
This is a postprint version of the following published document:

Ludeña-Choez, J., & Gallardo-Antolín, A. (2016). 
Acoustic event classification using spectral band 
selection and non-negative matrix factorization-based 
features. Expert Systems with Applications, 46, 77-86.

 doi:https://doi.org/10.1016/j.eswa.2015.10.018

 

© Elsevier, 2015

This work is licensed under a Creative Commons Attribution-
NonCommercialNoDerivatives 4.0 International License. 



Acoustic Event Classification Using Spectral Band
Selection and Non-Negative Matrix Factorization-Based

Features

Jimmy Ludeña-Choeza,b, Ascensión Gallardo-Antoĺına,⇤
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Abstract

Feature extraction methods for sound events have been traditionally based

on parametric representations specifically developed for speech signals, such as

the well-known Mel Frequency Cepstrum Coe�cients (MFCC). However, the

discrimination capabilities of these features for Acoustic Event Classification

(AEC) tasks could be enhanced by taking into account the spectro-temporal

structure of acoustic event signals. In this paper, a new front-end for AEC which

incorporates this specific information is proposed. It consists of two di↵erent

stages: short-time feature extraction and temporal feature integration. The

first module aims at providing a better spectral representation of the di↵erent

acoustic events on a frame-by-frame basis, by means of the automatic selection

of the optimal set of frequency bands from which cepstral-like features are ex-

tracted. The second stage is designed for capturing the most relevant temporal

information in the short-time features, through the application of Non-Negative

Matrix Factorization (NMF) on their periodograms computed over long audio

segments. The whole front-end has been evaluated in clean and noisy condi-

tions. Experiments show that the removal of certain frequency bands (which

are mainly located in the medium region of the spectrum for clean conditions
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and in low frequencies for noisy environments) in the short-time feature com-

putation process in conjunction with the NMF technique for temporal feature

integration improves significantly the performance of a Support Vector Machine

(SVM) based AEC system with respect to the use of conventional MFCCs.

Keywords: acoustic event classification, feature extraction, temporal feature

integration, feature selection, mutual information, non-negative matrix

factorization

1. Introduction

In recent years, the problem of automatically detecting and classifying acous-

tic non-speech events has attracted the attention of numerous researchers. Al-

though speech is the most informative acoustic event, other kind of sounds (such

as laughs, coughs, keyboard typing, etc.) can give relevant cues about the hu-5

man presence and activity in a certain scenario (for example, in an o�ce room).

This information could be used in di↵erent applications, mainly in those with

perceptually aware interfaces such as smart-rooms (Temko & Nadeu, 2006), au-

tomotive applications (Muller et al., 2008), mobile robots working in diverse

environments (Chu et al., 2006) or surveillance systems (Principi et al., 2015).10

Acoustic Event Classification (AEC) systems can be formulated as a machine

learning problem consisting in two main stages: feature extraction (or front-end)

and classification (or back-end). The first one obtains a parametric and compact

representation of the audio signals more appropriate for classification. The

purpose of the second one is to determine which Acoustic Event (AE) has been15

produced through a certain decision process. Several front-ends and classifiers

have been proposed and compared in the literature for this task. Nevertheless,

the high correlation between the performance of di↵erent classifiers suggests

that the main problem is not the choice of the classification technique, but a

design of a suitable feature extraction process for AEC (Kons & Toledo, 2013).20

This paper, precisely, focuses on this issue.

Many state-of-the art front-ends are composed of two modules: short-time
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feature extraction, in which acoustic coe�cients are computed on a frame-by-

frame basis (typically, the frame period used for speech/audio analysis is about

10-20 ms) from analysis windows of 20-40 ms, and temporal feature integra-25

tion (Meng et al., 2007), in which features at larger time scales are extracted

by combining somehow the short-time characteristics information over a longer

time-frame composed of several consecutive frames. The resulting characteris-

tics are often called segmental features (Zhang & Schuller, 2012; Ludeña-Choez

& Gallardo-Antoĺın, 2013a, 2015). In this paper, two techniques which improve30

the performance of each of these modules by taking into account the specific

spectro-temporal structure of acoustic events are presented. For short-time fea-

ture extraction, an automatic spectral band selection method is applied in order

to emphasize the more relevant frequencies (and less redundant) of the acoustic

events in the parameterization procedure, whereas for temporal feature integra-35

tion, Non-Negative Matrix Factorization (NMF) (Lee & Seung, 1999) is used

for obtaining a set of segmental features which better summarizes the temporal

information contained in the frame-based acoustic characteristics.

This paper is organized as follows: Section 2 introduces related work on

feature extraction of acoustic event signals. Section 3 describes the short-time40

feature extraction process based on spectral band selection. Section 4 presents

the application of NMF for the design of the temporal feature integration mod-

ule. Section 5 presents the experiments and results to end with some conclusions

in Section 6.

