
Expert Systems with Applications 42 (2015) 7493–7510
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
A quantitative verification framework of SysML activity diagrams under
time constraints
http://dx.doi.org/10.1016/j.eswa.2015.05.049
0957-4174/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +213 794 005 852.
E-mail addresses: baouya.abdelhakim@gmail.com (A. Baouya), dbennouar@

gmail.com (D. Bennouar), otmane.aitmohamed@concordia.ca (O.A. Mohamed),
samir_ouchani@yahoo.com (S. Ouchani).
Abdelhakim Baouya a,⇑, Djamal Bennouar b, Otmane Ait Mohamed c, Samir Ouchani d

a CS Department, Saad Dahlab University, Blida, Algeria
b CS Department, University of Bouira, Algeria
c ECE Department, Concordia University, Montreal, Canada
d SnT Center, University of Luxembourg, Luxembourg
a r t i c l e i n f o

Article history:
Available online 29 May 2015

Keywords:
SysML activity diagram
Probabilistic Timed Automata
Model checking
PCTL
a b s t r a c t

Time-constrained and probabilistic verification approaches gain a great importance in system behavior
validation including avionic, transport risk assessment, automotive systems and industrial process
controllers. They enable the evaluation of system behavior according to the design requirements and
ensure their correctness before any implementation. Due to the difficulty of analyzing, modeling and
verifying these large scale systems, we introduce a novel verification framework based on PRISM
probabilistic model checker that takes the SysML activity diagram as input and produce their equivalent
timed probabilistic automata that is/are expressed in PRISM language. To check the functional
correctness of the system under test, the properties are expressed in PCTL temporal logic. To prove the
soundness of our mapping approach, we capture the underlying semantics of both the SysML activity
diagrams and their generated PRISM code. We found that the timed probabilistic equivalence relation
between both semantics preserve the satisfaction of the system requirements. We present digital camera
as case study to illustrate the applicability of the proposed approach and to demonstrate its efficiency by
analyzing a performability properties.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Constraints on software development in terms of functionality,
performance, reliability and time to market are becoming more
stringent. Therefore, development reveals several challenges.
Indeed, if in one side the applications are becoming increasingly
complex, in the other side the market pressure for rapid develop-
ment of these systems makes the task of their designs a challenge.
One major challenge in software development process is to
advance errors detection at early stages of life cycles. Researchers
at the National Institute of Standards and Technology (NIST) attest:
about 50 percent of software development budgets go to testing,
yet flaws in software still cost the U.S. economy $59.5 billion annu-
ally (US Dept of Commerce, 2010). It has been shown in Fig. 1
(Rajlich, 2014) that the cost of system repairing during the mainte-
nance in software development life cycle is approximately 67%.
Therefore, accelerate the verification and maintenance process at
preliminary design is extremely beneficial as compared to fixing
them at the testing phase.

Recently, formal verification methods have become essential
tools for developing safety–critical systems, where its behavioral
correctness is a main concern. These methods require a mathemat-
ical expertise for specifying what the system ought to do and
verifying it with respect to the requirements. There are mainly
two ways for doing formal verification: Theorem proving and model
checking.

Theorem proving needs to be operated by people with skills
(Experts) in order to solve the problem. In addition, this approach
need a precise description of the problem written in logical form
and the user needs to think carefully about the problem with dee-
per understanding in order to produce an appropriate formulation.
However, there is significant implementations of this approach
such as HOL (Pientka, 2007), Coq (Bertot & Castéran, 2004).

Model checking is popular formal verification approach in soft-
ware and hardware industry. For instance, SLAM (Ball, Bounimova,
Kumar, & Levin, 2010) which is a Microsoft research project uses a
model checking to verify device drivers are conform to their API
specification. According to Clarke (2008), model checking is auto-
matic and usually very fast. The user does not need to construct

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2015.05.049&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2015.05.049
mailto:baouya.abdelhakim@gmail.com
mailto:dbennouar@gmail.com
mailto:dbennouar@gmail.com
mailto:otmane.aitmohamed@concordia.ca
mailto:samir_ouchani@yahoo.com
http://dx.doi.org/10.1016/j.eswa.2015.05.049
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

7494 A. Baouya et al. / Expert Systems with Applications 42 (2015) 7493–7510
a correctness proof. If the specification is not satisfied, the model
checker will produce a counterexample execution trace that shows
why the specification does not hold. In addition, temporal Logics
can easily express many of the properties that are needed for rea-
soning. This verification method focuses on either qualitative or
quantitative properties (Baier & Katoen, 2008). The qualitative
properties assert that certain event will happen surely or not.
The quantitative properties are based on the probability or expec-
tation of a certain event (e.g. the probability of the system failure in
the next t time units is 0.85). Probabilistic model checking is an
effective technique to verify probabilistically the satisfiability of a
given property. In our paper we use PRISM language for probabilis-
tic model checker (Kwiatkowska, Norman, & Parker, 2011) where
the properties can be expressed in Probabilistic Computation
Tree Logic (PCTL) or in Continuous-stochastic logic (CSL). Note that
the properties prescribe what the system should do, and what it
should not do, whereas the model description addresses how the
system behaves.

In System Engineering, SysML (system modeling language) is a
standard language (OMG, 2012) used for specification, analysis,
design and verification of a broad range of complex systems (e.g.
Hardware, software, information work flow). SysML reuses a sub-
set of UML2 artifacts (Unified Modeling Language) (OMG, 2007)
and provides additional extensions to specify requirements such
as probability. Behavioral specification is achieved in SysML using
three diagrams: state machine, communication and activity dia-
gram. Activity diagram is particularly described in our paper.

This paper proposes a probabilistic verification of SysML activ-
ity diagram that are guarded with time constraints. The proposed
framework is depicted in Fig. 2, it takes SysML activity diagrams
(OMG, 2012) as inputs to produce the probability of the PCTL prop-
erty. The kernel of the framework is based on transforming the
activity diagram to its equivalent Probabilistic-Timed Automata
(PTA) expressed in PRISM language. We extract the adequate
semantics model related to SysML activity diagrams. Then, we pre-
sent the underlying semantics related to the produced PRISM
model. Furthermore, we show that the relation between both
semantics preserves the satisfiability of PCTL properties.

The remainder of this paper is structured as follows: Section 2
discusses related work. The preliminaries needed for our work
are presented in the next section. Section 4 describes and
Fig. 1. Traditional software desi

Fig. 2. Timed probabilistic verification fra
formalizes the SysML activity diagrams. The semantics PRISM
model checker is presented in Section 5. Section 6 provides a map-
ping algorithm of SysML activity diagrams into PRISM code and its
soundness is proved in Section 7. Section 8 illustrates the applica-
tion of our framework on a case study. Section 9 draws conclusions
and lays out future work.

2. Related works

In this section, we depict the recent works related to the verifi-
cation of behavioral models then we compare them with our pro-
posed approach.

Andrade, Maciel, Callou, and Nogueira (2009) and Carneiro,
Maciel, Callou, Tavares, and Nogueira (2008) use SysML language
and MARTE UML profile (Modeling and Analysis of Real-Time and
Embedded systems) to specify ERTSs (Embedded Real-time
Systems) constraints such as execution time and energy (Mallet
& de Simone, 2008). They map only the states and the transitions
into ETPN (Time Petri Net with Energy constraints). The approach
is restricted on a sub set of artifacts with control flow (data flow
is missed).

Doligalski and Adamski (2013) propose a verification and simu-
lation of UML state machine. For this purpose, two mapping mech-
anisms are defined. The first consists on mapping the original
model to Petri Network (PN) for verification according to the
requirements. When the requirements are satisfied, the second
mapping occurs to generate VHDL or Verilog description for simu-
lation. The data on each transition is considered as a trigger for a
new state. The formalization is restricted on Petri Networks.

Huang, Sun, Li, and Zhang (2013) propose a verification of
SysML State Machine Diagram by extending the model with
MARTE (Mallet & de Simone, 2008) to express the execution time.
The tool has as input the sate machine diagram and as output
Timed Automata (TA) expressed in UPPAAL syntax (Behrmann,
David, & Larsen, 2004). UPPAAL uses CTL (Computational Tree
Logic) properties to check if the model is satisfied with liveness
and safety properties.

Cafe, Hardebolle, Jacquet, and Boulanger (2013) develop a
framework that maps the SysML diagrams describing the heteroge-
neous system (hardware and software) to SystemC language. The
inputs are a set of SysML diagrams such as block diagram,
gn life cycle (Rajlich, 2014).

mework for SysML activity diagram.

A. Baouya et al. / Expert Systems with Applications 42 (2015) 7493–7510 7495
parametric diagram and behavioral diagram (e.g. Activity or state
machine diagram). The result is simulated to check the satisfaction
of timing and functional requirement.

kerholm et al. (2007) define a mapping rules that takes as input
a SaveCCM component model (Carlson, Hkansson, & Pettersson,
2006) and extracts a different tasks in XML format using
SaveToTimes tool. The results of the mapping is encoded in
UPPAAL syntax. Using CTL properties, the model can be checked
(e.g. Minimum execution time) to schedule the tasks (i.e.
Components) of general assembly.

Jarraya, Soeanu, Debbabi, and Hassaine (2007) propose a prob-
abilistic verification of SysML activity diagram where the execution
time of actions are represented as constraints (i.e. A note artifact in
SysML activity diagram). The diagram is translated to its corre-
sponding Discrete-Time Markov Chain (DTMC) and use PRISM
model-checker for performance evaluation using PCTL. The
approach is restricted on a sub set of SysML activity diagram con-
structs with control flow (data flow is missed).

Ouchani, Mohamed, and Debbabi (2014b) propose a verification
framework of SysML activity diagram. The authors address a sub
set of SysML activity diagram artifacts with control flow. The dif-
ferent artifacts have been formalized and a verification algorithm
has been proposed for mapping these artifacts to PRISM language.
The transformation result is a probabilistic automata to be checked
by PRISM. The mapping approach is sound but the approach is lim-
ited to only the control flow artifacts without including object and
time.

Debbabi, Hassane, Jarraya, Soeanu, and Alawneh (2010b)
translate SysML activity diagrams into the input language of the
probabilistic model-checker PRISM. The authors present the
algorithm implementing the translation of SysML activity dia-
grams into Markov Decision Process (MDP) supported by PRISM
model-checker. The mapping approach is limited to only the
control flow artifacts without including object and time.

Ouchani, Jarraya, and Mohamed (2011) presents an approach
based on probabilistic adversarial interactions between potential
attackers and the system design models. These interactions result
in a global model as composed SysML activity diagrams that
support more additional artifacts than (Ouchani et al., 2014b) such
as data objects. The result diagram is translated into PRISM
language and a set of security and functional properties are verified
against the composed model.

George and Samuel (2012) propose a syntax verification of UML
activity diagram to ensure the correctness of a design that may be
causing incorrect results or/and incorrect workflow. The algorithm
is used to analyze a sub set of activity diagram constructs such as
action nodes, decision nodes, fork nodes, join nodes, edges,
branches, initial state, final states and guard conditions. The main
purpose of the algorithm is prevent the errors at design phase by
decomposing activity diagram in its basic elements and verify its
individually such as components interconnection or identical
guard condition at decision node.

Kaliappan, Koenig, and Kaliappan (2008) propose a verification
approach for system workflow especially in communication proto-
col. The approach takes as input three UML diagrams: state
machine diagram, activity diagram and sequence diagram. State
machine diagram or activity diagram is converted into PROMELA
code as a protocol model and its properties are derived from the
sequence diagram as Linear Temporal Logic (LTL).

Lasnier, Zalila, Pautet, and Hugues (2009) develop a framework
for automatic generation of embedded real time applications in
C/C++/ADA. The input is AADL language (Architecture Analysis
and design Language) (Feiler, 2010) with typed software compo-
nents (e.g. threads, data) and hardware components (e.g. proces-
sor, bus, memory). In addition, The design model is enriched
with time execution properties (e.g. computation time, priority,
deadline and scheduling algorithms) (Singhoff, Legrand, Nana, &
Marcé, 2004). For timing estimation and optimization, a scheduling
tool is used based on software components timing constraints.
After time optimization, the framework generates C/C++/ADA code
that can be simulated.

