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Abstract 

In the past two decades, the dimensionality of datasets involved in machine learning and data 

mining applications has increased explosively. Therefore, feature selection has become a necessary 

step to make the analysis more manageable and to extract useful knowledge about a given domain. 

A large variety of feature selection techniques are available in literature, and their comparative 

analysis is a very difficult task. So far, few studies have investigated, from a theoretical and/or 

experimental point of view, the degree of similarity/dissimilarity among the available techniques, 

namely the extent to which they tend to produce similar results within specific application contexts. 

This kind of similarity analysis is of crucial importance when two or more methods are combined in 

an ensemble fashion: indeed the ensemble paradigm is beneficial only if the involved methods are 

capable of giving different and complementary representations of the considered domain. This 

paper gives a contribution in this direction by proposing an empirical approach to evaluate the 

degree of consistency among the outputs of different selection algorithms in the context of high 

dimensional classification tasks. Leveraging on a proper similarity index, we systematically 

compared the feature subsets selected by eight popular selection methods, representatives of 

different selection approaches, and derived a similarity trend for feature subsets of increasing size. 

Through an extensive experimentation involving sixteen datasets from three challenging domains 

(Internet advertisements, text categorization and micro-array data classification), we obtained useful 

insight into the pattern of agreement of the considered methods. In particular, our results revealed 

how multivariate selection approaches systematically produce feature subsets that overlap to a small 

extent with those selected by the other methods. 
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1.  Introduction 

While data intensive applications are fast increasing in scope and sophistication, the extraction of 

useful knowledge from the large amounts of available data can be a very difficult task (Kumar & 

Minz, 2014; Liao, Chu, & Hsiao, 2012). One of the most critical issues for data manipulation and 

analysis is high dimensionality, i.e. the presence of a huge number of attributes (features) that are 

associated with each problem instance in the dataset. This can cause a number of drawbacks such as 

reduced performance, large computational time, and the use of features that may be either redundant 

or irrelevant to the problem at hand.  

 

A lot of research has focused on methods for effectively handling high dimensional datasets 

(Chandrashekar & Sahin, 2014; Khalid, Khalil, & Nasreen, 2014), with two main approaches 

existing in literature: mapping the original feature space to a new space with lower dimensions 

(Wang & Paliwal, 2003) or selecting a meaningful subset of the original features, hence discarding 

those irrelevant and redundant ones (Guyon & Elisseeff, 2003). This last approach, referred to as 

feature selection, has proved to be very effective in the context of high dimensional classification 

problems, enabling to improve predictive performance as well as to obtain faster and more cost-

effective predictors, and to achieve a better understanding of the underlying domain. 

 

Though many works have investigated the potential and limits of existing feature selection methods 

(Bolón-Canedo, Sánchez-Maroño, & Alonso-Betanzos, 2013; Tang, Alelyani, & Liu, 2014), the 

choice of the most appropriate method for a given task remains difficult. Indeed, while more and 

more feature selection algorithms are available, there is little theoretical support to find the “right” 

one for the problem at hand (Liu & Yu, 2005). Increasingly, real-world datasets are being handled 

by applying a number of selection techniques, instead of a single one, and then integrating their 

outputs in some way. 

 

As suggested by recent literature (Dittman, Khoshgoftaar, Wald, & Napolitano, 2012), when 

choosing a set of techniques for a classification task it is beneficial to evaluate their degree of 

consistency. Different techniques, indeed, may select different features depending on the search 

strategy and evaluation criteria adopted in the selection process. However, despite their 

specificities, two techniques can be similar in their behavior, i.e. they can systematically produce 

results that overlap to a great extent (Cannas, Dessì, & Pes, 2013). 
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A similarity-based analysis of feature selection techniques can provide useful insight for domain 

modeling and understanding: if a set of techniques are dissimilar, i.e. exhibit in general a different 

behavior, then there is more reason to have confidence in a feature selected by all these techniques. 

On the other hand, it is not surprising if similar techniques select the same features and it doesn’t 

help to confirm the relevance of these features for the considered domain (Dessì, Pascariello, & Pes, 

2013). 

 

Furthermore, when multiple feature selection methods are systematically combined in an ensemble 

fashion (Altidor, Khoshgoftaar, Van Hulse, & Napolitano, 2011a), a similarity evaluation of the 

methods in the ensemble should not be neglected: it would not be indeed beneficial to combine two 

or more methods that give almost identical results. Though it is recognized that diversity has a 

crucial role for the success of an ensemble learning strategy (Dietterich, 2000), most research work 

on ensemble feature selection has so far not given due consideration to this important issue. 

Existing ensemble approaches are mainly built on an “ad hoc” basis (Dutkowski & Gambin, 2007; 

Leung & Hung, 2010; Olsson & Oard, 2006; Yang, Zhou, Zhang, & Zomaya, 2010), depending on 

the specific problem at hand, and there is a lack of systematic studies aiming at providing insight on 

which methods should be combined, and how this combination should be made, based on the 

degree of diversity/similarity of the involved methods. 

 

In this paper, we aim to give a valuable contribution in this direction by investigating the similarity 

of eight popular feature selection techniques, representatives of different types of selection 

approaches. Specifically, we consider both univariate methods that evaluate each feature 

independently from the others as well as multivariate methods that take into account 

interdependencies among features. The similarity analysis is carried out in two stages: (i) the feature 

subsets produced by the chosen methods are compared, on a pair-wise basis, using a proper 

similarity index; (ii) the overall degree of consistency among the eight methods (or a specific group 

of them) is obtained by averaging similarity values over all the involved pair-wise comparisons. A 

similarity trend is also derived for feature subsets of increasing size. 

 

The datasets used in the analysis come from three challenging domains: Internet advertisements, 

text categorization and micro-array data classification. To the best of our knowledge, there is no 

study in literature that performs such a similarity analysis encompassing different real world 

application scenarios, as we do in this work.  
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The paper is organized as follows. Section 2 provides a survey of current literature and discusses 

related works. Section 3 describes all materials and methods involved in our empirical study, i.e. the 

adopted methodology, as well as the feature selection techniques and the datasets used for the 

experiments. The results of the analysis are presented and discussed in section 4. Finally, section 5 

contains concluding remarks and future research directions. 