2. Related work45

In first works on acoustic event classification and detection, the parametric

representations of audio signals used were strongly based on those previously

developed for speech processing and related tasks, such as speech and speaker

recognition. As these acoustic parameters are usually extracted on a frame-by-

frame basis, they are commonly known as short-time features. Good examples50

are the conventional Mel-Frequency Cepstral Coe�cients (MFCC) (Temko &
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Nadeu, 2006; Zieger, 2008; Zhuang et al., 2010; Kwangyoun & Hanseok, 2011),

log filter bank energies (Zhuang et al., 2010), Perceptual Linear Prediction

(PLP) (Portelo et al., 2009), log-energy, spectral flux, entropy and zero-crossing

rate (Temko & Nadeu, 2006; Perperis et al., 2011). The combination of some of55

these short-time features into high-dimensional acoustic vectors has also been

studied, as well as the application of feature selection algorithms over these

large pools of characteristics, in order to precisely reduce their dimensionality

(Zhuang et al., 2008, 2010; Butko & Nadeu, 2010; Kiktova-Vozarikova et al.,

2013).60

Nevertheless, as pointed in (Zhuang et al., 2010), many of these conventional

acoustic features are not necessarily the more appropriate for AEC tasks because

most of them have been designed according to the spectral characteristics of

speech which are quite di↵erent from the spectral structure of acoustic events. In

addition, some types of acoustic events present a typical temporal structure (for65

example, the periodic pattern of phone rings) that should be somehow exploited

in order to improve feature representation and discrimination capabilities. For

these two reasons, recent research is being focused on finding a set of features

that adequately represents the acoustic events.

To deal with the first problem, new acoustic parameters such as Power Nor-70

malised Cepstral Coe�cients (PNCC) (Principi et al., 2015) and those derived

from Gammatone (Plinge et al., 2014) or Gammachirp filter banks (Alam et al.,

2014) have been proposed. Other works try to discover the hidden structure

of the acoustic data by means of the application of Non-Negative Matrix Fac-

torization (NMF) or K-Singular Value Decomposition (KSVD) on audio spec-75

trograms (Choi et al., 2015). In an alternative approach (Ludeña-Choez &

Gallardo-Antoĺın, 2013a), from the analysis of the AE spectral characteristics,

it was concluded the importance of medium and high frequencies for discriminat-

ing between di↵erent acoustic events, yielding to the design of a new front-end

based on the high pass filtering of the audio signals, which achieves good results80

in clean and noisy conditions (Ludeña-Choez & Gallardo-Antoĺın, 2015). Note

that all these approaches can be seen as di↵erent modifications of the conven-
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tional mel-scaled auditory filter bank which is applied on the audio spectrograms

in the short-time feature extraction process.

Following the idea that some frequency bands may be more useful for dis-85

tinguishing between di↵erent sounds than others, in this paper, a modified mel-

scaled filter bank is proposed in which only a selected set of spectral bands are

considered in the computation of the short-time characteristics. In contrast to

the already mentioned approaches, in this work, an automatic method is used to

find this optimal set of frequency bands from which cepstral-like coe�cients are90

derived, as explained in Section 3. In particular, several Feature Selection (FS)

techniques based on Mutual Information (MI) measures have been evaluated

and compared for this purpose. Note that, in comparison with previous works

about FS for tasks related to acoustic events, in this paper it is not intended to

use FS for dimensionality reduction but to provide a better spectral represen-95

tation of the AEs through the selection of the more relevant and less redundant

spectral bands.

In order to cope with the second problem, the idea of simultaneously per-

forming temporal and spectral analysis to yield so-called spectro-temporal fea-

tures has lately emerged, e.g. high-level features (also called audio banks)100

(Sandhan et al., 2014), spectrogram patch modeling using Restricted Boltzman

Machines (RBM) (Espi et al., 2014) and 2D Gabor-based biologically inspired

features (Schroder et al., 2015). As these methods are usually very computa-

tional demanding, temporal feature integration techniques, in which features at

larger time scales are extracted by combining the short-time parameters con-105

tained in long audio segments, have become an interesting alternative. Among

these techniques, the approach based on Filter Bank Coe�cients (FC), which

was initially proposed for general audio and music genre classification (McKin-

ney & Breebaart, 2003; Arenas-Garćıa et al., 2006; Meng et al., 2007), has been

experimented for AEC with promising results (Mej́ıa-Navarrete et al., 2011).110

Its main advantage is that it allows to capture the dynamic structure in the

short-time features. The idea behind FC is to summarize the periodogram of

each short-time feature dimension by computing the power in several predefined
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frequency bands using a filter bank, which is usually the one proposed in (McK-

inney & Breebaart, 2003). However, as pointed in (Arenas-Garćıa et al., 2006),115

this fixed filter bank is not general enough since the relevance of the dynamics in

the short-time features for classification can be expected to be task-dependent.

Based on this premise, in (Ludeña-Choez & Gallardo-Antoĺın, 2013b) a

method based on Non-Negative Matrix Factorization (NMF) for the design of

a filter bank for the computation of FC-based features more suitable for AEC120

has been proposed by the authors and successfully tested in clean conditions.

In comparison with similar works (Arenas-Garćıa et al., 2006), the approach

described in (Ludeña-Choez & Gallardo-Antoĺın, 2013b), which is described in

Section 4, is unsupervised and general enough to be applied to any sound signals.

In summary, in view of the main limitations of the audio feature extraction125

methods existing in the literature, in this paper, a novel front-end for AEC

tasks is proposed. The major contributions of this work are the following:

the development of a new short-time parameterization based on the automatic

selection of spectral bands which better reflects the spectral characteristics of

audio events, its combination with a feature integration technique based on130

NMF which aims to improve the modeling of the temporal behaviour of short-

time features; and the evaluation of the complete front-end in both, clean and

noisy conditions.