Knorreck, Apvrille, and de Saqui-Sannes (2011) develop a
framework for timing constraints verification for customized
profile applied for real time system specification incorporating a
combined UML and SysML diagrams. Each block diagram and its
state machine is converted to corresponding automata in UPPAAL
syntax. The properties are derived from parametric diagram as
Computational Tree Logic (CTL).

Liu et al. (2013) propose a verification tool called UML State
Machine Model Checking (USMMC). The tool verify UML state
machine and processes verification using Linear Temporal Logic
(LTL) properties. However, the mapping from UML state machine
to USMMC input language is not given.

Grobelna, Grobelny, and Adamski (2014) present an approach
to verify the correctness of UML activity diagrams for logic con-
troller specification especially for embedded systems design. The
authors formalize the activity diagram using rule-based logic
model (Grobelna, 2013). The result model is mapped to
NuSMV(Cimatti, Clarke, Giunchiglia, & Roveri, 1999) in order to
verify system model against behavioral properties expressed in
Linear Temporal Logic (LTL) formulas to detects some errors.
When system is error free, the transformation of logical model into
synthesizable model in VHDL language.

Hoque, Mohamed, Savaria, and Thibeault (2014) introduce a
methodology based on probabilistic model checking to analyze
the dependability and performability properties of safety–critical
systems especially in aerospace applications. Starting from a
high-level description of a model, a Continuous-Time Markov
Chains (CTMC) is constructed from the Control Data Flow Graph
(CDFG) with different sets of available components and their
possible failures, fault recovery and repairs in the radiation
environment. The methodology is based on PRISM model checker
tool to model and evaluate dependability, performability and area
trade-offs between available design options using PCTL.

Noll (2015) presents the methodology that uses in COMPASS
tool. The methodology targets aerospace systems and allows satis-
factory for most safety–critical systems for aerospace on-board
systems. The specification is based on the Architecture Analysis &
Design Language (AADL). The analyses are mapped onto discrete,
symbolic and probabilistic model checkers, but all of them are
completely hidden away from the user by appropriate
model-transformations. To model possible failures, the AADL
model is enriched with behavioral error annex as state chart; when
error occur, an error state is triggered. The toolset builds upon
NuSMV (Cimatti et al., 1999), MRMC (Katoen, Zapreev, Hahn,
Hermanns, & Jansen, 2011). Specifications are written in
Probabilistic Computation Tree Logic (PCTL) and Continuous
Stochastic Logic (CSL).

Abdulkhaleq and Wagner (2014) propose a method for safety
analysis at the system level based on System-Theoretic Process
Analysis approach (STPA). The process step for software develop-
ment starts from specification level based on components interac-
tions and identify the Unsafe Control Actions which are formalized
into temporal logic. Symbolic Model Verifier (SMV) which was
developed by McMillan (1992) is used to check the safety require-
ments. The limitation of the method is that the Component-based
specification is not clearly described.

Marinescu et al. (2015) provide a framework for simulation and
verification of EAST-ADL (Qureshi, Chen, Lönn, & Törngren, 2011).
EAST-ADL is an architectural description language for automotive
electronic systems. The specification level is a component-based
architecture where behavior can be a set of xml-files and compiled

7496 A. Baouya et al. / Expert Systems with Applications 42 (2015) 7493–7510
C-code or a Simulink model. The simulation is done by automatic
transformation from the architectural model to a Simulink model.
The verification is done by automatic transformation from the
architectural model to a network of timed automata analysed by
UPPAAL.

Jacobs and Simpson (2015) present a compositional approach to
refinement and specification in the context of SysML. They con-
sider the behavior of SysML blocks as a set of composed behavior
of state machine and activity diagrams. The specification is
mapped to a process-algebraic CSP where assertions about require-
ments can be proved or refuted (Jacobs & Simpson, 2013). The idea
behind is to prove that the refinement is preserved and the auto-
mated analysis is computationally feasible.

Rodriguez, Fredlund, Herranz, and Marino (2014) present a tool
for UML state machine diagram verification called UMerL. The tool
is an interpreter of UML state machines implemented in Erlang
(Fredlund & Svensson, 2007) that executes a system modelled as
a collection of UML state machines. UMerL provides two function-
alities: the system can be executed for simulation or verified. Using
Linear Temporal Logic (LTL) the verification scenario can be
checked and it provides a counterexample when an LTL property
is violated.

Yan, Zhu, Yan, and Li (2014) use real-time model checking tool
UPPAAL to find the possible best throughput and response time of
MARTE models, and the best solution in the worst cases for both of
them. The approach is based on adding the MARTE profile with its
annotations (e.g. time processing) on UML diagrams such as a use
case diagram, a deployment diagram and a set of activity diagrams.
The result of mapping these three diagrams is a network of timed
automata. Using Computation Tree Logic (CTL) formula, the prop-
erties on throughput and response time are formulated to check
whether the network of timed automata satisfies the formulae.
The mapping rules concerns a sub set of activity diagrams and
did not include a call behavior or sub activities.
2.1. Comparison

As a summary, in Table 1 we compare our framework to the
existing works by taking consideration five criteria: SysML lan-
guage, time constraints, data workflow, formalization, soundness
and automation. The SysML criteria shows if an approach covers
the probabilistic systems. The time constraint criteria shows if
the approach includes the time specification at the design level.
The data workflow criteria indicates if data objects exist at specifi-
cation level. The formalization criteria confirms if the approach
presents a semantics and formalizes the studied diagrams. The
soundness feature shows if the soundness of the studied approach
is proved. The automation criteria checks if the presented approach
provides a tool. From the comparison, we observe that only few
works formalize the behavioral diagrams, include data workflow
Table 1
Comparison with the existing works.

Approach

Liu et al. (2013), George and Samuel (2012), Grobelna et al. (2014), Abdulkhaleq and
Wagner (2014) and Rodriguez et al. (2014)

Ouchani et al. (2011)
Lasnier et al. (2009), kerholm et al. (2007), Andrade et al. (2009), Carneiro et al. (2008

and Knorreck et al. (2011)
Kaliappan et al. (2008), Hoque et al. (2014), Noll (2015), Marinescu et al. (2015) and

Yan et al. (2014)
Ouchani et al. (2014b)
Huang et al. (2013) and Jarraya et al. (2007)
Cafe et al. (2013) and Debbabi et al. (2010b)
Our
and time constraint at specification level. Our works has for objec-
tive to support: data workflow, time constraints, and formalize the
SysML activity diagram. In addition, we implement the tool that
allows the automatic verification.
3. Preliminaries

3.1. SysML activity diagram

SysML activity diagram is a graph-based diagram where activity
nodes are connected by activity edges. The activity diagrams is a
primary representation for modeling flow based behavior in OMG
(2012). Fig. 3 shows the set of interesting artifacts used for verifi-
cation in our framework. The artifacts consist of activity nodes,
activity edges, activity control and constraints. Activity nodes have
three type: Activity invocation, objects and control nodes. Activity
invocation includes action, call behavior, send/receive signals
(objects). activity control includes: flow initial, flow final, activity
final, fork, merge and join node. Activity edge includes: control
flow and object flow. Object flow can connect the output pin of
one action to the input pin of next action to enable the passage
of tokens. Control flow provides additional constraints on when
and in which order the action within an activity will be executed.
A control token on an incoming control flow enables the execution
of an action and offers a control token on outgoing control flow
when action completes its execution. Control nodes such as join,
fork, merge, decision, initial and final are used to control the rout-
ing of control token over edges and specify the sequence of actions
(concurrency, synchronization). In addition, the constraints can be
used as SysML notes stereotyped with ‘‘Local Post Condition’’ and
‘‘Local Pre Condition’’. Next, we define the rules for actions to begin
and end execution during the activity workflow and we show the
expression manner of time in activity diagram.
3.1.1. Actions execution
The following rules (Friedenthal, Moore, & Steiner, 2008)

describe the requirements for actions to begin and end execution
during the activity workflow:

(a) The action owned by the activity must be executed.
(b) The action is executed if the number of tokens at each

required input pins is equal or greater than its lower multi-
plicity bound.

(c) The action is executed if a token is available in each of the
action’s incoming control flow.

(d) Once these perquisites are met, the action will start execut-
ing and tokens at its input pins are available for
consumption.
SysML Time
constraint

Data
workflow

Formalization Soundness Automation

p

p p p p

)
p p

p p

p p p p
p p p
p p
p p p p p p

Fig. 3. A sub set of SysML activity diagram artifacts.

A. Baouya et al. / Expert Systems with Applications 42 (2015) 7493–7510 7497
3.1.2. Time expression using SysML/MARTE
Friedenthal et al. (2008), Jarraya et al. (2007) and Debbabi,

Hassane, Jarraya, Soeanu, and Alawneh (2010a) provide a man-
ner to add the time constraints to actions with specialized form
of constraint that can be used to specify the time duration of an
action’s execution. The constraint is shown using standard
constraint notation: a note attached to the action which is
constrained (see Fig.2). However, annotation of time constraints
on top of SysML activity diagrams is not clearly defined in the
standard (OMG, 2012).

According to OMG SysML (OMG, 2012) the actions can be trig-
gered using wait time action artifact (Time Event). Wait time
action artifact becomes enabled when control token arrives on its
incoming control flow and the precedent action has finished. If
the time event specified by execution time elapses then it com-
pletes immediately and offer token to its outgoing control flow,
else waits for that time event to occur. If the Time event has not
an incoming edge then it becomes enabled as soon as the activity
begins executing.

MARTE is a new UML profile standardized by the OMG (Mallet &
de Simone, 2008) aims to replace the UML profile SPT (Profile for
Schedulability, Performance and Time) MARTE was defined to
make quantitative predictions regarding real-time and embedded
features of systems taking into account both hardware and soft-
ware characteristics. The core concepts are design and analysis
parts. The design parts are used to model real time embedded
systems. On the other hand, the analysis parts provide facilities
to support the resources analysis such as execution time, energy
and memory usage. In our paper, we use execution time for quan-
titative verification.

Fig. 4 illustrates how the probability value is specified on the
outgoing edges of the decision nodes testing their corresponding
guards. In addition, the time is specified using MARTE profile with
the stereotype hhresourceUsageii.

The action TurnOn requires exactly 2 units of time to terminate;
Action AutoFocus terminates within the interval]1,2[, The action
TakePicture’ execution time is negligible. To model probabilistic
systems, the probabilities are assigned to edges emanating from
decision nodes where the assigned values should sum up to 1.
For instance, the decision node testing the guard memFull has
the following semantic interpretation: the probability is equal to
0.2 that the outcome of the decision node will be
(memFull = true) and the corresponding edge traversed.
3.2. Probabilistic model checking

Model checking is a formal verification technique that given a
finite-state model of a system and a formal property, systemati-
cally checks whether this property holds for that model. If not a
counter example is generated. Probabilistic model checking is
based on the analysis of systems that exhibit a probabilistic behav-
ior. The model checked can be expressed as Discrete-Time Markov
Chains (DTMC), Continuous-Time Markov chains (CTMC),
Probabilistic Automata (PA) based on Markov Decision Process
(MDP) or recently as Probabilistic Timed Automata (PTA) to
describe a probabilistic model under time constraints. In this
paper, we focus on Probabilistic Timed Automata (PTA).

Probabilistic Timed Automata (PTA) (Norman, Parker, &
Sproston, 2013) are modeling formalism for systems that exhibit
probabilistic, non-deterministic and real-time characteristic.
Verification of PTAs permits analysis of a wide range of quantita-
tive properties such as reliability and performance, e.g:

– The minimum probability to take a picture within 2 s;
– The minimum probability to take a picture within 2 s when

flash is on.

PTAs can also be augmented with additional quantitative infor-
mations in the form of costs or rewards, e.g:

- The minimum expected time for completion of all tasks;
- The minimum expected energy to take a picture when flash is

on.

This paper provides a formal definition of PTAs to specify and
verify properties such as those listed above. Probabilistic Timed
Automata (PTA) is a Probabilistic Automata equipped with a finite
set of real-valued clock variables called clocks. Conditions on the
values of the clocks are used as enabling conditions (i.e., guards)
of actions: only if the condition is fulfilled the action is enabled

Fig. 4. Digital camera activity diagram design.

