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Abstract

M2M (machine-to-machine) systems use various communication technologies for automatically monitoring and controlling ma-
chines. In M2M systems, each machine emits a continuous stream of data records, which must be analyzed in real-time. Intelligent
M2M systems should be able to diagnose their actual states and to trigger appropriate actions as soon as critical situations occur.

In this paper, we show how Complex Event Processing (CEP) can be used as the key technology for intelligent M2M systems.
We provide an event-driven architecture that is adapted to the M2M domain. In particular, we define different models for the M2M
domain, M2M machine states and M2M events. Furthermore, we present a general reference architecture defining the main stages
of processing machine data. To prove the usefulness of our approach, we consider two real-world examples ’solar power plants’
and ’printers’, which show how easily the general architecture can be extended to concrete M2M scenarios.
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1. Introduction

An essential characteristic of technological progress is the
increased digital interconnection and computerization of tech-
nical systems and components. In recent years, also intelli-
gent machines have been integrated in digital networks: M2M
(machine-to-machine) systems use different communication
technologies to automatically monitor and control remote ma-
chines/devices with or without any manual interaction.

M2M systems in daily operations can be found in several ap-
plication areas, for instance, remote monitoring (e.g., solar pan-
els, commercial printer services), track & trace (e.g., rental bi-
cycles, fleet tracking), facility management (e.g. elevators, en-
ergy management), vending segment (e.g., vending machines),
or metering (e.g., utility meters). More and more application ar-
eas will arise in the future, see (Chen et al., 2012; Pandey et al.,
2011). M2M exhibits the potential to serve as one core concept
for an interconnected, sustainable, and mobile future (BMWi,
2011).

Figure 1 depicts an example of a conventional wireless M2M
system: the monitoring of an industrial solar power plant. Each
solar inverter (= machine) is equipped with a GPRS (Gen-
eral Packet Radio Service) terminal that transmits a continuous
stream of solar panel data to a central M2M backend server via
a wireless communication network. A M2M portal server pro-
vides a visualization of the collected data, which human experts
can use to monitor the M2M system performance.
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M2M System

Figure 1: Conventional M2M system

Most conventional M2M systems support only the collec-
tion, aggregation, and presentation of low level machine data.
Still they do not support in-depth and flexible analysis of M2M
system data. Instead, machine data must mostly be correlated
and interpreted manually by domain experts. Beyond that some
more sophisticated M2M systems provide hard-coded process-
ing of machine data, which is is difficult and expensive to adapt
to changing application needs (e.g. changes of the M2M sys-
tems topology or new types of machines). Altogether, today’s
M2M systems still do not achieve its potential of exploiting the
machine data in an integrated and flexible manner.

Therefore, a new class of M2M decision support systems is
required allowing the analysis of machine data in an intelligent
and flexible manner. Furthermore, such systems must be able
to process high-frequent streams of machine data nearly in real-
time, because usually machine problems must be identified as
soon as possible to prevent major damage.

In this paper, we suggest a novel, event-driven approach for



the intelligent analysis of (wireless) M2M systems'. Main con-
cept of our approach is the application of Complex Event Pro-
cessing (CEP) for M2M applications. CEP is a rather new soft-
ware technology (Luckham, 2002) for processing continuous
streams of general data in (near) real-time. The basic concept
of CEP is in-memory pattern matching, which means to iden-
tify those patterns in a stream of data that represent a mean-
ingful situation in the application domain. Therefore, CEP can
be used in M2M systems for enabling situation- and context-
awareness and, consequently, leads to a new quality of M2M
systems. Because event patterns are defined descriptively by
rules, CEP can improve significantly the adaptability and flexi-
bility of M2M solutions.

In the following, we present a general architecture of an in-
telligent decision support system for M2M using CEP. In partic-
ular, we provide an overall system architecture, various M2M-
specific domain, state and event models, and a M2M-specific
event processing network (EPN). In order to adapt our approach
to a particular M2M domain, only the domain-specific knowl-
edge, such as the events types and the specific event process-
ing rules, has to be specified and integrated into the proposed
general architecture. Experimental results obtained by two real-
world case studies prove the feasibility of our approach.

The outline of the paper is as follows. In Section 2, we in-
troduce the main concepts of our intelligent event-driven M2M
system based on event processing principles. Section 3 presents
how our approach can be applied in practice by means of two
case studies: (a) solar power plants and (b) printer supply &
maintenance service. In the subsequent section, some exper-
imental results with real-world data sets are reported. In Sec-
tion 5, we discuss some related work. Finally, in the last section
we summarize the most important aspects of our approach and
provide an outlook on future lines of research.

2. CEP for M2M

2.1. CEP - Overview

CEP is a software technology for processing high frequent
event streams (Luckham (2002), Etzion & Niblett (2010)).2
Everything that happens inside or outside of a system can be
considered as an event (Luckham & Schulte, 2011). The stream
of incoming events is processed in three basic steps:

1. occurred events are captured in the environment,

2. the event stream is analyzed to detect meaningful event
patterns, and

3. an immediate reaction is triggered as a response.

Event stream processing systems manage the most recent set
of events in-memory and process them in near real-time.

CEP analyzes streams of incoming events to detect the pres-
ence of event patterns with a particular meaning for the domain.

I'The focus of this article lies on wireless M2M systems, but most concepts
hold for wired M2M systems as well.

2The terms Event Stream Processing (ESP) or Data Stream Processing are
used too.

The matching of an event pattern signifies a significant state of
the system and causes either the generation of a new complex
event or triggers a domain-specific action. Complex events cor-
relate several simple, low level events to more meaningful busi-
ness events and provide the real power of CEP.