Figure 1 represents the block diagram of the whole audio feature extraction

process. As mentioned before, it can be observed that it consists of two main135

stages: short-time feature extraction and temporal feature integration. Next

sections are devoted to the description of both modules.

3. Short-time Feature Extraction Based on Spectral Band Selection

In this section, the procedure of extraction of short-time acoustic character-

istics from audio signals is presented. The main idea of this module is that not140

all the available spectral bands should be used in the feature extraction process,

as only some of them provide suitable information for the acoustic event clas-
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Figure 1: Block diagram of the feature extraction process.

sification task. As a consequence, in this approach, a method for choosing the

most appropriate spectral bands is needed. In particular, in this work, several

feature selection algorithms based on Mutual Information have been considered145

as it is explained in next subsection.

After a brief introduction about feature selection and its application to au-

tomatic spectral band selection, in the remainder of this section, the detailed

process for obtaining a parametric representation of audio signals from the out-

puts of the selected frequency bands is described.150

3.1. Feature Selection based on Mutual Information

The main objective of feature selection methods is to construct subsets of

features that are useful for classification (Guyon & Elisseeff, 2003). They can

be categorized as classifier-dependent (called “wrapper” methods) and classifier-

independent (denoted as “filter” techniques) (Guyon & Elisseeff, 2003). Filter155

methods search the best feature sets by computing some similarity measures

over the data, such as distance (Bins & Draper, 2001; Sebban & Nock, 2002)

or mutual information (Peng et al., 2005; Férnandez et al., 2009; Brown et al.,

2012), independently of any particular classifier, and therefore, they are less
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likely to overfit and less computationally costly than wrappers. For these rea-160

sons, in this paper, filter methods have been chosen, in particular those based

on Mutual Information.

MI is a nature measure of the quantity of information that two random

variables have in common. It is symmetric and non-negative and is zero if

and only if the variables are independent (Cover & Thomas, 2006). MI can be165

seen as a way of quantify the relevance of one random variable with respect

to the another one. Let L and S two discrete random variables and l and s,

two possible values adopted by, respectively, L and S. The mutual information

I(L;S) between L and S is given by

I (L;S) =
X

l2L

X

s2S

p (l, s) log

✓
p (l, s)

p (l)p (s)

◆
(1)

where p (l) and p (s) are the probability distributions of L and S and p (l, s)170

is their joint probability distribution.

FS methods based on MI rely on the definition of a certain selection criterion,

J, which is somehow related to the mutual information between features and

classes and quantifies the usefulness of a feature subset for the classification

task. Brown et al. (Brown et al., 2012) present an unifying view of several175

well-known MI-based FS techniques existing in the literature, showing that the

criterion used in some of them can be expressed as linear combinations of MIs,

as stated in (2),

J (Lk) = I (Lk;S)� �

X

Lj2✓

I (Lk;Lj) + �

X

Lj2✓

I (Lk;Lj|S) (2)

where Lk is the feature to evaluate its inclusion in the feature set and ✓ is

the set of currently selected features. The first term ensures the relevance of180

Lk, the second term is related to the redundancy of Lk with features already

selected in ✓ and the third term, called conditional redundancy, allows the in-

clusion of correlated features that, however, can be useful for the classification

task. Di↵erent values of constants � and � yield to di↵erent FS algorithms. In
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particular, in this work the following methods1 have been considered:185

• Minimum-Redundancy Maximum-Relevance (mRMR) (� = 1
|✓| , being |✓|

the size of the current selected set, and � = 0) which seeks to choose the

features with highest relevance to the target class, whereas the redundancy

is minimized (Peng et al., 2005).

• Joint Mutual Information (JMI) (� = 1
|✓| and � = 1

|✓| ), which includes the190

conditional redundancy term to allow the inclusion of correlated features

with complementary information (Meyer et al., 2008).

• Conditional Informative Feature Extraction (CIFE) (� = 1 and � = 1),

which also includes both, the redundancy and conditional redundancy

terms, but with di↵erent weights than in JMI (Lin & Tang, 2006).195

• Conditional Redundancy (CondRed) (� = 0 and � = 1), which does not

take into account the redundancy term.

3.2. Spectral Band Selection

In our case, for selecting the subset of spectral bands which better repre-

sents the di↵erent types of acoustic events, the input feature space for the FS200

algorithms consists of the log filter bank energies obtained after applying an

auditory mel-scaled filter bank on the magnitude spectra of the instances of

AEs belonging to the training partition of the database. In particular, these

parameters are extracted every 10 ms using a Hamming analysis window of 20

ms long and a mel-scaled filter bank composed of 40 triangular bands which is205

the one implemented in the toolbox VOICEBOX (Brookes, 2009).