 

2. Literature survey and related work 

Feature selection is crucial to the analysis of high dimensional datasets coming from a number of 

application areas such as bioinformatics and text processing. It involves the exploration of the 

original feature space and the selection of the optimal feature subset based on a suitable relevance 

evaluation criterion (Kumar & Minz, 2014). According to whether the dataset is labeled or not, 

feature selection algorithms can be categorized into supervised (Song, Smola, Gretton, Borgwardt, 

& Bedo, 2007), unsupervised (Dy & Brodley, 2004) and semi-supervised (Xu, King, Lyu, & Jin, 

2010). 

 

Supervised selection methods can be further categorized into filter, wrapper and embedded 

methods, depending on how they interact with the learning algorithm (classifier) that will be 

ultimately used to infer a model (Tang et al., 2014). Basically, filter approaches (Lazar et al., 2012) 

assess the relevance of features by looking only at the intrinsic properties of the data, without 

involving the use of a learning algorithm in the selection stage. In contrast, wrapper approaches 

(Guyon & Elisseeff, 2003) perform a search in the space of feature subsets and evaluate each subset 

by training and testing a specific classification model; hence wrappers are tailored to a specific 

learning algorithm, and may achieve better performance than filters methods, but at the price of a 

greater computational cost. Finally, embedded approaches (Ma & Huang, 2008) leverage the 

internal parameters of a classification algorithm to select relevant features, often providing a good 

trade-off between computational cost and performance. 

 

A wide literature is currently available on the strengths and weaknesses of different feature 

selection methods (Bolón-Canedo et al., 2013; Hall & Holmes, 2003; Lazar et al., 2012; Saeys, 

Inza, & Larranaga, 2007), the choice of the “best” method being dependent on the specific problem 

at hand. Moreover, with the aim of devising suitable solutions for specific problem settings, new 

proposals are constantly appearing that exploit different strategies, e.g. (i) using different selection 

approaches (e.g. a filter and a wrapper) in different search stages (Cannas, Dessì, & Pes, 2011; El 

Akadi, Amine, El Ouardighi, & Aboutajdine, 2011), (ii) combining the outcomes of different 
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feature selectors in an ensemble fashion (Altidor et al., 2011a; Latkowski & Osowski, 2015) or (iii) 

combining feature selection with other approaches such as feature extraction (Bharti & Singh, 

2015). 

 

With such a body of algorithms available, their comparative analysis is a very difficult task. Most of 

the existing comparative studies focus on a specific application domain, such as text classification 

(Forman, 2003; Méndez, Fdez-Riverola, Díaz, Iglesias, & Corchado, 2006), genomic analysis 

(Abusamra, 2013; Bolón-Canedo, Sánchez-Maroño, Alonso-Betanzos, Benítez, & Herrera, 2014), 

software defect prediction (Khoshgoftaar, Gao, Napolitano, & Wald, 2014), image classification 

(Staroszczyk, Osowski, & Markiewicz, 2012). A number of studies have been also conducted on 

artificially generated data (Bolón-Canedo et al., 2013) in order to evaluate the performance of 

selection methods under specific conditions (e.g. class imbalance, noise, redundancy and interaction 

between features). 

 

To date, a quite neglected issue in feature selection literature is the theoretical and/or experimental 

assessment of the degree of consistency among the outputs of different selection methods. Indeed, it 

is known that different selection techniques may result in different feature subsets, especially when 

the high dimensionality is coupled with a small sample size (Saeys et al., 2007), but few direct 

comparisons exist that quantify these differences in a systematic way. Existing studies (as those 

cited above) mostly focus on comparing the outcomes of different techniques in terms of predictive 

performance or, less frequently, in terms of stability with respect to sample variation (Haury, 

Gestraud, & Vert, 2011; Kalousis, Prados, & Hilario, 2007; Wang, Khoshgoftaar, & Liang, 2013). 

However, as we showed in a previous work (Dessì et al., 2013), selection methods with a similar 

behavior in terms of accuracy and/or stability do not necessarily select similar feature subsets and, 

on the other hand, feature subsets with a good degree of overlapping do not necessarily result in 

similar classification and/or stability performance. Therefore, a systematic analysis of the similarity 

among the feature subsets selected by different techniques could help in best understanding the 

behavior of these techniques as well as the extent of their applicability to specific contexts. This is 

where our paper aims to give its contribution by extending, through more extensive experiments, 

previous works in this field. 

 

In the context of gene selection from high dimensional micro-array datasets, a first experimental 

assessment of the overlap between gene lists produced by different feature selection methods is 

provided by Jeffery, Higgins, and Culhane (2006). Within the same domain, a similarity analysis 
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involving filter-based selection techniques is presented in the work of Dittman et al. (2012): results 

are here averaged across nine datasets and four feature subset sizes (i.e. 50, 75, 100 and 200 genes), 

providing a global view on the pattern of agreement of the considered methods but without a 

discussion about the influence of the subset size on the observed similarity. Still limited to the 

biological domain, a similarity trend for feature subsets of increasing size is provided by Cannas et 

al. (2013), who also discuss the characteristics of different similarity measures, giving evidence of 

the effectiveness of the Kuncheva index (Kuncheva, 2007) in evaluating the degree of consistency 

among feature subsets. In this work, we extend the above contributions by experimentally 

investigating the pattern of agreement of different methods across classification tasks of different 

domains (Internet advertisements, text categorization and micro-array data classification), as to best 

highlight the “intrinsic” similarity among methods, as well as the specific behavior of each method 

in each domain. 

 

3. Materials and methods 

In this work we focus on feature selection methods falling into filter or embedded approaches that, 

in practice, are often preferred to wrappers, especially in high dimensional classification problems, 

due to the lower computational complexity (Tang et al., 2014). Specifically, we consider selection 

techniques that produce as output a ranked list where features are ordered based on their relevance 

for the classification task at hand. Referred in the following as rankers, these methods assign a 

weight to each feature according to some scoring criterion that measures the degree of correlation 

between that feature and the target class. This process can be carried out in two ways (Saeys et al., 

2007): assessing each feature independently from the others (univariate ranking methods) or taking 

into account interdependencies among features (multivariate ranking methods). Features with the 

highest weights appear in the first positions of the ranked list, while features with the lowest 

weights reside at the last positions. Finally, the list is usually cut at a proper threshold point in order 

to obtain a subset of highly predictive features. 