CEP employ sliding windows and temporal operators to
specify temporal relations between events. A core concept of
CEP is a declarative event processing language (EPL) to ex-
press event processing rules. An event processing rule contains
two parts: a condition part describing the requirements for fir-
ing the rule and an action part that is performed if the condition
matches. The condition is defined by an event pattern using
several operators and further constraints.

In this article, we employ a simplified pseudo language for
specifying event processing rules supporting the following op-
erators:

Operators
A,V boolean AND, OR operator for events or
constraints.
NOT negation of a constraint.
-> temporal sequence of events.
Timer Timer(time) defines a time to wait.
.win:time specifies a time window in which an event
has to occur.

A CEP engine analyzes the stream of continuously incom-
ing events and executes the matching rules. Event process-
ing rules transform low level simple events into more com-
plex events in order to gain insight into the current state of
the environment. Popular open source CEP engines are Es-
per (ESPERTECH, 2014), Drools Fusion (JBoss, 2014), and
Triceps (Babkin, 2014).

If the central architectural concept of a software system is the
processing of events, then the system is called event-driven and
the architectural style is called an Event-Driven Architecture
(EDA) (Bruns & Dunkel (2010), Chandy & Schulte (2010)).

Although rather new, CEP has already been successfully ap-
plied in a variety of application domains with numerous doc-
umented use cases. Sample application domains are fraud de-
tection, algorithmic stock-trading, sensor networks, or business
activity monitoring (Bruns & Dunkel, 2010).

2.2. CEP for Intelligent Decision Support in M2M

We propose to extend the capabilities of M2M systems to-
wards real-time intelligence by taking advantage of innovative
event processing technologies. The requirements of a modern
M2M system comprise

e processing of high volumes of continuously arriving ma-
chine data and

e correlation of low level technical machine data to derive
more advanced domain information in real-time.

CEP has been designed to cope exactly with these require-
ments (Bruns & Dunkel, 2010; Luckham, 2002). In classic
M2M systems, data processing is usually implemented by hard-
coded algorithms, which are often scattered all over the source



code and difficult to maintain. Instead in CEP, event process-
ing is capsulated in rules that are clearly separated from other
source code. Furthermore, due to their declarative nature, rules
can be adapted and maintained in an efficient and agile manner.

Therefore, CEP has the potential to serve as key software
technology for building intelligent, responsive and flexible
M2M systems. Although, CEP alone is not sufficient for build-
ing decision support systems for M2M. Beyond that we need
a software architecture and a blueprint that fosters the develop-
ment of CEP-based M2M systems. In the following subsections
we present such an architecture in more detail.

2.2.1. M2M Event-Driven Architecture

In our approach, the basic architecture of classic M2M sys-
tems is enhanced by a CEP component. As a result, we devel-
oped an event-driven software architecture for M2M systems
(as depicted in Figure 2).

M2M System with CEP

M2M-AdminBoard |«—

M2M-Dashboard |«—*

CEP Component
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Figure 2: Event-driven architecture for M2M (see (Metzdorf et al., 2013))

Every data record that is transmitted in the M2M system
is considered as an event. The CEP component is responsi-
ble to continuously analyze the incoming stream of machine
data/ events. It consists of three parts:

e Event model: The event model specifies all possible types
of events that can be processed by the CEP component.

e FEvent rules: The event processing rules define the event
patterns to be detected in the event stream. Thus, the M2M
knowledge of domain experts is explicitly represented in
the rule base.

o CEP engine: A CEP engine tries to match the event pat-
terns with the incoming data stream.

The event model and rules build the knowledge base of the
system. In addition, M2M-AdminBoard and M2M-Dashboard
are software components for the administration and monitoring
of the CEP component.

The design principles of the introduced CEP component are
discussed below for different kinds of M2M problems in gen-
eral. Note that the approach is independent of any particular
type of machines. In the following subsections, first we de-
velop a simplified domain model for wireless M2M and corre-
sponding M2M-specific state models. Then, we derive a M2M-
specific event model with the event types that trigger state tran-
sitions, and finally we present a M2M event processing archi-
tecture.

2.2.2. M2M Domain Model

The purpose of the M2M Domain DSL is to model the M2M
infrastructure, basically the installed machines and their char-
acteristic properties. This information is required to formulate
CEP rules. In the M2M domain, we can distinguish the follow-
ing types of entities:

(a) application-independent components: the communication
devices, e.g. the GPRS terminals,

(b) application-dependent components: the specific types of
machines under investigation, e.g. a photovoltaic solar
panel producing electricity.

Figure 3 shows a simplified general domain model, which
summarizes the core entities important in most M2M applica-
tions.

Communi-
cation Unit
- communication 1
- KPI - operatingState -
KPI Machine 5| Operating
* State
- KPP
- resources (| ,*
N
- resourceState
Resource
Resource
1 State

Figure 3: Domain model for M2M

The basic concept in the domain model is "Machine’ that de-
fines a particular machine. Each machine has a distinct *Oper-
ating State’ indicating if it is running normally or if a malfunc-
tion or defect has occurred. Furthermore, M2M systems have to
monitor the performance of the machines, e.g. how often they
are used or how they behave. The machine behavior is charac-
terized by Key Performance Indicators (KPI) that contain per-
formance measures of an individual machine or aggregate other
KPIs. Moreover, particular types of machines require certain
resources to fulfill their tasks, e.g. paper and toner for printers,
or goods held in vending machines. Thus, in the domain model,
a machine may have a relation to one or more resources, each
having its own resource state.