1
Other criteria based on linear combinations of MIs, such as Mutual Information Feature

Selection (MIFS) (Battiti, 1994) and non-linear combinations, such as Conditional Mutual

Information Maximization (CMIM) (Fleuret, 2004) and Double Input Symmetrical Relevance

(DISR) (Meyer & Bontempi, 2006), have also been tried. As these methods did not improve

the results achieved by the ones described in this section and for the sake of brevity, they have

not been included in the experimental section.
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The four MI-based FS algorithms considered are applied over these data

using the FEAST toolbox (Brown et al., 2012), in such a way that the variables

involved in equations (1) and (2) are the mel-scaled log filter bank energies2

L 2 RN (being N the initial number of filters), and a discrete and finite set of210

acoustic event classes S. After this process, for each FS method, a ranking of

the selected spectral bands is obtained. As the chosen bands are finally sorted in

ascending order, this mechanism can be seen as the modification of the original

mel-scaled filter bank in which several filters are removed.

Note that the spectral band selection process is carried out only in the train-215

ing stage of the system.

3.3. Short-Time Feature Computation

In the short-time feature extraction stage, audio signals are analyzed every

10 ms using a Hamming window of 20 ms long. For each window, the magnitude

spectrum is obtained and filtered with the modified filter bank determined by the220

corresponding FS method, in such a way that only the log filter bank energies

of the selected frequency bands are computed. Then, the resulting vector of

log-energies is zero-padded to the number of filters of the original filter bank

(in our case, 40) and a Discrete Cosine Transform (DCT) is applied over it,

yielding to a set of 12 cepstral coe�cients (C1 to C12). Note that in the case of225

using the complete mel-scaled filter bank (i.e. when none of the spectral bands

is discarded), the resulting coe�cients are the conventional MFCC. Finally, the

log-energy of each frame (instead of the zero-order cepstrum coe�cient) and

the first time-derivatives are computed and added to the cepstral coe�cients,

leading to a 26-dimensional feature vector.230

2
As log filter bank energies are real values, an uniform quantization with 256 levels is

performed over them, before the feature selection process itself.
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4. NMF-Based Temporal Feature Integration

In this section, the background of the temporal feature integration technique

called Filter bank Coe�cients (FC) and its improvement by means of the use

of Non-Negative Matrix Factorization are presented.

4.1. Filter bank Coe�cients (FC)235

Once the short-time acoustic characteristics are extracted, temporal feature

integration is applied over audio segments of a given length (in our case, 2 s with

overlap of 1 s) in order to obtain a set of feature vectors at a larger time scale

(see Figure 1). In this work, the approach called Filter Bank Coe�cients (FC)

(McKinney & Breebaart, 2003; Arenas-Garćıa et al., 2006; Meng et al., 2007)240

is adopted, whose main advantage is that it aims at capturing the temporal

short-time features’ behaviour.

First, the sequence of T short-time coe�cients of dimensionDx,X = {x1 ,x2 , ...,xT}

is divided into K segments, Y = {y1 ,y2 , ...,yK} as follows,

yk = {xk·Hs ,xk·Hs+1, ...,xk·Hs+Ls�1} (3)

where Ls is the segment size and Hs is the hop size, both defined in number245

of short-time frames.

Second, the periodogram of each dimension of the short-time features con-

tained in the k-th segment yk is estimated and, then, it is summarized by cal-

culating the power in di↵erent frequency bands using a predefined filter bank,

zk = PkU (4)

where Pk comprises the periodograms of the sequence of the short-time coef-250

ficients belonging to the k-th segment, U is the frequency magnitude response of

the FC filter bank and zk is the final segmental feature vector. The dimensions

of Pk, U and zk are, respectively, Dx x Dp, Dp x nf and Dx x nf , where Dp

is the dimensionality of each individual periodogram and nf is the number of
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filters in the bank. The FC parameters Z = {z1 , z2 , ..., zK} are the input to the255

AEC system, which, in this case, is based on Support Vector Machines (SVM).

Previous works (McKinney & Breebaart, 2003; Meng et al., 2007), in which

the FC approach has been applied for general audio and music genre classifi-

cation tasks, use a filter bank U composed of four filters corresponding to the

following frequency bands:260

• Filter 1: 0 Hz (DC filter)

• Filter 2: 1 - 2 Hz (modulation energy)

• Filter 3: 3 - 15 Hz (modulation energy)

• Filter 4: 20 - 43 Hz (perceptual roughness)

As the importance of the di↵erent dynamics in short-time features for classi-265

fication may depend on the task, it can be argued that this fixed filter bank is not

optimal for all audio classification problems. In other words, some modulation

frequencies can be relevant for distinguishing between, for example, di↵erent

acoustic events, and not between music genres. In next subsection, the unsu-

pervised method developed by the authors for designing the FC filter bank is270

presented. More details about this method can be found in (Ludeña-Choez &

Gallardo-Antoĺın, 2013b).

4.2. NMF-Based Design of the FC Filter Bank

For the improvement of the temporal feature integration module, the main

goal is to develop an unsupervised approach to find the optimal filter bank275

in such a way that the resulting FC parameters z carry the most significant

information about the underlying temporal structure of the short-time acous-

tic characteristics. This problem can be formulated as the decomposition of

the periodograms P into their main components (i.e., into their more relevant

frequency bands).280

Non-Negative Matrix Factorization (NMF) (Lee & Seung, 1999) provides a

way to decompose a signal into a convex combination of non-negative building
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blocks (called Spectral Basis Vectors, SBV) by minimizing a given cost function.

As both, the power spectrum of the short-time parameters and the frequency

response of the elements of the filter bank, are inherently positive, NMF can285

o↵er a suitable solution to the problem stated here, as will be explained in next

subsections. Along the rest of the paper, the filter bank obtained by NMF is

denoted as W in order to distinguish it from the fixed filter bank U.