7498 A. Baouya et al. / Expert Systems with Applications 42 (2015) 7493–7510
and capable of being taken; otherwise, the action is disabled.
Conditions which depend on clock values are called clock con-
straints which is used to limit the amount of time that may be
spent in a location. The following definition prescribes how con-
straints over clocks are to be defined.

Definition 1 (Clock Constraint). A clock constraint over set X of
clocks is formed according to the grammar

g ::¼ x < c j x 6 c j x > c j x P c j g ^ g

where c 2 N and x 2 X. Let CC(X) denotes the set of clock con-
straints over X.

A Probabilistic Timed Automata (PTA) is an Probabilistic
Automata with clocks variable. The clocks are used to formulate
the real-time assumptions on system behavior. An edge in a PTA
is labeled with a guard (when is it allowed to take an edge?), an
action (what is performed when taking the edge?), and a set of
clocks (which clocks are to be reset?). A state is equipped with
an invariant that constrains the amount of time that may be spent
in that location. The formal definition is:

Definition 2. Probabilistic Timed Automata (PTA). PTA is a tuple
M ¼ hs; S; X; Act; Inv ; Prob; Li, where:

� s is an initial state, such that s 2 S,
� S is a finite set of states,
� X is a set of clocks,
� Act is a set of actions,
� Inv : S! CCðXÞ is an invariant condition, imposes restrictions

on the allowable values of clock variable,
� Prob : S� Act ! Distð2 x � SÞ is a probabilistic transition func-

tion assigning for each s 2 S and a 2 Act a probabilistic distribu-
tion l 2 Distð2 x � SÞ.
� L : S! 2AP is a labeling function mapping for each state a set of

atomic propositions.

A. Baouya et al. / Expert Systems with Applications 42 (2015) 7493–7510 7499
Transitions (Edges) in PTA are labeled with tuple ðg;aÞ where g
is a the clock constraint of the PTA, a is an action. The intuitive

interpretation of s!g;a
p

s0 is that the PTA can move from state s to

state s0 when clock constraint g holds. Besides, when moving from
state s to s0, any clock will be reset to zero and action a is per-
formed according to the distribution l 2 Distð2 x � SÞ. Function
Inv assigns to each state a state invariant that specifies how long
the PTA may stay there (maximum elapsing time). For state s,
Inv(s) constrains the amount of time that may be spent in s.

A location in PTA is a pair ðs; #Þ 2 RP0 such that for a set X of
clocks, # is a clock valuation with # : X ! RP0, assigning to each
clock x 2 X its current value #ðxÞ. In any location ðs; #Þ, either a cer-
tain amount of time ts 2 RP0 elapses, or an action a 2 Act is per-
formed. If time elapses, the choice of ts requires that the
invariant Inv remains continuously satisfied while time passes
i.e. #ðtsÞ � InvðsÞ. The resulting location after this transition is
ðs; #þ tsÞ. In the case where an action is performed, an action a
can only be chosen if it is enabled i.e. when clock constraint g
holds, #ðtsÞ � g. Once an enabled action a is chosen, a set of clocks
will be reset to zero and a successor location are selected at ran-
dom, according to the distribution lðs;#þtsÞ 2 Probðs;aÞ.

There are two possible ways in which a PTA can proceed by tak-
ing a transition in the PTA (action transition) or by letting time pro-
gress while remains in a state (delay transition):

� Action transition: ðs; #Þ!a ðs0; #0Þ if the following conditions
hold:

(a) there is a transition s!g;a
p

s0 ts 2 R

(b) #þ ts � g
(c) #0 ¼ ðv þ ts0 Þ½X :¼ 0�
(d) #þ ts � InvðsÞ
� Delay transition: ðs; #Þ!d ðs; #þ dÞ; d 2 R

(e) if #þ d � InvðsÞ

For a transition that corresponds to (a) traversing a transition

s!g;aps0 in PTA it must hold that (b) # satisfies the clock constraint
g (ensuring the transition is enabled), and (c) the new clock valua-
tion in s0 is reset, should (d) satisfy the state invariant of s
(#þ ts � InvðsÞ). To remain in the same state (e) if the location
invariant remains true while time progresses.

A reward structure are defined at the level of PTA equivalently
referred to as costs or prices using a pair r = (rS, rAct), where rS: S
! RP0 is a function assigning to each state the rate at which
rewards are accumulated as time passes in that location and rAct:
S� Act ! RP0 is a function assigning the reward of executing each
action in each state.

Definition 3 (Parallel composition of PTAs). The parallel composi-
tion of PTAs M1 ¼ ðs1; S1;X1;Act1; inv1; Prob1; L1Þ; M2 ¼ ðs2; S2;X2;

Act2; inv2; Prob2; L2Þ is the PTA M ¼ M1jjM2 ¼ ðs1 � s2; S1�
S2;X1 [X2;Act1 [Act2; inv ;Prob;Lðs1Þ [Lðs2ÞÞ: where ProbðS1�
S2;Act1 [Act2Þ is the set of transitions, such that one of the
following requirements is met.
1. s1 !
t1 ;a lðs1 ;#þt1Þ; s2 !

t2 ;a lðs2 ;#þt2Þ, and a 2 Act1 \ Act2, t1 2 X1; t2 2 X2,

2. s1 !
t1 ;a lðs1 ;#þt1Þ;lðs2 ;£Þ ¼ s2 # 1½ �, and a 2 Act1 n Act2; t1 2 X1,

3. lðs1 ;£Þ ¼ s1 # 1½ �; s2 !
t2 ;a lðs2 ;#þt2Þ, and a 2 Act2 n Act1; t2 2 X2.

If PTA Mi has associated with rewards structure ðri
s; r

i
ActÞ, then

the reward structure of r = ðrs; rActÞ for M1jjM2:
1. ri
sðs1; s2Þ ¼ r1

s ðs1Þ þ r2
s ðs2Þ; rActððs1; s2Þ;aÞ ¼ r1

Actðs1;aÞþ
r2

Actðs2;aÞ, and a 2 Act1 \ Act2

2. rActððs1; s2Þ;aÞ ¼ r1
Actðs1;aÞ, and a 2 Act1 n Act2

3. rActððs1; s2Þ;aÞ ¼ r2
Actðs2;aÞ, and a 2 Act2 n Act1

The PRISM tool supports three PTA model checking techniques:
Digital Clocks (Kwiatkowska, Norman, Parker, & Sproston, 2004)
and abstraction refinement using stochastic games
(Kwiatkowska, Norman, & Parker, 2009) where stochastic games
supports the reward operator and the Digital clocks supports the
probabilistic operator. The structure of our temporal logic is
expressed by the following BNF grammar:
3.3. Property specification for PTAs

The syntax of our logic is given by the following grammar:

u ::¼ true j ap ju ^u j:u j Pfflp½w� j Rr
fflq½q�,

w ::¼ u[6ku j u [u,

q ::¼ I¼k j C6k j F u

Where ‘‘ap’’ is an atomic proposition, P is a probabilistic opera-
tor and R is a reward. Operator Pfflp½w�means that the probability of
path formula w being true always satisfies the bound ffl p, p 2 [0,
1]. Rr

fflq½q� means that the expected value of reward function q on

reward structure r meets the bound ffl q, q 2 Q. ‘‘ffl’’ 2 <;6; >;P.
‘‘^’’ represents the conjunction operator and ‘‘:’’ is the negation
operator. Two paths formulas are included bound until u1 [u2
and time-bound until u1[6ku2. Bound until means that a state
satisfying u2 is eventually reached and that, at every
time-instant prior to that, u1 is satisfied. The time-bounded vari-
ant has the same meaning, where the occurrence of u2 occur

within time k. The reward operator I¼k refers to the reward of

the current state at time instant k, C6k refers to the total reward
accumulated up until time point k, and F u to the total reward
accumulated until a state satisfying u is reached, e.g:

– Rtime
max ¼ ? [F success]: what is the expected reward accumulated

before the system successfully terminates?
– Pmin ¼ ? [true [6100 Complete]: the minimum probability of the

system eventually completing its execution successfully after
100 time units?

Let P is PTA and [[P]] = (S; s;T, Act, lab, StepP) its semantics
where S is a set of states, s is the initial state, T is a set of clocks,
lab is a labeling function and StepP : S� Act�!Distð2 x � SÞ is a
probabilistic transition function and let r denotes the reward struc-
ture over [[P]] corresponding to the reward structure over P. The
satisfaction relation of a PCTL formula (Norman et al., 2013) is
denoted by ‘‘�’’ and defined as follows where ðs; #Þ is a location
and Path is a sequence of states:

� s; # � true is always satisfied,
� s; # � ap() ap 2 LðsÞ and L is a labeling function,
� s; # � u1 ^u2 () s; # � u1 ^ s; # � u2,
� s; # � :u() s; #2u,

� s; # � Pfflp½w� () Probr
½½P��ðp 2 Paths;#jp � wÞ ffl p, for all

r 2 Adv ½½P��,
� s; # � Rr

fflq½q� () Expr
½½P��ðrewðr;qÞÞ ffl q, for all r 2 Adv ½½P��.

Where for any finite path p of [[P]]:

Table 2
TAC terms of SysML activity diagram artifacts.

Artifacts TAC terms Description

l : i�N Initial node is activated when a
diagram is invoked

l : 	 Activity final node stops the
diagram execution

l :
 Flow final node kills its related
path execution

l : a?v�N Receive node is used to receive a
signal/object

l : a!v�N Send node is used to send a
signal/object

l : a�N Action node defines an atomic
action

l : a " B�N Call behavior node invokes a
new behavior

l : R " A�N Region node invokes a sub
actions behavior

l : DðA;p; g;N 1;N 2Þ Decision node with a call
behavior A, a convex
distribution p;1� pf g and
guarded edges g; : gf g

l : MðxÞ�N Merge node specifies the
continuation and x ¼ x1; x2f g is a
set of input flows

l : JðxÞ�N Join node presents the
synchronization where
x ¼ x1; x2f g is a set of input pins

l : FðN 1;N 2Þ Fork node models the
concurrency that begins
multiple parallel control threads

l : ExðA;N 1;N 2Þ InterruptibleActivityRegion
invokes a sub behavior that can
be interrupted

7500 A. Baouya et al. / Expert Systems with Applications 42 (2015) 7493–7510
� p � u1 U6ku2 () There is a position ði; tÞ of p such that
pðiÞ þ t � u2 and durpðiÞ þ t 6 k and pðjÞ þ t0 � u1 _u2 for all
positions ðj; t0Þ � ði; tÞ of p,
� p � u1 U u2 () There is a position ði; tÞ of p such that

pðiÞ þ t � u2 and pðjÞ þ t0 � u1 _u2 for all positions ðj; t0Þ �
ði; tÞ of p.

For reward structure r = ðrS; rActÞ over [[P]], the random variable
rewðr;qÞ over infinite paths of [[P]] is defined as follows:

rewðr; I6kÞðpÞ ¼ rSðpðjkÞÞ,
rewðr;C6kÞðpÞ ¼

Pjk�1
i¼0 rðp; iÞ þ ðk� durpðjkÞÞ:rSðpðjkÞÞ,
rewðr; FuÞðpÞ ¼
Pj/�1

i¼0 rðp; iÞ þ t/:rSðpðj/ÞÞ if ðj/; t/Þ exists;

1 otherwise

(

where j0 ¼ 0; jk ¼ max i j durpðiÞ < kf g for k > 0 and, when it
exists, ðj/; t/Þ is the minimum position under the ordering � such
that pðj/Þ þ t/ � /.
Fig. 5. Syntax of Timing A
4. SysML activity diagram formalization

In this section, we formalize SysML activity diagram with
extended artifacts by providing an adequate calculus.
4.1. SysML activity diagrams syntax

Based on textual specification of SysML (OMG, 2012) we for-
malize the SysML activity diagram by developing its Calculus:
Timing Activity Calculus (TAC). In Table 2, each SysML artifact is
represented and described formally by its related TAC term. The
TAC terms in Fig. 5 extends NuAC defined by Debbabi et al.
(2010a) and enhanced by Ouchani et al. (2014b) adding the time
and data. In this calculus we distinguish between two syntactic
concepts: Marked and Unmarked terms. A marked terms are activ-
ity diagrams with tokens. The unmarked terms corresponds to the
static structure of the activity diagram. A marked term denotes the
configuration of diagram in the workflow process.