 

It has to be noted that, when comparing the outputs of different techniques, the comparison can be 

carried out in different ways: (i) based on the weights assigned to features; (ii) based on the ranking 

positions of features; (iii) considering only the features in the highest ranking positions, regardless 

of their weighting or order (feature subset selection). Obviously, this last approach involves the 

choice of a suitable threshold that may be dependent on the specific problem at hand. 
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Appropriate similarity measures for feature weighting, ranking and subset selection can be derived 

from different correlation coefficients (Kalousis et al., 2007; Saeys, Abeel, & Van de Peer, 2008). 

For feature weighting, the Pearson correlation coefficient can be used while, for feature ranking, the 

Spearman rank correlation coefficient is a common choice. For feature subsets, a number of metrics 

have been proposed (Duda, Hart, & Stork., 2001; Kuncheva, 2007) that basically rely on the degree 

of overlapping among subsets, with proper normalization factors.   

 

To assess the similarity of feature selection techniques, we focus here on comparing feature subsets, 

as these are most often used by domain experts. Indeed, a comparison based on feature weighting or 

feature ranking takes into account the complete feature preferences produced by a method, while 

the subset selection approach gives a more precise picture of greater utility for users and domain 

experts: the selected features convey the most important information and are ultimately used to infer 

predictive models.  

 

In the remaining of this section we provide a description of all materials and methods involved in 

our empirical study. Specifically, we present the methodology used for the similarity analysis 

(section 3.1), the feature selection techniques that have been the object of this analysis (section 3.2), 

and the different classification tasks where the analysis has been performed (section 3.3). 

 

3.1.  Methodology for the similarity analysis 

Our methodological approach is meant to provide a systematic comparison of the feature subsets 

produced by different selection techniques. Specifically, given a number k of rankers ri (i = 1, 2, …, 

k) and a dataset d of n features, each ri is applied to d giving as output a ranked list li where the n 

features appear in descending order of relevance: this results in k distinct ranked lists, each 

providing a different ordering of the n features. The comparison among the lists is carried out, in a 

pair-wise fashion, for different values of the cut-off threshold t (setting a given threshold means to 

set the size of the feature subset that will be ultimately used for predictive purposes).  

 

We denote as setit the feature subset resulting from cutting the list li at threshold t. The comparison 

between two subsets setit and setjt (i,j = 1, 2, …, k), of the same size t, is carried out using the 

Kuncheva index (Kuncheva, 2007) that has proved to be a good choice in the context of such a 

similarity analysis (Cannas et al., 2013). Specifically, it is defined as follows: 
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𝐾𝑢𝑛𝑐ℎ𝑒𝑣𝑎(𝑠𝑒𝑡𝑖𝑡, 𝑠𝑒𝑡𝑗𝑡) =  
|𝑠𝑒𝑡𝑖𝑡 ∩ 𝑠𝑒𝑡𝑗𝑡| − 𝑡2

𝑛⁄

𝑡 −  𝑡2
𝑛⁄

 

where │setit ∩ setjt│ is the number of features that are present in both the subsets setit and setjt. The 

Kuncheva measure tends to │setit ∩ setjt│/t , i.e. to the fraction of overlap between the subsets, 

when the subset size is small compared to the overall number of features. For increasing values of t, 

the similarity value is corrected by taking into account the probability that a feature is included in 

both subsets simply by chance (this probability grows as the subset size approaches the 

dimensionality of the original dataset). 

 

To obtain an overall evaluation of the degree of similarity among the k feature subsets (or among a 

number of them, if the focus is restricted to a specific group of selection methods, as discussed later 

in section 4), we average over all the involved pair-wise comparisons: 

 

𝑆𝑡 =  
2 ∑ ∑ 𝐾𝑢𝑛𝑐ℎ𝑒𝑣𝑎(𝑠𝑒𝑡𝑖𝑡, 𝑠𝑒𝑡𝑗𝑡)𝑘

𝑗=𝑖+1
𝑘−1
𝑖=1

𝑘(𝑘 − 1)
 

 

The resulting similarity St refers to a specific threshold t, i.e. to a specific subset size: if a suitable 

range of threshold values is explored, a similarity trend can be derived for feature subsets of 

increasing size.

 
 

3.2.  Feature selection techniques 

As previously mentioned, we considered both univariate selection techniques, where each single 

feature is weighted independently from the others, and multivariate selection techniques, where the 

interdependencies among features are taken into account. For all of them we leveraged the 

implementation provided by the WEKA package (Bouckaert et al., 2010). 

 

As representatives of the univariate approaches, we chose Chi Squared (χ2), Information Gain (IG), 

Symmetrical Uncertainty (SU), Gain Ratio (GR) and OneR (OR). As representatives of the 

multivariate approaches, we considered ReliefF (RF), SVM-ONE and SVM-RFE. A brief description 

of each method is provided in what follows. 

 

• Chi Squared (χ2) evaluates features individually by measuring their chi-squared statistic with 

respect to the class: the larger the chi-squared, the more important a feature is for the 
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classification task at hand (Liu & Setiono, 1995). Specifically, once a feature has been 

discretized into a number I of intervals, its χ2 value is computed as: 

 

χ2 =  ∑ ∑
(Aij −

Ri ∙ Bj

N )2

Ri ∙ Bj

N

K

j=1

I

i=1

  

 

where N is the number of instances, K the number of classes, Ri the number of instances in the 

ith interval, Bj the number of instances in the jth class, and Aij the number of instances in the ith 

interval and jth class. 

 

• Information Gain (IG) is grounded on the information-theoretical concept of entropy (Hall & 

Holmes, 2003). Basically, IG measures how the entropy of the class C (i.e. the degree of 

uncertainty about its prediction) decreases when the value of a given feature X is known:  

 

𝐼𝐺 =  𝐻(𝐶) − 𝐻(𝐶|𝑋) 

 

where H(C) and H(C|X) denote the entropy of the class before and after observing the feature X. 

