
classifier then parses, creates the features and then responds with
he website loaded by the user is safe.

website loaded by the user is malicious.
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whether it thinks that the webpage is safe or malicious. The Back-
ground Script receives the response and displays whether it is safe
as demonstrated in Fig. 9 or malicious as shown in Fig. 10.

The four steps in the Chrome Extension are outlined below:

Step 1: Grab the webpage.
Step 2: Extract the features and send them to the predictive

model. The predictive model then sends a response.
Step 3: Content Script notifies the Background Script with the

response.
Step 4: Background Script displays the response.

‘Heavyweight’ classifiers are more accurate but they have poor
prediction time. Heavyweight classifiers use more features and so
have a higher accuracy. ‘Lightweight’ classifiers does the opposite,
it uses less features and consumes the features from the browser.
This paper utilizes Google Chrome which exploits the predictive
capabilities of the proposed supervised and unsupervised machine
learning models by taking into account the advantages of both the
heavyweight and the lightweight classifiers. The Chrome extension
obtains all the features from the browser and sends them to the clas-
sifier which uses more features, thus have a quick prediction time
and yet higher accuracy. The Chrome extension used the supervised
models for accurate classification and the unsupervised models
were used to ascertain the clusters of the screenshots of webpages.
4. Conclusion

This paper presents the evaluation of three supervised machine
learning models and two unsupervised machine learning models
for text classification, to detect webpages as either malicious or
not. All the supervised techniques were trained and applied to a
large number of webpages and manually split into two classes. In
a nutshell, all of the machine learning techniques show encourag-
ing performance with accuracies above 89% for supervised tech-
niques and a silhouette coefficient of 0.87 for unsupervised
techniques using 100,000 webpages. As the number of webpages
increased the accuracy rates for each type of machine learning
model were improved. The accuracies of the unsupervised models
are not better than the supervised one, but came close. This is
interesting because the unsupervised models were not aware of
the two classes of malicious and safe.

The major contribution of this paper is to explore a range of
machine learning algorithms that use a wide range of features
including the use of unsupervised algorithms. The computer simu-
lation results show that the classifiers can obtain information from
the URLs, page links, semantics and visual features of webpages.
Different sets of data on ratios of malicious and safe webpages
do not significantly affect the error rates of the classifiers. The
content features of webpages contributed the most to reduce the
error rates, and then the other significant ones were the URLs
followed by the SURF visual features. The visual features take more
computational resources and they are time consuming to compute.
However, the SURF features can capture the visual information
faster than the SIFT. Another significant contribution of this paper
is the use of Chrome extension in the browser. This allowed to
detect whether a webpage is malicious or not in a very short time.
The lightweight classifiers are very fast but are slightly less accu-
rate, whereas heavyweight classifiers are more accurate but take
more time. This extension enabled the SVM classifier to be ‘middle-
weight’ with very high accuracy and yet less prediction time. The
final contribution is the use of online learning to detect malicious
webpages, which allows for the training to take place without
going through the ‘old training data’. This is very significant for real
world applications. There is one limitation in this paper, that is
malicious webpages will not be detected if the harmful elements
are outside of the features that have been used in the proposed
algorithms. Despite this limitation, the paper’s contribution is
encouraging as the accuracy rates are improved through the use
of visual features.

There are possibilities that this research work could be taken
further, some of which are described below. (i) Changing the
implementation of the whole system to JavaScript which will
combine the separate processes into one. This approach will allow
the application to run on the browser as a standalone extension
without external dependencies. This method requires that the
machine learning models to be rewritten. The question to be
answered is whether the prediction time will still remain the same.
(ii) Using deep learning to extract features automatically. With the
current scheme all the features have to be specified in the imple-
mentation and it is difficult to incorporate new features because
the system has to be pre-processed and it is time consuming. Deep
learning may be able to extract features automatically and
probably will adapt to the future threats that could use new fea-
tures which have not been discovered as yet. The question remains
the same whether deep learning will be as effective as the current
successful systems. (iii) Using multiple processing units of a
Graphical Processing Unit. Using distributed processing in general
will improve the time to build the machine learning models and
also will improve the prediction time. However, the main challenge
will be to rewrite the algorithms so that they will make an efficient
use of hardware especially on mobile devices.
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