To support tokens we augment the ‘‘over bar’’ operator with

integer value n such that the N n denotes the term N marked with

n tokens with the convention that N 1 ¼ N and N 0 ¼ N . Multiple
tokens can be observed when the loop encompass a fork in its
body. Furthermore, we use a prefix label l: for each node to
uniquely reference it in the case of a backward flow connection.
Particularly, labels are useful for connecting multiple incoming
flows towards merge and join nodes. Let L be a collection of labels
ranged over by l; l0; l1,. . .and N be any node (except initial) in the
activity diagram. We write l : N to denote a l-labeled activity node
N . It is important to note that nodes with multiple incoming edges
(e.g. join and merge) are visited as many times as they have incom-
ing edges. Thus, as a syntactic convention we use only a label (i.e. l)
to express a TAC term if its related node is encountered already.
We denote by D (A; g;N ;N) and D (A; p; g;N ;N) to express a
non-probabilistic and a probabilistic decisions, respectively. For
the workflow observation on SysML activity diagrams, we use
structural operational semantics (Milner, 1999 & Norman et al.,
Norman, Palamidessi, Parker, & Wu, 2007) to formally describe
how the computation steps of TAC atomic terms take place. We
define Act as the set of actions labeling the transitions (i.e. the
alphabet of TAC, to be distinguished from action nodes in activity
diagrams). An element a is the label of the executing action node
or x(y) inputs an object name on x and stores it in y. An element
t is the time for action transition and p be probability values such

that p 2�0;1½ . The general form of a transition is A!t;a
p

A0. The prob-

ability value specifies the likelihood of a given transition to occur
and it is denoted by PðA; t;a;A0Þ. The case of p = 1 presents a

non-probabilistic transition and it is denoted simply by A!t;a A0.
For simplicity, we denote by A[N] to specify N as a sub-term of
A and by jAj to denote a term A without tokens. For the call behav-
ior case of a " N , we denote A[a " N] by A"aN . In the sequel, we
describe the operational semantic rules of the TAC calculus in
Table 3.

The semantics of SysML activity diagrams expressed using A is
the result of the defined inference rules. The semantics can be
described in terms of PTA as stipulated by Definition 4.
ctivity Calculus (TAC).

Table 3
Operational semantic rules of the TAC calculus.

INT-1 l : i�N!l 1l : i�N This axiom introduces the
execution of A by putting a token on i

INT-2 l : i�N!l 1l : i�NThis axiom propagates the
token in the marked term i into its outgoing N .

ACT-1 8n > 0;m P 0 l : am�N n!l 1l : amþ1�N n�1

This axiom propagates the token from the global
marked term to a

ACT-2 amþ1�N n!t;a1l : am�N n This axiom propagates
the token from the marked term a to N

ACT-3 N !
bðyÞ
N 0

l:am�N n!bðyÞ1 l:am�N 0n
The derivation rule ACT-3

illustrates the evolution of term am�N n when a =
b(y) inputs a name on b and stores it in y

EXP-1 A½l0 :a?v!N 1 �!
l0

1 jAj

l:EXðA;N 1 ;N 2Þn!
l0

1 l:EXðjAj0 ;p;g;N 1 ;N 2Þn
EXP-1 derivation

rule shows the termination of a behavior sub actions
with a transition to the exception node N 1

BEH-0 8n > 0 l : a " An
�N!l 1l : a " An�1

�NThis
axiom propagates the token from the global
marked term to a

BEH-1 A¼l0 :i�NA0¼l0 :i�N
l:a"An

�N!l 1 l:a"A0n�1
�N

BEH-1 axiom introduces

the execution of the behavior A related to a

BEH-2 A½l0 :	�!l
0

1 jAj

l:a"An
�N!l

0
1 l:a"jAjn�N

The derivation rule BEH-2

finishes the execution of a call behavior and moves the
token to the succeeding term N

BEH-3 A!t;apA0

l:a"An
�N!t;ap l:a"A0n�N

The derivation rules BEH-3

and BEH-4 present the effect on a " An when A or
N executes an action a with a probability p

BEH-4 N!t;a1N 0

l:a"An
�N!t;ap l:a"An

�N 0
FRK-1 8n > 0 l : FðN 1;N 2Þ!

l
1l : FðN 1;N 2ÞThe FRK-1

axiom shows the multiplicity of the arriving tokens
according to the outgoing sub-terms

FRK-2 N 1!
t;aN 01

l:FðN 1 ;N 2Þ!
t;a

l:FðN 01 ;N 2Þ
The FRK-2 derivation rule

illustrates the changes on a fork term when its
outgoing execute an action

DEC-1

8n > 0 l : Dðg;N 1;N 2Þn!
g;a

l : Dðg;N 1;N 2Þn�1The
axiom DEC-1 describes a non-probabilistic decision
where a token flows through the edge satisfying its
guard

DEC-2

8n > 0 l : Dðp; g;N 1;N 2Þn!
g;a

pl : Dðp; g;N 1;N 2Þn�1The
axiom DEC-2 describes a probabilistic decision where
a token flows through the edge satisfying its guard
with probability p

DEC-3 A¼l:i�NA0¼l0 :i�N
l:DðA;p;g;N 1 ;N 2Þn!

l
1 l:DðA0 ;p;g;N 1 ;N 2Þn�1

DEC-3 axiom

shows a transition of probability one to initiate an
invoked behavior

DEC-4 A½l0 :	�!l
0

1 jAj

l:DðA;p;g;N 1 ;N 2Þn!
g;l0

p l:DðjAj;p;g;N 1 ;N 2Þn
DEC-4

derivation rule shows the termination of a behavior
with a transition of probability one and how a token
can flow from a behavior call execution to a guarded
path with a probability value

DEC-5 N 1!
t;aN 01

l:DðA;p;g;N 1 ;N 2Þn!
t;a

l:DðA0 ;p;g;N 01 ;N 2Þn
DEC-5 shows the

evolution of a decision term when one of its behavior
has been changed under time t

MRG-1 l : N�l0 : Mðx; yÞn!l l : N�l0 : Mðx; yÞn MRG-1
is a transition with a probability of value 1 to put a
token coming from the sub-term N on a merge
labeled by l

MRG-2 l : l0 : Mðx; yÞ�N n!l l : l0 : Mðx; yÞ�N n MRG-
2 is a transition with a probability of value 1 to
present a token flowing from a merge labeled by l to
the sub-term N

MRG-3

l : A½l0 : Mðx; yÞ�N ; lx�!
l

l : A½l0 : Mðx; yÞ�N ; lx� MRG-
3 shows the merge enabled when token arrived atone
of its pins

MRG-4 N !t;aN 0

l:Mðx;yÞ�N n!t;a l:Mðx;yÞ�N 0n
The derivation rules

MRG-4 presents the subsequence of l : Mðx; yÞ�N
when N executes an action a with a probability p

JOIN-1 l : N�l0 : Jðx; yÞn!l l : N�l0 : Jðx; yÞn JOIN-1
represents a transition with a probability of value 1
to activate the pin x in a join labeled by l

JOIN-2 l : l : Jðx; yÞ�N n!s l : l : Jðx; yÞ�N n JOIN-2
represents a transition with a probability of value 1 to
move a token in join to the sub-term N

JOIN-3 l : A½l0 : Jðx; yÞ�N ; lx�!
s

l : A½l0 : Jðx; yÞ�N ; lx �
JOIN-3 shows the join input enabled when token
arrived at one of its pins

JOIN-4 N !t;aN 0

l:Jðx;yÞ�N n!t;a l:Jðx;yÞ�N 0n
The derivation rule JON-4

presents the subsequence of l : Jðx; yÞ�N when N
executes an action a with a probability p

SND l : a!vn
�N !l l : a!vn�1

�N SND describes the
evolution of the token after sending an object v

FFIN A½l :
�!l A½l :
� This axiom states that if the
sub-term l :
 is reached in A then a transition of
probability one is enabled to produce a term
describing the termination of a flow

AFIN A½l : 	�!l jAj This axiom states that if the sub-
term l : 	 is reached then no action is taken later by
destroying all tokens

PRG N !t;aN 0

A½N �!t;aA½N 0�
PRG derivation rules preserve the

evolution when a sub-term N evolves to N 0
by

executing the action a with a probability p under time
t

A. Baouya et al. / Expert Systems with Applications 42 (2015) 7493–7510 7501
Definition 4. (TAC-PTA). A Probabilistic Timed Automata of TAC
term A is the tuple MA ¼ hs; S;X;Act; Inv; Prob; Li, where:

� s is an initial state, such that LðsÞ ¼ l : i�N
n o

,

� S is a finite set of states reachable from s, such that,

S ¼ si:06i6njLðsiÞ ¼ N
n on o

� X is a set of clocks,
� Act is a set of actions including three types: label of the execut-

ing action node, x(y) inputs an object name on x and stores it in
y,
� Inv : S! CCðXÞ is an invariant condition (i.e. constraints over

clocks X),
� Prob : S� Act ! Distð2 x � SÞ is a probabilistic transition

function assigning for each s 2 S and a 2 Act a probabilistic
distribution l where:
– For each S

0
S and t 2 X such that

S0 ¼ si : 0 6 i 6 n : s!t;a
pi

si

� �
, each transition s!t;apisi satisfies

one TAC semantic rule and lðS0; #Þ ¼
Pn

i¼0pi ¼Pn
i¼0lðsi; #þ tÞ ¼ 1 .

– For each transition s!t;a1s00 satisfies one TAC semantic rule and
lðS00; #þ tÞ ¼ 1
� L : S! 2½½L�� is a labeling function where: ½½L�� ¼ true; falsef g.

5. PRISM formalization

In this section, our formalization focus on Probabilistic Timed
Automata (PTA) that extends the standard probabilistic automata
(PA) considered as appropriate semantic model for SysML activity
diagram (Ouchani, Mohamed, & Debbabi, 2013). The PRISM model
checker supports the PTA with ability to model real-time behavior
by adding real-valued clocks (i.e. clocks variable) which increases
with time and can be reset (i.e. updated).

A Timed Probabilistic System (TPS) that represents a PRISM pro-
gram (P) is composed of a set of ‘‘m’’ modules ðm > 0Þ. The state of
each module is defined by the evaluation of its local variables VL.
The global state of the system is defined as the union of the evalu-
ation of local and global variables: V ¼ VL [VG. The behavior of
each module is described as a set of statements in the form of:

½act�guard! p1 : u1::þ pn : un

Where act is an (optional) action labeling the command, the
guard is a predicate consists of boolean, integer and clock variables
and propositional logic operators, p is a probability. The update u is
a set of evaluated variables expressed as conjunction of

7502 A. Baouya et al. / Expert Systems with Applications 42 (2015) 7493–7510
assignments ðV 0j ¼ valjÞ& . . . &ðV 0k ¼ valkÞ where Vj 2 VL [VG and
valj are values evaluated via expressions denoted by ‘‘eval’’
eval : V! R [True; Falsef g. The formal definition of a command
is given in Definition 5.

Definition 5. A PRISM command is a tuple c ¼ ha; g;ui.

� ‘‘act’’ is an action label.
� ‘‘guard’’ is a predicate over V.
� ‘‘u’’ ¼ ðpi;uiÞf g 9m > 1; i < m; 0 > pi > 1;

Pm
i pi ¼ 1 and

u ¼ ðv ; evalðvÞÞ : v 2 Vlf g.

The set of commands are associated with modules that are parts
of a system and it definition is given in Definition 6.
Definition 6. A PRISM module is tuple M ¼ hVl; Il; Inv;Ci, where:

� Vl is a set of local variable associated with a module,
� Inv is a time constraint of the form v l ffl d= ffl2 6;Pf g and

d 2 N,
� Il is the initial value of Vl.
� C ¼ ci;0 < i 6 kf g is a set of commands that define the module

behavior.

To describe the composition between different modules, PRISM
use CSP communication sequential process operators (Hoare,
1985) such as Synchronization, Interleaving, Parallel Interface,
Hiding and Renaming. Definition 7 provides a formal definition of
PRISM system.
Definition 7. A PRISM system is tuple P ¼ hV; I; exp;M;CSPexpi,
where:
Table 4
PRISM-PTA operational semantic rules.