 

• Symmetrical Uncertainty (SU), as IG, relies on the entropy concept to evaluate the correlation 

between a feature X and the class C (Witten, Frank, & Hall, 2011). In more detail, it is obtained 

by:  

 

𝑆𝑈 = 2 ∙
𝐻(𝐶) − 𝐻(𝐶|𝑋)

𝐻(𝑋) + 𝐻(𝐶)
 

 

i.e. the information gain associated to a feature is normalized by taking into account both the 

intrinsic entropy of the feature as well as the entropy of the class. This compensates for the 

information gain’s bias toward features with more values (Senthamarai Kannan & Ramaraj, 

2010). 

 

• Gain Ratio (GR) is in turn a refinement of IG. Specifically, GR corrects the IG score of a 

feature X using the information split (Quinlan, 1993): 
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𝐼𝑛𝑓𝑜𝑆𝑝𝑙𝑖𝑡 =  − ∑
|𝑋𝑖|

𝑁
log 

|𝑋𝑖|

𝑁

𝑟

𝑖=1

 

 

where |Xi| is the number of samples where X takes the value of Xi, r is the number of distinct 

values of X, and N is the total number of samples in the dataset. The GR score of a feature, 

obtained as IG/InfoSplit, is sensitive to how broadly and uniformly the feature splits the data 

(Witten et al., 2011). 

 

• OneR (OR) derives the level of significance of each feature using a simple rule-based classifier 

(Holte, 1993). For each attribute in the training data, the algorithm creates one rule by 

determining the most frequent class for each attribute value (a rule is simply a set of attribute 

values bound to their majority class). Then the classification accuracy of each rule is calculated, 

and the attributes are ranked (i.e. ordered by relevance) based on the accuracy of the 

corresponding rules. 

 

• ReliefF (RF) estimates the relevance of features based on their ability to distinguish between 

instances that are near to each other (Hall & Holmes, 2003). Basically, given a probe instance, 

the weight w of a feature X is obtained by evaluating how the instance’s nearest hit (one from 

the same class) differs from its nearest miss (one from a different class). The rationale is that a 

predictive feature should differentiate between instances from different classes and have the 

same value for instances from the same class. Based on a suitable number of probe instances, 

RF attempts to approximate the following difference of probabilities:  

 

w(X) = P(different value of X | nearest instance from different class) 

– P(different value of X | nearest instance from same class) 

 

Originally defined for two-class problems, the method was later extended to handle noise and 

multi-class datasets (Kononenko, 1994). The RF approach can be also adjusted to weight 

nearest neighbors by their distance (Robnik-Sikonja & Kononenko, 2003). 

 

• SVM-ONE uses a linear SVM classifier to derive the relevance of each feature 

(Rakotomamonjy, 2003). Basically, a linear SVM looks for an optimal hyperplane as a decision 

function for separating instances in the input space. In that function, each feature (dimension) is 
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assigned a weight that expresses how the feature contributes to the multivariate decision of the 

classifier: 

𝑓(𝐱) =  𝐰 ∙ 𝐱 + 𝑏 

 

where x is an instance vector in the n-dimensional space of input features, w is the weight vector 

and b denotes a constant (bias). Hence, based on their weights, the features can be ranked from 

the most important to the least important. 

 

• SVM-RFE relies on a linear SVM classifier, as the SVM_ONE method, but adopts a backward 

elimination strategy to obtain the final ranking of features (Guyon, Weston, Barnhill, & Vapnik, 

2002). First, a linear SVM is trained on the input space and features are sorted according to their 

weights in the hyperplane function. Then, the least important features are removed and the 

overall weighting process is repeated on the remaining features. The computational complexity 

of the method is greatly influenced by the fraction of features removed at each iteration: we set 

this parameter as 10%, as suggested by recent literature (Kalousis et al., 2007; Saeys et al, 

2008).  

 

3.3.  Classification tasks 

Table 1 lists the datasets used in this study and provides their characteristics in terms of the total 

number of features, number of instances, class distribution and percentage of minority instances. 

Specifically, we considered classification problems from three challenging domains, as detailed in 

what follows. 

 

(1) Internet advertisements. This dataset represents a set of possible advertisements on Internet 

pages (Kushmerick, 1999). The features encode the geometry of the image as well as phrases 

occurring in the document’s URL or the image’s URL, alt text, anchor text, and words near the 

anchor text. The task is to predict whether an image is an advertisement (“ad”) or not (“nonad”). 

 

(2) Reuters-21578 ModApte. This is one of the most celebrated text datasets (Lewis, 1997). It 

consists of 12902 documents manually classified across 135 categories. According to the widely 

used ModApte split, 9603 documents are used as training set and the remaining 3299 as test set. 

Once discarded categories with no document in the test set, the remaining training set consists of 

9598 documents. Specifically, the 10 categories with the highest number of positive training 

examples have been considered in this study. For each category we performed feature selection 
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experiments on a binary dataset where the training documents related to that category are labeled as 

“yes”, and the others as “no”. Each dataset was preliminarily preprocessed by removing stop-words 

and extracting n-grams, defined as sequences of maximum three words consecutively occurring 

within a document (Pietramala, Policicchio, Rullo, & Sidhu, 2008). 

 

(3) Biomedical datasets. Five biomedical datasets coming from DNA micro-array experiments are 

included in this study: Colon Tumor (Alon et al., 1999), DLBCL (Shipp et al., 2002), Leukemia 

(Golub et al., 1999), Lung Cancer (Beer et al., 2002) and Central Nervous System (Pomeroy et al., 

2002). Instances correspond here to biological samples that are distinguished between normal and 

tumor tissues (Colon Tumor and Lung Cancer datasets) or between different tumor types (DLBCL 

and Leukemia datasets) or between different treatment outcomes (Central Nervous System dataset), 

while features correspond to levels of expression of different genes. The high dimensionality 

(thousands of gene expression values) coupled with the small sample size (a few dozen of 

biological samples) makes these datasets a very interesting benchmark for feature selection and 

classification experiments. 