Table 1 lists different categories of M2M machines: the left
column shows some machine types having only an operating
state, because they do not consume any resources; the right col-
umn gives examples of those machine types that additionally
require resources.



Table 1: Different categories of M2M machines

Machines
states only

with operating || Machines with operating
and resource states

solar panels printers/ copiers

resource: toner, paper

industrial coffee machines
resource: coffee

elevators

rental bikes vending machines

resource: beverages, snacks

rental vehicles

utility meters

Finally, the domain model in Figure 3 contains a ’Commu-
nication Unit’ such as a GPRS terminal, which connects each
machine to the M2M backend system.

2.2.3. M2M State Models

Monitoring of the machines’ operating and resource states is
one of the main issues in M2M systems. The state diagrams in
Figure 4 and 5 illustrate the main states and the state transitions
for the M2M domain. The transitions between states are defined
by certain types of events (defined in 2.2.4).

Operating States
Figure 4 shows the model of operating states for M2M and
the event types that trigger the transitions between states.

Repair Malfunction

Event
Repair

Figure 4: M2M operating state model

DefectEvent

A machine usually operates in the 'normal’ state meaning
that the machine is running without any problems. If some mal-
functions have occured but the machine is still running, a "Mal-
function Event’ is emitted causing the transition to the 'mal-
function’ state. A serious problem, e.g. an elevator gets stuck
between two floors, causes the transition to the ’defect’ state in-
dicating that the machine is not running anymore. After fixing
the problem the machine gets back into *normal’ state.

Resource States

For machines that rely on the availability of sufficient re-
sources, the filling level of their resources is crucial. A machine
with a full resource starts in the state ’sufficient’ (see Figure 5).

NearEmptyEvent \L

criticalLevel

EmptyEvent \L

empty

sufficient

RefillEvent

RefillEvent

Figure 5: M2M resource state model

A running machine consumes continuously resources. For
example, vending machines change to the empty’ state when
their goods are sold out. Usually, machines with empty re-
sources cannot operate properly. Thus at a specified resource
level, a machine should change to the ’critical level’ state in
order to initiate the refill of the near empty resource. After hav-
ing refilled the resource, the machine returns to the ’sufficient’
state.

Key Performance Indicators

Conventional M2M solutions store all collected data in a cen-
tral database, which is periodically analyzed for processing ap-
propriate KPIs. In contrast, our event-driven M2M system pro-
cesses and analyzes the data immediately when the events arrive
to provide up-to-date KPI information. In the M2M domain, the
calculated KPIs are transformed to machine events or provided
by aggregated KPI events.

The actual operating and resource states of the machines are
derived from the KPIs. Consequently, the state transition events
are inferred from KPI events. This has the advantage that the
state transitions are derived in near real-time instead of deter-
mining the current state periodically at a fixed rate.

KPI

- name : String
- type : NumberType

*| - valueRanges

ValueRange Threshold

1.2 value : Number

Figure 6: M2M KPI model

The general KPI model for M2M is depicted in Figure 6. Ev-
ery KPI has a name and a type, e.g., a KPI for the resource
"candy bar’ of a vending machine is an integer value which rep-
resents the KPI ‘remaining number of items’. Every KPI has
value ranges bounded by threshold values. The value range for
the critical level state of the resource ’candy bar’ is, for exam-
ple, between the quantity of five and one. When the quantity
falls under the upper threshold of the value range, the machine
enters the ’critical level’ state (see resource state model in Fig-
ure 5).



2.2.4. M2M Event Model

The state transitions of the presented M2M models are trig-
gered by events. A general event model for the M2M domain
is represented in Figure 7. According to the general M2M con-
cepts introduced above, four different categories of event types
can be distinguished:

1. KPI Events represent single or aggregated machine data.

2. Operating Events show that the operating state of a ma-
chine has changed.

3. Resource Events correspond to a change of a resource
state.

4. Communication Events signalize the state change of the
network connection. These types of events are application-
independent and, consequently, are valid for all kinds of
M2M problems.
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Event Event
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! Connection Problem ; ! Event Event
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(b) transition of operating state

(c) transition of resource state

Figure 7: M2M event model

We can distinguish explicit from materialized events: Ex-
plicit events are events that are emitted by an event source. For
instance, KPI events are directly emitted by a machine and con-
tain the measured values of a particular machine parameter, e.g.
number of usage, produced voltage, etc. In contrast, material-
ized events are not produced directly by the M2M components,
but are generated by a CEP event processing rule, e.g. events
that aggregate measured values of a certain machine.

2.2.5. M2M Event Processing Architecture

Rule-based systems with a large set of rules are hard to main-
tain and do not scale well. Therefore, Luckham (2002) intro-
duced the concept of Event Processing Agents (EPA). An EPA

is an individual CEP component with its own rule engine and
rule base. Several EPAs can be connected to an Event Process-
ing Network (EPN) that constitutes a software architecture for
event processing. EPAs communicate with each other by ex-
changing events.

The CEP component of our event-driven M2M system (see
Figure 2) consists of a two-layer, multi-staged architecture. Fig-
ure § shows the layers with their different EPAs and illustrates
the flow of events. The EPAs in the top layer are responsible for
processing the application-independent communications event.
The bottom layer contains the EPAs for processing the M2M
machine events.
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Figure 8: Event processing network for event-driven M2M

Top Layer: Application-independent EPN

The communication events emitted by the employed commu-
nication technology, e.g. GPRS terminals, are absolutely inde-
pendent of the particular kind of machines that they connect.
Therefore, this layer of the EPN stays the same for all M2M
applications and is treated in detail below in Subsection 2.2.6.