INIT Vi; initðViÞh i ! Við½½initðViÞ��Þ;�h i INIT initializes
variables. For a module Mi , init returns the initial
value of the local variable v i 2 Vi

LOOP Vi;�h i ! Vih iThis ax
state without changing var
be applied to avoid a dead

CNJ-UPD

V ; v 0i ¼ evalðVÞ ^ v 0j ¼ evalðVÞ
D E

! Vð½½v i��; ½½v j ��Þ
� �

CNJ-UPD implements the conjunction of a set of
assignments

PRB-UPD1 Vi;p : v 0i ¼ eva
�

0 < p < 1

ENB-CMD1 V�g;InvðVÞ
V ;Mð½a�g!pi :uiÞh i!l ENB-CMD1 enables the

execution of a probabilistic command
ENB-CMD2

V�g;InvðVÞ

V ;½a�g!u;½a0 �g0!u0h i

CMD2 enables the executi
module

SYNC
Vi ;cih i!a li Vj ;cjh i!a lj

Vi[Vj ;Mi jjMjh i!a li :lj

SYNC derivation rule permits the

synchronization between modules on a given action a

INTERL Vi ;MiðciÞh i!
aj

l

V ;Mi jj jMjh i!
aj

l
INTER

describes the interleaving

Fig. 6. The syntax of PRISM Pro
� V ¼ Vg
‘m
ði¼1ÞVli is the union of a set local and global variables.

� Ig is initial values of global variables.
� exp is a set of global logic operators.
� M is a set of modules composing a System.
� CSPexp is CSP algebraic expression.

5.1. PRISM syntax

The syntax of PRISM PTA is defined by the BNF grammar
presented in Fig. 6. To clarify the syntax we define the following:

� min . . . max½ � is a range of values such that min; max 2 N and
min < max,
� p 2�0; 1½ is a probability value,
� eval is an evaluation expression that can be composed of the

following operators:þ;�; �; =; <;<¼; >;>¼; !; j;¼>; g?a : b,
� val 2 R [true; falsef g is a value given by the function eval,
� v is a string describing a variable ðv 2 VÞ and initðvÞ is its initial

value,
� name is a string describing the module name. For the module i;

name is denoted by Mi,
� Invariant impose restrictions on the allowable values of clock

variable,
� CSPexp is a CSP expression composed of the following operators
jj; jj j; j½a; b; . . .�j; = a; b; . . .f g, and a b; c d; . . .f g.

5.2. PRISM semantics

The Probabilistic Timed Automata of a PRISM program P is
based on the atomic semantics of a command c denoted by [[c]].
The latter is a set of transitions defined as follows:
½½c�� ¼ ðs; a;lÞjs � gf g where l is a distribution over S such that
lðs; #þ v tÞ ¼ j0 6 pi 6 1;v 2 V ; s0ðvÞ ¼ evalðVÞjf g.
iom presents a loop in a
iables evaluations. It can
lock

UPDATE Vi;v 0i ¼ evalðVÞ
� �

! Við½½v i��Þh i UPDATE axiom
describes the execution of a simple assignment for a
given variable v i . Its evaluation is updated in Vi of Mi

lðVÞ
�
!p Við½½v i��Þh i PRB-UPD2

V ; p : v 0i ¼ evalðVÞ ^ v 0j ¼ evalðVÞ
D E

!p Vð½½v i��; ½½v j��Þ
� �

0 < p < 1 PRB-UPD1 and PRB-UPD2 describe
probabilistic updates

V2g0 ;Inv 0 ðVÞ

!a Vð½½u��Þ;½a0 �g0!u0h i
ENB-

on of a command in a

ENB-CMD3 V�g;InvðVÞ V�g0 ;Inv 0 ðVÞ
V ;½a�g!u;½a0 �g0!u0h i!a Vð½½u��Þ;½a0 �g0!u0h i

ENB-CMD3

solves the nondeterminism in a module by following a
policy

L derivation rule

between modules

babilistic Timed Automata.

Listing 1. Generating PRISM Commands Function-Part1.

A. Baouya et al. / Expert Systems with Applications 42 (2015) 7493–7510 7503
Definition 1 stipulates the formal definition of PRISM
Probabilistic Timed Automata denoted by MP . The states of MP take
the form V1; . . . ;Vn; evalh i. The stepwise behavior of MP is
described by the operational semantic rules provided in Table 4.

Definition 8. (PRISM-PTA). A Probabilistic Timed Automata of
PRISM program p is the tuple Mp ¼ hsi; S; X; Act; Inv ; Prob; Li,
where:

� si is an initial state, such that LðsiÞ ¼ ½½initðViÞ��,
� S is a finite set of states reachable from si, such that,

S ¼ si:06i6njLðsiÞ 2 APf gf g,
� X is a set of PRISM clocks variables,
� Act is a finite set of actions,
� Inv: imposes restrictions on the allowable values of clock
variable,
� Prob : S� Act ! Distð2 x � SÞ is a probabilistic transition func-

tion assigning for each s 2 S and a 2 Act a probabilistic distribu-
tion l where: For each s 2 S, v 2 V is a PRISM variable, a 2 Act

and v t 2 V is a clock variable such that sðv;v tÞ!
a lðv ;#þv tÞ,

#þ v t � InvðvÞ and sðv ;v tÞ � g.
� L : S! 2AP is a labeling function that assigns for each state a set

of valuated propositions.

6. The verification approach

This section describes the transformation of SysML activity dia-
grams A into a PTA written in PRISM input language. Algorithm 1

7504 A. Baouya et al. / Expert Systems with Applications 42 (2015) 7493–7510
illustrates the transformation algorithm T that takesA as input and
returns its PRISM code by PrismCode. The diagram A is visited
using a depth-first search procedure (DFS) and the algorithms out-
put produces PRISM synchronized modules.

Algorithm 1 Transformation Algorithm T of SysML activity
diagrams into PRISM Code

Input: SysML activity diagram A
Output: PRISM Code
1 Nodes: Stack;
2 cNode, fNode as Node;
3 nNodes, vNodes List_Of_Node;
4 maxDuration, minDuration: Integer;
5 action as Action;
6 ProcedureT(A)

7 Nodes.push(init); J Push the initial node 2 A
8 While Nodes.notEmpty()
9 cNode:¼ Nodes.pop(); J Pull out the first node

10 If (cNode not in vNode)
11 Then

12 vNodes.add(cNode); J The current is considered

as visited

13 nNodes:¼cNode.Successors();J Store the

successors in buffer list

14
15 if (cNode.hasDuration()) J set Invariant

16 Then

17 maxDuration:¼ cNode.maxDuration();
18 PrismCode.add(/(cNode,maxDuration));
19 End if

20
21 minDuration:¼ cNode.minDuration();
22 PrismCode.add(C(cNode,nNodes,

minDuration,action));
23 End if

24
25 For all(n in nNodes)
26 Then Nodes.add(n); J Add the

successors to the stack

27 End For

28 nNodes.clear(); J Empty the buffer list and

search ends

29 End While

30
31 End Procedure T

First, the initial node is pushed into the stack of nodes denoted
by Nodes (line 7). While the stack is not empty (line 8–29), the
algorithm pops a node from the stack into the current node
denoted by cNode (line 9). The current node is added into the list
vNode of visited nodes (line 12) if it is not already visited (line
10). PrismCode is constructed by calling the function C and /.
The first has four arguments which are the current node, its succes-
sors, the minimum duration and action type (line 22). The second
has two arguments which are the current node and the maximum
duration to impose the maximal clocks supported by the state (line
18). The explored successors are pushed into the stack nodes (line
25–27). The algorithm terminates when all nodes are visited.

The function C presented in Listing 1 and Listing 2 produces the
appropriate PRISM command for each TAC term. The action label of
a command is the label of its related term n. The guard of this com-
mand depends on how the term is activated and minimal clock val-
uation. The flag related to the term is its label l that is initialized to
false except for the initial node it is true which conforms to the
premise of the TAC rule INIT-1. The updates of the command deac-
tivate the propositions of the term, activate that ones related to its
successors, reset the clock variable of its successors and assign an
object values to its successors inputs pins. For a term n 2 A, we
define three useful functions are: LðnÞ; SðAiÞ, and EðAiÞ that return
the label of a term n, the initial and the final terms of the diagram
Ai, respectively. For example, the call behavior action l : a " Ai (line
26) produces two commands (line 30), and it calls the function C

0

(line 57). The first command in (line 30) synchronizes with the first
command in (line 61) produced by the function C0 in the action l
from the diagram A. Similarly, the second command in (line 30)
synchronizes with the command of line 65 in the action L(EðAiÞ)
from the diagram Ai. The first synchronization represents the
TAC rule BH-1 where the second represents the rule BH-2. The
function C

0
is similar to the function C except for the initial and

the final nodes as shown in (line 52) and (line 56), respectively.
The region behavior calls the sub actions within the region in the
iterative manner Listing 2 (line 3). After each execution an object
is produced, the number of execution has the size of the collection
in the output. Due to the unsupported collection type in PRISM we
use the simple object type integer, double. Thanks for prism
renaming ability, we can rename the sub module name end its
variables to produce multiple objects. At the end of Region execu-
tion, multiple parallel commands are synchronized and objects are
assigned Listing 2 (line 7). The region is interrupted Listing 2 (Line
10), including accept event actions in the region, when a token tra-
verses an interrupting edge. At this point the interrupting token
has left the region and is not terminated Listing 2 (Line 38). The
/ function Listing 2 (line 49–54) associate with each action the
maximum integer number supported by the clock variable (i.e.
clock invariant). The generated PRISM fragment of each diagram
Ai is bounded by two PRISM primitives: the module head
ModuleAi, and the module termination endmodule.

7. The transformation soundness

Our aim is to prove the soundness of the transformation algo-
rithm C by showing that the proposed algorithm preserves the sat-
isfiability of PCTL properties. Let A be a TAC term and MA is its
corresponding PTA constructed by the TAC operational semantics
denoted by S such that SðAÞ ¼ MA. For the program P resulting
after transformation rules, Let Mp its corresponding PTA con-
structed by PRISM operational semantics denoted S0 such that
S0ðPÞ ¼ Mp. As illustrated in Fig. 7, proving the soundness of C
algorithm is to find the adequate relation R between MA and MP .

To define the relation MARMP , we have to establish a step by
step correspondence between MA and MP . First, we introduce the
notion of the timed probabilistic bisimulation relation
(Ben-Menachem, 2010; Segala, 1995) in Definitions 9 and 10. This
relation is based on the probabilistic equivalence relationR defined
in Definition 8 where d/R denotes the quotient space of d with
respect to R and �R is the lifting of R to a probabilistic space.

Definition 8. (The equivalence �R). If R is an equivalence on d,
then the induced equivalence �R on Dist(d� 2 x) is given by: l�Rl

0

iff lðd; #þ dÞ�Rlðd; #þ d0Þ.

Definition 9 (Timed Probabilistic Bisimulation Relation). A binary
relation R over the set of states of PTAs is timed bisimulation iff
whenever s1Rs2;a is an action and d is a delay:

� if s1!
d;a lðs1; #þ dÞ there is a transition s2!

d0 ;a lðs2; #þ d0Þ, such
that s1Rs2. The delay d can be different from d0;
� two states s, s0 are time probabilistic bisimilar, written s s0, iff

there is a timed probabilistic bisimulation related to them.

Listing 2. Generating PRISM Commands Function-Part2.

A. Baouya et al. / Expert Systems with Applications 42 (2015) 7493–7510 7505
Fig. 7. The transformation soundness.
Definition 10 (Timed Probabilistic Bisimulation of
PTAs). Probabilistic Timed Automata A1 and A2 are timed proba-
bilistic bisimilar denoted (A A0) iff their initial states in the union
of the probabilistic timed transition systems T(A1) and T(A2) gener-
ated by A1 and A2 are timed probabilistic bisimilar.

For our proof, we stipulate herein the mapping relation R
denoted by MARMP between a TAC term A and its corresponding
PRISM term P.

Definition 11 (Mapping relation). The relation MARMP between a
TAC term A and a PRISM term P such that CðAÞ ¼ P is a timed
probabilistic bisimulation relation.