 

Table 1. Datasets used in the empirical study. 

 

4. Experimental results and discussion 

The results of our empirical study are summarized in what follows. According to the 

methodological approach presented in section 3.1, we measured the similarity among the ranked 

lists produced by eight selection techniques (see section 3.2) in terms of the Kuncheva similarity 

among the feature subsets resulting from cutting these lists at a given threshold. The threshold 

values explored in this study are 10, 20, 30, 50, 100 and 150 (larger values are rarely used in 

practice since high-ranked features are more likely to be useful for predictive purposes as well as 

for domain modeling).  

 

For each threshold, i.e. for each subset size, we evaluated the similarity among the resulting feature 

subsets on a pair-wise basis, i.e. by considering each pair of subsets. The results of this pair-wise 

analysis are reported, in terms of similarity matrices, in section 4.1. Next, we explored the similarity 

trend by averaging results over all pair-wise comparisons, as well as over pair-wise comparisons 

involving only ranking methods with a specific selection approach (i.e. pairs of univariate methods, 

pairs of multivariate methods, and “hybrid” pairs where one method is univariate and the other 

multivariate). This way, besides the overall degree of consistency among the considered methods, 
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we can also investigate the specific behavior of univariate and multivariate methods, as discussed 

later in section 4.2. Finally, section 4.3 focuses on how the behavior of certain methods (in 

particular, multivariate methods) may be influenced by the setting of their main parameters. 

 

4.1 Similarity matrices 

Results of our similarity analysis are here reported separately for the three application domains 

considered in this study, i.e. Internet advertisements, Reuters datasets and biological datasets (see 

section 3.3). As concerns the Internet advertisements dataset, Table 2 shows the pair-wise similarity 

between the subsets of 20 features selected by univariate methods (χ2, IG, SU, GR, OR) and 

multivariate methods (RF, SVM_RFE, SVM_ONE). Specifically, each entry in the table represents 

the Kuncheva similarity value obtained on the pair of subsets selected by the rankers in the 

corresponding row and column. Being the resulting matrix symmetric, only positions in the upper-

right triangular block are filled. A first evidence from Table 2 is that univariate approaches produce 

results quite similar to each other. In particular, χ2, IG and OR generate identical feature subsets, 

while GR seems to exhibit a more specific behavior. In contrast, each multivariate method produces 

a feature subset that overlaps to a little extent with the subsets selected by the other methods. 

Indeed, all pair-wise comparisons involving a multivariate approach (both univariate-multivariate 

and multivariate-multivariate comparisons) result in a small degree of similarity. 

 

Also for the Reuters datasets, we concentrate here on feature subsets of 20 features. Specifically, we 

built a similarity matrix for each of the ten datasets of this domain and then averaged, for each 

combination of ranking methods, the similarity values obtained across the ten datasets so as to 

obtain a synthetic and comprehensive view of the pattern of agreement of the considered methods in 

the context of text categorization. Results are shown in Table 3. As regards the univariate 

approaches, the degree of consistency among selected subsets is globally lower than that observed 

in Table 2. Indeed, similarity among χ2, IG and SU is still high, while OR in this case produces 

results that are only partially consistent with those of the other univariate methods. GR, in turn, 

exhibits a quite different behavior though its ranking algorithm is grounded on the same concept of 

entropy as IG and SU. Indeed, due to the ‘split information’ included as normalization factor in GR 

(see section 3.2), the weight assigned to a feature may be strongly dependent on how broadly and 

uniformly it splits the data. Among multivariate approaches, RF selects features that don’t overlap 

at all with those selected by the other methods. As well, SVM_RFE and SVM_ONE produce results 

that overlap only to a small extent with those of the other methods, revealing a strong dependence 
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of the selection outcome on the specific multivariate logic used to evaluate the interdependences 

among features.  

 

Finally, Table 4 shows the results obtained in the biological domain. Each entry in the matrix 

expresses the similarity between the outputs (subsets of 20 features) of two methods, averaged 

across all the five biological datasets considered in this study. Once again, χ2, IG and SU turn out 

similar to each other (though their pair-wise Kuncheva values in this case are lower). GR confirms 

to be somewhat different from the other entropic methods, i.e. IG and SU, even if there is not a so 

pronounced dissimilarity as in the Reuters datasets. Moreover, as seen in Table 2 and in Table 3, the 

pair-wise comparisons that involve a multivariate approach (univariate-multivariate and 

multivariate-multivariate pairs) result in lower similarity values, though the behavior of RF in this 

domain is a little more consistent with the other methods. There is also more consistency between 

SVM_RFE and SVM_ONE.  

 

For the sake of space, the similarity matrices built for different subset sizes are here omitted, but 

next section discusses the influence of the subset size when averaging similarity values across all 

pair-wise comparisons (or a group of them).  

 

Table 2. Internet advertisements dataset: similarity matrix for subsets of 20 features. Each cell in 

the matrix reports the Kuncheva similarity for the pair of subsets selected by the methods in the 

corresponding row and column.  

 

Table 3. Reuters datasets: similarity matrix for subsets of 20 features. Each cell in the matrix 

reports the Kuncheva similarity, averaged across all ten Reuters datasets, for the pair of subsets 

selected by the methods in the corresponding row and column.  

 

Table 4. Biological datasets: similarity matrix for subsets of 20 features. Each cell in the matrix 

reports the Kuncheva similarity, averaged across all five biological datasets, for the pair of subsets 

selected by the methods in the corresponding row and column.  

 

4.2 Average similarity trend 

For each similarity matrix, we calculated the average similarity over all 28 cells, i.e. over all pair-

wise comparisons, in order to evaluate the global degree of consistency among the eight selection 

methods used in this study. Moreover, we considered the average similarity (i) across the 10 cells 
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that represent pairs of univariate methods (univariate-univariate comparisons), (ii) across the 3 cells 

that represent pairs of multivariate methods (multivariate-multivariate comparisons), and (iii) 

across the 15 cells that represent “hybrid” pairs (univariate-multivariate comparisons). We 

performed this analysis for feature subsets of increasing size: the results are shown in Fig.1, Fig.2 

and Fig.3, for Internet advertisements, Reuters datasets and biological datasets respectively. 