Bottom Layer: M2M-specific EPN

For all kinds of M2M domains, the general responsibilities
of the domain-specific EPAs are the same, however the par-
ticular event processing rules must be specified application-
dependently.

o Filtering Agent: Due to technical problems or impre-
cise metering, event data is often inconsistent or redun-
dant. Hence, in a filtering step all machine events are pre-
processed to overcome inconsistencies or to filter out irrel-
evant events (Chandy & Schulte, 2010; Etzion & Niblett,
2010).

e Domain Agent: The raw machine events contain only low
level technical data, e.g., the internal machine ID. The Do-
main Agent enriches machine events by mapping technical



data to domain concepts, e.g., the machine ID is related to
a costumer who operates the machine and to its geograph-
ical location. The necessary information is retrieved from
backend enterprise systems.

e KPI Agent: The KPI Agent receives the enriched machine
events as input and aggregates them to domain-specific
key performance indicators, e.g., by calculating average
values over temporal or spatial related events. KPI events
are used for determining the operating and resource states.
Moreover, they provide valuable information about the
current performance of the overall system used by BAM
(business activity monitoring) applications. The resulting
event types are subtypes of the KPI event types specified
in the M2M event model in Figure 7, event category (a).

e Operating State Agent: The Operating State Agent man-
ages the transitions of the M2M operating state model de-
fined in Figure 4. For this purpose, the event processing
rules analyze the incoming KPI events in order to detect
an event pattern that results in an ’Operating Event’ de-
fined in the event model in Figure 7, event category (b).

e Resource State Agent: The Resource State Agent is re-
sponsible for the M2M resource state transitions (see Fig-
ure 5) and relies on the event types defined in Figure 7,
event category c).

The M2M event processing architecture introduced in Fig-
ure 8 enhances significantly the structuring and modularization
of M2M systems.

(a) The application-specific expert knowledge is represented in
a declarative manner in the event processing rules, so that
it is clearly separated from the infrastructural source code.

(b) Light-weight EPAs with a distinct set of few and coherent
rules improve the understanding, agility, and maintainabil-
ity of the entire system.

2.2.6. Application-Independent Communication Problems

The two EPAs in the top layer of the event processing
architecture of Figure 8 are responsible for processing the
application-independent communication events emitted by the
GPRS terminals (or any other technology used for communica-
tion), as shown in Figure 7.

The first EPA (GPRS Connection Agent) recognizes prob-
lems of an individual GPRS terminal, i.e., a failure in the
wireless communication connection. The second EPA (GPRS
Network Agent) identifies more general problems either of
the GPRS network or of the telecommunication provider (see
also (Metzdorf et al., 2013)).

For instance, the following rule in Listing 1 detects a connec-
tion problem of a GPRS terminal; and belongs to the rule base
of the GPRS Connection EPA (see Figure 8). The rule con-
siders *Connect’ and ’Disconnect’ events (see event model in
Figure 7), which are emitted by a terminal when it establishes a
GPRS connection or when the connection breaks down.

A connection problem is created, if a "Disconnect’ event has
occurred and the same terminal does not emit a ’Connect’ event

O Y S N SR

Listing 1: Connection problem

CONDITION
EVERY Disconnect AS d

(

>

NOT Connect(machineID = d.machineID)
)
TIMER(10 min)

ACTION create MissingConnection(d.machinelID)

within the next 10 minutes. If this pattern is detected in the
event stream, the rule matches and generates a new "Missing
Connection’ event that is propagated to the subsequent GPRS
Network EPA (see Figure 8).

The rule base of the GPRS Network EPA contains, among
others, the following rule (Listing 2) that correlates Missing
Connection’ events in order to analyze if the telecommunication
provider is responsible for the connection problems.

Listing 2: Provider problem

CONDITION
MissingConnection
TIMER(10 min)
GROUP BY mcc, mnc
GREATER THAN 20
ACTION create ProviderProblem(mcc, mnc)

A telecommunication provider problem exists, if different
GPRS terminals of the same provider signal connection prob-
lems. In order to diagnose a provider problem, the rule sum-
marizes all "Missing Connection’ events and groups them ac-
cording to "Mobile Country Code’ (mcc) and *"Mobile Network
Code’ (mnc). If the number of occurred events is greater than
20 within a time window of 10 minutes, a 'Provider Problem’
event is inferred.

Both rules illustrate how CEP derives high level complex
events out of low level technical events. The high level events
can lead to concrete actions, for example, the inspection of a
particular GPRS terminal with respect to a hardware defect.

2.3. Evaluation of the Approach

The proposed event-driven M2M system enables the devel-
opment of a new quality of M2M systems. CEP provides in-
telligent data correlation, low latency and high flexibility for
M2M applications. Thus, CEP leads to situation- and context-
awareness in M2M. In particular, the approach achieves:

o Intelligent data correlation:

— Appropriate event processing rules observe the
stream of incoming machine events for deriving au-
tomatically the machines’ actual operating and re-
source states.

— Event processing rules correlate machine data in or-
der to detect temporal or spatial relationships. Fur-
ther context information can be easily incorporated
in the correlation as well.




— Fine-grained simple technical events can be trans-
formed into complex domain events that represent a
significant meaning in the M2M domain.

e Real-time processing:

— CEP engines have been designed to efficiently handle
huge data streams directly in-memory. In-memory
processing enables the detection of machine prob-
lems in near real-time and adequate reactions such
as repair operations can be triggered automatically
with low latency.

o High flexibility:

— The specification of event patterns in an EPL enables
the easy adjustment and extension of event process-
ing rules.