Finally, proving that C is sound means showing the existence of
a timed probabilistic bisimulation between MA and MP .

Lemma 1 (Soundness). The mapping algorithm C is sound, i.e.
MA MP .
Proof. We prove MA MP by following a structural induction on
TAC terms and their related PRISM terms. For that, let s1; s01 2 SA

and s2; s02 2 SP . We distinguish the following cases where L(s) takes
different values:
1. L(s1) = l : x�N such as x ¼ i; af g) 9s1!
d;a

1s01, L(s01) = l : x�N .

For L(s2) = C(L(s1)), we have L(s2) = LðxÞ; : LðN Þh i then 9s2!
d0 ;a

1
s02

where Lðs02Þ ¼ : LðxÞ; LðN Þh i.
2. L(s1) = l : x�N such as x ¼ a!v ; a?vf g) 9s1!

a

1
s01,

L(s01) = l : x�N . For L(s2) = C(L(s1)), we have

L(s2) = LðxÞ; : LðN Þh i then 9s2!
a

1
s02 where Lðs02Þ ¼ : LðxÞ; LðN Þh i.

7506 A. Baouya et al. / Expert Systems with Applications 42 (2015) 7493–7510
3. L(s1) = l : Dðg1;N 1;N 2Þn then 9s1 !
g1 ;a

1
s01, L(s01) = l :

Dðg1;N 1;N 2Þn�1. For L(s2) = C(L(s1)), we have L(s2) =

l; : lN 1 ; : lN 2

� �
then 9s2 !

g1 ;a

1
s02 where Lðs02Þ ¼ : l; lN 1 ; : lN 2

� �
.

4. L(s1) = l : 	 then 9s1!
a

1
s01, L(s01) = l : 	. For L(s2) = C(L(s1)), we

have L(s2) = lh i then 9s2!
a

1
s02 where 8li 2 L : Lðs02Þ ¼ : lih i.

5. L(s1) = l :
 then 9s1!
a

1
s01, L(s01) = l :
. For L(s2) = C(L(s1)), we

have L(s2) = lh i then 9s2!
a

1
s02 where Lðs02Þ ¼ : lh i. h

From the obtained results, we found that lðs1; #þ dÞ ¼
lðs2; #þ d0Þ ¼ 1 then s1 s2. In addition, the unique initial state
of MA is always corresponding to the unique initial state in MP .
By studying all TAC terms, we find that MA MP , which confirms
that Lemma 1 holds.

In the following, we show that the mapping relation preserves
the satisfiability of PCTL properties. This means, if a PCTL property
is satisfied in the resulting model by a mapped function C then it is
satisfied by the original one.

Proposition 1 (PCTL preservation). For two PTAs MA and MP such
that CðAÞ ¼ P where MA MP . For a PCTL property /, then:
ðMA � /Þ () ðMP � /Þ.
Listing 3. Digital camera P
Proof. The preservation of PCTL properties is proved by induction
on the PCTL structure and its semantics. Since MA MP

and by relying to the semantics of each PCTL operator

f 2 U;U6k; I¼k;C6k; F;Pfflp;Rfflq

n o
, we find that ðMA � fÞ ()

ðMP � fÞ which means: ðMA � /Þ () ðMP � /Þ. h
8. Implementation and experimental results

In this section, we apply our verification framework on Digital
camera case study (Debbabi et al., 2010a). The related SysML activ-
ity diagrams are modeled on Topcased2 then mapped into Prism
code via our Java implementation. Listing 3 shows a simplified
code for the Digital Camera module. In the purpose of providing
experimental results demonstrating the efficiency and the validity
of our approach, we verify four system functional requirements.
They are expressed in PCTL as follows:

1. The maximum probability value that the TakePicture action
should not be activated if either the memory is full
memFull = true or the AutoFocus action is still ongoing. T is a
constant value referring to the time bound
RIS
Pmax ¼ ?½F6TðmemFulljAutoFocusÞ&TakePicture� ð1Þ

2. The maximum probability to complete all tasks after turning
on the camera. T is a constant value referring to the time
bound
M code fragment.

Fig. 9. The abstract SysML activity diagram for Property 4.

Fig. 8. The verification of PCTL properties on the digital camera.

A. Baouya et al. / Expert Systems with Applications 42 (2015) 7493–7510 7507
Pmax ¼ ?½F6T Final� ð2Þ

3. The minimum expected time that the TurnOff action should
be activated after turning on the camera.

R \time"f gmin ¼ ?½FðTurnOff Þ� ð3Þ

The verification results of the above two properties are done
using an i7 CPU 2.67 GHz with 8.0 GB of RAM and shown in Fig. 8.
For different values of time T, Fig. 8(a) shows that the verification
result for Property 1 converges to 0.6 after 4 time units. Fig. 8(b)
shows that the verification result for Property 2 converges to 0.916
after 6 time units. For the third property, the minimum reward or
minimum expected time that the TurnOff action should be activated
after turning on the camera is equal to 3.448 time units.

Now, we want to verify the abstraction effects over SysML activ-
ity diagram described above Fig. 4 to cope with state explosion
problem when we check the property

Pmax ¼ ?½F6T TakePicture� ð4Þ

Table 5
Verification results for Property 4.

Time interval Concrete model Abstract model Results

Tv Tc Tv Tc

1 0.03 1.554 0.0026 1.059 0
2 0.186 1.535 0.154 1.068 0.18
3 0.465 1.551 0.401 1.077 0.26
4 0.678 1.567 0.58 0.839 0.679
5 0.946 1.544 0.716 0.928 0.679
6 0.812 1.728 0.757 0.965 0.476
7 0.847 1.54 0.543 0.788 0.476
8 0.7 1.368 0.555 0.767 0.476
9 0.694 1.285 0.495 0.779 0.476

10 0.032 1.303 0.01 1.007 0

Fig. 10. The abstraction effects on digital camera activity diagram.

7508 A. Baouya et al. / Expert Systems with Applications 42 (2015) 7493–7510
For this purpose we apply the algorithm and rules defined by
Ouchani, Mohamed, and Debbabi (2014a). This abstraction
approach depends on the activity diagram and the PCTL properties
as input and produces an abstracted model. However, the abstrac-
tion rules do not focus on time constraints. To take the advantages
of the algorithm we hide the state (Activity Action) that does not
appear in PCTL property proposition set such as: Flash, TurnOff,
FinalFlow and Fork2 except those are constrained. The result is
shown in Fig. 9 and Table 5 presents its different verification results
in function of time interval T. To evaluate the verification cost, we
measure the time required for verifying a given property, denoted
by Tv and time required to construct the model denoted by Tc.
The results are depicted in Fig. 10. The number of states and transi-
tions for the concrete model are 9364 states and 23,653 transitions,
respectively and 4580 states, 12,221 transitions for the abstracted
model. As conclusion, we notice that the abstraction rules preserves
the results while verification and construction time are optimized.

9. Conclusion

In this paper, we presented a formal verification approach of
systems modeled by using SysML activity diagram. The objective
is to alleviate errors and failures that can emerge in system
design-flow in order to reduce the cost of maintenance and repair-
ing as soon as possible from the implementation. The proposed
approach use SysML activity diagram with time annotations using
MARTE profile to evaluate the system behavior at different periods
of time. Compared to Grobelna et al. (2014), which use NuSMV
(Cimatti et al., 1999) for state reachability in activity diagram,
our approach leverages probabilistic and timed modeling, allowing
the assessment of properties expressed in probabilistic temporal
logic. With respect to Ouchani et al. (2014b) which use a proba-
bilistic model to check the SysML activity diagram with difficulty
to predict the system behavior due to the static description, we
employ a probabilistic and timed model capturing system
governed by time constraints. Moreover, in contrast to Marinescu
et al. (2015), which use C programs as component behavior but
only components (without extracting C behavior) are mapped to
UPPAAL that result in difficulties to evaluate accurately the system
(the core behavior is hidden), our approach make decisions at spec-
ification level using SysML activity diagram.

The research contribution of this work consists on capturing the
activity diagram with time features as Probabilistic Timed
Automata supported by PRISM language. We proposed a calculus
dedicated to SysML activity diagrams that captures precisely the
underlying semantics. In addition, we formalized PRISM language
and showing its semantics. Moreover, we proved the soundness
of our proposed approach by defining the relation between the
semantics of the mapped diagrams and the resulting PRISM mod-
els. By this relation, we proved the preservation of the satisfiability
of PCTL properties. We have shown the effectiveness of our
approach in realistic case study: digital Camera where time and
probability are evaluated. In addition, we evaluated the time con-
struction and time checking when the size of diagram is reduced
according to PCTL properties.

The practical advantages of the proposed approach in the con-
text of predicting the behavior of systems, consists on providing
key decision for errors minimization and product cost reducing
via probabilistic model checking. The limitations of the proposed
approach relate to the problem of state explosion, we explain in
our work how to reduce the number of state by removing just
the negligible states that are not time-constrained.

The presented work can be extended in the following four direc-
tions. First, we want to reduce the size of the model generated after
mapping the SysML activity diagrams into PRISM code that affects
memory and time especially for the timed states. Second, we
intend to extend our approach to support more constraints that
affect the entire system behavior such as energy. Third, we want
to study the problem of partitioning using model checking in case
of HW/SW CoDesign starting from the component based

A. Baouya et al. / Expert Systems with Applications 42 (2015) 7493–7510 7509
specification. Finally, we intend to translate the system modeled
using Component based specification with activity diagram as
behavior model to specific language such as VHDL/C/C++/NesC.
References

Abdulkhaleq, A., & Wagner, S. (2014). A software safety verification method based
on system-theoretic process analysis. In A. Bondavalli, A. Ceccarelli, & F.
Ortmeier (Eds.), Computer safety, reliability, and security. Lecture notes in
computer science (Vol. 8696, pp. 401–412). Springer International Publishing.
http://dx.doi.org/10.1007/978-3-319-10557-4_44. ISBN 978-3-319-10556-7.

Andrade, E., Maciel, P., Callou, G., & Nogueira, B. (2009). A methodology for mapping
SysML activity diagram to time petri net for requirement validation of
embedded real-time systems with energy constraints. In Third international
conference on digital society, 2009. ICDS ’09 (pp. 266–271). http://dx.doi.org/10.
1109/ICDS.2009.19.

Baier, C., & Katoen, J. P. (2008). Principles of model checking (representation and mind
series). The MIT Press. ISBN 026202649X, 9780262026499.

Ball, T., Bounimova, E., Kumar, R., & Levin, V. (2010). Slam2: Static driver verification
with under 4% false alarms. In Proceedings of the 2010 conference on formal
methods in computer-aided design, FMCAD ’10, 2010. FMCAD Inc (pp. 35–42).
Austin, TX. <http://dl.acm.org/citation.cfm?id=1998496.1998508>.

Behrmann, Gerd, David, Alexandre, & Larsen, KimG. (2004). A tutorial on uppaal. In
Marco Bernardo & Flavio Corradini (Eds.), Formal methods for the design of real-
time systems. Lecture notes in computer science (Vol. 3185, pp. 200–236). Berlin
Heidelberg: Springer. http://dx.doi.org/10.1007/978-3-540-30080-9_7. ISBN
978-3-540-23068-7.

Ben-Menachem, M. (2010). Reactive systems: Modelling, specification and
verification; is written by L. Aceto, et al.; and published by cambridge
university press; distributed by cambridge university press; 2007, (hardback),
ISBN: 978-0-521-87546-2, p. 300. SIGSOFT Software Engineering Notes, 35(4),
34–35, July 2010. ISSN: 0163-5948. http://dx.doi.org/10.1145/1811226.
1811243. URL http://doi.acm.org/10.1145/1811226.1811243.

Bertot, Yves, & Castéran, Pierre (2004). Interactive theorem proving and program
development. Coq’Art: The calculus of inductive constructions. Springer<http://
www.labri.fr/perso/casteran/CoqArt/index.html>.