4.3. Non-Negative Matrix Factorization (NMF)

Given a matrix V 2 RA⇥B

+ , where each column is a data vector, NMF290

approximates it as a product of two matrices of non-negative low rank W and

H, such that

V ⇡WH (5)

where W 2 RA⇥C

+ and H 2 RC⇥B

+ and normally C  min (A,B). This way,

each column of V can be written as a linear combination of the C basis vectors

(columns of W), weighted with the coe�cients of activation or gains located in295

the corresponding column of H. NMF can be seen as a dimensionality reduction

of data vectors from an A�dimensional space to a C�dimensional space. This

is possible if the columns of W uncover the latent structure in the data (Lee

& Seung, 1999). The factorization is achieved by an iterative minimization of

a given cost function as, for example, the Euclidean distance or the generalized300

Kullbak Leibler (KL) divergence which is defined as follows,

DKL (VkWH) =
X

ij

 
Vij log

Vij

(WH)
ij

� (V �WH)
ij

!
(6)

In this work, the KL divergence is considered because it has been recently

used with good results in speech processing tasks, such as speech enhancement

and denoising for ASR tasks (Wilson et al., 2008; Ludeña-Choez & Gallardo-

Antoĺın, 2012) or feature extraction (Schuller et al., 2010). In order to find a305

local optimum value for the KL divergence between V and (WH), an iterative
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scheme with multiplicative update rules can be used as proposed in (Lee &

Seung, 1999) and stated in (7),

W W ⌦
V

WH
H

T

1HT H H⌦ W
T V

WH

WT 1
(7)

where 1 is a matrix of size V, whose elements are all ones and the multipli-

cations ⌦ and divisions are component wise operations. NMF produces a sparse310

representation of the data, reducing the redundancy.

4.4. Constructing the FC Filter Bank with NMF

As mentioned before, the matrix to be decomposed is formed by the peri-

odograms of the short-time acoustic characteristics. As a unique filter is learnt

for all their components, the matrix P consists of the row-wise concatenation of315

the Dx periodograms of the short-time parameters extracted from the training

set of the di↵erent acoustic events considered. Therefore, the dimension of P is

(Dx x ns) x Dp, where ns is the total number of segments in the training set.

Once this matrix is transposed (PT), its corresponding factored matrices

WH are obtained using the learning rules in equation (7). The dimensions of320

W and H are, respectively, Dp x nf and nf x (Dx x ns). The resulting matrix

W contains the SBVs which represent the basis of the power spectrum of the

short-time features, as it is verified that PT ⇡WH, and, therefore, they could

be interpreted as the filters of the required FC filter bank.

In order to compute the NMF-based FC parameters, equation (4) is applied325

substituting the fixed filter bank U by W.

5. Experiments and Results

5.1. Database and Baseline System

The database used for the experiments consists of a total of 2,114 instances

of target events belonging to 12 di↵erent acoustic classes: Applause, Cough,330

Chair moving, Door knock, Door open/slam, Keyboard typing, Laugh, Paper
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work, Phone ring, Steps, Spoon/cup jingle and Key jingle. The composition

of the whole database was intended to be similar to the one used in (Zhuang

et al., 2010) and it is shown in Table 1. Audio files were obtained from di↵erent

sources: websites, the FBK-Irst database (FBK-Irst, 2009) and the UPC-TALP335

database (UPC-TALP, 2012). All sounds were converted to the same format

and sampling frequency (8 KHz).

Table 1: Database used in the experiments.

Class Event type No. of occurrences

1 Applause [ap] 155

2 Cough [co] 199

3 Chair moving [cm] 115

4 Door knock [kn] 174

5 Door open/slam [ds] 251

6 Keyboard typing [kt] 158

7 Laugh [la] 224

8 Paper work [pw] 264

9 Phone ring [pr] 182

10 Steps [st] 153

11 Spoon/cup jingle [cl] 108

12 Key jingle [kj] 131

Total 2,114

Since this database is too small to achieve reliable classification results, a

6-fold cross validation was used in order to artificially extend it, averaging the

results afterwards. Specifically, the database was split into six disjoint balanced340

groups, in such a way that one di↵erent group was kept for testing in each fold,

while the remainder ones were used for training.

For the experiments in noisy conditions, the original audio recordings were

contaminated with six di↵erent types of noise (Airport, Babble, Restaurant,

Train, Exhibition Hall and Subway) obtained from the AURORA framework345
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(Pearce & Hirsch, 2000) at SNRs from 0 dB to 20 dB with 5 dB step. In or-

der to calculate the amount of noise to be added to the clean recordings, the

audio and noise powers were calculated following the procedure indicated in

(Steeneken, 1991), which takes into account the non-stationary characteristics

of the signals.350

The AEC system is based on a one-against-one SVM with Radial Basis Func-

tion (RBF) kernel on normalized features (Ludeña-Choez & Gallardo-Antoĺın,

2013b, 2015). The system was developed using the LIBSVM software (Chang

& Lin, 2011). Concerning SVM training, for each one of the subexperiments, a

5-fold cross validation was used for computing the optimal values of the RBF355

kernel parameters. In the testing stage, as the SVM classifier was fed with

segmental features computed over sliding windows, the classification decisions

were made at segment level. In order to obtain a decision for the whole instance

(target event level), the classifier outputs of the corresponding windows were in-

tegrated using a majority voting scheme, in such a way that the most frequent360

label was finally assigned to the whole recording (Geiger et al., 2013).