— The analysis of data streams by complicated and
hard-coded algorithms is obsolete.

— New types of machines can be seamlessly integrated
in the event model as well as in correlation patterns
specified in the EPL.

The presented event-driven architecture for M2M with its do-
main, state, and event models and its event processing archi-
tecture can serve as a blueprint for the design and structured
development of intelligent M2M applications in practice.

However, in industrial practice, the specification of the event
processing rules can still be a complicated task. On the one
hand, the rules must take complex domain relationships be-
tween the events into account. Moreover, parameters such as
the length of sliding windows or relevant correlation sets, have
to be determined often experimentally in order to achieve ade-
quate results.

3. Case Studies

In order to demonstrate how the proposed event-driven M2M
system can be applied in practice, this section discusses two
distinct M2M application scenarios:

e solar power plants (in Subsection 3.1) and

e professional printer supply & maintenance service (in
Subsection 3.2).

Both case studies rely on real-world M2M scenarios with real-
world sample data taken from commercial M2M systems.

Based on the main building blocks of event-driven M2M sys-
tems introduced in Section 2, for each use case only the partic-
ular event types and the application-specific event processing
rules have to be specified.

3.1. Scenario 1: Solar Power Plants

Solar power plants play an important role in the future sup-
ply with renewable energy. Usually, solar power plants are ge-
ographically distributed to far-away remote locations with no
on-site maintenance staff. Maintenance intervals are fixed ac-
cording to a predefined schedule so that it is difficult to diagnose
the current operating state of the solar panels. For instance,
what is the reason that a solar panel does not produce any elec-
tricity: lack of sun, technical problems, or problems with the
transmission of the metered data?

A solar power plant consists of a set of solar panels that con-
vert sunlight into electricity. To feed the generated directed cur-
rent (DC) electricity into the alternating current (AC) electric-
ity grid a conversion is needed. For this purpose, the generated
electricity of the solar panels is converted by an inverter and
then fed into the public electricity grid. Multiple panels are at-
tached to one inverter. Figure 9 sketches the schematic structure
of solar power plants.

Sun Solar Panels

\ \\\

DC (directed current)

v v
[ Inve?rter] [ Inv;rter] [Inve?rler]

\i’ AC (alternating current)

Public Electricity Grid
Figure 9: Schematic structure of solar power plant

In this solar power plant scenario an inverter device is con-
sidered as a machine (in M2M sense). It has no consumable re-
sources>, but KPIs for input and output power and voltage. The
solar panels are not considered as machines, because they have
no measurable KPI values on their own, although they might
be malfunctioned or defect in the sense of a machine operating
state.

Figure 10 shows the refinement of the general M2M event
model (introduced in Figure 7) for the solar scenario. In event
category (a) the measured events represent the KPI values for
input and output power and voltage, respectively. The KPI
event 'OutputPowerAVG’ represents the regional average out-
put power of all machines in a given radius around one ma-
chine. In event category (b) sample *Malfunction’ events are
’LowOutputPower’ and *LowOutputVoltage’.

Listing 3 shows the event processing rule that calculates a
new regional average output power each time when the machine
sends a new ’OutputPowerMeasure’ event. It collects all *Out-
put Power’ events that are emitted in a distance less than 40 km
of a particular machine within the last 10 minutes, and calcu-
lates the average of the data using the ’avg’-operator.

3Consequently, neither any special resource event types nor a Resource
State Agent are necessary.
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Figure 10: Event model for solar scenario
Listing 3: Solar scenario: Regional average output power
CONDITION
(OutputPowerMeasure AS om — OutputPowerMeasure <

AS or)
om.distanceTo(or) < 40 kilometers A
om.machineId != or.machineld
or.avg(data) as average
[win:time:10 min]
ACTION create OutputPowerAVG(

machineld = om.machineld,
distance = 40 kilometers,
value = average)

Because this rule yields an important indicator for the perfor-
mance of the solar panel, it belongs to the rule base of the KPI
Agent in Figure 8.

Usually, geographically adjacent inverters are supposed to
produce similar electricity values. Therefore, if the measured
output power of one inverter differs significantly from the aver-
age power output in the direct neighborhood, a malfunction of
the inverter can be assumed.

The rule in Listing 4 specifies a particular "Malfunction’
event ’LowPutputPowerEvent’ of the affected inverter (see Fig-
ure 4).

Listing 4: Solar scenario: Low output power compared to regional average

CONDITION
(OutputPowerMeasure as om A OutputPowerAVG as «
oavg)
[win:time:10 min]
om.machineld = oavg.machineld A
om.value < 0.5 * oavg.value
ACTION create LowOutputPowerEvent (
machineld = om.machineld)

The rule compares two KPI events: the measured output
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power of one inverter (OutputPowerMeasure) with the average
output power in its geographical neighborhood (OutputPower-
AVG generated by the rule in Listing 3). If the output power of
the inverter is more than 50% below the regional average then
the inverter may be disrupted. The rule is part of the rule base
of the Operating State Agent in Figure 8.

Another indicator for a possible inverter malfunction is the
case that the output voltage of an inverter decreases although
the input voltage stays stable or even increases. One possible
cause of such a malfunction may be a blown fuse.