Carlson, J., Hkansson, J., & Pettersson, P. Saveccm: An analysable component model
for real-time systems. Electronic Notes in Theoretical Computer Science,
160(0):127 – 140, 2006. ISSN 1571-0661. doi: http://dx.doi.org/10.1016/
j.entcs.2006.05.019. URL http://www.sciencedirect.com/science/article/pii/
S1571066106003811. Proceedings of the International Workshop on Formal
Aspects of Component Software (FACS 2005) Proceedings of the International
Workshop on Formal Aspects of Component Software (FACS 2005).

Carneiro, E., Maciel, P., Callou, G., Tavares, E., & Nogueira, B. (2008). Mapping SysML
state machine diagram to time petri net for analysis and verification of
embedded real-time systems with energy constraints. In International
conference on advances in electronics and micro-electronics, 2008. ENICS ’08 (pp.
1–6). http://dx.doi.org/10.1109/ENICS.2008.19.

Cafe, D. C., dos Santos F. V., Hardebolle, C., Jacquet, C., & Boulanger, F. (2013). Multi-
paradigm semantics for simulating SysML models using SystemC-AMS. In 2013
Forum on specification design languages (FDL) (pp. 1–8).

Cimatti, A., Clarke, E. M., Giunchiglia, F., & Roveri, M. (1999). Nusmv: A new
symbolic model verifier. In Proceedings of the 11th international conference on
computer aided verification, CAV ’99 (pp. 495–499). London, UK, UK: Springer-
Verlag. <http://dl.acm.org/citation.cfm?id=647768.733923>, ISBN 3-540-
66202-2.

Clarke, E. M. (2008). The birth of model checking. In O. Grumberg & H. Veith (Eds.),
25 Years of model checking. Lecture notes in computer science (Vol. 5000,
pp. 1–26). Berlin Heidelberg: Springer. http://dx.doi.org/10.1007/978-3-540-
69850-0_1. ISBN 978-3-540-69849-4.

Debbabi, M., Hassane, F., Jarraya, Y., Soeanu, A., & Alawneh, L. (2010a). Verification
and validation in systems engineering: Assessing UML/SysML design models (1st
edition). New York, NY, USA: Springer-Verlag New York, Inc.. ISBN 3642152279,
9783642152276.

Debbabi, M., Hassane, F., Jarraya, Y., Soeanu, A., & Alawneh, L. (2010b). Probabilistic
model checking of SysML activity diagrams. In Verification and validation in
systems engineering (pp. 153–166). Berlin Heidelberg: Springer. http://
dx.doi.org/10.1007/978-3-642-15228-3_9. ISBN 978-3-642-15227-6.

Doligalski, M., & Adamski, M., (2013). UML state machine implementation in FPGA
devices by means of dual model and verilog. In 2013 11th IEEE international
conference on industrial informatics (INDIN) (pp. 177–184). http://dx.doi.org/10.
1109/INDIN.2013.6622878.

Feiler, P. H. (2010). Model-based validation of safety-critical embedded systems. In
Aerospace conference, 2010 (pp. 1–10). IEEE. http://dx.doi.org/10.1109/
AERO.2010.5446809.

Fredlund, LarsAAke, & Svensson, Hans (2007). Mcerlang: A model checker for a
distributed functional programming language. SIGPLAN Notices, 42(9), 125–136.
http://dx.doi.org/10.1145/1291220.1291171<http://doi.acm.org/10.1145/
1291220.1291171>. ISSN 0362-1340.

Friedenthal, Sanford, Moore, Alan, & Steiner, Rick. (2008). A practical guide to SysML:
Systems modeling language. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc.. ISBN 0123743796, 9780080558363, 9780123743794.

George, R., & Samuel, P. (2012). Improving design quality by automatic verification
of activity diagram syntax. In 2012 12th International conference on intelligent
systems design and applications (ISDA) (pp. 303–308). http://dx.doi.org/10.1109/
ISDA.2012.6416555.

Grobelna, Iwona (2013). Formal verification of logic controller specification by means
of model checking. Lecture notes in control and computer science. Springer
International Publishing.

Grobelna, I., Grobelny, M., & Adamski, M. (2014). Model checking of UML activity
diagrams in logic controllers design. In W. Zamojski, J. Mazurkiewicz, J. Sugier,
T. Walkowiak, & J. Kacprzyk (Eds.), Proceedings of the ninth international
conference on dependability and complex systems DepCoS-RELCOMEX. June 30–July
4, 2014. Advances in intelligent systems and computing (Vol. 286, pp. 233–242).
Springer International Publishing. ISBN 978-3-319-07012-4.

Hoare, C. A. R. (1985). Communicating sequential processes. Upper Saddle River, NJ,
USA: Prentice-Hall, Inc.. ISBN 0-13-153271-5.

Hoque, K. A., Mohamed, O. A., Savaria, Y., & Thibeault, C. (2014). Early analysis of
soft error effects for aerospace applications using probabilistic model
checking. In C. Artho & P. Csaba-lveczky (Eds.), Formal techniques for safety-
critical systems. Communications in computer and information science (Vol. 419,
pp. 54–70). Springer International Publishing. http://dx.doi.org/10.1007/978-3-
319-05416-2_5. ISBN 978-3-319-05415-5.

Huang, X., Sun, Q., Li, J., & Zhang, T. (2013). MDE-based verification of SysML state
machine diagram by uppaal. In Y. Yuan, X. Wu, & Y. Lu (Eds.), Trustworthy
computing and services. Communications in computer and information science
(Vol. 320, pp. 490–497). Berlin Heidelberg: Springer. http://dx.doi.org/10.1007/
978-3-642-35795-4_62. ISBN 978-3-642-35794-7.

Jacobs, J., & Simpson, A. (2013). Towards a process algebra framework for
supporting behavioural consistency and requirements traceability in SysML.
In L. Groves & J. Sun (Eds.), Formal methods and software engineering.
Lecture notes in computer science (Vol. 8144, pp. 265–280). Berlin Heidelberg:
Springer. http://dx.doi.org/10.1007/978-3-642-41202-8_18. ISBN 978-3-642-
41201-1.

Jacobs, J., & Simpson, A. (2015). A formal model of SysML blocks using CSP for
assured systems engineering. In C. Artho & P. C. veczky (Eds.), Formal techniques
for safety-critical systems. Communications in computer and information science
(Vol. 476, pp. 127–141). Springer International Publishing. http://dx.doi.org/
10.1007/978-3-319-17581-2_9. ISBN 978-3-319-17580-5.

Jarraya, Y., Soeanu, A., Debbabi, M., & Hassaine, F. (2007). Automatic verification and
performance analysis of time-constrained SysML activity diagrams. In 14th
Annual IEEE international conference and workshops on the engineering of
computer-based systems, 2007. ECBS ’07 (pp. 515–522). http://dx.doi.org/10.
1109/ECBS.2007.22.

Kaliappan, P. S., Koenig, H., & Kaliappan, V. K. (2008). Designing and verifying
communication protocols using model driven architecture and spin model
checker. In 2008 International conference on computer science and software
engineering (Vol. 2, pp. 227–230). http://dx.doi.org/10.1109/CSSE.2008.976.

Katoen, J. P., Zapreev, I. S., Hahn, E. M., Hermanns, H., & Jansen, D. N. (2011). The Ins
and Outs of the probabilistic model checker MRMC. Performance Evaluation,
68(2), 90–104. http://dx.doi.org/10.1016/j.peva.2010.04.001. ISSN 0166-5316.

kerholm, M., Carlson, J., Fredriksson, J., Hansson, H., Håkansson, J., Möller, A., et al.
(2007). The save approach to component-based development of vehicular
systems. Journal of Systems and Software, 80(5), 655–667. http://dx.doi.org/
10.1016/j.jss.2006.08.016. ISSN 0164-1212.

Knorreck, D., Apvrille, L., & de Saqui-Sannes, P. (2011). Tepe: A SysML language for
time-constrained property modeling and formal verification. SIGSOFT Software
Engineering Notes, 36(1), 1–8. http://dx.doi.org/10.1145/
1921532.1921556<http://doi.acm.org/10.1145/1921532.1921556>. ISSN 0163-
5948.

Kwiatkowska, M., Norman, G., & Parker, D. (2009). Stochastic games for verification
of probabilistic timed automata. In J. Ouaknine & F. W. Vaandrager (Eds.),
Formal modeling and analysis of timed systems. Lecture notes in computer science
(Vol. 5813, pp. 212–227). Berlin Heidelberg: Springer. http://dx.doi.org/
10.1007/978-3-642-04368-0_17. ISBN 978-3-642-04367-3.

Kwiatkowska, M., Norman, G., & Parker, D. (2011). Prism 4.0: Verification of
probabilistic real-time systems. In G. Gopalakrishnan & S. Qadeer (Eds.),
Computer aided verification. Lecture notes in computer science (Vol. 6806,
pp. 585–591). Berlin Heidelberg: Springer. http://dx.doi.org/10.1007/978-3-
642-22110-1_47. ISBN 978-3-642-22109-5.

Kwiatkowska, M., Norman, G., Parker, D., & Sproston, J. (2004). Performance analysis
of probabilistic timed automata using digital clocks. In K. Larsen & P. Niebert
(Eds.), Formal modeling and analysis of timed systems. Lecture notes in computer
science (Vol. 2791, pp. 105–120). Berlin Heidelberg: Springer. http://dx.doi.org/
10.1007/978-3-540-40903-8_9. ISBN 978-3-540-21671-1.

Lasnier, G., Zalila, B., Pautet, L., & Hugues, J. (2009). Ocarina: An environment for
AADL models analysis and automatic code generation for high integrity
applications. In F. Kordon & Y. Kermarrec (Eds.), Reliable software technologies
Ada-Europe 2009. Lecture notes in computer science (Vol. 5570, pp. 237–250).
Berlin Heidelberg: Springer. http://dx.doi.org/10.1007/978-3-642-01924-1_17.
ISBN 978-3-642-01923-4.

McMillan, K. L., (1992). Symbolic model checking: An approach to the state
explosion problem (PhD thesis). Pittsburgh, PA, USA. UMI Order No. GAX92-
24209.

Liu, S., Liu, Y., Sun, J., Zheng, M., Wadhwa, B., & Dong, J. S. (2013). Usmmc: A self-
contained model checker for UML state machines. In Proceedings of the 2013 9th
joint meeting on foundations of software engineering, ESEC/FSE 2013
(pp. 623–626). New York, NY, USA: ACM. http://dx.doi.org/10.1145/
2491411.2494595<http://doi.acm.org/10.1145/2491411.2494595>. ISBN 978-
1-4503-2237-9.