 

In the Internet advertisements classification task (Fig.1), the average similarity among univariate 

methods is very high, ranging from 0.73 for subsets of 10 features to 0.91 for subsets of 150 

features. On the other hand, multivariate-multivariate comparisons result in an average similarity 

that ranges from 0.13 for subsets of 10 features to 0.31 for subsets of 150 features, and hybrid pairs 

exhibit an even lower similarity, making the overall similarity not high at all (between 0.36 and 

0.42).  

 

As regards the Reuters datasets (Fig.2), the average similarity among univariate methods is quite 

lower (between 0.53 and 0.46) than that observed previously in Fig.1. However, univariate-

univariate pairs confirm to be, in average, more similar than univariate-multivariate and 

multivariate-multivariate pairs. In particular, for feature subsets of small size, multivariate-

multivariate comparisons result in average similarity values lower than 0.10, meaning that there is 

almost no overlap between the selected subsets. 

 

Interestingly, in the biological datasets, multivariate methods are not so inconsistent with one 

another (Fig.3), probably due to the existence in this domain of relatively small-sized groups of 

features (i.e. genes) that strongly interact to determine a given pathological state (Saeys et al., 

2007). Hence, the stronger the interactions among features, the higher seems to be the similarity 

among multivariate methods. However, univariate-univariate comparisons again result in the 

highest similarity values (irrespective of the considered subset size). 

 

A comparison of the overall similarity on Internet advertisement, Reuters and biological datasets is 

shown in Fig.4. It is clear that the text categorization domain is the one where the outputs of the 

different selection approaches are less consistent with one another, while the overall similarity trend 

is almost the same for the other two domains, despite the specificities previously discussed. This 

reveals that the behavior of the considered selection methods is somewhat “domain dependent”. 

Indeed, besides the high number of features (words), as well as the high number of instances, text 

classification problems are also characterized as frequently having a high degree of class imbalance 
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(Forman, 2007). For example, in the Reuters datasets here considered, the percentage of minority 

instances (i.e. positive instances), is lower than 5% in seven cases out ten (see Table 1). This may 

lead to significantly more uncertainty in the frequency estimates of words in the positive class, 

making the learning task intrinsically more difficult and thus sharpening discrepancies among 

different algorithms.  

 

Despite this, there are also a number of strong analogies among what observed across the different 

classification tasks, such as the higher similarity among the univariate approaches compared to the 

highly specific behavior of each multivariate method (that leads to a lower similarity both in 

multivariate-univariate comparisons as well as in multivariate-multivariate comparisons).  Another 

interesting observation is that, in all the considered application scenarios, the average similarity 

depends only to a small extent on the number of selected features (Fig.1-Fig.4), suggesting that 

selection methods have in some way an “intrinsic” degree of similarity/diversity (at least in the 

range of feature subset sizes that are usually used in practical applications). 

 

Fig. 1. Internet advertisements dataset: average similarity vs subset size. For a given subset size, 

the corresponding similarity matrix is built (as shown in Table 2), and the average similarity is 

computed over all pair-wise comparisons (ALL), over the pair-wise comparisons where both 

methods are univariate (Uni-Uni), over the pair-wise comparisons where both methods are 

multivariate (Multi-Multi), and over the pair-wise comparisons where one method is univariate and 

the other multivariate (Uni-Multi). 

 

Fig. 2. Reuters datasets: average similarity vs subset size. For a given subset size, the 

corresponding similarity matrix is built across all ten Reuters datasets (as shown in Table 3), and 

the average similarity is computed over all pair-wise comparisons (ALL), over the pair-wise 

comparisons where both methods are univariate (Uni-Uni), over the pair-wise comparisons where 

both methods are multivariate (Multi-Multi), and over the pair-wise comparisons where one method 

is univariate and the other multivariate (Uni-Multi). 

 

Fig. 3. Biological datasets: average similarity vs subset size. For a given subset size, the 

corresponding similarity matrix is built across all five biological datasets (as shown in Table 4), 

and the average similarity is computed over all pair-wise comparisons (ALL), over the pair-wise 

comparisons where both methods are univariate (Uni-Uni), over the pair-wise comparisons where 
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both methods are multivariate (Multi-Multi), and over the pair-wise comparisons where one method 

is univariate and the other multivariate (Uni-Multi). 

 

Fig. 4. Comparison of average similarity trends on Internet advertisements, Reuters and 

biological datasets. For a given subset size, the average similarity is computed over all pair-wise 

comparisons in the corresponding similarity matrix. 

 

4.3  Sensitivity analysis with respect to internal parameters 

The experimental results discussed in sections 4.1 and 4.2 show that different feature selection 

techniques may result in quite different feature subsets, with a more pronounced dissimilarity in the 

context of multivariate feature selection. As an extension of the similarity analysis previously 

presented, it would be interesting to investigate the extent to which the same feature selection 

technique may produce different results depending on the chosen setting of the parameters of the 

method. Indeed, when using popular data mining suites, practitioners often rely on default settings 

without awareness of what the implications might be on the selection outcome.  

 

Since multivariate methods have shown to exhibit a more specific behavior, we conducted a number 

of experiments to study their sensitivity with respect to internal parameters. In the context of SVM 

embedded feature selection, the most critical parameter is the fraction of features iteratively 

removed when adopting a backward elimination strategy (SVM_RFE approach). In previous 

experiments (sections 4.1 and 4.2), we set this parameter as 10% (10%-RFE setting) being this a 

common choice in literature (Kalousis et al., 2007; Saeys et al, 2008). Further experiments were 

performed removing 50% of features at each iteration (50%-RFE setting), as used for example by 

Abeel, Helleputte, Van de Peer, Dupont, and Saeys (2010). The resulting feature subsets were then 

compared based on the Kuncheva index (section 3.1), i.e. for each dataset and for each threshold 

value (subset size) we evaluated the degree of similarity between the subset produced with the 10%-

RFE setting and the subset produced with the 50%-RFE setting. Finally, similarity values were 

averaged across the datasets of the same domain. Results are summarized, for each domain (Internet 

advertisements, Reuters and biological datasets), in Table 5.  