Listing 5: Solar scenario: Low output voltage

CONDITION
(OutputVoltage AS oa — OutputVoltage AS ob)
A (InputVoltage AS ia — InputVoltage AS ib)
[win:time:15 min]
oa.machineld = ob.machinelId =

machineId A

oa.value < ob.value A
ib.value > ija.value

ACTION create LowOutputVoltageEvent(
machineId = cl.machineld

ia.machineld = ib.«

)

The event processing rule in Listing 5 specifies the corre-
sponding event pattern: the value of two consecutive 'Input-
Voltage’ events is compared to two consecutive ’OutputVolt-
age’ events. If the output voltage decreases while the input
voltage increases then a ’Malfunction’ event is derived caus-
ing a state transition. (Note that the *LowOutputVoltage’ event
is a specialized "Malfunction’ event, see Figure 10)

The sample rules discussed above have been selected to illus-
trate the processing of solar events. Of course, the rule bases of
the KPI Agent and the Operating State Agent comprise many
other application-specific rules.

3.2. Scenario 2: Printer Supply & Maintenance Service

Companies, which are selling digital office communication
products, are often offering additional services, like preventive
maintenance contracts, consulting, carrying out repairs, and a
cartridge supply service.

In this case study we discuss the remote monitoring and
maintenance service for high performance multi-purpose busi-
ness printer and copier units (= machines in M2M sense).
Again the printers are geographically distributed among several
customers without any on-site maintenance staff.

Of course, an office printer has an operational state too. How-
ever, in this section we focus on the resource state of the printer.
High performance office printers are equipped with one or more
cartridges for different colors. Every cartridge is a resource of
the printer, having its own life cycle as explained in subsec-
tion 2.2.3. The purpose of the cartridge service is to exchange
cartridges early enough so that the printer never runs out of re-
sources. Furthermore, the customers wish a just-in-time de-
livery service so that no stock keeping (and thus no additional
burden of administrative work) is necessary, e.g. managing and
ordering the cartridges for the printers.




These service requirements can be best achieved by an event-
driven M2M solution. The M2M system automatically moni-
tors the resource state transition of a printer. If a critical level
state is reached, the service contractor is timely and automati-
cally informed to deliver spare cartridges.

In the following, some sample event processing rules illus-
trate the processing of printer events.

The event model in Figure 11 shows the KPI events emitted
by the printers.* Whereas the value of the *CartridgeLevelMea-
sure’ event indicates the filling level of toner, the *Consump-
tionMeasure’ event represents the difference between two mea-
sured cartridge levels, i.e. the consumed amount of toner.

Machine
Event

! KPI E E Resource E

Event P Event i
E Measured Aggregated H E NearEmpty i
! Event Event : ! Event o !
: . :
i |__| CartridgeLevel Consumption |1 1 '
! Measure AVG E H |
1 1 '

H
Consumption H
Measure

' i
1 1

(a) measured/ aggregated values 1 (c) transition of resource state |
| i

Figure 11: Event model for printer scenario

A new cartridge is starting in the ’sufficient’ resource state
(see resource state model in Figure 5). Every print job con-
sumes some toner of the cartridges and causes a decreasing
cartridge filling level. Corresponding ’CartridgeLevelMeasure’
and ’ConsumptionMeasure’ events are then transmitted to the
M2M system.

The resource consumption and the filling level events are
processed by the KPI Agent of the EPN shown in Figure 8.
Because the consumption is oscillating, an appropriate aver-
age must be calculated. Therefore, all consumption events of
a certain machine are aggregated over a longer period of time
showing the long term consumption behavior. The calculated
’ConsumptionAVG’ event represents the average consumption
of a printer.

The corresponding event processing rule is specified in List-
ing 6. It defines a time window that contains all ’Consump-
tionMeasure’ events of the last week (line 2-3). These events
are grouped by their machine id and aggregated by the avg-
operator to the weekly average of each machine (line 4-5). A
new calculation is triggered with every new event entering or
leaving the sliding window.

The Resource State Agent of the EPN in Figure 8 is responsi-
ble for the determination of the correct resource state according

4The operating state event types (category (b)) are omitted for the sake of
simplicity.

Listing 6: Printer scenario: Average consumption per day

CONDITION (
ConsumptionMeasure AS c A
[win:time:7 days]
c.avg(consumptionPerDay) as averageConsumption
GROUP BY c.machineld
)
ACTION create ConsumptionAVG (
machineId = c.machineld,
consumption = averageConsumption

)

to the state model in Figure 5. The transition from the ’suffi-
cient’ state to the "criticalLevel” state is the most important one.
The assumed time a cartridge will last is calculated by correlat-
ing ’CartridgeLevel” and ’ConsumptionMeasure’ events.

A rule for a resource state transition is shown in Listing 7.
The ConsumptionAVG and CartridgeLevel event streams are
joined (line 2-4) in order to calculate the remaining days. If
the remaining time is lower then 2 days, the state transition into
the ’criticalLevel’ state is recognized and a ’NearEmpty’ event
is created. In line 5, the cartridge filling level (in percentage
terms) is divided by the consumption per day (in percentage
terms) to determine the remaining time (in days) until the cart-
ing is empty.

Listing 7: Printer scenario: (Near)Empty rule

CONDITION (
ConsumptionAVG AS ac A
CartridgelLevel AS cl A
ac.machineId = cl.machineld A
cl.level / ac.consumption < 2 days

)

ACTION create NearEmptyEvent (

machineId = cl.machineld

)

4. Experimental Results

The applicability and usefulness of our approach have been
evaluated by sample implementations of the two case studies
introduced in Section 3. All experimental evaluations are based
on real-world data supplied by our industrial partner, i.e. from
an existing photovoltaic solar power plant and a commercial
printer supply & maintenance service, respectively.