http://dx.doi.org/10.1007/978-3-319-10557-4_44
http://dx.doi.org/10.1109/ICDS.2009.19
http://dx.doi.org/10.1109/ICDS.2009.19
http://refhub.elsevier.com/S0957-4174(15)00385-1/h0015
http://refhub.elsevier.com/S0957-4174(15)00385-1/h0015
http://dx.doi.org/10.1007/978-3-540-30080-9_7
http://dx.doi.org/10.1145/1811226.1811243
http://dx.doi.org/10.1145/1811226.1811243
http://doi.acm.org/10.1145/1811226.1811243
http://www.labri.fr/perso/casteran/CoqArt/index.html
http://www.labri.fr/perso/casteran/CoqArt/index.html
http://www.sciencedirect.com/science/article/pii/S1571066106003811
http://www.sciencedirect.com/science/article/pii/S1571066106003811
http://dx.doi.org/10.1109/ENICS.2008.19
http://refhub.elsevier.com/S0957-4174(15)00385-1/h0055
http://refhub.elsevier.com/S0957-4174(15)00385-1/h0055
http://refhub.elsevier.com/S0957-4174(15)00385-1/h0055
http://refhub.elsevier.com/S0957-4174(15)00385-1/h0055
http://refhub.elsevier.com/S0957-4174(15)00385-1/h0055
http://dx.doi.org/10.1007/978-3-540-69850-0_1
http://dx.doi.org/10.1007/978-3-540-69850-0_1
http://refhub.elsevier.com/S0957-4174(15)00385-1/h0065
http://refhub.elsevier.com/S0957-4174(15)00385-1/h0065
http://refhub.elsevier.com/S0957-4174(15)00385-1/h0065
http://refhub.elsevier.com/S0957-4174(15)00385-1/h0065
http://dx.doi.org/10.1007/978-3-642-15228-3_9
http://dx.doi.org/10.1007/978-3-642-15228-3_9
http://dx.doi.org/10.1109/INDIN.2013.6622878
http://dx.doi.org/10.1109/INDIN.2013.6622878
http://dx.doi.org/10.1109/AERO.2010.5446809
http://dx.doi.org/10.1109/AERO.2010.5446809
http://doi.acm.org/10.1145/1291220.1291171
http://doi.acm.org/10.1145/1291220.1291171
http://refhub.elsevier.com/S0957-4174(15)00385-1/h0090
http://refhub.elsevier.com/S0957-4174(15)00385-1/h0090
http://refhub.elsevier.com/S0957-4174(15)00385-1/h0090
http://dx.doi.org/10.1109/ISDA.2012.6416555
http://dx.doi.org/10.1109/ISDA.2012.6416555
http://refhub.elsevier.com/S0957-4174(15)00385-1/h0100
http://refhub.elsevier.com/S0957-4174(15)00385-1/h0100
http://refhub.elsevier.com/S0957-4174(15)00385-1/h0100
http://refhub.elsevier.com/S0957-4174(15)00385-1/h0105
http://refhub.elsevier.com/S0957-4174(15)00385-1/h0105
http://refhub.elsevier.com/S0957-4174(15)00385-1/h0105
http://refhub.elsevier.com/S0957-4174(15)00385-1/h0105
http://refhub.elsevier.com/S0957-4174(15)00385-1/h0105
http://refhub.elsevier.com/S0957-4174(15)00385-1/h0105
http://refhub.elsevier.com/S0957-4174(15)00385-1/h0110
http://refhub.elsevier.com/S0957-4174(15)00385-1/h0110
http://dx.doi.org/10.1007/978-3-319-05416-2_5
http://dx.doi.org/10.1007/978-3-319-05416-2_5
http://dx.doi.org/10.1007/978-3-642-35795-4_62
http://dx.doi.org/10.1007/978-3-642-35795-4_62
http://dx.doi.org/10.1007/978-3-642-41202-8_18
http://dx.doi.org/10.1007/978-3-319-17581-2_9
http://dx.doi.org/10.1007/978-3-319-17581-2_9
http://dx.doi.org/10.1109/ECBS.2007.22
http://dx.doi.org/10.1109/ECBS.2007.22
http://dx.doi.org/10.1109/CSSE.2008.976
http://dx.doi.org/10.1016/j.peva.2010.04.001
http://dx.doi.org/10.1016/j.jss.2006.08.016
http://dx.doi.org/10.1016/j.jss.2006.08.016
http://dx.doi.org/10.1145/1921532.1921556
http://doi.acm.org/10.1145/1921532.1921556
http://dx.doi.org/10.1007/978-3-642-04368-0_17
http://dx.doi.org/10.1007/978-3-642-04368-0_17
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.1007/978-3-540-40903-8_9
http://dx.doi.org/10.1007/978-3-540-40903-8_9
http://dx.doi.org/10.1007/978-3-642-01924-1_17
http://dx.doi.org/10.1145/2491411.2494595
http://doi.acm.org/10.1145/2491411.2494595

7510 A. Baouya et al. / Expert Systems with Applications 42 (2015) 7493–7510
Mallet, F., & de Simone, R. (2008). Marte: A profile for rt/e systems modeling,
analysis–and simulation? In Proceedings of the 1st international conference on
simulation tools and techniques for communications, networks and systems &
workshops, Simutools ’08 (pp. 43:1–43:8). Brussels, Belgium, Belgium:
ICST<http://dl.acm.org/citation.cfm?id=1416222.1416271>. ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineering).
ISBN 978-963-9799-20-2.

Marinescu, R., Kaijser, H., Mikucionis, M., Seceleanu, C., Lonn, H., & David, A. (2015).
Analyzing industrial architectural models by simulation and model-checking. In
C. Artho & P. C. lveczky (Eds.), Formal techniques for safety-critical systems.
Communications in computer and information science (Vol. 476, pp. 189–205).
Springer International Publishing. http://dx.doi.org/10.1007/978-3-319-17581-
2_13. ISBN 978-3-319-17580-5.

Milner, Robin (1999). Communicating and mobile systems: The &Pgr;-calculus. New
York, NY, USA: Cambridge University Press. ISBN 0-521-65869-1.

Noll, T. (2015). Safety, dependability and performance analysis of aerospace
systems. In C. Artho & P. Csaba-lveczky (Eds.), Formal techniques for safety-
critical systems. Communications in computer and information science (Vol. 476,
pp. 17–31). Springer International Publishing. http://dx.doi.org/10.1007/978-3-
319-17581-2_2. ISBN 978-3-319-17580-5.

Norman, G., Palamidessi, C., Parker, D., & Wu, P. (2007). Model checking the
probabilistic p-calculus. In Proc. 4th international conference on quantitative
evaluation of systems (QEST’07) (pp. 169–178). IEEE Computer Society.

Norman, G., Parker, D., & Sproston, J. (2013). Model checking for probabilistic timed
automata. Formal Methods in System Design, 43(2), 164–190. http://dx.doi.org/
10.1007/s10703-012-0177-x. ISSN 0925-9856.

OMG unified modeling language: Superstructure 2.1.2. object management group.
O.M. Group (Ed.), 2007.

OMG systems modeling language (Object management group SysML). O.M. Group
(Ed.), 2012.

Ouchani, S., Jarraya, Y., & Mohamed, O. A. (2011). Model-based systems security
quantification. In 2011 Ninth annual international conference on privacy, security
and trust (PST) (pp. 142–149). http://dx.doi.org/10.1109/PST.2011.5971976.

Ouchani, S., Mohamed, O. A, & Debbabi, M. (2013). A probabilistic verification
framework of SysML activity diagrams. In 2013 IEEE 12th international
conference on intelligent software methodologies, tools and techniques (SoMeT)
(pp. 165–170). http://dx.doi.org/10.1109/SoMeT.2013.6645657.

Ouchani, S., Mohamed, O. A., & Debbabi, M. (2014a). A property-based abstraction
framework for SysML activity diagrams. Knowledge-Based Systems, 56, 328–343.
http://dx.doi.org/10.1016/j.knosys.2013.11.016. ISSN 0950-7051.
Ouchani, S., Mohamed, O. A., & Debbabi, M. (2014b). A formal verification
framework for SysML activity diagrams. Expert Systems with Applications,
41(6), 2713–2728. http://dx.doi.org/10.1016/j.eswa.2013.10.064<http://
www.sciencedirect.com/science/article/pii/S0957417413008968>. ISSN 0957-
4174.

Pientka, B. (2007). Proof pearl: The power of higher-order encodings in the logical
framework LF. In K. Schneider & J. Brandt (Eds.), Theorem proving in higher order
logics. Lecture notes in computer science (Vol. 4732, pp. 246–261). Berlin
Heidelberg: Springer. http://dx.doi.org/10.1007/978-3-540-74591-4_19. ISBN
978-3-540-74590-7.

Qureshi, T. N., Chen, D., Lönn, H., & Törngren, M. (2011). From EAST-ADL to
AUTOSAR software architecture: A mapping scheme. In Proceedings of the 5th
European conference on software architecture, ECSA’11 (pp. 328–335). Berlin,
Heidelberg: Springer-Verlag<http://dl.acm.org/citation.cfm?id=2041790.
2041834>. ISBN 978-3-642-23797-3.

Rajlich, V. (2014). Software evolution and maintenance. In Proceedings of the on
future of software engineering, FOSE 2014 (pp. 133–144). New York, NY, USA:
ACM. http://dx.doi.org/10.1145/2593882.2593893. ISBN 978-1-4503-2865-4.

Rodriguez, R. J., Fredlund, L., Herranz, A., & Marino, J. (2014). Execution and
verification of uml state machines with erlang. In D. Giannakopoulou & G. Salan
(Eds.), Software engineering and formal methods. Lecture notes in computer science
(Vol. 8702, pp. 284–289). Springer International Publishing. http://dx.doi.org/
10.1007/978-3-319-10431-7_22. ISBN 978-3-319-10430-0.

Segala, R. (1995). A compositional trace-based semantics for probabilistic automata.
In I. Lee & S. A. Smolka (Eds.), CONCUR ’95: Concurrency theory. Lecture notes in
computer science (Vol. 962, pp. 234–248). Berlin Heidelberg: Springer. http://
dx.doi.org/10.1007/3-540-60218-6_17. ISBN 978-3-540-60218-7.

Singhoff, F., Legrand, J., Nana, L., & Marcé, L. (2004). Cheddar: A flexible real time
scheduling framework. Ada Letters, XXIV(4), 1–8. http://dx.doi.org/10.1145/
1046191.1032298<http://doi.acm.org/10.1145/1046191.1032298>. ISSN 1094-
3641.

US Dept of Commerce. (2010). Free nist software tool boosts detection of software
bugs. http://2010-2014.commerce.gov/blog/2010/11/09/free-nist-software-
tool-boosts-detection-software-bugs.

Yan, G., Zhu, X. Y., Yan, R., & Li, G. (2014). Formal throughput and response time
analysis of marte models. In S. Merz & J. Pang (Eds.), Formal methods and
software engineering. Lecture notes in computer science (vol. 8829, pp. 430–445).
Springer International Publishing. http://dx.doi.org/10.1007/978-3-319-11737-
9_28. ISBN 978-3-319-11736-2.

http://dl.acm.org/citation.cfm?id=1416222.1416271
http://dx.doi.org/10.1007/978-3-319-17581-2_13
http://dx.doi.org/10.1007/978-3-319-17581-2_13
http://refhub.elsevier.com/S0957-4174(15)00385-1/h0200
http://refhub.elsevier.com/S0957-4174(15)00385-1/h0200
http://dx.doi.org/10.1007/978-3-319-17581-2_2
http://dx.doi.org/10.1007/978-3-319-17581-2_2
http://refhub.elsevier.com/S0957-4174(15)00385-1/h0210
http://refhub.elsevier.com/S0957-4174(15)00385-1/h0210
http://refhub.elsevier.com/S0957-4174(15)00385-1/h0210
http://refhub.elsevier.com/S0957-4174(15)00385-1/h0210
http://dx.doi.org/10.1007/s10703-012-0177-x
http://dx.doi.org/10.1007/s10703-012-0177-x
http://dx.doi.org/10.1109/PST.2011.5971976
http://dx.doi.org/10.1109/SoMeT.2013.6645657
http://dx.doi.org/10.1016/j.knosys.2013.11.016
http://www.sciencedirect.com/science/article/pii/S0957417413008968
http://www.sciencedirect.com/science/article/pii/S0957417413008968
http://dx.doi.org/10.1007/978-3-540-74591-4_19
http://dl.acm.org/citation.cfm?id=2041790.2041834
http://dl.acm.org/citation.cfm?id=2041790.2041834
http://dx.doi.org/10.1145/2593882.2593893
http://dx.doi.org/10.1007/978-3-319-10431-7_22
http://dx.doi.org/10.1007/978-3-319-10431-7_22
http://dx.doi.org/10.1007/3-540-60218-6_17
http://dx.doi.org/10.1007/3-540-60218-6_17
http://dx.doi.org/10.1145/1046191.1032298
http://doi.acm.org/10.1145/1046191.1032298
http://2010-2014.commerce.gov/blog/2010/11/09/free-nist-software-tool-boosts-detection-software-bugs
http://2010-2014.commerce.gov/blog/2010/11/09/free-nist-software-tool-boosts-detection-software-bugs
http://dx.doi.org/10.1007/978-3-319-11737-9_28
http://dx.doi.org/10.1007/978-3-319-11737-9_28

	A quantitative verification framework of SysML activity diagrams under time constraints
	1 Introduction
	2 Related works
	2.1 Comparison

	3 Preliminaries
	3.1 SysML activity diagram
	3.1.1 Actions execution
	3.1.2 Time expression using SysML/MARTE

	3.2 Probabilistic model checking
	3.3 Property specification for PTAs

	4 SysML activity diagram formalization
	4.1 SysML activity diagrams syntax

	5 PRISM formalization
	5.1 PRISM syntax
	5.2 PRISM semantics

	6 The verification approach
	7 The transformation soundness
	8 Implementation and experimental results
	9 Conclusion
	References