5.2. Application of FS to Spectral Band Selection

For each fold, the selection of the more appropriate frequency bands for AEC

was performed following the procedure described in Subsection 3.2. Cells in blue

color in Figure 2 represent the 12 first non-selected spectral bands determined365

by mRMR, JMI, CIFE and CondRed algorithms for the first fold. The number

inside each cell indicates the position in the rank of the discarded bands (for

example, the 30th band is the first discarded one by the mRMR algorithm). The

non-selected bands do not di↵er very much between folds.

From this figure, it can be observed the following behaviour of the FS meth-370

ods. CondRed discards the first low-frequency filters (this is equivalent to the

high pass filtering approach proposed in (Ludeña-Choez & Gallardo-Antoĺın,

2015)). The non-selected bands by JMI are placed into two di↵erent frequency

regions, the first one from 530 Hz to 1530 Hz and the second one from 2125 Hz

to 2685 Hz. mRMR discards several non-adjacent bands in the spectral region375
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CondRed 1 2 3 4 5 6 7 8 9 10 11 12         

CIFE            11  9  7   6  
JMI             10 5 1 3 8  4  

mRMR                11   8  
# Band 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

 
CondRed                     

CIFE 2 1 4 10 5  3 8 12            
JMI 2 7  11       9 6 12        

mRMR 6  4 10 2   7  1  3 9  5 12     
# Band 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

 
 

Figure 2: Spectral bands discarded by di↵erent MI-based feature selection methods for the

first fold training set.

between 920 Hz to 3200 Hz. Finally, CIFE does not select bands in an almost

continuous region between 920 Hz to 2110 Hz and more sparsely between 650

Hz to 825 Hz.

5.3. Application of NMF to the Design of the FC Filter Bank

The filters of the fixed filter bank U were implemented as 2nd order But-380

terworth filters. On the contrary, in the NMF-based method, for each fold, the

filter bank W was obtained by applying the method described in Subsection

4.4 over the corresponding training set. In all folds, NMF was initialized by

generating 10 random matrices (W and H), in such a way that the factoriza-

tion with the smallest euclidean distance between P
T and (W H) was chosen385

for initialization. Then, these initial matrices were refined by minimizing the

KL divergence using the multiplicative update rules given in equation (7) and a

maximum of 200 iterations. After this process, the resulting W contained the

filters of the required FC bank.

Figure 3 (b) represents the NMF-based FC filter bank W obtained on a390

single fold using the previous procedure for nf = 4 filters. For comparison

purposes, the fixed FC filter bank U is also represented in Figure 3 (a). Note

that, although the maximum modulation frequency is 50 Hz (the short-time

features are extracted each 10 ms), for improving the readability of the figures,

only frequencies up to 20 Hz are represented. From the comparison of Figures395

3 (a) and (b), it can be seen that filters 1 and 2 of U roughly appears in W.
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Figure 3: Frequency responses of the FC filter banks used in the temporal feature integration

process. (a) Fixed filter bank (U); (b) Filter bank determined by NMF (W).

The highest frequency filter in W presents a high bandwidth and covers the

modulation frequencies of the baseline filters 3 and 4. Finally, the filter 4 of U

is substituted by a low-frequency filter in W, suggesting that, for describing the

temporal structure of the short-time acoustic characteristics, low modulation400

frequencies are more relevant than high ones. Also, it is worth mentioning that

the resulting filters do not di↵er very much between folds.

5.4. Results in Clean Conditions

This section contains the experiments carried out in order to assess the

performance of the proposed front-end in clean conditions (when no noise is405

added to the audio signals) in comparison to the case in which the complete

mel-scaled filter bank is used. For temporal feature integration, two di↵erent

techniques have been evaluated, FC (with the fixed FC filter bank U) and

FC NMF (with the NMF-based FC filter bank W). The term “baseline” refers

to the case in which the short-time features correspond to the conventional410

MFCC (i.e. when the complete mel-scaled filter bank is used in the short-time

feature extraction stage). Therefore, the baseline for FC is the combination of

MFCC for short-time feature extraction and FC for temporal feature integration.

In the same way, for FC NMF, the baseline is the combination of MFCC and

FC NMF.415

The average Recognition Rate (RR), i.e., the percentage of target events

correctly classified, of the baseline systems is 71.75% for FC and 73.15% for

18



FC NMF. Figures 4 (a) and (b) represent, respectively, the Relative Error Re-

ductions (RERs) with respect to the corresponding baselines for the FC and

FC NMF front-ends as a function of the number of discarded bands by the four420

FS algorithms considered: mRMR, JMI, CIFE and CondRed.

As it can be observed, for the FC parameterization, to consider only the most

important spectral bands for the computation of the short-time features always

outperforms the baseline, specially when the number of non-selected bands is in

the range between 6 and 12. With respect to the performance of the di↵erent425

FS techniques, CondRed produces smaller improvements than the remaining

algorithms, whereas mRMR and JMI achieve more similar results. CIFE is the

method which produces the best performance with RERs with respect to the

baseline between 16% and 19% when more than 5 bands are discarded.