In the solar case study, real-world operational data of an in-
dustrial solar power plant with 200 GRPS terminals and 2000
solar inverters has been used. The sample data set contains
about 160.000 connection events, 100 million measurement
events, and more than 30 million state records (see also (Metz-
dorf et al., 2013)).

Both case studies have been implemented with the open
source CEP engine Esper (ESPERTECH, 2014). The Esper en-
gine provides the essential features of typical CEP systems like




sliding temporal windows, event pattern operators, and external
method calls. The event processing rules are specified in the
Esper language EPL, a SQL-like rule language. In contrast to
SQL the EPL queries are executed directly in-memory on con-
tinuously arriving event streams and not on a database (Bruns
& Dunkel, 2010).

Several event processing rules have been implemented for
connection problems as well as for application-specific prob-
lems. Some of these rules are presented in sections 2.2.6 and 3.

Figure 12 depicts some sample experimental results for the
solar power plant case study. The figure visualizes the out-
put power graphs of different solar inverters over time and the
calculated regional average (see Listing 3). The marked time
range indicates when "LowOutputPower’ events are thrown by
the rule in Listing 4 , i.e. a malfunction of the affected inverter
is diagnosed.

malfunction detected

Power Output

Figure 12: Low output power based on regional average

Our experimental experiences confirm the advanced sense-
and-response capabilities of CEP achieving an intelligent cor-
relation of M2M data. Our Esper implementation provides a
real-time analysis and diagnosis of high-frequent M2M data
streams. The Esper rule engine is capable of processing the
extreme huge volume of events in our case studies, deriving
without any significant delay the actual states of machines and
upcoming problems.

5. Related Work

5.1. Classic M2M Systems

Most of the current M2M literature is focused on network
and communication technologies, because a set of different
technology components has to work together to build a par-
ticular M2M solution (Pandey et al., 2011). As a direct con-
sequence, the technological standardization plays an indispens-
able role in future M2M development (Chen et al., 2012). Stan-
dardization efforts regarding architectural issues concentrate on
the overall network architecture for M2M systems. The Eu-
ropean Telecommunications Standards Institute (ETSI) has di-
vided M2M systems into three interlinked parts: (1) M2M area
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domain formed by a M2M area network and M2M gateway,
(2) communication network domain consisting of all kinds of
wired and wireless networks, and (3) application domain with
diverse application-specific services (Chen et al., 2012; ETSI,
2011).

Several approaches have investigated different aspects of the
network and communication architecture, e.g., (Wu et al., 2011)
and (Wu et al., 2013). In contrast, only very few investiga-
tions have been published about architectural considerations for
the application part of M2M systems. Usually, the application
services of classic M2M solutions store all collected data in
a database and process it afterwards by batch processes. Re-
cently, Kitagami et al. (2013) have proposed a data stream pro-
cessing approach based on a SQLite-based database and the
data statistical analysis software R. However, our event-driven
approach offers significant advantages compared to database-
based approaches (see the discussion in Section 2.3).

In this article, we intend to provide a substantial contribution
to the architectural design of the application part that is still
missing.

5.2. M2M Systems and Event Processing

In recent years, first attempts have been published that re-
port on the deployment of event processing technologies in the
M2M application domain.

Wan et al. (2012) present an event-based high-level architec-
ture for the smart cities domain. It is based on a publish/sub-
scribe middleware with an Event Manager. However, the Event
Manager remains a black box component without any details
about its design or technology. In a similar manner, Walczak
et al. (2012), Glezer et al. (2007), and Isoyama et al. (2011)
suggest to employ complex event processing for handling of
streams of machine data. Walczak et al. (2012) report no con-
crete design details. Glezer et al. (2007) identify the compo-
nents of a general M2M platform (M2MGen), but without pre-
senting any further design details about the CEP part. Isoyama
et al. (2011) present the SCTXPF platform architecture. How-
ever, this platform architecture is targeting towards scalability
of M2M systems and not, as our approach, towards the concrete
design of the M2M application system.

Recently, some vendors of CEP platforms are promoting the
M2M area as a new application field for event stream process-
ing (Ericsson, 2012; Kostukovsky & Bowers, 2013). However,
without providing any system design guidelines.

Although these aforementioned approaches do not provide
any solution concepts or architectural considerations, they show
the significance and the general need of intelligent event stream
processing and correlation in the M2M domain.

So far, M2M systems are typically tailor-assembled (BMWi,
2011). Generic reference architectures, building blocks, mod-
els, or design guidelines showing how CEP can be concretely
applied on M2M systems are still missing.

5.3. Sensor Networks and Event Processing

Several approaches have been published that prove the suit-
ability of CEP for processing data streams emitted by sensor



networks. Examples for different sensor domains can be found
in Bhargavi et al. (2010), Dunkel et al. (2011), Jeffery et al.
(2006), Mouttham et al. (2009), Selvakennedy et al. (2007), and
Walczak et al. (2012).

In contrast to event-driven M2M systems, there already exist
first design proposals and reference architectures for event pro-
cessing and sensor networks, see for instance, Bruns & Dunkel
(2013), Saleh & Sattler (2013), and Wang et al. (2008). Since
sensor networks and M2M communication share some charac-
teristic features, some of the architecture principles and design
consideration can be applied on M2M systems as well.

However, sensor networks differ in many aspects signifi-
cantly from M2M systems. In contrast to the machines of a
M2M system, sensors are very restricted devices that are highly
specialized just in collecting data of their local environments.
Sensors do not provide any additional functionality and, there-
fore, do not possess operating or resource states. In sensor net-
works, not sensors are the objects of observation, but the envi-
ronment that they monitor (Rizvi et al., 2005).