 

As we can see, the fraction of features discarded at each iteration of RFE may sensibly influence the 

selection outcome, especially in the text categorization domain. Even in the case of biological 

datasets, when considering feature subsets of small size, there is not a high degree of similarity 

among the results produced by SVM_RFE in the two settings here explored. This suggests that the 
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choice of the internal parameters of a selection method may be as important as the choice of the 

method itself, in terms of the implications on the selection outcome. 

 

The other multivariate approach used in this study, i.e. ReliefF (RF), seems to have a more stable 

behavior with respect to changes in the internal parameters. In particular, we performed preliminary 

experiments by introducing a weighting mechanism that takes account for the distance between 

probe instances and their neighbors (see section 3.2). The resulting feature subsets are mostly 

consistent with those selected by the simple version of RF previously considered. With further 

experiments, we plan to extend this part of our experimental study, so as to have a more complete 

picture of the sensitivity of the different selection approaches with respect to their internal settings. 

 

Table 5. SVM_RFE approach: similarity analysis between 10%-RFE setting and 50%-RFE setting.  

 

5.  Conclusions and future research directions 

The explosive growth in databases has created a need to develop methods and technologies that use 

information and knowledge intelligently (Liao et al., 2012). Therefore, data mining has become an 

increasingly important research area. Indeed, data mining techniques, including feature selection 

techniques, play a crucial role to modern knowledge-based systems (Akerkar & Sajja, 2009). As 

recognized by recent literature (Bolón-Canedo, Sánchez-Maroño, & Alonso-Betanzos,  2011; 

Danenasa & Garsvaa, 2015; Eesa, Orman, & Brifcani, 2015; Nassirtoussi, Aghabozorgi, Wah, & 

Ngo, 2014), there are an increasing number of application scenarios where feature selection is 

exploited in automatic knowledge discovery to complement and enrich knowledge acquired from 

domain experts. 

 

While new feature selection approaches are constantly appearing in the literature, there is no well-

established theoretical and technical framework for evaluating how the choice of a specific method 

may influence the outcome of the analysis (Bolón-Canedo et al., 2013). As well, there are only 

partial investigations that focus on assessing the degree of consistency/similarity among the outputs 

of different selection methods within specific application contexts. Such a kind of similarity 

analysis would be of great importance especially in high dimensional problems, where the 

application of different selection techniques and the comparison of their outputs may help to 

identify the most relevant features (Dittman et al., 2012). 

 



19 
 

To give a contribution in this direction, our paper has proposed an empirical approach to evaluate 

the extent to which different selection methods may exhibit a similar/dissimilar behavior i.e. 

produce similar/dissimilar results. Specifically, we compared, on a pair-wise basis, the subsets of 

features provided by eight popular selection techniques (χ2, IG, SU, GR, OR, RF, SVM_RFE, 

SVM_ONE) in the context of three challenging domains, i.e. Internet advertisements, text 

categorization and micro-array data classification.  

 

Despite the specificity of each domain, a number of general indications have emerged about the 

pattern of agreement of the considered methods. For example, the univariate approaches have 

proved to be quite similar to each other; in particular, χ2, IG, and SU form a “cluster” of methods 

that provide, in each of the datasets here considered, a highly consistent output. Though exploiting 

the same concept of entropy as IG and SU, GR exhibits a somewhat different behavior, with a more 

pronounced dissimilarity in the context of text categorization. Actually, from a different point of 

view, other studies have highlighted the peculiarity of the GR function, which theoretically could 

lead to a more fair feature weighting (Debole & Sebastiani, 2003) but practically often results in an 

higher sensitivity to noise (Altidor, Khoshgoftaar, & Van Hulse, 2011b). 

 

On the other hand, multivariate methods select feature subsets that are, in most cases, quite 

dissimilar from those produced by the other methods, revealing a strong dependence of the selection 

outcome on the specific multivariate logic used to evaluate the interdependences among features. 

We also observed that multivariate approaches, especially SVM-based methods, are quite sensitive 

to the setting of their internal parameters, i.e. different parameters values may lead to feature 

subsets that overlap only partially. 

 

Furthermore, our empirical analysis has shown that the consistency among the outputs of the 

considered methods is influenced only to a small extent by the number of selected features: this 

seems to suggest that these methods have in some way an “intrinsic” degree of similarity/diversity 

(at least in the range of feature subset sizes that are usually used in practical applications). 

 

There are a number of directions in which our work can be extended. First, it would be interesting 

to include in the experimental study more datasets from different domains as well as other selection 

techniques, so as to strengthen the findings so far obtained. Second, even for the selection methods 

here considered, further experiments should be conducted to more comprehensively evaluate their 

sensitivity with respect to internal parameters, which we only partially addressed in this work. But, 
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most importantly, the approach presented in this paper can be a starting point for defining ensemble 

strategies that effectively exploit multiple selection methods to improve classification performance 

and robustness of the chosen features (Latkowski & Osowski, 2015). Indeed, as previously 

observed, the degree of diversity of the involved methods is of crucial importance in an ensemble 

perspective: if two feature selection criteria produce similar results, fusion of such two criteria does 

not help. Hence, starting from the empirical study here proposed, we plan to explore different 

ensemble combinations and to evaluate how the overall ensemble performance is affected by the 

degree of similarity/diversity of the involved methods. In particular, hybrid combinations involving 

both univariate and multivariate techniques seem to be a promising avenue to maximize the 

ensemble diversity. 
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Table 1. Datasets used in the empirical study. 