In general terms, FC NMF follows similar trends than FC, although the430

relative error reductions are more noticeable. Again, the smallest improvements

are obtained with CondRed. However, in this case, JMI produces the best

results, achieving RERs over 26% in the range from 7 to 9 non-selected spectral

bands. Anyway, in both front-ends, it seems that the FS algorithms which

exhibit better performance are those in which the redundancy and conditional435

redundancy terms are taken into account (JMI and CIFE). In these cases, the

frequency bands not considered in the short-time feature extraction process are

mainly in the medium region of the spectrum.

Table 2 shows the average recognition rates, as well as the corresponding 95%

confidence intervals, achieved by FC and FC NMF, for the baselines and the best440

configuration of the di↵erent FS methods. For both feature temporal integration

techniques, spectral band selection improves significantly the baseline systems.

For the FC front-end, CIFE with 12 discarded spectral bands obtains the best

results, whereas for FC NMF, the highest classification rate corresponds to JMI

and 7 non-selected bands. In both cases, the improvement over the respective445

baselines is similar (around 5% absolute). Finally, comparing the accuracies

with the best configurations, it can be observed that FC NMF outperforms FC,

being the performance di↵erences statistically significant.
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Figure 4: Relative error reduction [%] with respect to the corresponding baselines: (a) FC

parameterization; (b) FC NMF parameterization.

5.5. Results in Noisy Conditions

In order to study the impact of noisy environments on the performance of450

the AEC system, several experiments were carried out with six different types

of noise (Airport, Babble, Restaurant, Train, Exhibition Hall and Subway) at

SNRs from 0 dB to 20 dB with 5 dB step.

Table 3 shows the average recognition rates over all noises and SNRs con-

sidered, as well as the corresponding 95% confidence intervals, achieved by FC455

and FC NMF, for the baseline and the best configuration of the different FS
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Table 2: Average recognition rates [%] for di↵erent FS methods and the FC and FC NMF

parameterizations in clean conditions.

Temporal Feature Integration

FC FC NMF

Short-time Average No. discarded Average No. discarded

Features RR [%] bands RR [%] bands

Baseline 71.75± 1.92 - 73.15± 1.89 -

mRMR 76.05± 1.82 11 79.53± 1.72 8

JMI 76.48± 1.81 7 81.02± 1.67 7

CIFE 77.11± 1.79 12 80.30± 1.70 12

CondRed 75.18± 1.84 4 79.00± 1.74 8

methods. A general comment is that in noisy conditions, a dramatic decrease

in the classification rates is produced. As in clean conditions, for both temporal

feature integration techniques, spectral band selection improves significantly the

respective baseline systems. However, in this case, whereas mRMR, JMI and460

CIFE achieve similar recognition rates, CondRed produces better results than

the remainder FS methods, being the performance di↵erences statistically sig-

nificant. In particular, the relative error reduction of CondRed with respect to

the respective baselines is around 13% for FC when 5 bands are discarded and

around 16% for FC NMF for 9 discarded bands. Note that CondRed does not465

take into account the first low frequency filters of the auditory filter bank in the

short-time feature extraction process. As in the selection process CondRed does

not penalize features which are redundant with the other ones already chosen

(� = 0), it seems that keeping spectral bands carrying similar information in

clean conditions, can increase the robustness to noise of the whole system. This470

is because, when a certain frequency band is masked by the presence of noise,

its spectral information is not completely lost if another redundant band has

been preserved in the parameterization process.

When comparing the results obtained by FC and FC NMF with the best con-

figurations, it can be observed that FC NMF improves the average recognition475

rates achieved by FC, being the performance di↵erences statistically significant.

Figure 5 represents the recognition rates achieved by the baseline and the

21



best configurations of the four FS methods with the FC NMF front-end as a

function of the SNR for the six noises evaluated. It can be observed that, in

general, FS methods outperform the baseline for all noises and SNRs. mRMR,480

JMI and CIFE obtain similar results, whereas the classification rates achieved

by CondRed are noticeably higher than those produced by the remaining FS

methods and the baseline for the Airport, Babble, Restaurant and Train noises.

For Exhibition Hall and Subway noises, CondRed still obtains the best results,

but in these cases, the di↵erences are smaller.485

Table 3: Average recognition rates [%] for di↵erent FS methods and the FC and FC NMF

parameterizations in noisy conditions.

Temporal Feature Integration

FC FC NMF

Short-time Average No. discarded Average No. discarded

Features RR [%] bands RR [%] bands

Baseline 45.54± 0.39 - 44.85± 0.39 -

mRMR 50.87± 0.39 6 51.92± 0.39 3

JMI 50.88± 0.39 5 51.20± 0.39 6

CIFE 51.13± 0.39 6 51.37± 0.39 5

CondRed 52.41± 0.39 5 53.43± 0.39 9

6. Conclusions

In this paper, a new front-end for acoustic event classification whose design

incorporates information about the specific spectro-temporal patterns of acous-

tic events is proposed. It presents a modular structure consisting of two di↵erent

stages: short-time feature extraction and temporal feature integration.490

The first module is based on the selection of the optimal set of frequency

bands which provides a better spectral representation of the di↵erent acous-

tic events and improves its discrimination capabilities compared to conven-

tional MFCCs. This procedure is accomplished by means of the use of mutual

information-based feature selection algorithms (mRMR, JMI, CIFE and Con-495

dRed) over the mel-scaled log filter bank energies. Once the log filter bank
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Figure 5: Average recognition rates for different noises and the FC NMF parameterization.