In this article, we extend the previous work on CEP and sen-
sor networks towards the M2M domain by taking the special
characteristics of M2M devices into account. We define M2M-
specific domain and state models, as well as a general, but
M2M-specific event processing network consisting of archety-
pal EPAs, which can be easily adapted to particular M2M ap-
plication scenarios.

6. Conclusion

Intelligent M2M systems should be able to diagnose their ac-
tual states and to trigger appropriate actions as soon as criti-
cal situations occur. But current operating M2M systems are
restricted on collecting, aggregating, and presenting low level
machine data and have some crucial disadvantages: Processing
of machine data is usually implemented by hard-coded algo-
rithms, which are often scattered over the source code. With
the consequence, that it is extremely difficult to deal with sys-
tem changes. For instance, if new types of machines have to be
integrated or problem finding algorithms should be changed.
Furthermore, most classic M2M systems are not responsive,
i.e. they cannot process the huge amount of continuously pro-
duced machine data in real-time.

In this paper, we propose a novel event-driven architecture
for a decision support system that leads to a new quality of
M2M systems, which are intelligent, responsive, adaptable, and
flexible.

The main design principle of our software architecture is ap-
plying Complex Event Processing as key software technology,
because CEP is specialized on processing high-frequent data
streams so that we can achieve real-time behavior. Furthermore,
stream processing is capsulated in CEP rules that are clearly
separated from other source code, and therefore can be adapted
and maintained in a flexible and agile manner. However, CEP
alone yields only the basic mechanisms of data stream process-
ing, but does not provide any guidelines for building M2M deci-
sion support systems. Beyond that we need a software architec-
ture that can serve as a blueprint, which fosters the design and

11

structured development of an entire CEP-based M2M system in
industrial practice.

In order to guide the development of M2M decision sup-
port systems, we have presented a general software architec-
ture, which distinguishes two different aspects.

First, we have presented some models that describe the M2M
infrastructure, and which are required to formulate CEP rules.
The M2M domain model specifies the basic entities of a all
M2M applications such as machines, resources, and commu-
nication units. The M2M event model defines all explicit events
that are directly emitted by the machines and the materialized
events generated by CEP rules. Each machine event is related to
a certain state model. The M2M state model defines the general
machine lifecycle considering operating and resource consump-
tion states, as well as Key Performance Indicators (KPIs).

The second view on the system provides the M2M process-
ing architecture that consists of an Event Processing Network
that determines the different archetypal stages of an event pro-
cessing pipeline. The stages are realized by Event Processing
Agents, who are - among other things - responsible for deriv-
ing the machines’ operating and consumptions states, as well
as for calculating relevant KPIs. Furthermore, we present the
processing pipeline for monitoring the wireless communication
infrastructure that is application-independent.

The proposed reference architecture defines only the general
structure and processing pipeline for arbitrary M2M systems.
In order to obtain a concrete architecture for a particular M2M
application scenario, it has to be customized and adapted to
the specific domain requirements. Two real world examples
showed how the reference architecture can be adapted by ex-
tending the event types and implementing application-specific
event processing rules.

Our research direction is analogous to the well established
theory of industrialized software engineering: in particular pro-
duction lines, reference architectures, and pattern-oriented soft-
ware development, see for instance, Buschmann et al. (1998);
Fowler (2002). Mature principles of professional software en-
gineering practice are applied to the design of intelligent M2M
systems in particular, but do also hold for intelligent expert sys-
tems in general.

In summary, the proposed architecture of the M2M decision
support system meets the following characteristics: First, it pro-
vides real-time stream processing of machine data. Moreover,
the architecture is highly adaptable and maintainable: Declara-
tive CEP rules can be easily changed and added to meet new re-
quirements. Additionally, various models describing the M2M
machine infrastructure leads to a separation of concerns mak-
ing the formulation of CEP rules easier. Finally, the real-world
M2M case studies and the presented experimental results prove
the feasibility, usefulness, and the performance of our approach.
Thus, our reference architecture is one step towards the profes-
sional development of practical CEP-based M2M applications
in industrial operation.

Of course, there are also some drawbacks: the proposed ar-
chitecture is still rather general and, nevertheless, requires con-
siderable efforts for adapting it to a concrete M2M system. In
particular, the formulation of CEP rules in real event process-



ing languages like Esper is too complicated for domain experts.
Therefore, as a future line of research, we will investigate, how
the development of CEP-based M2M systems can be made eas-
ier.

One possible approach is the refinement of our architecture
to more specific M2M application scenarios: M2M domain and
state models specialized to particular M2M system types would
further facilitate the adaption of our approach to concrete prob-
lems. A similar idea is developing a library of standard M2M
rules that consider general phenomenons in M2M systems.

To benefit from our proposed M2M architecture, a developer
needs a sound technical background. For non-technical users,
who are the domain experts in the problem under investigation,
even the understanding of the CEP rules is very difficult. There-
fore, we are currently developing a Domain Specific Language
(DSL), which simplifies the specification of our system archi-
tecture and allows the definition of M2M specific rules using
M2M domain concepts. The M2M DSL would enable the de-
veloper to write event processing code on a higher level of ab-
straction, based on self-defined domain-specific language con-
structs.

Finally in our approach, the specification of the M2M in-
frastructure is still based on proprietary class and state models
that must be transformed into appropriate programming code.
As a future line of research, we will investigate how semantic
web technologies can be used to standardize the specification
of M2M systems. Furthermore, reasoning on appropriate M2M
ontologies could prove the consistency of the specified infras-
tructure and derive automatically further characteristics of the
M2M system.
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