 

Dataset name 
Number of 

features 

Number of instances 

and class distribution 

% of minority 

instances 

Internet 

advertisements 
1559 

3279 

(458 ad, 2821 nonad) 
14.0% 

Reuters_acq 7495 
9598 

(1650 yes, 7948 no) 
17.2% 

Reuters_corn 8302 
9598 

(181 yes, 9417 no) 
1.9% 

Reuters_crude 14466 
9598 

(389 yes, 9209 no) 
4.1% 

Reuters_earn 9500 
9598 

(2877 yes, 6721 no) 
30.0% 

Reuters_grain 12473 
9598 

(433 yes, 9165 no) 
4.5% 

Reuters_interest 10458 
9598 

(347 yes, 9251 no) 
3.6% 

Reuters_money-fx 7757 
9598 

(538 yes, 9060 no) 
5.6% 

Reuters_ship 9930 
9598 

(197 yes, 9401 no) 
2.1% 

Reuters_trade 7600 
9598 

(369 yes, 9229 no) 
3.8% 

Reuters_wheat 8626 
9598 

(212 yes, 9386 no) 
2.2% 

Colon Tumor 2001 
62 

(22 normal, 40 tumor) 
35.5% 

Diffuse Large B-Cell 

Lymphoma (DLBCL) 
7130 

77 

(19 FL, 58 DLBCL) 
24.7% 

Leukemia 7130 
72 

(25 AML, 47 ALL) 
34.7% 

Lung Cancer 7130 
96 

(10 normal, 86 tumor) 
10.4% 

Central Nervous 

System 
7130 

60 

(21 survivors, 39 failures) 
35.0% 
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Table 2. Internet advertisements dataset: similarity matrix for subsets of 20 features. Each cell in 

the matrix reports the Kuncheva similarity for the pair of subsets selected by the methods in the 

corresponding row and column.  

 

 

subsets of 20 

features 

Univariate Multivariate 

χ2 IG SU GR OR RF SVM_RFE SVM_ONE 

U
n

iv
a

ri
a

te
 

χ2  1.00 0.85 0.70 1.00 0.09 0.14 0.19 

IG   0.85 0.70 1.00 0.09 0.14 0.19 

SU    0.85 0.85 0.04 0.19 0.09 

GR     0.70 0.04 0.14 0.09 

OR      0.09 0.14 0.19 

M
u

lt
iv

a
ri

a
te

 

RF       0.09 0.14 

SVM_RFE        0.24 

SVM_ONE         

 

 

 

 

Table 3. Reuters datasets: similarity matrix for subsets of 20 features. Each cell in the matrix 

reports the Kuncheva similarity, averaged across all ten Reuters datasets, for the pair of subsets 

selected by the methods in the corresponding row and column.  

 

 

subsets of 20 

features 

Univariate Multivariate 

χ2 IG SU GR OR RF SVM_RFE SVM_ONE 

U
n

iv
a

ri
a

te
 

χ2  0.80 0.92 0.27 0.52 0.00 0.22 0.28 

IG   0.81 0.21 0.36 0.00 0.20 0.27 

SU    0.24 0.49 0.00 0.22 0.29 

GR     0.46 0.00 0.19 0.17 

OR      0.00 0.21 0.23 

M
u

lt
iv

a
ri

a
te

 

RF       0.00 0.00 

SVM_RFE        0.24 

SVM_ONE         

 

 

 

 

 

 

 



28 
 

Table 4. Biological datasets: similarity matrix for subsets of 20 features. Each cell in the matrix 

reports the Kuncheva similarity, averaged across all five biological datasets, for the pair of subsets 

selected by the methods in the corresponding row and column.  

 

 

subsets of 20 

features 

Univariate Multivariate 

χ2 IG SU GR OR RF SVM_RFE SVM_ONE 

U
n

iv
a

ri
a

te
 

χ2  0.74 0.75 0.59 0.59 0.36 0.17 0.14 

IG   0.81 0.58 0.52 0.31 0.16 0.13 

SU    0.71 0.55 0.30 0.16 0.13 

GR     0.46 0.29 0.15 0.13 

OR      0.31 0.18 0.17 

M
u

lt
iv

a
ri

a
te

 

RF       0.29 0.35 

SVM_RFE        0.57 

SVM_ONE         

 

 

 

 

Table 5. SVM_RFE approach: similarity analysis between 10%-RFE setting and 50%-RFE setting.  

 

             Subset size 

 Domain 
10 20 30 50 100 150 

Internet 

Advertisements 
0.6 0.85 0.66 0.86 0.85 0.87 

Reuters  

datasets 
0.47 0.44 0.45 0.48 0.52 0.57 

Biological  

datasets 
0.42 0.53 0.57 0.63 0.69 0.77 
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Fig. 1. Internet advertisements dataset: average similarity vs subset size. For a given subset size, 

the corresponding similarity matrix is built (as shown in Table 2), and the average similarity is 

computed over all pair-wise comparisons (ALL), over the pair-wise comparisons where both 

methods are univariate (Uni-Uni), over the pair-wise comparisons where both methods are 

multivariate (Multi-Multi), and over the pair-wise comparisons where one method is univariate and 

the other multivariate (Uni-Multi). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 20 40 60 80 100 120 140 160

Si
m

ila
ri

ty

Subset size

ALL

Uni-Uni

Multi-Multi

Uni-Multi



30 
 

 

 
 

 

 

Fig. 2. Reuters datasets: average similarity vs subset size. For a given subset size, the 

corresponding similarity matrix is built across all ten Reuters datasets (as shown in Table 3), and 

the average similarity is computed over all pair-wise comparisons (ALL), over the pair-wise 

comparisons where both methods are univariate (Uni-Uni), over the pair-wise comparisons where 

both methods are multivariate (Multi-Multi), and over the pair-wise comparisons where one method 

is univariate and the other multivariate (Uni-Multi). 
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Fig. 3. Biological datasets: average similarity vs subset size. For a given subset size, the 

corresponding similarity matrix is built across all five biological datasets (as shown in Table 4), 

and the average similarity is computed over all pair-wise comparisons (ALL), over the pair-wise 

comparisons where both methods are univariate (Uni-Uni), over the pair-wise comparisons where 

both methods are multivariate (Multi-Multi), and over the pair-wise comparisons where one method 

is univariate and the other multivariate (Uni-Multi). 
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Fig. 4. Comparison of average similarity trends on Internet advertisements, Reuters and 

biological datasets. For a given subset size, the average similarity is computed over all pair-wise 

comparisons in the corresponding similarity matrix. 
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