energies of the chosen filters are extracted, the DCT is applied over them, yield-

ing to a set of short-time cepstral-like coefficients, which are finally combined at

a larger temporal scale through a process of temporal feature integration which

is performed in the second module of the front-end. This stage relies on the500

combination of the feature integration technique called FC and non-negative

matrix factorization, producing a set of segmental features called FC NMF. In

particular, NMF is used for the unsupervised learning of the filter bank which

allows a better modeling of the temporal dynamics of the short-time parameters,

in such a way that more reliable information about the temporal structure of the505

acoustic events is incorporated in the feature extraction process in comparison

to the baseline FC technique.
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The whole front-end has been tested in clean and noisy conditions on a

SVM-based AEC system. On the one hand, the FS methods which achieve the

best performance are CIFE and JMI for, respectively, the FC and FC NMF510

parameterizations in clean conditions and CondRed in noisy conditions. Any

way, it is shown that the removal of the frequency bands determined by the FS

algorithms (which are mainly located in the medium region of the spectrum for

clean conditions and in low frequencies for noisy environments) in the short-

time feature computation process, improves significantly the performance of the515

baseline system (when no spectral bands are removed). On the other hand,

the combination of these short-time acoustic characteristics with the FC NMF

technique produces significant improvements in the classification performance

of the whole system in comparison with the FC-based features. This result

suggests that NMF is able to better model the temporal behaviour of the short-520

time features than the conventional FC technique and that low modulation

frequencies are more important than the high ones for distinguishing between

di↵erent acoustic events.

As mentioned before, the central idea behind the proposed front-end is to

take advantage of the specific spectral and temporal patterns of acoustic events525

for enhancing the representation and discrimination capabilities of the extracted

features. Compared to previous related work in which a simultaneous spectro-

temporal processing is performed (Espi et al., 2014), (Schroder et al., 2015),

the main advantages of our system is that it is modular, so it is possible to

independently optimized each stage and less computationally costly. Regarding530

the short-time feature extraction, in contrast to previous approaches in which

the optimum set of spectral bands was manually determined(Ludeña-Choez &

Gallardo-Antoĺın, 2015), our method automatically selects the most relevant

bands and derives from them a set of decorrelated cepstral-like coe�cients in-

stead of directly using the log filter bank energies (Kiktova-Vozarikova et al.,535

2013). With respect to the temporal feature integration stage, the proposed

technique models in a more adequate way the temporal dynamics of short-

time features, as the filter bank used for this purpose is automatically learnt
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from data, in opposition to previous works in which this filter bank is fixed

(Meng et al., 2007) and not necessarily adapted to the characteristics of the540

audio signals to be processed. In addition, results have shown that our system

outperforms the baseline in both, clean and noisy scenarios, whereas many of

previous related works have been tested only in clean conditions (for example,

(Plinge et al., 2014; Sandhan et al., 2014)).

One of the disadvantages of the proposed front-end is that in its design,545

some interesting properties of the human auditory system, such as temporal

and frequency masking, have not been taken into account. Nevertheless, for

future work, this problem could be (at least, partially) overcome through the

use of morphological operations on the spectrograms (de-la Calle-Silos et al.,

2015) in the first stage of the parameterization scheme. Another limitation is550

that in the second module of the front-end, a unique NMF-based filter bank is

learnt and used for all the components of short-time features, which might not

be a realistic assumption. For this reason, the design of one di↵erent NMF-filter

bank for each short-time feature dimension will be further studied.
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Arenas-Garćıa, J., Larsen, J., Hansen, L. K., & Meng, A. (2006). Optimal filter-565

ing of dynamics in short-time features for music organization. In Proceedings

25

http://dx.doi.org/10.1016/j.dsp.2014.03.001


of the International Society for Music Information Retrieval Conference (IS-

MIR) (pp. 290–295).

Battiti, R. (1994). Using mutual information for selecting features in supervised

neural net learning. IEEE Transactions on Neural Networks , 5(4), 537–550.570

doi:10.1109/72.298224.

Bins, J., & Draper, B. (2001). Feature selection from huge feature sets. In

IEEE Proceedings on Computer Vision (ICCV) (pp. 159–165). volume 2.

doi:10.1109/ICCV.2001.937619.

Brookes, M. (2009). Voicebox: Speech processing toolbox for MATLAB. Web-575

site. URL: http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.

html. Accessed: October 2015.

Brown, G., Pocock, A., Zhao, M., & Luján, M. (2012). Conditional likehood

maximisation: A unifying framework for information theoretic feature selec-

tion. Machine Learning Research, 13 , 27–66.580

Butko, T., & Nadeu, C. (2010). On enhancing acoustic event detection by

using feature selection and audiovisual feature-level fusion. In Proceedings of

the Workshop on Database and Expert Systems Applications (DEXA) (pp.

271–275). doi:10.1109/DEXA.2010.61.

de-la Calle-Silos, F., Valverde, F., Gallardo-Antoĺın, A., & Peláez, C. (2015).585
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